mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-16 09:04:41 +02:00
8214751: X86: Support for VNNI Instructions
Co-authored-by: Razvan A Lupusoru <razvan.a.lupusoru@intel.com> Reviewed-by: kvn
This commit is contained in:
parent
40d7e4c2e9
commit
05e175bf1b
18 changed files with 491 additions and 4 deletions
|
@ -3966,6 +3966,34 @@ void Assembler::vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len) {
|
|||
emit_int8((unsigned char)(0xC0 | encode));
|
||||
}
|
||||
|
||||
void Assembler::pmaddwd(XMMRegister dst, XMMRegister src) {
|
||||
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
|
||||
InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
|
||||
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
|
||||
emit_int8((unsigned char)0xF5);
|
||||
emit_int8((unsigned char)(0xC0 | encode));
|
||||
}
|
||||
|
||||
void Assembler::vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
|
||||
assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
|
||||
(vector_len == AVX_256bit ? VM_Version::supports_avx2() :
|
||||
(vector_len == AVX_512bit ? VM_Version::supports_evex() : 0)), "");
|
||||
InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
|
||||
int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
|
||||
emit_int8((unsigned char)0xF5);
|
||||
emit_int8((unsigned char)(0xC0 | encode));
|
||||
}
|
||||
|
||||
void Assembler::evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
|
||||
assert(VM_Version::supports_evex(), "");
|
||||
assert(VM_Version::supports_vnni(), "must support vnni");
|
||||
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
|
||||
attributes.set_is_evex_instruction();
|
||||
int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
|
||||
emit_int8(0x52);
|
||||
emit_int8((unsigned char)(0xC0 | encode));
|
||||
}
|
||||
|
||||
// generic
|
||||
void Assembler::pop(Register dst) {
|
||||
int encode = prefix_and_encode(dst->encoding());
|
||||
|
|
|
@ -1668,6 +1668,12 @@ private:
|
|||
|
||||
void evpmovdb(Address dst, XMMRegister src, int vector_len);
|
||||
|
||||
// Multiply add
|
||||
void pmaddwd(XMMRegister dst, XMMRegister src);
|
||||
void vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
|
||||
// Multiply add accumulate
|
||||
void evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
|
||||
|
||||
#ifndef _LP64 // no 32bit push/pop on amd64
|
||||
void popl(Address dst);
|
||||
#endif
|
||||
|
|
|
@ -1289,7 +1289,7 @@ void VM_Version::get_processor_features() {
|
|||
if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
|
||||
UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
|
||||
}
|
||||
if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
|
||||
if ((supports_sse4_2() && supports_ht()) || supports_avx()) { // Newest Intel cpus
|
||||
if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
|
||||
UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
|
||||
}
|
||||
|
|
|
@ -336,6 +336,7 @@ protected:
|
|||
#define CPU_AVX512_VPOPCNTDQ ((uint64_t)UCONST64(0x2000000000)) // Vector popcount
|
||||
#define CPU_VPCLMULQDQ ((uint64_t)UCONST64(0x4000000000)) //Vector carryless multiplication
|
||||
#define CPU_VAES ((uint64_t)UCONST64(0x8000000000)) // Vector AES instructions
|
||||
#define CPU_VNNI ((uint64_t)UCONST64(0x16000000000)) // Vector Neural Network Instructions
|
||||
|
||||
enum Extended_Family {
|
||||
// AMD
|
||||
|
@ -548,6 +549,8 @@ protected:
|
|||
result |= CPU_VPCLMULQDQ;
|
||||
if (_cpuid_info.sef_cpuid7_ecx.bits.vaes != 0)
|
||||
result |= CPU_VAES;
|
||||
if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vnni != 0)
|
||||
result |= CPU_VNNI;
|
||||
}
|
||||
}
|
||||
if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
|
||||
|
@ -828,6 +831,7 @@ public:
|
|||
static bool supports_vpopcntdq() { return (_features & CPU_AVX512_VPOPCNTDQ) != 0; }
|
||||
static bool supports_vpclmulqdq() { return (_features & CPU_VPCLMULQDQ) != 0; }
|
||||
static bool supports_vaes() { return (_features & CPU_VAES) != 0; }
|
||||
static bool supports_vnni() { return (_features & CPU_VNNI) != 0; }
|
||||
|
||||
// Intel features
|
||||
static bool is_intel_family_core() { return is_intel() &&
|
||||
|
|
|
@ -1446,6 +1446,10 @@ const bool Matcher::match_rule_supported(int opcode) {
|
|||
if (VM_Version::supports_on_spin_wait() == false)
|
||||
ret_value = false;
|
||||
break;
|
||||
case Op_MulAddVS2VI:
|
||||
if (UseSSE < 2)
|
||||
ret_value = false;
|
||||
break;
|
||||
}
|
||||
|
||||
return ret_value; // Per default match rules are supported.
|
||||
|
@ -9855,6 +9859,118 @@ instruct vfma16F_mem(vecZ a, memory b, vecZ c) %{
|
|||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
// --------------------------------- Vector Multiply Add --------------------------------------
|
||||
|
||||
instruct smuladd4S2I_reg(vecD dst, vecD src1) %{
|
||||
predicate(UseSSE >= 2 && UseAVX == 0 && n->as_Vector()->length() == 2);
|
||||
match(Set dst (MulAddVS2VI dst src1));
|
||||
format %{ "pmaddwd $dst,$dst,$src1\t! muladd packed4Sto2I" %}
|
||||
ins_encode %{
|
||||
__ pmaddwd($dst$$XMMRegister, $src1$$XMMRegister);
|
||||
%}
|
||||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
instruct vmuladd4S2I_reg(vecD dst, vecD src1, vecD src2) %{
|
||||
predicate(UseAVX > 0 && n->as_Vector()->length() == 2);
|
||||
match(Set dst (MulAddVS2VI src1 src2));
|
||||
format %{ "vpmaddwd $dst,$src1,$src2\t! muladd packed4Sto2I" %}
|
||||
ins_encode %{
|
||||
int vector_len = 0;
|
||||
__ vpmaddwd($dst$$XMMRegister, $src1$$XMMRegister, $src2$$XMMRegister, vector_len);
|
||||
%}
|
||||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
instruct smuladd8S4I_reg(vecX dst, vecX src1) %{
|
||||
predicate(UseSSE >= 2 && UseAVX == 0 && n->as_Vector()->length() == 4);
|
||||
match(Set dst (MulAddVS2VI dst src1));
|
||||
format %{ "pmaddwd $dst,$dst,$src1\t! muladd packed8Sto4I" %}
|
||||
ins_encode %{
|
||||
__ pmaddwd($dst$$XMMRegister, $src1$$XMMRegister);
|
||||
%}
|
||||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
instruct vmuladd8S4I_reg(vecX dst, vecX src1, vecX src2) %{
|
||||
predicate(UseAVX > 0 && n->as_Vector()->length() == 4);
|
||||
match(Set dst (MulAddVS2VI src1 src2));
|
||||
format %{ "vpmaddwd $dst,$src1,$src2\t! muladd packed8Sto4I" %}
|
||||
ins_encode %{
|
||||
int vector_len = 0;
|
||||
__ vpmaddwd($dst$$XMMRegister, $src1$$XMMRegister, $src2$$XMMRegister, vector_len);
|
||||
%}
|
||||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
instruct vmuladd16S8I_reg(vecY dst, vecY src1, vecY src2) %{
|
||||
predicate(UseAVX > 1 && n->as_Vector()->length() == 8);
|
||||
match(Set dst (MulAddVS2VI src1 src2));
|
||||
format %{ "vpmaddwd $dst,$src1,$src2\t! muladd packed16Sto8I" %}
|
||||
ins_encode %{
|
||||
int vector_len = 1;
|
||||
__ vpmaddwd($dst$$XMMRegister, $src1$$XMMRegister, $src2$$XMMRegister, vector_len);
|
||||
%}
|
||||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
instruct vmuladd32S16I_reg(vecZ dst, vecZ src1, vecZ src2) %{
|
||||
predicate(UseAVX > 2 && n->as_Vector()->length() == 16);
|
||||
match(Set dst (MulAddVS2VI src1 src2));
|
||||
format %{ "vpmaddwd $dst,$src1,$src2\t! muladd packed32Sto16I" %}
|
||||
ins_encode %{
|
||||
int vector_len = 2;
|
||||
__ vpmaddwd($dst$$XMMRegister, $src1$$XMMRegister, $src2$$XMMRegister, vector_len);
|
||||
%}
|
||||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
// --------------------------------- Vector Multiply Add Add ----------------------------------
|
||||
|
||||
instruct vmuladdadd4S2I_reg(vecD dst, vecD src1, vecD src2) %{
|
||||
predicate(VM_Version::supports_vnni() && UseAVX > 2 && n->as_Vector()->length() == 2);
|
||||
match(Set dst (AddVI (MulAddVS2VI src1 src2) dst));
|
||||
format %{ "evpdpwssd $dst,$src1,$src2\t! muladdadd packed4Sto2I" %}
|
||||
ins_encode %{
|
||||
int vector_len = 0;
|
||||
__ evpdpwssd($dst$$XMMRegister, $src1$$XMMRegister, $src2$$XMMRegister, vector_len);
|
||||
%}
|
||||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
instruct vmuladdadd8S4I_reg(vecX dst, vecX src1, vecX src2) %{
|
||||
predicate(VM_Version::supports_vnni() && UseAVX > 2 && n->as_Vector()->length() == 4);
|
||||
match(Set dst (AddVI (MulAddVS2VI src1 src2) dst));
|
||||
format %{ "evpdpwssd $dst,$src1,$src2\t! muladdadd packed8Sto4I" %}
|
||||
ins_encode %{
|
||||
int vector_len = 0;
|
||||
__ evpdpwssd($dst$$XMMRegister, $src1$$XMMRegister, $src2$$XMMRegister, vector_len);
|
||||
%}
|
||||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
instruct vmuladdadd16S8I_reg(vecY dst, vecY src1, vecY src2) %{
|
||||
predicate(VM_Version::supports_vnni() && UseAVX > 2 && n->as_Vector()->length() == 8);
|
||||
match(Set dst (AddVI (MulAddVS2VI src1 src2) dst));
|
||||
format %{ "evpdpwssd $dst,$src1,$src2\t! muladdadd packed16Sto8I" %}
|
||||
ins_encode %{
|
||||
int vector_len = 1;
|
||||
__ evpdpwssd($dst$$XMMRegister, $src1$$XMMRegister, $src2$$XMMRegister, vector_len);
|
||||
%}
|
||||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
instruct vmuladdadd32S16I_reg(vecZ dst, vecZ src1, vecZ src2) %{
|
||||
predicate(VM_Version::supports_vnni() && UseAVX > 2 && n->as_Vector()->length() == 16);
|
||||
match(Set dst (AddVI (MulAddVS2VI src1 src2) dst));
|
||||
format %{ "evpdpwssd $dst,$src1,$src2\t! muladdadd packed32Sto16I" %}
|
||||
ins_encode %{
|
||||
int vector_len = 2;
|
||||
__ evpdpwssd($dst$$XMMRegister, $src1$$XMMRegister, $src2$$XMMRegister, vector_len);
|
||||
%}
|
||||
ins_pipe( pipe_slow );
|
||||
%}
|
||||
|
||||
// --------------------------------- PopCount --------------------------------------
|
||||
|
||||
instruct vpopcount2I(vecD dst, vecD src) %{
|
||||
|
|
|
@ -7755,6 +7755,16 @@ instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
|
|||
ins_pipe( ialu_reg_mem_alu0 );
|
||||
%}
|
||||
|
||||
instruct mulAddS2I_rReg(rRegI dst, rRegI src1, rRegI src2, rRegI src3, eFlagsReg cr)
|
||||
%{
|
||||
match(Set dst (MulAddS2I (Binary dst src1) (Binary src2 src3)));
|
||||
effect(KILL cr, KILL src2);
|
||||
|
||||
expand %{ mulI_rReg(dst, src1, cr);
|
||||
mulI_rReg(src2, src3, cr);
|
||||
addI_rReg(dst, src2, cr); %}
|
||||
%}
|
||||
|
||||
// Multiply Register Int to Long
|
||||
instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
|
||||
// Basic Idea: long = (long)int * (long)int
|
||||
|
|
|
@ -8175,6 +8175,16 @@ instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
|
|||
ins_pipe(ialu_reg_mem_alu0);
|
||||
%}
|
||||
|
||||
instruct mulAddS2I_rReg(rRegI dst, rRegI src1, rRegI src2, rRegI src3, rFlagsReg cr)
|
||||
%{
|
||||
match(Set dst (MulAddS2I (Binary dst src1) (Binary src2 src3)));
|
||||
effect(KILL cr, KILL src2);
|
||||
|
||||
expand %{ mulI_rReg(dst, src1, cr);
|
||||
mulI_rReg(src2, src3, cr);
|
||||
addI_rReg(dst, src2, cr); %}
|
||||
%}
|
||||
|
||||
instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
|
||||
%{
|
||||
match(Set dst (MulL dst src));
|
||||
|
|
|
@ -4181,6 +4181,7 @@ bool MatchRule::is_vector() const {
|
|||
"AddReductionVF", "AddReductionVD",
|
||||
"MulReductionVI", "MulReductionVL",
|
||||
"MulReductionVF", "MulReductionVD",
|
||||
"MulAddVS2VI",
|
||||
"LShiftCntV","RShiftCntV",
|
||||
"LShiftVB","LShiftVS","LShiftVI","LShiftVL",
|
||||
"RShiftVB","RShiftVS","RShiftVI","RShiftVL",
|
||||
|
|
|
@ -201,6 +201,7 @@ macro(Loop)
|
|||
macro(LoopLimit)
|
||||
macro(Mach)
|
||||
macro(MachProj)
|
||||
macro(MulAddS2I)
|
||||
macro(MaxI)
|
||||
macro(MemBarAcquire)
|
||||
macro(LoadFence)
|
||||
|
@ -341,6 +342,7 @@ macro(MulVF)
|
|||
macro(MulReductionVF)
|
||||
macro(MulVD)
|
||||
macro(MulReductionVD)
|
||||
macro(MulAddVS2VI)
|
||||
macro(FmaVD)
|
||||
macro(FmaVF)
|
||||
macro(DivVF)
|
||||
|
|
|
@ -1249,6 +1249,9 @@ public:
|
|||
// important (common) to do address expressions.
|
||||
Node *remix_address_expressions( Node *n );
|
||||
|
||||
// Convert add to muladd to generate MuladdS2I under certain criteria
|
||||
Node * convert_add_to_muladd(Node * n);
|
||||
|
||||
// Attempt to use a conditional move instead of a phi/branch
|
||||
Node *conditional_move( Node *n );
|
||||
|
||||
|
|
|
@ -493,6 +493,54 @@ Node *PhaseIdealLoop::remix_address_expressions( Node *n ) {
|
|||
return NULL;
|
||||
}
|
||||
|
||||
// Optimize ((in1[2*i] * in2[2*i]) + (in1[2*i+1] * in2[2*i+1]))
|
||||
Node *PhaseIdealLoop::convert_add_to_muladd(Node* n) {
|
||||
assert(n->Opcode() == Op_AddI, "sanity");
|
||||
Node * nn = NULL;
|
||||
Node * in1 = n->in(1);
|
||||
Node * in2 = n->in(2);
|
||||
if (in1->Opcode() == Op_MulI && in2->Opcode() == Op_MulI) {
|
||||
IdealLoopTree* loop_n = get_loop(get_ctrl(n));
|
||||
if (loop_n->_head->as_Loop()->is_valid_counted_loop() &&
|
||||
Matcher::match_rule_supported(Op_MulAddS2I) &&
|
||||
Matcher::match_rule_supported(Op_MulAddVS2VI)) {
|
||||
Node* mul_in1 = in1->in(1);
|
||||
Node* mul_in2 = in1->in(2);
|
||||
Node* mul_in3 = in2->in(1);
|
||||
Node* mul_in4 = in2->in(2);
|
||||
if (mul_in1->Opcode() == Op_LoadS &&
|
||||
mul_in2->Opcode() == Op_LoadS &&
|
||||
mul_in3->Opcode() == Op_LoadS &&
|
||||
mul_in4->Opcode() == Op_LoadS) {
|
||||
IdealLoopTree* loop1 = get_loop(get_ctrl(mul_in1));
|
||||
IdealLoopTree* loop2 = get_loop(get_ctrl(mul_in2));
|
||||
IdealLoopTree* loop3 = get_loop(get_ctrl(mul_in3));
|
||||
IdealLoopTree* loop4 = get_loop(get_ctrl(mul_in4));
|
||||
IdealLoopTree* loop5 = get_loop(get_ctrl(in1));
|
||||
IdealLoopTree* loop6 = get_loop(get_ctrl(in2));
|
||||
// All nodes should be in the same counted loop.
|
||||
if (loop_n == loop1 && loop_n == loop2 && loop_n == loop3 &&
|
||||
loop_n == loop4 && loop_n == loop5 && loop_n == loop6) {
|
||||
Node* adr1 = mul_in1->in(MemNode::Address);
|
||||
Node* adr2 = mul_in2->in(MemNode::Address);
|
||||
Node* adr3 = mul_in3->in(MemNode::Address);
|
||||
Node* adr4 = mul_in4->in(MemNode::Address);
|
||||
if (adr1->is_AddP() && adr2->is_AddP() && adr3->is_AddP() && adr4->is_AddP()) {
|
||||
if ((adr1->in(AddPNode::Base) == adr3->in(AddPNode::Base)) &&
|
||||
(adr2->in(AddPNode::Base) == adr4->in(AddPNode::Base))) {
|
||||
nn = new MulAddS2INode(mul_in1, mul_in2, mul_in3, mul_in4);
|
||||
register_new_node(nn, get_ctrl(n));
|
||||
_igvn.replace_node(n, nn);
|
||||
return nn;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return nn;
|
||||
}
|
||||
|
||||
//------------------------------conditional_move-------------------------------
|
||||
// Attempt to replace a Phi with a conditional move. We have some pretty
|
||||
// strict profitability requirements. All Phis at the merge point must
|
||||
|
@ -927,6 +975,11 @@ Node *PhaseIdealLoop::split_if_with_blocks_pre( Node *n ) {
|
|||
Node *m = remix_address_expressions( n );
|
||||
if( m ) return m;
|
||||
|
||||
if (n_op == Op_AddI) {
|
||||
Node *nn = convert_add_to_muladd( n );
|
||||
if ( nn ) return nn;
|
||||
}
|
||||
|
||||
if (n->is_ConstraintCast()) {
|
||||
Node* dom_cast = n->as_ConstraintCast()->dominating_cast(&_igvn, this);
|
||||
// ConstraintCastNode::dominating_cast() uses node control input to determine domination.
|
||||
|
|
|
@ -2352,6 +2352,15 @@ void Matcher::find_shared_post_visit(Node* n, uint opcode) {
|
|||
n->del_req(3);
|
||||
break;
|
||||
}
|
||||
case Op_MulAddS2I: {
|
||||
Node* pair1 = new BinaryNode(n->in(1), n->in(2));
|
||||
Node* pair2 = new BinaryNode(n->in(3), n->in(4));
|
||||
n->set_req(1, pair1);
|
||||
n->set_req(2, pair2);
|
||||
n->del_req(4);
|
||||
n->del_req(3);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -285,4 +285,15 @@ public:
|
|||
virtual const Type* Value(PhaseGVN* phase) const;
|
||||
};
|
||||
|
||||
//------------------------------MulAddS2INode----------------------------------
|
||||
// Multiply shorts into integers and add them.
|
||||
// Semantics: I_OUT = S1 * S2 + S3 * S4
|
||||
class MulAddS2INode : public Node {
|
||||
public:
|
||||
MulAddS2INode(Node* in1, Node *in2, Node *in3, Node* in4) : Node(0, in1, in2, in3, in4) {}
|
||||
virtual int Opcode() const;
|
||||
const Type *bottom_type() const { return TypeInt::INT; }
|
||||
virtual uint ideal_reg() const { return Op_RegI; }
|
||||
};
|
||||
|
||||
#endif // SHARE_VM_OPTO_MULNODE_HPP
|
||||
|
|
|
@ -645,6 +645,10 @@ void SuperWord::find_adjacent_refs() {
|
|||
// with a different alignment were created before.
|
||||
for (uint i = 0; i < align_to_refs.size(); i++) {
|
||||
MemNode* mr = align_to_refs.at(i)->as_Mem();
|
||||
if (mr == mem_ref) {
|
||||
// Skip when we are looking at same memory operation.
|
||||
continue;
|
||||
}
|
||||
if (same_velt_type(mr, mem_ref) &&
|
||||
memory_alignment(mr, iv_adjustment) != 0)
|
||||
create_pack = false;
|
||||
|
@ -846,6 +850,27 @@ MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
|
|||
return NULL;
|
||||
}
|
||||
|
||||
//------------------span_works_for_memory_size-----------------------------
|
||||
static bool span_works_for_memory_size(MemNode* mem, int span, int mem_size, int offset) {
|
||||
bool span_matches_memory = false;
|
||||
if ((mem_size == type2aelembytes(T_BYTE) || mem_size == type2aelembytes(T_SHORT))
|
||||
&& ABS(span) == type2aelembytes(T_INT)) {
|
||||
// There is a mismatch on span size compared to memory.
|
||||
for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) {
|
||||
Node* use = mem->fast_out(j);
|
||||
if (!VectorNode::is_type_transition_to_int(use)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// If all uses transition to integer, it means that we can successfully align even on mismatch.
|
||||
return true;
|
||||
}
|
||||
else {
|
||||
span_matches_memory = ABS(span) == mem_size;
|
||||
}
|
||||
return span_matches_memory && (ABS(offset) % mem_size) == 0;
|
||||
}
|
||||
|
||||
//------------------------------ref_is_alignable---------------------------
|
||||
// Can the preloop align the reference to position zero in the vector?
|
||||
bool SuperWord::ref_is_alignable(SWPointer& p) {
|
||||
|
@ -862,7 +887,7 @@ bool SuperWord::ref_is_alignable(SWPointer& p) {
|
|||
int offset = p.offset_in_bytes();
|
||||
// Stride one accesses are alignable if offset is aligned to memory operation size.
|
||||
// Offset can be unaligned when UseUnalignedAccesses is used.
|
||||
if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
|
||||
if (span_works_for_memory_size(p.mem(), span, mem_size, offset)) {
|
||||
return true;
|
||||
}
|
||||
// If the initial offset from start of the object is computable,
|
||||
|
@ -915,6 +940,28 @@ bool SuperWord::ref_is_alignable(SWPointer& p) {
|
|||
}
|
||||
return false;
|
||||
}
|
||||
//---------------------------get_vw_bytes_special------------------------
|
||||
int SuperWord::get_vw_bytes_special(MemNode* s) {
|
||||
// Get the vector width in bytes.
|
||||
int vw = vector_width_in_bytes(s);
|
||||
|
||||
// Check for special case where there is an MulAddS2I usage where short vectors are going to need combined.
|
||||
BasicType btype = velt_basic_type(s);
|
||||
if (type2aelembytes(btype) == 2) {
|
||||
bool should_combine_adjacent = true;
|
||||
for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
|
||||
Node* user = s->fast_out(i);
|
||||
if (!VectorNode::is_muladds2i(user)) {
|
||||
should_combine_adjacent = false;
|
||||
}
|
||||
}
|
||||
if (should_combine_adjacent) {
|
||||
vw = MIN2(Matcher::max_vector_size(btype)*type2aelembytes(btype), vw * 2);
|
||||
}
|
||||
}
|
||||
|
||||
return vw;
|
||||
}
|
||||
|
||||
//---------------------------get_iv_adjustment---------------------------
|
||||
// Calculate loop's iv adjustment for this memory ops.
|
||||
|
@ -923,7 +970,7 @@ int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
|
|||
int offset = align_to_ref_p.offset_in_bytes();
|
||||
int scale = align_to_ref_p.scale_in_bytes();
|
||||
int elt_size = align_to_ref_p.memory_size();
|
||||
int vw = vector_width_in_bytes(mem_ref);
|
||||
int vw = get_vw_bytes_special(mem_ref);
|
||||
assert(vw > 1, "sanity");
|
||||
int iv_adjustment;
|
||||
if (scale != 0) {
|
||||
|
@ -2303,6 +2350,12 @@ void SuperWord::output() {
|
|||
const TypePtr* atyp = n->adr_type();
|
||||
vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
|
||||
vlen_in_bytes = vn->as_StoreVector()->memory_size();
|
||||
} else if (VectorNode::is_muladds2i(n)) {
|
||||
assert(n->req() == 5u, "MulAddS2I should have 4 operands.");
|
||||
Node* in1 = vector_opd(p, 1);
|
||||
Node* in2 = vector_opd(p, 2);
|
||||
vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
|
||||
vlen_in_bytes = vn->as_Vector()->length_in_bytes();
|
||||
} else if (n->req() == 3 && !is_cmov_pack(p)) {
|
||||
// Promote operands to vector
|
||||
Node* in1 = NULL;
|
||||
|
@ -2615,6 +2668,16 @@ Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
|
|||
}
|
||||
assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
|
||||
pk->add_opd(in);
|
||||
if (VectorNode::is_muladds2i(pi)) {
|
||||
Node* in2 = pi->in(opd_idx + 2);
|
||||
assert(my_pack(in2) == NULL, "Should already have been unpacked");
|
||||
if (my_pack(in2) != NULL) {
|
||||
NOT_PRODUCT(if (is_trace_loop_reverse() || TraceLoopOpts) { tty->print_cr("Should already have been unpacked"); })
|
||||
return NULL;
|
||||
}
|
||||
assert(opd_bt == in2->bottom_type()->basic_type(), "all same type");
|
||||
pk->add_opd(in2);
|
||||
}
|
||||
}
|
||||
_igvn.register_new_node_with_optimizer(pk);
|
||||
_phase->set_ctrl(pk, _phase->get_ctrl(opd));
|
||||
|
@ -2692,6 +2755,21 @@ bool SuperWord::is_vector_use(Node* use, int u_idx) {
|
|||
}
|
||||
return true;
|
||||
}
|
||||
if (VectorNode::is_muladds2i(use)) {
|
||||
// MulAddS2I takes shorts and produces ints - hence the special checks
|
||||
// on alignment and size.
|
||||
if (u_pk->size() * 2 != d_pk->size()) {
|
||||
return false;
|
||||
}
|
||||
for (uint i = 0; i < MIN2(d_pk->size(), u_pk->size()); i++) {
|
||||
Node* ui = u_pk->at(i);
|
||||
Node* di = d_pk->at(i);
|
||||
if (alignment(ui) != alignment(di) * 2) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (u_pk->size() != d_pk->size())
|
||||
return false;
|
||||
for (uint i = 0; i < u_pk->size(); i++) {
|
||||
|
@ -3017,7 +3095,7 @@ int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
|
|||
NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
|
||||
return bottom_align;
|
||||
}
|
||||
int vw = vector_width_in_bytes(s);
|
||||
int vw = get_vw_bytes_special(s);
|
||||
if (vw < 2) {
|
||||
NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
|
||||
return bottom_align; // No vectors for this type
|
||||
|
|
|
@ -347,6 +347,7 @@ class SuperWord : public ResourceObj {
|
|||
BasicType bt = velt_basic_type(n);
|
||||
return vector_width(n)*type2aelembytes(bt);
|
||||
}
|
||||
int get_vw_bytes_special(MemNode* s);
|
||||
MemNode* align_to_ref() { return _align_to_ref; }
|
||||
void set_align_to_ref(MemNode* m) { _align_to_ref = m; }
|
||||
|
||||
|
|
|
@ -196,6 +196,8 @@ int VectorNode::opcode(int sopc, BasicType bt) {
|
|||
case Op_StoreF:
|
||||
case Op_StoreD:
|
||||
return Op_StoreVector;
|
||||
case Op_MulAddS2I:
|
||||
return Op_MulAddVS2VI;
|
||||
|
||||
default:
|
||||
return 0; // Unimplemented
|
||||
|
@ -214,6 +216,25 @@ bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool VectorNode::is_type_transition_short_to_int(Node* n) {
|
||||
switch (n->Opcode()) {
|
||||
case Op_MulAddS2I:
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool VectorNode::is_type_transition_to_int(Node* n) {
|
||||
return is_type_transition_short_to_int(n);
|
||||
}
|
||||
|
||||
bool VectorNode::is_muladds2i(Node* n) {
|
||||
if (n->Opcode() == Op_MulAddS2I) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool VectorNode::is_shift(Node* n) {
|
||||
switch (n->Opcode()) {
|
||||
case Op_LShiftI:
|
||||
|
@ -277,6 +298,7 @@ void VectorNode::vector_operands(Node* n, uint* start, uint* end) {
|
|||
case Op_AndI: case Op_AndL:
|
||||
case Op_OrI: case Op_OrL:
|
||||
case Op_XorI: case Op_XorL:
|
||||
case Op_MulAddS2I:
|
||||
*start = 1;
|
||||
*end = 3; // 2 vector operands
|
||||
break;
|
||||
|
@ -354,6 +376,8 @@ VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, uint vlen, BasicType b
|
|||
case Op_AndV: return new AndVNode(n1, n2, vt);
|
||||
case Op_OrV: return new OrVNode (n1, n2, vt);
|
||||
case Op_XorV: return new XorVNode(n1, n2, vt);
|
||||
|
||||
case Op_MulAddVS2VI: return new MulAddVS2VINode(n1, n2, vt);
|
||||
default:
|
||||
fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
|
||||
return NULL;
|
||||
|
|
|
@ -67,6 +67,9 @@ class VectorNode : public TypeNode {
|
|||
static int opcode(int opc, BasicType bt);
|
||||
static bool implemented(int opc, uint vlen, BasicType bt);
|
||||
static bool is_shift(Node* n);
|
||||
static bool is_type_transition_short_to_int(Node* n);
|
||||
static bool is_type_transition_to_int(Node* n);
|
||||
static bool is_muladds2i(Node* n);
|
||||
static bool is_invariant_vector(Node* n);
|
||||
// [Start, end) half-open range defining which operands are vectors
|
||||
static void vector_operands(Node* n, uint* start, uint* end);
|
||||
|
@ -261,6 +264,14 @@ public:
|
|||
virtual int Opcode() const;
|
||||
};
|
||||
|
||||
//------------------------------MulAddVS2VINode--------------------------------
|
||||
// Vector multiply shorts to int and add adjacent ints.
|
||||
class MulAddVS2VINode : public VectorNode {
|
||||
public:
|
||||
MulAddVS2VINode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
|
||||
virtual int Opcode() const;
|
||||
};
|
||||
|
||||
//------------------------------FmaVDNode--------------------------------------
|
||||
// Vector multiply double
|
||||
class FmaVDNode : public VectorNode {
|
||||
|
|
|
@ -0,0 +1,120 @@
|
|||
/*
|
||||
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @test
|
||||
* @bug 8214751
|
||||
* @summary Add C2 x86 Superword support for VNNI VPDPWSSD Instruction
|
||||
* @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64"
|
||||
*
|
||||
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
|
||||
* -XX:CompileThresholdScaling=0.1
|
||||
* -XX:+SuperWord
|
||||
* -XX:LoopMaxUnroll=2
|
||||
* compiler.loopopts.superword.Vec_MulAddS2I
|
||||
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
|
||||
* -XX:CompileThresholdScaling=0.1
|
||||
* -XX:-SuperWord
|
||||
* -XX:LoopMaxUnroll=2
|
||||
* compiler.loopopts.superword.Vec_MulAddS2I
|
||||
*
|
||||
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
|
||||
* -XX:CompileThresholdScaling=0.1
|
||||
* -XX:+SuperWord
|
||||
* -XX:LoopMaxUnroll=4
|
||||
* compiler.loopopts.superword.Vec_MulAddS2I
|
||||
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
|
||||
* -XX:CompileThresholdScaling=0.1
|
||||
* -XX:-SuperWord
|
||||
* -XX:LoopMaxUnroll=4
|
||||
* compiler.loopopts.superword.Vec_MulAddS2I
|
||||
*
|
||||
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
|
||||
* -XX:CompileThresholdScaling=0.1
|
||||
* -XX:+SuperWord
|
||||
* -XX:LoopMaxUnroll=8
|
||||
* compiler.loopopts.superword.Vec_MulAddS2I
|
||||
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
|
||||
* -XX:CompileThresholdScaling=0.1
|
||||
* -XX:-SuperWord
|
||||
* -XX:LoopMaxUnroll=8
|
||||
* compiler.loopopts.superword.Vec_MulAddS2I
|
||||
*
|
||||
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
|
||||
* -XX:CompileThresholdScaling=0.1
|
||||
* -XX:+SuperWord
|
||||
* -XX:LoopMaxUnroll=16
|
||||
* compiler.loopopts.superword.Vec_MulAddS2I
|
||||
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
|
||||
* -XX:CompileThresholdScaling=0.1
|
||||
* -XX:-SuperWord
|
||||
* -XX:LoopMaxUnroll=16
|
||||
* compiler.loopopts.superword.Vec_MulAddS2I
|
||||
*/
|
||||
|
||||
package compiler.loopopts.superword;
|
||||
import java.util.Random;
|
||||
|
||||
public class Vec_MulAddS2I {
|
||||
static final int NUM = 1024;
|
||||
static int[] out = new int[NUM];
|
||||
static short[] in1 = new short[2*NUM];
|
||||
static short[] in2 = new short[2*NUM];
|
||||
public static void main(String[] args) throws Exception {
|
||||
Vec_MulAddS2IInit(in1, in2);
|
||||
int result = 0;
|
||||
int valid = 204800000;
|
||||
for (int j = 0; j < 10000*512; j++) {
|
||||
result = Vec_MulAddS2IImplement(in1, in2, out);
|
||||
}
|
||||
if (result == valid) {
|
||||
System.out.println("Success");
|
||||
} else {
|
||||
System.out.println("Invalid calculation of element variables in the out array: " + result);
|
||||
System.out.println("Expected value for each element of out array = " + valid);
|
||||
throw new Exception("Failed");
|
||||
}
|
||||
}
|
||||
|
||||
public static void Vec_MulAddS2IInit(
|
||||
short[] in1,
|
||||
short[] in2) {
|
||||
for (int i=0; i<2*NUM; i++) {
|
||||
in1[i] = (short)4;
|
||||
in2[i] = (short)5;
|
||||
}
|
||||
}
|
||||
|
||||
public static int Vec_MulAddS2IImplement(
|
||||
short[] in1,
|
||||
short[] in2,
|
||||
int[] out) {
|
||||
for (int i = 0; i < NUM; i++) {
|
||||
out[i] += ((in1[2*i] * in2[2*i]) + (in1[2*i+1] * in2[2*i+1]));
|
||||
}
|
||||
Random rand = new Random();
|
||||
int n = rand.nextInt(NUM-1);
|
||||
return out[n];
|
||||
}
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue