This commit is contained in:
Vladimir Kozlov 2013-09-05 11:04:39 -07:00
commit 1a700c9216
1322 changed files with 52051 additions and 19966 deletions

View file

@ -2676,36 +2676,7 @@ void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
int os::Linux::commit_memory_impl(char* addr, size_t size,
size_t alignment_hint, bool exec) {
int err;
if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
uintptr_t res =
(uintptr_t) ::mmap(addr, size, prot,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
-1, 0);
if (res != (uintptr_t) MAP_FAILED) {
if (UseNUMAInterleaving) {
numa_make_global(addr, size);
}
return 0;
}
err = errno; // save errno from mmap() call above
if (!recoverable_mmap_error(err)) {
// However, it is not clear that this loss of our reserved mapping
// happens with large pages on Linux or that we cannot recover
// from the loss. For now, we just issue a warning and we don't
// call vm_exit_out_of_memory(). This issue is being tracked by
// JBS-8007074.
warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
// vm_exit_out_of_memory(size, OOM_MMAP_ERROR,
// "committing reserved memory.");
}
// Fall through and try to use small pages
}
err = os::Linux::commit_memory_impl(addr, size, exec);
int err = os::Linux::commit_memory_impl(addr, size, exec);
if (err == 0) {
realign_memory(addr, size, alignment_hint);
}
@ -2730,7 +2701,7 @@ void os::pd_commit_memory_or_exit(char* addr, size_t size,
}
void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
// We don't check the return value: madvise(MADV_HUGEPAGE) may not
// be supported or the memory may already be backed by huge pages.
::madvise(addr, bytes, MADV_HUGEPAGE);
@ -2743,7 +2714,7 @@ void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
// uncommitted at all. We don't do anything in this case to avoid creating a segment with
// small pages on top of the SHM segment. This method always works for small pages, so we
// allow that in any case.
if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
commit_memory(addr, bytes, alignment_hint, !ExecMem);
}
}
@ -3113,11 +3084,31 @@ bool os::unguard_memory(char* addr, size_t size) {
return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
}
bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
bool result = false;
void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE,
-1, 0);
if (p != MAP_FAILED) {
void *aligned_p = align_ptr_up(p, page_size);
result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
munmap(p, page_size * 2);
}
if (warn && !result) {
warning("TransparentHugePages is not supported by the operating system.");
}
return result;
}
bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
bool result = false;
void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
-1, 0);
void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
-1, 0);
if (p != MAP_FAILED) {
// We don't know if this really is a huge page or not.
@ -3138,12 +3129,10 @@ bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
}
fclose(fp);
}
munmap (p, page_size);
if (result)
return true;
munmap(p, page_size);
}
if (warn) {
if (warn && !result) {
warning("HugeTLBFS is not supported by the operating system.");
}
@ -3191,82 +3180,114 @@ static void set_coredump_filter(void) {
static size_t _large_page_size = 0;
void os::large_page_init() {
if (!UseLargePages) {
UseHugeTLBFS = false;
UseSHM = false;
return;
}
size_t os::Linux::find_large_page_size() {
size_t large_page_size = 0;
if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
// If UseLargePages is specified on the command line try both methods,
// if it's default, then try only HugeTLBFS.
if (FLAG_IS_DEFAULT(UseLargePages)) {
UseHugeTLBFS = true;
} else {
UseHugeTLBFS = UseSHM = true;
}
}
if (LargePageSizeInBytes) {
_large_page_size = LargePageSizeInBytes;
} else {
// large_page_size on Linux is used to round up heap size. x86 uses either
// 2M or 4M page, depending on whether PAE (Physical Address Extensions)
// mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
// page as large as 256M.
//
// Here we try to figure out page size by parsing /proc/meminfo and looking
// for a line with the following format:
// Hugepagesize: 2048 kB
//
// If we can't determine the value (e.g. /proc is not mounted, or the text
// format has been changed), we'll use the largest page size supported by
// the processor.
// large_page_size on Linux is used to round up heap size. x86 uses either
// 2M or 4M page, depending on whether PAE (Physical Address Extensions)
// mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
// page as large as 256M.
//
// Here we try to figure out page size by parsing /proc/meminfo and looking
// for a line with the following format:
// Hugepagesize: 2048 kB
//
// If we can't determine the value (e.g. /proc is not mounted, or the text
// format has been changed), we'll use the largest page size supported by
// the processor.
#ifndef ZERO
_large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
ARM_ONLY(2 * M) PPC_ONLY(4 * M);
large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
ARM_ONLY(2 * M) PPC_ONLY(4 * M);
#endif // ZERO
FILE *fp = fopen("/proc/meminfo", "r");
if (fp) {
while (!feof(fp)) {
int x = 0;
char buf[16];
if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
_large_page_size = x * K;
break;
}
} else {
// skip to next line
for (;;) {
int ch = fgetc(fp);
if (ch == EOF || ch == (int)'\n') break;
}
FILE *fp = fopen("/proc/meminfo", "r");
if (fp) {
while (!feof(fp)) {
int x = 0;
char buf[16];
if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
large_page_size = x * K;
break;
}
} else {
// skip to next line
for (;;) {
int ch = fgetc(fp);
if (ch == EOF || ch == (int)'\n') break;
}
}
fclose(fp);
}
fclose(fp);
}
// print a warning if any large page related flag is specified on command line
bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
proper_unit_for_byte_size(large_page_size));
}
return large_page_size;
}
size_t os::Linux::setup_large_page_size() {
_large_page_size = Linux::find_large_page_size();
const size_t default_page_size = (size_t)Linux::page_size();
if (_large_page_size > default_page_size) {
_page_sizes[0] = _large_page_size;
_page_sizes[1] = default_page_size;
_page_sizes[2] = 0;
}
UseHugeTLBFS = UseHugeTLBFS &&
Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
if (UseHugeTLBFS)
return _large_page_size;
}
bool os::Linux::setup_large_page_type(size_t page_size) {
if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
FLAG_IS_DEFAULT(UseSHM) &&
FLAG_IS_DEFAULT(UseTransparentHugePages)) {
// If UseLargePages is specified on the command line try all methods,
// if it's default, then try only UseTransparentHugePages.
if (FLAG_IS_DEFAULT(UseLargePages)) {
UseTransparentHugePages = true;
} else {
UseHugeTLBFS = UseTransparentHugePages = UseSHM = true;
}
}
if (UseTransparentHugePages) {
bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
UseHugeTLBFS = false;
UseSHM = false;
return true;
}
UseTransparentHugePages = false;
}
if (UseHugeTLBFS) {
bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
UseSHM = false;
return true;
}
UseHugeTLBFS = false;
}
return UseSHM;
}
void os::large_page_init() {
if (!UseLargePages) {
UseHugeTLBFS = false;
UseTransparentHugePages = false;
UseSHM = false;
return;
}
UseLargePages = UseHugeTLBFS || UseSHM;
size_t large_page_size = Linux::setup_large_page_size();
UseLargePages = Linux::setup_large_page_type(large_page_size);
set_coredump_filter();
}
@ -3275,16 +3296,22 @@ void os::large_page_init() {
#define SHM_HUGETLB 04000
#endif
char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
// "exec" is passed in but not used. Creating the shared image for
// the code cache doesn't have an SHM_X executable permission to check.
assert(UseLargePages && UseSHM, "only for SHM large pages");
assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
return NULL; // Fallback to small pages.
}
key_t key = IPC_PRIVATE;
char *addr;
bool warn_on_failure = UseLargePages &&
(!FLAG_IS_DEFAULT(UseLargePages) ||
!FLAG_IS_DEFAULT(UseSHM) ||
!FLAG_IS_DEFAULT(LargePageSizeInBytes)
);
char msg[128];
@ -3332,42 +3359,219 @@ char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
return NULL;
}
if ((addr != NULL) && UseNUMAInterleaving) {
numa_make_global(addr, bytes);
return addr;
}
static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
assert(error == ENOMEM, "Only expect to fail if no memory is available");
bool warn_on_failure = UseLargePages &&
(!FLAG_IS_DEFAULT(UseLargePages) ||
!FLAG_IS_DEFAULT(UseHugeTLBFS) ||
!FLAG_IS_DEFAULT(LargePageSizeInBytes));
if (warn_on_failure) {
char msg[128];
jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
warning(msg);
}
}
char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
char* addr = (char*)::mmap(req_addr, bytes, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
-1, 0);
if (addr == MAP_FAILED) {
warn_on_large_pages_failure(req_addr, bytes, errno);
return NULL;
}
// The memory is committed
MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
return addr;
}
char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
size_t large_page_size = os::large_page_size();
assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
// Allocate small pages.
char* start;
if (req_addr != NULL) {
assert(is_ptr_aligned(req_addr, alignment), "Must be");
assert(is_size_aligned(bytes, alignment), "Must be");
start = os::reserve_memory(bytes, req_addr);
assert(start == NULL || start == req_addr, "Must be");
} else {
start = os::reserve_memory_aligned(bytes, alignment);
}
if (start == NULL) {
return NULL;
}
assert(is_ptr_aligned(start, alignment), "Must be");
// os::reserve_memory_special will record this memory area.
// Need to release it here to prevent overlapping reservations.
MemTracker::record_virtual_memory_release((address)start, bytes);
char* end = start + bytes;
// Find the regions of the allocated chunk that can be promoted to large pages.
char* lp_start = (char*)align_ptr_up(start, large_page_size);
char* lp_end = (char*)align_ptr_down(end, large_page_size);
size_t lp_bytes = lp_end - lp_start;
assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
if (lp_bytes == 0) {
// The mapped region doesn't even span the start and the end of a large page.
// Fall back to allocate a non-special area.
::munmap(start, end - start);
return NULL;
}
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
void* result;
if (start != lp_start) {
result = ::mmap(start, lp_start - start, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
-1, 0);
if (result == MAP_FAILED) {
::munmap(lp_start, end - lp_start);
return NULL;
}
}
result = ::mmap(lp_start, lp_bytes, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
-1, 0);
if (result == MAP_FAILED) {
warn_on_large_pages_failure(req_addr, bytes, errno);
// If the mmap above fails, the large pages region will be unmapped and we
// have regions before and after with small pages. Release these regions.
//
// | mapped | unmapped | mapped |
// ^ ^ ^ ^
// start lp_start lp_end end
//
::munmap(start, lp_start - start);
::munmap(lp_end, end - lp_end);
return NULL;
}
if (lp_end != end) {
result = ::mmap(lp_end, end - lp_end, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
-1, 0);
if (result == MAP_FAILED) {
::munmap(start, lp_end - start);
return NULL;
}
}
return start;
}
char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
assert(is_ptr_aligned(req_addr, alignment), "Must be");
assert(is_power_of_2(alignment), "Must be");
assert(is_power_of_2(os::large_page_size()), "Must be");
assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
} else {
return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
}
}
char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
assert(UseLargePages, "only for large pages");
char* addr;
if (UseSHM) {
addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
} else {
assert(UseHugeTLBFS, "must be");
addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
}
if (addr != NULL) {
if (UseNUMAInterleaving) {
numa_make_global(addr, bytes);
}
// The memory is committed
MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
}
return addr;
}
bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
// detaching the SHM segment will also delete it, see reserve_memory_special_shm()
return shmdt(base) == 0;
}
bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
return pd_release_memory(base, bytes);
}
bool os::release_memory_special(char* base, size_t bytes) {
assert(UseLargePages, "only for large pages");
MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
// detaching the SHM segment will also delete it, see reserve_memory_special()
int rslt = shmdt(base);
if (rslt == 0) {
bool res;
if (UseSHM) {
res = os::Linux::release_memory_special_shm(base, bytes);
} else {
assert(UseHugeTLBFS, "must be");
res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
}
if (res) {
tkr.record((address)base, bytes);
return true;
} else {
tkr.discard();
return false;
}
return res;
}
size_t os::large_page_size() {
return _large_page_size;
}
// HugeTLBFS allows application to commit large page memory on demand;
// with SysV SHM the entire memory region must be allocated as shared
// With SysV SHM the entire memory region must be allocated as shared
// memory.
// HugeTLBFS allows application to commit large page memory on demand.
// However, when committing memory with HugeTLBFS fails, the region
// that was supposed to be committed will lose the old reservation
// and allow other threads to steal that memory region. Because of this
// behavior we can't commit HugeTLBFS memory.
bool os::can_commit_large_page_memory() {
return UseHugeTLBFS;
return UseTransparentHugePages;
}
bool os::can_execute_large_page_memory() {
return UseHugeTLBFS;
return UseTransparentHugePages || UseHugeTLBFS;
}
// Reserve memory at an arbitrary address, only if that area is
@ -4521,21 +4725,23 @@ jint os::init_2(void)
UseNUMA = false;
}
}
// With SHM large pages we cannot uncommit a page, so there's not way
// With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
// we can make the adaptive lgrp chunk resizing work. If the user specified
// both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
// both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
// disable adaptive resizing.
if (UseNUMA && UseLargePages && UseSHM) {
if (!FLAG_IS_DEFAULT(UseNUMA)) {
if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
if (FLAG_IS_DEFAULT(UseNUMA)) {
UseNUMA = false;
} else {
if (FLAG_IS_DEFAULT(UseLargePages) &&
FLAG_IS_DEFAULT(UseSHM) &&
FLAG_IS_DEFAULT(UseHugeTLBFS)) {
UseLargePages = false;
} else {
warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
UseAdaptiveSizePolicy = false;
UseAdaptiveNUMAChunkSizing = false;
}
} else {
UseNUMA = false;
}
}
if (!UseNUMA && ForceNUMA) {
@ -5805,3 +6011,149 @@ void MemNotifyThread::start() {
}
#endif // JAVASE_EMBEDDED
/////////////// Unit tests ///////////////
#ifndef PRODUCT
#define test_log(...) \
do {\
if (VerboseInternalVMTests) { \
tty->print_cr(__VA_ARGS__); \
tty->flush(); \
}\
} while (false)
class TestReserveMemorySpecial : AllStatic {
public:
static void small_page_write(void* addr, size_t size) {
size_t page_size = os::vm_page_size();
char* end = (char*)addr + size;
for (char* p = (char*)addr; p < end; p += page_size) {
*p = 1;
}
}
static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
if (!UseHugeTLBFS) {
return;
}
test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
if (addr != NULL) {
small_page_write(addr, size);
os::Linux::release_memory_special_huge_tlbfs(addr, size);
}
}
static void test_reserve_memory_special_huge_tlbfs_only() {
if (!UseHugeTLBFS) {
return;
}
size_t lp = os::large_page_size();
for (size_t size = lp; size <= lp * 10; size += lp) {
test_reserve_memory_special_huge_tlbfs_only(size);
}
}
static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
if (!UseHugeTLBFS) {
return;
}
test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
size, alignment);
assert(size >= os::large_page_size(), "Incorrect input to test");
char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
if (addr != NULL) {
small_page_write(addr, size);
os::Linux::release_memory_special_huge_tlbfs(addr, size);
}
}
static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
size_t lp = os::large_page_size();
size_t ag = os::vm_allocation_granularity();
for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
}
}
static void test_reserve_memory_special_huge_tlbfs_mixed() {
size_t lp = os::large_page_size();
size_t ag = os::vm_allocation_granularity();
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
}
static void test_reserve_memory_special_huge_tlbfs() {
if (!UseHugeTLBFS) {
return;
}
test_reserve_memory_special_huge_tlbfs_only();
test_reserve_memory_special_huge_tlbfs_mixed();
}
static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
if (!UseSHM) {
return;
}
test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
if (addr != NULL) {
assert(is_ptr_aligned(addr, alignment), "Check");
assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
small_page_write(addr, size);
os::Linux::release_memory_special_shm(addr, size);
}
}
static void test_reserve_memory_special_shm() {
size_t lp = os::large_page_size();
size_t ag = os::vm_allocation_granularity();
for (size_t size = ag; size < lp * 3; size += ag) {
for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
test_reserve_memory_special_shm(size, alignment);
}
}
}
static void test() {
test_reserve_memory_special_huge_tlbfs();
test_reserve_memory_special_shm();
}
};
void TestReserveMemorySpecial_test() {
TestReserveMemorySpecial::test();
}
#endif