6898462: The escape analysis with G1 cause crash assertion src/share/vm/runtime/vframeArray.cpp:94

OOM during reallocation of scalar replaced objects in deoptimization causes crashes

Reviewed-by: kvn, jrose
This commit is contained in:
Roland Westrelin 2014-11-25 17:33:59 +01:00
parent 53f42d325b
commit 15dcd41e87
12 changed files with 602 additions and 64 deletions

View file

@ -385,6 +385,18 @@ IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThrea
int handler_bci; int handler_bci;
int current_bci = bci(thread); int current_bci = bci(thread);
if (thread->frames_to_pop_failed_realloc() > 0) {
// Allocation of scalar replaced object used in this frame
// failed. Unconditionally pop the frame.
thread->dec_frames_to_pop_failed_realloc();
thread->set_vm_result(h_exception());
// If the method is synchronized we already unlocked the monitor
// during deoptimization so the interpreter needs to skip it when
// the frame is popped.
thread->set_do_not_unlock_if_synchronized(true);
return Interpreter::remove_activation_entry();
}
// Need to do this check first since when _do_not_unlock_if_synchronized // Need to do this check first since when _do_not_unlock_if_synchronized
// is set, we don't want to trigger any classloading which may make calls // is set, we don't want to trigger any classloading which may make calls
// into java, or surprisingly find a matching exception handler for bci 0 // into java, or surprisingly find a matching exception handler for bci 0

View file

@ -120,6 +120,7 @@ oop Universe::_out_of_memory_error_metaspace = NULL;
oop Universe::_out_of_memory_error_class_metaspace = NULL; oop Universe::_out_of_memory_error_class_metaspace = NULL;
oop Universe::_out_of_memory_error_array_size = NULL; oop Universe::_out_of_memory_error_array_size = NULL;
oop Universe::_out_of_memory_error_gc_overhead_limit = NULL; oop Universe::_out_of_memory_error_gc_overhead_limit = NULL;
oop Universe::_out_of_memory_error_realloc_objects = NULL;
objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL; objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0; volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
bool Universe::_verify_in_progress = false; bool Universe::_verify_in_progress = false;
@ -191,6 +192,7 @@ void Universe::oops_do(OopClosure* f, bool do_all) {
f->do_oop((oop*)&_out_of_memory_error_class_metaspace); f->do_oop((oop*)&_out_of_memory_error_class_metaspace);
f->do_oop((oop*)&_out_of_memory_error_array_size); f->do_oop((oop*)&_out_of_memory_error_array_size);
f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit); f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
f->do_oop((oop*)&_out_of_memory_error_realloc_objects);
f->do_oop((oop*)&_preallocated_out_of_memory_error_array); f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
f->do_oop((oop*)&_null_ptr_exception_instance); f->do_oop((oop*)&_null_ptr_exception_instance);
f->do_oop((oop*)&_arithmetic_exception_instance); f->do_oop((oop*)&_arithmetic_exception_instance);
@ -575,7 +577,8 @@ bool Universe::should_fill_in_stack_trace(Handle throwable) {
(throwable() != Universe::_out_of_memory_error_metaspace) && (throwable() != Universe::_out_of_memory_error_metaspace) &&
(throwable() != Universe::_out_of_memory_error_class_metaspace) && (throwable() != Universe::_out_of_memory_error_class_metaspace) &&
(throwable() != Universe::_out_of_memory_error_array_size) && (throwable() != Universe::_out_of_memory_error_array_size) &&
(throwable() != Universe::_out_of_memory_error_gc_overhead_limit)); (throwable() != Universe::_out_of_memory_error_gc_overhead_limit) &&
(throwable() != Universe::_out_of_memory_error_realloc_objects));
} }
@ -1039,6 +1042,7 @@ bool universe_post_init() {
Universe::_out_of_memory_error_array_size = k_h->allocate_instance(CHECK_false); Universe::_out_of_memory_error_array_size = k_h->allocate_instance(CHECK_false);
Universe::_out_of_memory_error_gc_overhead_limit = Universe::_out_of_memory_error_gc_overhead_limit =
k_h->allocate_instance(CHECK_false); k_h->allocate_instance(CHECK_false);
Universe::_out_of_memory_error_realloc_objects = k_h->allocate_instance(CHECK_false);
// Setup preallocated NullPointerException // Setup preallocated NullPointerException
// (this is currently used for a cheap & dirty solution in compiler exception handling) // (this is currently used for a cheap & dirty solution in compiler exception handling)
@ -1078,6 +1082,9 @@ bool universe_post_init() {
msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false); msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg()); java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
msg = java_lang_String::create_from_str("Java heap space: failed reallocation of scalar replaced objects", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_realloc_objects, msg());
msg = java_lang_String::create_from_str("/ by zero", CHECK_false); msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg()); java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());

View file

@ -157,6 +157,7 @@ class Universe: AllStatic {
static oop _out_of_memory_error_class_metaspace; static oop _out_of_memory_error_class_metaspace;
static oop _out_of_memory_error_array_size; static oop _out_of_memory_error_array_size;
static oop _out_of_memory_error_gc_overhead_limit; static oop _out_of_memory_error_gc_overhead_limit;
static oop _out_of_memory_error_realloc_objects;
static Array<int>* _the_empty_int_array; // Canonicalized int array static Array<int>* _the_empty_int_array; // Canonicalized int array
static Array<u2>* _the_empty_short_array; // Canonicalized short array static Array<u2>* _the_empty_short_array; // Canonicalized short array
@ -328,6 +329,7 @@ class Universe: AllStatic {
static oop out_of_memory_error_class_metaspace() { return gen_out_of_memory_error(_out_of_memory_error_class_metaspace); } static oop out_of_memory_error_class_metaspace() { return gen_out_of_memory_error(_out_of_memory_error_class_metaspace); }
static oop out_of_memory_error_array_size() { return gen_out_of_memory_error(_out_of_memory_error_array_size); } static oop out_of_memory_error_array_size() { return gen_out_of_memory_error(_out_of_memory_error_array_size); }
static oop out_of_memory_error_gc_overhead_limit() { return gen_out_of_memory_error(_out_of_memory_error_gc_overhead_limit); } static oop out_of_memory_error_gc_overhead_limit() { return gen_out_of_memory_error(_out_of_memory_error_gc_overhead_limit); }
static oop out_of_memory_error_realloc_objects() { return gen_out_of_memory_error(_out_of_memory_error_realloc_objects); }
// Accessors needed for fast allocation // Accessors needed for fast allocation
static Klass** boolArrayKlassObj_addr() { return &_boolArrayKlassObj; } static Klass** boolArrayKlassObj_addr() { return &_boolArrayKlassObj; }

View file

@ -971,7 +971,11 @@ void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
} }
bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
if (!EliminateAllocations || !alloc->_is_non_escaping) { // Don't do scalar replacement if the frame can be popped by JVMTI:
// if reallocation fails during deoptimization we'll pop all
// interpreter frames for this compiled frame and that won't play
// nice with JVMTI popframe.
if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
return false; return false;
} }
Node* klass = alloc->in(AllocateNode::KlassNode); Node* klass = alloc->in(AllocateNode::KlassNode);

View file

@ -176,6 +176,8 @@ Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread
assert(vf->is_compiled_frame(), "Wrong frame type"); assert(vf->is_compiled_frame(), "Wrong frame type");
chunk->push(compiledVFrame::cast(vf)); chunk->push(compiledVFrame::cast(vf));
bool realloc_failures = false;
#ifdef COMPILER2 #ifdef COMPILER2
// Reallocate the non-escaping objects and restore their fields. Then // Reallocate the non-escaping objects and restore their fields. Then
// relock objects if synchronization on them was eliminated. // relock objects if synchronization on them was eliminated.
@ -206,22 +208,19 @@ Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread
tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread); tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
} }
} }
bool reallocated = false;
if (objects != NULL) { if (objects != NULL) {
JRT_BLOCK JRT_BLOCK
reallocated = realloc_objects(thread, &deoptee, objects, THREAD); realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
JRT_END JRT_END
reassign_fields(&deoptee, &map, objects, realloc_failures);
} }
if (reallocated) {
reassign_fields(&deoptee, &map, objects);
#ifndef PRODUCT #ifndef PRODUCT
if (TraceDeoptimization) { if (TraceDeoptimization) {
ttyLocker ttyl; ttyLocker ttyl;
tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread); tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
print_objects(objects); print_objects(objects, realloc_failures);
} }
#endif #endif
}
if (save_oop_result) { if (save_oop_result) {
// Restore result. // Restore result.
deoptee.set_saved_oop_result(&map, return_value()); deoptee.set_saved_oop_result(&map, return_value());
@ -236,7 +235,7 @@ Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread
assert (cvf->scope() != NULL,"expect only compiled java frames"); assert (cvf->scope() != NULL,"expect only compiled java frames");
GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
if (monitors->is_nonempty()) { if (monitors->is_nonempty()) {
relock_objects(monitors, thread); relock_objects(monitors, thread, realloc_failures);
#ifndef PRODUCT #ifndef PRODUCT
if (TraceDeoptimization) { if (TraceDeoptimization) {
ttyLocker ttyl; ttyLocker ttyl;
@ -247,10 +246,15 @@ Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread
first = false; first = false;
tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread); tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
} }
if (mi->owner_is_scalar_replaced()) {
Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
tty->print_cr(" failed reallocation for klass %s", k->external_name());
} else {
tty->print_cr(" object <" INTPTR_FORMAT "> locked", (void *)mi->owner()); tty->print_cr(" object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
} }
} }
} }
}
#endif #endif
} }
} }
@ -262,9 +266,14 @@ Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread
// out the java state residing in the vframeArray will be missed. // out the java state residing in the vframeArray will be missed.
No_Safepoint_Verifier no_safepoint; No_Safepoint_Verifier no_safepoint;
vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk); vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
#ifdef COMPILER2
if (realloc_failures) {
pop_frames_failed_reallocs(thread, array);
}
#endif
assert(thread->vframe_array_head() == NULL, "Pending deopt!");; assert(thread->vframe_array_head() == NULL, "Pending deopt!");
thread->set_vframe_array_head(array); thread->set_vframe_array_head(array);
// Now that the vframeArray has been created if we have any deferred local writes // Now that the vframeArray has been created if we have any deferred local writes
@ -718,6 +727,8 @@ bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArra
int exception_line = thread->exception_line(); int exception_line = thread->exception_line();
thread->clear_pending_exception(); thread->clear_pending_exception();
bool failures = false;
for (int i = 0; i < objects->length(); i++) { for (int i = 0; i < objects->length(); i++) {
assert(objects->at(i)->is_object(), "invalid debug information"); assert(objects->at(i)->is_object(), "invalid debug information");
ObjectValue* sv = (ObjectValue*) objects->at(i); ObjectValue* sv = (ObjectValue*) objects->at(i);
@ -727,27 +738,34 @@ bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArra
if (k->oop_is_instance()) { if (k->oop_is_instance()) {
InstanceKlass* ik = InstanceKlass::cast(k()); InstanceKlass* ik = InstanceKlass::cast(k());
obj = ik->allocate_instance(CHECK_(false)); obj = ik->allocate_instance(THREAD);
} else if (k->oop_is_typeArray()) { } else if (k->oop_is_typeArray()) {
TypeArrayKlass* ak = TypeArrayKlass::cast(k()); TypeArrayKlass* ak = TypeArrayKlass::cast(k());
assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
int len = sv->field_size() / type2size[ak->element_type()]; int len = sv->field_size() / type2size[ak->element_type()];
obj = ak->allocate(len, CHECK_(false)); obj = ak->allocate(len, THREAD);
} else if (k->oop_is_objArray()) { } else if (k->oop_is_objArray()) {
ObjArrayKlass* ak = ObjArrayKlass::cast(k()); ObjArrayKlass* ak = ObjArrayKlass::cast(k());
obj = ak->allocate(sv->field_size(), CHECK_(false)); obj = ak->allocate(sv->field_size(), THREAD);
}
if (obj == NULL) {
failures = true;
} }
assert(obj != NULL, "allocation failed");
assert(sv->value().is_null(), "redundant reallocation"); assert(sv->value().is_null(), "redundant reallocation");
assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
CLEAR_PENDING_EXCEPTION;
sv->set_value(obj); sv->set_value(obj);
} }
if (pending_exception.not_null()) { if (failures) {
THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
} else if (pending_exception.not_null()) {
thread->set_pending_exception(pending_exception(), exception_file, exception_line); thread->set_pending_exception(pending_exception(), exception_file, exception_line);
} }
return true; return failures;
} }
// This assumes that the fields are stored in ObjectValue in the same order // This assumes that the fields are stored in ObjectValue in the same order
@ -885,12 +903,15 @@ void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_
// restore fields of all eliminated objects and arrays // restore fields of all eliminated objects and arrays
void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) { void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
for (int i = 0; i < objects->length(); i++) { for (int i = 0; i < objects->length(); i++) {
ObjectValue* sv = (ObjectValue*) objects->at(i); ObjectValue* sv = (ObjectValue*) objects->at(i);
KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()())); KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
Handle obj = sv->value(); Handle obj = sv->value();
assert(obj.not_null(), "reallocation was missed"); assert(obj.not_null() || realloc_failures, "reallocation was missed");
if (obj.is_null()) {
continue;
}
if (k->oop_is_instance()) { if (k->oop_is_instance()) {
InstanceKlass* ik = InstanceKlass::cast(k()); InstanceKlass* ik = InstanceKlass::cast(k());
@ -907,11 +928,12 @@ void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableAr
// relock objects for which synchronization was eliminated // relock objects for which synchronization was eliminated
void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) { void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
for (int i = 0; i < monitors->length(); i++) { for (int i = 0; i < monitors->length(); i++) {
MonitorInfo* mon_info = monitors->at(i); MonitorInfo* mon_info = monitors->at(i);
if (mon_info->eliminated()) { if (mon_info->eliminated()) {
assert(mon_info->owner() != NULL, "reallocation was missed"); assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
if (!mon_info->owner_is_scalar_replaced()) {
Handle obj = Handle(mon_info->owner()); Handle obj = Handle(mon_info->owner());
markOop mark = obj->mark(); markOop mark = obj->mark();
if (UseBiasedLocking && mark->has_bias_pattern()) { if (UseBiasedLocking && mark->has_bias_pattern()) {
@ -926,15 +948,16 @@ void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaT
} }
BasicLock* lock = mon_info->lock(); BasicLock* lock = mon_info->lock();
ObjectSynchronizer::slow_enter(obj, lock, thread); ObjectSynchronizer::slow_enter(obj, lock, thread);
}
assert(mon_info->owner()->is_locked(), "object must be locked now"); assert(mon_info->owner()->is_locked(), "object must be locked now");
} }
}
}
} }
#ifndef PRODUCT #ifndef PRODUCT
// print information about reallocated objects // print information about reallocated objects
void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) { void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
fieldDescriptor fd; fieldDescriptor fd;
for (int i = 0; i < objects->length(); i++) { for (int i = 0; i < objects->length(); i++) {
@ -944,10 +967,15 @@ void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
tty->print(" object <" INTPTR_FORMAT "> of type ", (void *)sv->value()()); tty->print(" object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
k->print_value(); k->print_value();
assert(obj.not_null() || realloc_failures, "reallocation was missed");
if (obj.is_null()) {
tty->print(" allocation failed");
} else {
tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize); tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
}
tty->cr(); tty->cr();
if (Verbose) { if (Verbose && !obj.is_null()) {
k->oop_print_on(obj(), tty); k->oop_print_on(obj(), tty);
} }
} }
@ -955,7 +983,7 @@ void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
#endif #endif
#endif // COMPILER2 #endif // COMPILER2
vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) { vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp()); Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
#ifndef PRODUCT #ifndef PRODUCT
@ -998,7 +1026,7 @@ vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, Re
// Since the Java thread being deoptimized will eventually adjust it's own stack, // Since the Java thread being deoptimized will eventually adjust it's own stack,
// the vframeArray containing the unpacking information is allocated in the C heap. // the vframeArray containing the unpacking information is allocated in the C heap.
// For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr); vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
// Compare the vframeArray to the collected vframes // Compare the vframeArray to the collected vframes
assert(array->structural_compare(thread, chunk), "just checking"); assert(array->structural_compare(thread, chunk), "just checking");
@ -1013,6 +1041,33 @@ vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, Re
return array; return array;
} }
#ifdef COMPILER2
void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
// Reallocation of some scalar replaced objects failed. Record
// that we need to pop all the interpreter frames for the
// deoptimized compiled frame.
assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
thread->set_frames_to_pop_failed_realloc(array->frames());
// Unlock all monitors here otherwise the interpreter will see a
// mix of locked and unlocked monitors (because of failed
// reallocations of synchronized objects) and be confused.
for (int i = 0; i < array->frames(); i++) {
MonitorChunk* monitors = array->element(i)->monitors();
if (monitors != NULL) {
for (int j = 0; j < monitors->number_of_monitors(); j++) {
BasicObjectLock* src = monitors->at(j);
if (src->obj() != NULL) {
ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
}
}
array->element(i)->free_monitors(thread);
#ifdef ASSERT
array->element(i)->set_removed_monitors();
#endif
}
}
}
#endif
static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) { static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); GrowableArray<MonitorInfo*>* monitors = cvf->monitors();

View file

@ -125,13 +125,14 @@ class Deoptimization : AllStatic {
static bool realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS); static bool realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS);
static void reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type); static void reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type);
static void reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj); static void reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj);
static void reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects); static void reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures);
static void relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread); static void relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures);
NOT_PRODUCT(static void print_objects(GrowableArray<ScopeValue*>* objects);) static void pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array);
NOT_PRODUCT(static void print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures);)
#endif // COMPILER2 #endif // COMPILER2
public: public:
static vframeArray* create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk); static vframeArray* create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures);
// Interface used for unpacking deoptimized frames // Interface used for unpacking deoptimized frames

View file

@ -456,6 +456,7 @@ JRT_END
address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address)); assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
// Reset method handle flag. // Reset method handle flag.
thread->set_is_method_handle_return(false); thread->set_is_method_handle_return(false);

View file

@ -1448,6 +1448,7 @@ void JavaThread::initialize() {
_popframe_condition = popframe_inactive; _popframe_condition = popframe_inactive;
_popframe_preserved_args = NULL; _popframe_preserved_args = NULL;
_popframe_preserved_args_size = 0; _popframe_preserved_args_size = 0;
_frames_to_pop_failed_realloc = 0;
pd_initialize(); pd_initialize();
} }

View file

@ -908,6 +908,12 @@ class JavaThread: public Thread {
// This is set to popframe_pending to signal that top Java frame should be popped immediately // This is set to popframe_pending to signal that top Java frame should be popped immediately
int _popframe_condition; int _popframe_condition;
// If reallocation of scalar replaced objects fails, we throw OOM
// and during exception propagation, pop the top
// _frames_to_pop_failed_realloc frames, the ones that reference
// failed reallocations.
int _frames_to_pop_failed_realloc;
#ifndef PRODUCT #ifndef PRODUCT
int _jmp_ring_index; int _jmp_ring_index;
struct { struct {
@ -1567,6 +1573,10 @@ class JavaThread: public Thread {
void clr_pop_frame_in_process(void) { _popframe_condition &= ~popframe_processing_bit; } void clr_pop_frame_in_process(void) { _popframe_condition &= ~popframe_processing_bit; }
#endif #endif
int frames_to_pop_failed_realloc() const { return _frames_to_pop_failed_realloc; }
void set_frames_to_pop_failed_realloc(int nb) { _frames_to_pop_failed_realloc = nb; }
void dec_frames_to_pop_failed_realloc() { _frames_to_pop_failed_realloc--; }
private: private:
// Saved incoming arguments to popped frame. // Saved incoming arguments to popped frame.
// Used only when popped interpreted frame returns to deoptimized frame. // Used only when popped interpreted frame returns to deoptimized frame.

View file

@ -57,7 +57,7 @@ void vframeArrayElement::free_monitors(JavaThread* jt) {
} }
} }
void vframeArrayElement::fill_in(compiledVFrame* vf) { void vframeArrayElement::fill_in(compiledVFrame* vf, bool realloc_failures) {
// Copy the information from the compiled vframe to the // Copy the information from the compiled vframe to the
// interpreter frame we will be creating to replace vf // interpreter frame we will be creating to replace vf
@ -65,6 +65,9 @@ void vframeArrayElement::fill_in(compiledVFrame* vf) {
_method = vf->method(); _method = vf->method();
_bci = vf->raw_bci(); _bci = vf->raw_bci();
_reexecute = vf->should_reexecute(); _reexecute = vf->should_reexecute();
#ifdef ASSERT
_removed_monitors = false;
#endif
int index; int index;
@ -82,13 +85,17 @@ void vframeArrayElement::fill_in(compiledVFrame* vf) {
// Migrate the BasicLocks from the stack to the monitor chunk // Migrate the BasicLocks from the stack to the monitor chunk
for (index = 0; index < list->length(); index++) { for (index = 0; index < list->length(); index++) {
MonitorInfo* monitor = list->at(index); MonitorInfo* monitor = list->at(index);
assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already"); assert(!monitor->owner_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
BasicObjectLock* dest = _monitors->at(index); BasicObjectLock* dest = _monitors->at(index);
if (monitor->owner_is_scalar_replaced()) {
dest->set_obj(NULL);
} else {
assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
dest->set_obj(monitor->owner()); dest->set_obj(monitor->owner());
monitor->lock()->move_to(monitor->owner(), dest->lock()); monitor->lock()->move_to(monitor->owner(), dest->lock());
} }
} }
}
// Convert the vframe locals and expressions to off stack // Convert the vframe locals and expressions to off stack
// values. Because we will not gc all oops can be converted to // values. Because we will not gc all oops can be converted to
@ -111,7 +118,7 @@ void vframeArrayElement::fill_in(compiledVFrame* vf) {
StackValue* value = locs->at(index); StackValue* value = locs->at(index);
switch(value->type()) { switch(value->type()) {
case T_OBJECT: case T_OBJECT:
assert(!value->obj_is_scalar_replaced(), "object should be reallocated already"); assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
// preserve object type // preserve object type
_locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT )); _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
break; break;
@ -136,7 +143,7 @@ void vframeArrayElement::fill_in(compiledVFrame* vf) {
StackValue* value = exprs->at(index); StackValue* value = exprs->at(index);
switch(value->type()) { switch(value->type()) {
case T_OBJECT: case T_OBJECT:
assert(!value->obj_is_scalar_replaced(), "object should be reallocated already"); assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
// preserve object type // preserve object type
_expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT )); _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
break; break;
@ -287,7 +294,7 @@ void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
_frame.patch_pc(thread, pc); _frame.patch_pc(thread, pc);
assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors"); assert (!method()->is_synchronized() || locks > 0 || _removed_monitors, "synchronized methods must have monitors");
BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin(); BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
for (int index = 0; index < locks; index++) { for (int index = 0; index < locks; index++) {
@ -439,7 +446,8 @@ int vframeArrayElement::on_stack_size(int callee_parameters,
vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk, vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
RegisterMap *reg_map, frame sender, frame caller, frame self) { RegisterMap *reg_map, frame sender, frame caller, frame self,
bool realloc_failures) {
// Allocate the vframeArray // Allocate the vframeArray
vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
@ -451,19 +459,20 @@ vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableA
result->_caller = caller; result->_caller = caller;
result->_original = self; result->_original = self;
result->set_unroll_block(NULL); // initialize it result->set_unroll_block(NULL); // initialize it
result->fill_in(thread, frame_size, chunk, reg_map); result->fill_in(thread, frame_size, chunk, reg_map, realloc_failures);
return result; return result;
} }
void vframeArray::fill_in(JavaThread* thread, void vframeArray::fill_in(JavaThread* thread,
int frame_size, int frame_size,
GrowableArray<compiledVFrame*>* chunk, GrowableArray<compiledVFrame*>* chunk,
const RegisterMap *reg_map) { const RegisterMap *reg_map,
bool realloc_failures) {
// Set owner first, it is used when adding monitor chunks // Set owner first, it is used when adding monitor chunks
_frame_size = frame_size; _frame_size = frame_size;
for(int i = 0; i < chunk->length(); i++) { for(int i = 0; i < chunk->length(); i++) {
element(i)->fill_in(chunk->at(i)); element(i)->fill_in(chunk->at(i), realloc_failures);
} }
// Copy registers for callee-saved registers // Copy registers for callee-saved registers

View file

@ -58,6 +58,9 @@ class vframeArrayElement : public _ValueObj {
MonitorChunk* _monitors; // active monitors for this vframe MonitorChunk* _monitors; // active monitors for this vframe
StackValueCollection* _locals; StackValueCollection* _locals;
StackValueCollection* _expressions; StackValueCollection* _expressions;
#ifdef ASSERT
bool _removed_monitors;
#endif
public: public:
@ -78,7 +81,7 @@ class vframeArrayElement : public _ValueObj {
StackValueCollection* expressions(void) const { return _expressions; } StackValueCollection* expressions(void) const { return _expressions; }
void fill_in(compiledVFrame* vf); void fill_in(compiledVFrame* vf, bool realloc_failures);
// Formerly part of deoptimizedVFrame // Formerly part of deoptimizedVFrame
@ -99,6 +102,12 @@ class vframeArrayElement : public _ValueObj {
bool is_bottom_frame, bool is_bottom_frame,
int exec_mode); int exec_mode);
#ifdef ASSERT
void set_removed_monitors() {
_removed_monitors = true;
}
#endif
#ifndef PRODUCT #ifndef PRODUCT
void print(outputStream* st); void print(outputStream* st);
#endif /* PRODUCT */ #endif /* PRODUCT */
@ -160,13 +169,14 @@ class vframeArray: public CHeapObj<mtCompiler> {
int frames() const { return _frames; } int frames() const { return _frames; }
static vframeArray* allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk, static vframeArray* allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
RegisterMap* reg_map, frame sender, frame caller, frame self); RegisterMap* reg_map, frame sender, frame caller, frame self,
bool realloc_failures);
vframeArrayElement* element(int index) { assert(is_within_bounds(index), "Bad index"); return &_elements[index]; } vframeArrayElement* element(int index) { assert(is_within_bounds(index), "Bad index"); return &_elements[index]; }
// Allocates a new vframe in the array and fills the array with vframe information in chunk // Allocates a new vframe in the array and fills the array with vframe information in chunk
void fill_in(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk, const RegisterMap *reg_map); void fill_in(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk, const RegisterMap *reg_map, bool realloc_failures);
// Returns the owner of this vframeArray // Returns the owner of this vframeArray
JavaThread* owner_thread() const { return _owner_thread; } JavaThread* owner_thread() const { return _owner_thread; }

View file

@ -0,0 +1,426 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 6898462
* @summary failed reallocations of scalar replaced objects during deoptimization causes crash
* @run main/othervm -XX:-BackgroundCompilation -XX:CompileCommand=exclude,TestDeoptOOM::main -XX:CompileCommand=exclude,TestDeoptOOM::m9_1 -Xmx128M TestDeoptOOM
*
*/
public class TestDeoptOOM {
long f1;
long f2;
long f3;
long f4;
long f5;
static class LinkedList {
LinkedList l;
long[] array;
LinkedList(LinkedList l, int size) {
array = new long[size];
this.l = l;
}
}
static LinkedList ll;
static void consume_all_memory() {
int size = 128 * 1024 * 1024;
while(size > 0) {
try {
while(true) {
ll = new LinkedList(ll, size);
}
} catch(OutOfMemoryError oom) {
}
size = size / 2;
}
}
static void free_memory() {
ll = null;
}
static TestDeoptOOM m1(boolean deopt) {
try {
TestDeoptOOM tdoom = new TestDeoptOOM();
if (deopt) {
return tdoom;
}
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m1");
}
return null;
}
static TestDeoptOOM m2_1(boolean deopt) {
try {
TestDeoptOOM tdoom = new TestDeoptOOM();
if (deopt) {
return tdoom;
}
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m2_1");
}
return null;
}
static TestDeoptOOM m2(boolean deopt) {
try {
return m2_1(deopt);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m2");
}
return null;
}
static TestDeoptOOM m3_3(boolean deopt) {
try {
TestDeoptOOM tdoom = new TestDeoptOOM();
if (deopt) {
return tdoom;
}
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m3_3");
}
return null;
}
static boolean m3_2(boolean deopt) {
try {
return m3_3(deopt) != null;
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m3_2");
}
return false;
}
static TestDeoptOOM m3_1(boolean deopt) {
try {
TestDeoptOOM tdoom = new TestDeoptOOM();
if (m3_2(deopt)) {
return tdoom;
}
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m3_1");
}
return null;
}
static TestDeoptOOM m3(boolean deopt) {
try {
return m3_1(deopt);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m3");
}
return null;
}
static TestDeoptOOM m4(boolean deopt) {
try {
TestDeoptOOM tdoom = new TestDeoptOOM();
if (deopt) {
tdoom.f1 = 1l;
tdoom.f2 = 2l;
tdoom.f3 = 3l;
return tdoom;
}
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m4");
}
return null;
}
static TestDeoptOOM m5(boolean deopt) {
try {
TestDeoptOOM tdoom = new TestDeoptOOM();
synchronized(tdoom) {
if (deopt) {
return tdoom;
}
}
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m5");
}
return null;
}
synchronized TestDeoptOOM m6_1(boolean deopt) {
if (deopt) {
return this;
}
return null;
}
static TestDeoptOOM m6(boolean deopt) {
try {
TestDeoptOOM tdoom = new TestDeoptOOM();
return tdoom.m6_1(deopt);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m6");
}
return null;
}
static TestDeoptOOM m7_1(boolean deopt, Object lock) {
try {
synchronized(lock) {
TestDeoptOOM tdoom = new TestDeoptOOM();
if (deopt) {
return tdoom;
}
}
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m7_1");
}
return null;
}
static TestDeoptOOM m7(boolean deopt, Object lock) {
try {
return m7_1(deopt, lock);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m7");
}
return null;
}
static class A {
long f1;
long f2;
long f3;
long f4;
long f5;
}
static class B {
long f1;
long f2;
long f3;
long f4;
long f5;
A a;
}
static B m8(boolean deopt) {
try {
A a = new A();
B b = new B();
b.a = a;
if (deopt) {
return b;
}
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m8");
}
return null;
}
static void m9_1(int i) {
if (i > 90000) {
consume_all_memory();
}
}
static TestDeoptOOM m9() {
try {
for (int i = 0; i < 100000; i++) {
TestDeoptOOM tdoom = new TestDeoptOOM();
m9_1(i);
if (i > 90000) {
return tdoom;
}
}
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in m1");
}
return null;
}
public static void main(String[] args) {
for (int i = 0; i < 20000; i++) {
m1(false);
}
consume_all_memory();
try {
m1(true);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in main " + oom.getMessage());
}
free_memory();
for (int i = 0; i < 20000; i++) {
m2(false);
}
consume_all_memory();
try {
m2(true);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in main");
}
free_memory();
for (int i = 0; i < 20000; i++) {
m3(false);
}
consume_all_memory();
try {
m3(true);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in main");
}
free_memory();
for (int i = 0; i < 20000; i++) {
m4(false);
}
consume_all_memory();
try {
m4(true);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in main");
}
free_memory();
for (int i = 0; i < 20000; i++) {
m5(false);
}
consume_all_memory();
try {
m5(true);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in main");
}
free_memory();
for (int i = 0; i < 20000; i++) {
m6(false);
}
consume_all_memory();
try {
m6(true);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in main");
}
free_memory();
final Object lock = new Object();
for (int i = 0; i < 20000; i++) {
m7(false, lock);
}
consume_all_memory();
try {
m7(true, lock);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in main");
}
free_memory();
Thread thread = new Thread() {
public void run() {
System.out.println("Acquiring lock");
synchronized(lock) {
System.out.println("Lock acquired");
}
System.out.println("Lock released");
}
};
thread.start();
try {
thread.join();
} catch(InterruptedException ie) {
}
for (int i = 0; i < 20000; i++) {
m8(false);
}
consume_all_memory();
try {
m8(true);
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in main");
}
free_memory();
try {
m9();
} catch(OutOfMemoryError oom) {
free_memory();
System.out.println("OOM caught in main");
}
free_memory();
}
}