mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-27 06:45:07 +02:00
8302027: Port fdlibm trig functions (sin, cos, tan) to Java
Reviewed-by: bpb
This commit is contained in:
parent
9fdbf3cfc4
commit
1bb39a95eb
7 changed files with 2293 additions and 22 deletions
|
@ -60,6 +60,7 @@ package java.lang;
|
|||
class FdLibm {
|
||||
// Constants used by multiple algorithms
|
||||
private static final double INFINITY = Double.POSITIVE_INFINITY;
|
||||
private static final double TWO24 = 0x1.0p24; // 1.67772160000000000000e+07
|
||||
private static final double TWO54 = 0x1.0p54; // 1.80143985094819840000e+16
|
||||
private static final double HUGE = 1.0e+300;
|
||||
|
||||
|
@ -113,6 +114,910 @@ class FdLibm {
|
|||
(low & 0xffff_ffffL));
|
||||
}
|
||||
|
||||
/** sin(x)
|
||||
* Return sine function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __kernel_sin ... sine function on [-pi/4,pi/4]
|
||||
* __kernel_cos ... cose function on [-pi/4,pi/4]
|
||||
* __ieee754_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
static class Sin {
|
||||
private Sin() {throw new UnsupportedOperationException();}
|
||||
|
||||
static double compute(double x) {
|
||||
double[] y = new double[2];
|
||||
double z = 0.0;
|
||||
int n, ix;
|
||||
|
||||
// High word of x.
|
||||
ix = __HI(x);
|
||||
|
||||
// |x| ~< pi/4
|
||||
ix &= 0x7fff_ffff;
|
||||
if (ix <= 0x3fe9_21fb) {
|
||||
return __kernel_sin(x, z, 0);
|
||||
} else if (ix>=0x7ff0_0000) { // sin(Inf or NaN) is NaN
|
||||
return x - x;
|
||||
} else { // argument reduction needed
|
||||
n = RemPio2.__ieee754_rem_pio2(x, y);
|
||||
switch(n & 3) {
|
||||
case 0: return Sin.__kernel_sin(y[0], y[1], 1);
|
||||
case 1: return Cos.__kernel_cos(y[0], y[1]);
|
||||
case 2: return -Sin.__kernel_sin(y[0], y[1], 1);
|
||||
default:
|
||||
return -Cos.__kernel_cos(y[0], y[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** __kernel_sin( x, y, iy)
|
||||
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
|
||||
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
||||
* [0,pi/4]
|
||||
* 3 13
|
||||
* sin(x) ~ x + S1*x + ... + S6*x
|
||||
* where
|
||||
*
|
||||
* |sin(x) 2 4 6 8 10 12 | -58
|
||||
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
||||
* ~ sin(x) + (1-x*x/2)*y
|
||||
* For better accuracy, let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
||||
* then 3 2
|
||||
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
||||
*/
|
||||
private static final double
|
||||
S1 = -0x1.5555555555549p-3, // -1.66666666666666324348e-01
|
||||
S2 = 0x1.111111110f8a6p-7, // 8.33333333332248946124e-03
|
||||
S3 = -0x1.a01a019c161d5p-13, // -1.98412698298579493134e-04
|
||||
S4 = 0x1.71de357b1fe7dp-19, // 2.75573137070700676789e-06
|
||||
S5 = -0x1.ae5e68a2b9cebp-26, // -2.50507602534068634195e-08
|
||||
S6 = 0x1.5d93a5acfd57cp-33; // 1.58969099521155010221e-10
|
||||
|
||||
static double __kernel_sin(double x, double y, int iy) {
|
||||
double z, r, v;
|
||||
int ix;
|
||||
ix = __HI(x) & 0x7fff_ffff; // high word of x
|
||||
if (ix < 0x3e40_0000) { // |x| < 2**-27
|
||||
if ((int)x == 0) // generate inexact
|
||||
return x;
|
||||
}
|
||||
z = x*x;
|
||||
v = z*x;
|
||||
r = S2 + z*(S3 + z*(S4 + z*(S5 + z*S6)));
|
||||
if (iy == 0) {
|
||||
return x + v*(S1 + z*r);
|
||||
} else {
|
||||
return x - ((z*(0.5*y - v*r) - y) - v*S1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** cos(x)
|
||||
* Return cosine function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __kernel_sin ... sine function on [-pi/4,pi/4]
|
||||
* __kernel_cos ... cosine function on [-pi/4,pi/4]
|
||||
* __ieee754_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
static class Cos {
|
||||
private Cos() {throw new UnsupportedOperationException();}
|
||||
|
||||
static double compute(double x) {
|
||||
double[] y = new double[2];
|
||||
double z = 0.0;
|
||||
int n, ix;
|
||||
|
||||
// High word of x.
|
||||
ix = __HI(x);
|
||||
|
||||
// |x| ~< pi/4
|
||||
ix &= 0x7fff_ffff;
|
||||
if (ix <= 0x3fe9_21fb) {
|
||||
return __kernel_cos(x, z);
|
||||
} else if (ix >= 0x7ff0_0000) { // cos(Inf or NaN) is NaN
|
||||
return x-x;
|
||||
} else { // argument reduction needed
|
||||
n = RemPio2.__ieee754_rem_pio2(x,y);
|
||||
switch (n & 3) {
|
||||
case 0: return Cos.__kernel_cos(y[0], y[1]);
|
||||
case 1: return -Sin.__kernel_sin(y[0], y[1],1);
|
||||
case 2: return -Cos.__kernel_cos(y[0], y[1]);
|
||||
default:
|
||||
return Sin.__kernel_sin(y[0], y[1], 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* __kernel_cos( x, y )
|
||||
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-27 (hx < 0x3e4000000), return 1 with inexact if x != 0.
|
||||
* 3. cos(x) is approximated by a polynomial of degree 14 on
|
||||
* [0,pi/4]
|
||||
* 4 14
|
||||
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
||||
* where the remez error is
|
||||
*
|
||||
* | 2 4 6 8 10 12 14 | -58
|
||||
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
||||
* | |
|
||||
*
|
||||
* 4 6 8 10 12 14
|
||||
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
||||
* cos(x) = 1 - x*x/2 + r
|
||||
* since cos(x+y) ~ cos(x) - sin(x)*y
|
||||
* ~ cos(x) - x*y,
|
||||
* a correction term is necessary in cos(x) and hence
|
||||
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
||||
* For better accuracy when x > 0.3, let qx = |x|/4 with
|
||||
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
||||
* Then
|
||||
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
|
||||
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the
|
||||
* magnitude of the latter is at least a quarter of x*x/2,
|
||||
* thus, reducing the rounding error in the subtraction.
|
||||
*/
|
||||
private static final double
|
||||
C1 = 0x1.555555555554cp-5, // 4.16666666666666019037e-02
|
||||
C2 = -0x1.6c16c16c15177p-10, // -1.38888888888741095749e-03
|
||||
C3 = 0x1.a01a019cb159p-16, // 2.48015872894767294178e-05
|
||||
C4 = -0x1.27e4f809c52adp-22, // -2.75573143513906633035e-07
|
||||
C5 = 0x1.1ee9ebdb4b1c4p-29, // 2.08757232129817482790e-09
|
||||
C6 = -0x1.8fae9be8838d4p-37; // -1.13596475577881948265e-11
|
||||
|
||||
static double __kernel_cos(double x, double y) {
|
||||
double a, hz, z, r, qx = 0.0;
|
||||
int ix;
|
||||
ix = __HI(x) & 0x7fff_ffff; // ix = |x|'s high word
|
||||
if (ix < 0x3e40_0000) { // if x < 2**27
|
||||
if (((int)x) == 0) { // generate inexact
|
||||
return 1.0;
|
||||
}
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(C1 + z*(C2 + z*(C3 + z*(C4 + z*(C5 + z*C6)))));
|
||||
if (ix < 0x3FD3_3333) { // if |x| < 0.3
|
||||
return 1.0 - (0.5*z - (z*r - x*y));
|
||||
} else {
|
||||
if (ix > 0x3fe9_0000) { // x > 0.78125
|
||||
qx = 0.28125;
|
||||
} else {
|
||||
qx = __HI_LO(ix - 0x0020_0000, 0);
|
||||
}
|
||||
hz = 0.5*z - qx;
|
||||
a = 1.0 - qx;
|
||||
return a - (hz - (z*r - x*y));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** tan(x)
|
||||
* Return tangent function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __kernel_tan ... tangent function on [-pi/4,pi/4]
|
||||
* __ieee754_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
static class Tan {
|
||||
private Tan() {throw new UnsupportedOperationException();}
|
||||
|
||||
static double compute(double x) {
|
||||
double[] y = new double[2];
|
||||
double z = 0.0;
|
||||
int n, ix;
|
||||
|
||||
// High word of x.
|
||||
ix = __HI(x);
|
||||
|
||||
// |x| ~< pi/4
|
||||
ix &= 0x7fff_ffff;
|
||||
if (ix <= 0x3fe9_21fb) {
|
||||
return __kernel_tan(x, z, 1);
|
||||
} else if (ix >= 0x7ff0_0000) { // tan(Inf or NaN) is NaN
|
||||
return x-x; // NaN
|
||||
} else { // argument reduction needed
|
||||
n = RemPio2.__ieee754_rem_pio2(x, y);
|
||||
return __kernel_tan(y[0], y[1], 1 - ((n & 1) << 1)); // 1 -- n even; -1 -- n odd
|
||||
}
|
||||
}
|
||||
|
||||
/** __kernel_tan( x, y, k )
|
||||
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input k indicates whether tan (if k=1) or
|
||||
* -1/tan (if k= -1) is returned.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-28 (hx < 0x3e300000 0), return x with inexact if x != 0.
|
||||
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
||||
* [0, 0.67434]
|
||||
* 3 27
|
||||
* tan(x) ~ x + T1*x + ... + T13*x
|
||||
* where
|
||||
*
|
||||
* |tan(x) 2 4 26 | -59.2
|
||||
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
||||
* ~ tan(x) + (1+x*x)*y
|
||||
* Therefore, for better accuracy in computing tan(x+y), let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
||||
* then
|
||||
* 3 2
|
||||
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
||||
*
|
||||
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
||||
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
||||
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
||||
*/
|
||||
private static final double
|
||||
pio4 = 0x1.921fb54442d18p-1, // 7.85398163397448278999e-01
|
||||
pio4lo= 0x1.1a62633145c07p-55, // 3.06161699786838301793e-17
|
||||
T[] = {
|
||||
0x1.5555555555563p-2, // 3.33333333333334091986e-01
|
||||
0x1.111111110fe7ap-3, // 1.33333333333201242699e-01
|
||||
0x1.ba1ba1bb341fep-5, // 5.39682539762260521377e-02
|
||||
0x1.664f48406d637p-6, // 2.18694882948595424599e-02
|
||||
0x1.226e3e96e8493p-7, // 8.86323982359930005737e-03
|
||||
0x1.d6d22c9560328p-9, // 3.59207910759131235356e-03
|
||||
0x1.7dbc8fee08315p-10, // 1.45620945432529025516e-03
|
||||
0x1.344d8f2f26501p-11, // 5.88041240820264096874e-04
|
||||
0x1.026f71a8d1068p-12, // 2.46463134818469906812e-04
|
||||
0x1.47e88a03792a6p-14, // 7.81794442939557092300e-05
|
||||
0x1.2b80f32f0a7e9p-14, // 7.14072491382608190305e-05
|
||||
-0x1.375cbdb605373p-16, // -1.85586374855275456654e-05
|
||||
0x1.b2a7074bf7ad4p-16, // 2.59073051863633712884e-05
|
||||
};
|
||||
|
||||
static double __kernel_tan(double x, double y, int iy) {
|
||||
double z, r, v, w, s;
|
||||
int ix, hx;
|
||||
hx = __HI(x); // high word of x
|
||||
ix = hx&0x7fff_ffff; // high word of |x|
|
||||
if (ix < 0x3e30_0000) { // x < 2**-28
|
||||
if ((int)x == 0) { // generate inexact
|
||||
if (((ix | __LO(x)) | (iy + 1)) == 0) {
|
||||
return 1.0 / Math.abs(x);
|
||||
} else {
|
||||
if (iy == 1) {
|
||||
return x;
|
||||
} else { // compute -1 / (x+y) carefully
|
||||
double a, t;
|
||||
|
||||
z = w = x + y;
|
||||
z= __LO(z, 0);
|
||||
v = y - (z - x);
|
||||
t = a = -1.0 / w;
|
||||
t = __LO(t, 0);
|
||||
s = 1.0 + t * z;
|
||||
return t + a * (s + t * v);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (ix >= 0x3FE5_9428) { // |x| >= 0.6744
|
||||
if ( hx < 0) {
|
||||
x = -x;
|
||||
y = -y;
|
||||
}
|
||||
z = pio4 - x;
|
||||
w = pio4lo - y;
|
||||
x = z + w;
|
||||
y = 0.0;
|
||||
}
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
/* Break x^5*(T[1]+x^2*T[2]+...) into
|
||||
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
||||
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
||||
*/
|
||||
r = T[1] + w*(T[3] + w*(T[5] + w*(T[7] + w*(T[9] + w*T[11]))));
|
||||
v = z*(T[2] + w*(T[4] + w*(T[6] + w*(T[8] + w*(T[10] + w*T[12])))));
|
||||
s = z*x;
|
||||
r = y + z*(s*(r + v) + y);
|
||||
r += T[0]*s;
|
||||
w = x + r;
|
||||
if (ix >= 0x3FE5_9428) {
|
||||
v = (double)iy;
|
||||
return (double)(1-((hx >> 30) & 2))*(v - 2.0*(x - (w*w/(w + v) - r)));
|
||||
}
|
||||
if (iy == 1) {
|
||||
return w;
|
||||
} else { /* if were to allow error up to 2 ulp,
|
||||
could simply return -1.0/(x + r) here */
|
||||
// compute -1.0/(x + r) accurately
|
||||
double a,t;
|
||||
z = w;
|
||||
z = __LO(z, 0);
|
||||
v = r - (z - x); // z + v = r + x
|
||||
t = a = -1.0/w; // a = -1.0/w
|
||||
t = __LO(t, 0);
|
||||
s = 1.0 + t*z;
|
||||
return t + a*(s + t*v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** __ieee754_rem_pio2(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
* use __kernel_rem_pio2()
|
||||
*/
|
||||
static class RemPio2 {
|
||||
/*
|
||||
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
*/
|
||||
private static final int[] two_over_pi = {
|
||||
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
|
||||
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
|
||||
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
||||
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
|
||||
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
|
||||
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
||||
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
||||
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
|
||||
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
||||
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
|
||||
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
|
||||
};
|
||||
|
||||
private static final int[] npio2_hw = {
|
||||
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
|
||||
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
|
||||
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
|
||||
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
|
||||
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
|
||||
0x404858EB, 0x404921FB,
|
||||
};
|
||||
|
||||
/*
|
||||
* invpio2: 53 bits of 2/pi
|
||||
* pio2_1: first 33 bit of pi/2
|
||||
* pio2_1t: pi/2 - pio2_1
|
||||
* pio2_2: second 33 bit of pi/2
|
||||
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
||||
* pio2_3: third 33 bit of pi/2
|
||||
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||
*/
|
||||
|
||||
private static final double
|
||||
invpio2 = 0x1.45f306dc9c883p-1, // 6.36619772367581382433e-01
|
||||
pio2_1 = 0x1.921fb544p0, // 1.57079632673412561417e+00
|
||||
pio2_1t = 0x1.0b4611a626331p-34, // 6.07710050650619224932e-11
|
||||
pio2_2 = 0x1.0b4611a6p-34, // 6.07710050630396597660e-11
|
||||
pio2_2t = 0x1.3198a2e037073p-69, // 2.02226624879595063154e-21
|
||||
pio2_3 = 0x1.3198a2ep-69, // 2.02226624871116645580e-21
|
||||
pio2_3t = 0x1.b839a252049c1p-104; // 8.47842766036889956997e-32
|
||||
|
||||
static int __ieee754_rem_pio2(double x, double[] y) {
|
||||
double z = 0.0, w, t, r, fn;
|
||||
double[] tx = new double[3];
|
||||
int e0, i, j, nx, n, ix, hx;
|
||||
|
||||
hx = __HI(x); // high word of x
|
||||
ix = hx & 0x7fff_ffff;
|
||||
if (ix <= 0x3fe9_21fb) { // |x| ~<= pi/4 , no need for reduction
|
||||
y[0] = x;
|
||||
y[1] = 0;
|
||||
return 0;
|
||||
}
|
||||
if (ix < 0x4002_d97c) { // |x| < 3pi/4, special case with n=+-1
|
||||
if (hx > 0) {
|
||||
z = x - pio2_1;
|
||||
if (ix != 0x3ff9_21fb) { // 33+53 bit pi is good enough
|
||||
y[0] = z - pio2_1t;
|
||||
y[1] = (z - y[0]) - pio2_1t;
|
||||
} else { // near pi/2, use 33+33+53 bit pi
|
||||
z -= pio2_2;
|
||||
y[0] = z - pio2_2t;
|
||||
y[1] = (z-y[0])-pio2_2t;
|
||||
}
|
||||
return 1;
|
||||
} else { // negative x
|
||||
z = x + pio2_1;
|
||||
if (ix != 0x3ff_921fb) { // 33+53 bit pi is good enough
|
||||
y[0] = z + pio2_1t;
|
||||
y[1] = (z - y[0]) + pio2_1t;
|
||||
} else { // near pi/2, use 33+33+53 bit pi
|
||||
z += pio2_2;
|
||||
y[0] = z + pio2_2t;
|
||||
y[1] = (z - y[0]) + pio2_2t;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
if (ix <= 0x4139_21fb) { // |x| ~<= 2^19*(pi/2), medium size
|
||||
t = Math.abs(x);
|
||||
n = (int) (t*invpio2 + 0.5);
|
||||
fn = (double)n;
|
||||
r = t - fn*pio2_1;
|
||||
w = fn*pio2_1t; // 1st round good to 85 bit
|
||||
if (n < 32 && ix != npio2_hw[n - 1]) {
|
||||
y[0] = r - w; // quick check no cancellation
|
||||
} else {
|
||||
j = ix >> 20;
|
||||
y[0] = r - w;
|
||||
i = j - (((__HI(y[0])) >> 20) & 0x7ff);
|
||||
if (i > 16) { // 2nd iteration needed, good to 118
|
||||
t = r;
|
||||
w = fn*pio2_2;
|
||||
r = t - w;
|
||||
w = fn*pio2_2t - ((t - r) - w);
|
||||
y[0] = r - w;
|
||||
i = j - (((__HI(y[0])) >> 20) & 0x7ff);
|
||||
if (i > 49) { // 3rd iteration need, 151 bits acc
|
||||
t = r; // will cover all possible cases
|
||||
w = fn*pio2_3;
|
||||
r = t - w;
|
||||
w = fn*pio2_3t - ((t - r) - w);
|
||||
y[0] = r - w;
|
||||
}
|
||||
}
|
||||
}
|
||||
y[1] = (r - y[0]) - w;
|
||||
if (hx < 0) {
|
||||
y[0] = -y[0];
|
||||
y[1] = -y[1];
|
||||
return -n;
|
||||
} else {
|
||||
return n;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* all other (large) arguments
|
||||
*/
|
||||
if (ix >= 0x7ff0_0000) { // x is inf or NaN
|
||||
y[0] = y[1] = x - x;
|
||||
return 0;
|
||||
}
|
||||
// set z = scalbn(|x|,ilogb(x)-23)
|
||||
z = __LO(z, __LO(x));
|
||||
e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */
|
||||
z = __HI(z, ix - (e0 << 20));
|
||||
for (i=0; i < 2; i++) {
|
||||
tx[i] = (double)((int)(z));
|
||||
z = (z - tx[i])*TWO24;
|
||||
}
|
||||
tx[2] = z;
|
||||
nx = 3;
|
||||
while (tx[nx - 1] == 0.0) { // skip zero term
|
||||
nx--;
|
||||
}
|
||||
n = KernelRemPio2.__kernel_rem_pio2(tx, y, e0, nx, 2, two_over_pi);
|
||||
if (hx < 0) {
|
||||
y[0] = -y[0];
|
||||
y[1] = -y[1];
|
||||
return -n;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
||||
* double x[],y[]; int e0,nx,prec; int ipio2[];
|
||||
*
|
||||
* __kernel_rem_pio2 return the last three digits of N with
|
||||
* y = x - N*pi/2
|
||||
* so that |y| < pi/2.
|
||||
*
|
||||
* The method is to compute the integer (mod 8) and fraction parts of
|
||||
* (2/pi)*x without doing the full multiplication. In general we
|
||||
* skip the part of the product that are known to be a huge integer (
|
||||
* more accurately, = 0 mod 8 ). Thus the number of operations are
|
||||
* independent of the exponent of the input.
|
||||
*
|
||||
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
||||
*
|
||||
* Input parameters:
|
||||
* x[] The input value (must be positive) is broken into nx
|
||||
* pieces of 24-bit integers in double precision format.
|
||||
* x[i] will be the i-th 24 bit of x. The scaled exponent
|
||||
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
||||
* match x's up to 24 bits.
|
||||
*
|
||||
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
||||
* e0 = ilogb(z)-23
|
||||
* z = scalbn(z,-e0)
|
||||
* for i = 0,1,2
|
||||
* x[i] = floor(z)
|
||||
* z = (z-x[i])*2**24
|
||||
*
|
||||
*
|
||||
* y[] output result in an array of double precision numbers.
|
||||
* The dimension of y[] is:
|
||||
* 24-bit precision 1
|
||||
* 53-bit precision 2
|
||||
* 64-bit precision 2
|
||||
* 113-bit precision 3
|
||||
* The actual value is the sum of them. Thus for 113-bit
|
||||
* precision, one may have to do something like:
|
||||
*
|
||||
* long double t,w,r_head, r_tail;
|
||||
* t = (long double)y[2] + (long double)y[1];
|
||||
* w = (long double)y[0];
|
||||
* r_head = t+w;
|
||||
* r_tail = w - (r_head - t);
|
||||
*
|
||||
* e0 The exponent of x[0]
|
||||
*
|
||||
* nx dimension of x[]
|
||||
*
|
||||
* prec an integer indicating the precision:
|
||||
* 0 24 bits (single)
|
||||
* 1 53 bits (double)
|
||||
* 2 64 bits (extended)
|
||||
* 3 113 bits (quad)
|
||||
*
|
||||
* ipio2[]
|
||||
* integer array, contains the (24*i)-th to (24*i+23)-th
|
||||
* bit of 2/pi after binary point. The corresponding
|
||||
* floating value is
|
||||
*
|
||||
* ipio2[i] * 2^(-24(i+1)).
|
||||
*
|
||||
* External function:
|
||||
* double scalbn(), floor();
|
||||
*
|
||||
*
|
||||
* Here is the description of some local variables:
|
||||
*
|
||||
* jk jk+1 is the initial number of terms of ipio2[] needed
|
||||
* in the computation. The recommended value is 2,3,4,
|
||||
* 6 for single, double, extended,and quad.
|
||||
*
|
||||
* jz local integer variable indicating the number of
|
||||
* terms of ipio2[] used.
|
||||
*
|
||||
* jx nx - 1
|
||||
*
|
||||
* jv index for pointing to the suitable ipio2[] for the
|
||||
* computation. In general, we want
|
||||
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
||||
* is an integer. Thus
|
||||
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
||||
* Hence jv = max(0,(e0-3)/24).
|
||||
*
|
||||
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
||||
*
|
||||
* q[] double array with integral value, representing the
|
||||
* 24-bits chunk of the product of x and 2/pi.
|
||||
*
|
||||
* q0 the corresponding exponent of q[0]. Note that the
|
||||
* exponent for q[i] would be q0-24*i.
|
||||
*
|
||||
* PIo2[] double precision array, obtained by cutting pi/2
|
||||
* into 24 bits chunks.
|
||||
*
|
||||
* f[] ipio2[] in floating point
|
||||
*
|
||||
* iq[] integer array by breaking up q[] in 24-bits chunk.
|
||||
*
|
||||
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
||||
*
|
||||
* ih integer. If >0 it indicates q[] is >= 0.5, hence
|
||||
* it also indicates the *sign* of the result.
|
||||
*
|
||||
*/
|
||||
static class KernelRemPio2 {
|
||||
/*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
private static final int init_jk[] = {2, 3, 4, 6}; // initial value for jk
|
||||
|
||||
private static final double PIo2[] = {
|
||||
0x1.921fb4p0, // 1.57079625129699707031e+00
|
||||
0x1.4442dp-24, // 7.54978941586159635335e-08
|
||||
0x1.846988p-48, // 5.39030252995776476554e-15
|
||||
0x1.8cc516p-72, // 3.28200341580791294123e-22
|
||||
0x1.01b838p-96, // 1.27065575308067607349e-29
|
||||
0x1.a25204p-120, // 1.22933308981111328932e-36
|
||||
0x1.382228p-145, // 2.73370053816464559624e-44
|
||||
0x1.9f31dp-169, // 2.16741683877804819444e-51
|
||||
};
|
||||
|
||||
static final double
|
||||
twon24 = 0x1.0p-24; // 5.96046447753906250000e-08
|
||||
|
||||
static int __kernel_rem_pio2(double[] x, double[] y, int e0, int nx, int prec, final int[] ipio2) {
|
||||
int jz, jx, jv, jp, jk, carry, n, i, j, k, m, q0, ih;
|
||||
int[] iq = new int[20];
|
||||
double z,fw;
|
||||
double [] f = new double[20];
|
||||
double [] fq= new double[20];
|
||||
double [] q = new double[20];
|
||||
|
||||
// initialize jk
|
||||
jk = init_jk[prec];
|
||||
jp = jk;
|
||||
|
||||
// determine jx, jv, q0, note that 3 > q0
|
||||
jx = nx - 1;
|
||||
jv = (e0 - 3)/24;
|
||||
if (jv < 0) {
|
||||
jv = 0;
|
||||
}
|
||||
q0 = e0 - 24*(jv + 1);
|
||||
|
||||
// set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk]
|
||||
j = jv - jx;
|
||||
m = jx + jk;
|
||||
for (i = 0; i <= m; i++, j++) {
|
||||
f[i] = (j < 0) ? 0.0 : (double) ipio2[j];
|
||||
}
|
||||
|
||||
// compute q[0],q[1],...q[jk]
|
||||
for (i=0; i <= jk; i++) {
|
||||
for(j = 0, fw = 0.0; j <= jx; j++) {
|
||||
fw += x[j]*f[jx + i - j];
|
||||
}
|
||||
q[i] = fw;
|
||||
}
|
||||
|
||||
jz = jk;
|
||||
while(true) {
|
||||
// distill q[] into iq[] reversingly
|
||||
for(i=0, j=jz, z=q[jz]; j > 0; i++, j--) {
|
||||
fw = (double)((int)(twon24* z));
|
||||
iq[i] = (int)(z - TWO24*fw);
|
||||
z = q[j - 1] + fw;
|
||||
}
|
||||
|
||||
// compute n
|
||||
z = Math.scalb(z, q0); // actual value of z
|
||||
z -= 8.0*Math.floor(z*0.125); // trim off integer >= 8
|
||||
n = (int) z;
|
||||
z -= (double)n;
|
||||
ih = 0;
|
||||
if (q0 > 0) { // need iq[jz - 1] to determine n
|
||||
i = (iq[jz - 1] >> (24 - q0));
|
||||
n += i;
|
||||
iq[jz - 1] -= i << (24 - q0);
|
||||
ih = iq[jz - 1] >> (23 - q0);
|
||||
} else if (q0 == 0) {
|
||||
ih = iq[jz-1]>>23;
|
||||
} else if (z >= 0.5) {
|
||||
ih=2;
|
||||
}
|
||||
|
||||
if (ih > 0) { // q > 0.5
|
||||
n += 1;
|
||||
carry = 0;
|
||||
for (i=0; i < jz; i++) { // compute 1-q
|
||||
j = iq[i];
|
||||
if (carry == 0) {
|
||||
if (j != 0) {
|
||||
carry = 1;
|
||||
iq[i] = 0x100_0000 - j;
|
||||
}
|
||||
} else {
|
||||
iq[i] = 0xff_ffff - j;
|
||||
}
|
||||
}
|
||||
if (q0 > 0) { // rare case: chance is 1 in 12
|
||||
switch(q0) {
|
||||
case 1:
|
||||
iq[jz-1] &= 0x7f_ffff;
|
||||
break;
|
||||
case 2:
|
||||
iq[jz-1] &= 0x3f_ffff;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (ih == 2) {
|
||||
z = 1.0 - z;
|
||||
if (carry != 0) {
|
||||
z -= Math.scalb(1.0, q0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// check if recomputation is needed
|
||||
if (z == 0.0) {
|
||||
j = 0;
|
||||
for (i = jz - 1; i >= jk; i--) {
|
||||
j |= iq[i];
|
||||
}
|
||||
if (j == 0) { // need recomputation
|
||||
for(k=1; iq[jk - k] == 0; k++); // k = no. of terms needed
|
||||
|
||||
for(i = jz + 1; i <= jz + k; i++) { // add q[jz+1] to q[jz+k]
|
||||
f[jx + i] = (double) ipio2[jv + i];
|
||||
for (j=0, fw = 0.0; j <= jx; j++) {
|
||||
fw += x[j]*f[jx + i - j];
|
||||
}
|
||||
q[i] = fw;
|
||||
}
|
||||
jz += k;
|
||||
continue;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// chop off zero terms
|
||||
if (z == 0.0) {
|
||||
jz -= 1;
|
||||
q0 -= 24;
|
||||
while (iq[jz] == 0) {
|
||||
jz--;
|
||||
q0-=24;
|
||||
}
|
||||
} else { // break z into 24-bit if necessary
|
||||
z = Math.scalb(z, -q0);
|
||||
if (z >= TWO24) {
|
||||
fw = (double)((int)(twon24*z));
|
||||
iq[jz] = (int)(z - TWO24*fw);
|
||||
jz += 1;
|
||||
q0 += 24;
|
||||
iq[jz] = (int) fw;
|
||||
} else {
|
||||
iq[jz] = (int) z;
|
||||
}
|
||||
}
|
||||
|
||||
// convert integer "bit" chunk to floating-point value
|
||||
fw = Math.scalb(1.0, q0);
|
||||
for(i = jz; i>=0; i--) {
|
||||
q[i] = fw*(double)iq[i];
|
||||
fw *= twon24;
|
||||
}
|
||||
|
||||
// compute PIo2[0,...,jp]*q[jz,...,0]
|
||||
for(i = jz; i>=0; i--) {
|
||||
for (fw = 0.0, k = 0; k <= jp && k <= jz-i; k++) {
|
||||
fw += PIo2[k]*q[i + k];
|
||||
}
|
||||
fq[jz - i] = fw;
|
||||
}
|
||||
|
||||
// compress fq[] into y[]
|
||||
switch(prec) {
|
||||
case 0:
|
||||
fw = 0.0;
|
||||
for (i = jz; i >=0; i--) {
|
||||
fw += fq[i];
|
||||
}
|
||||
y[0] = (ih == 0)? fw: -fw;
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
fw = 0.0;
|
||||
for (i = jz; i>=0; i--) {
|
||||
fw += fq[i];
|
||||
}
|
||||
y[0] = (ih == 0) ? fw: -fw;
|
||||
fw = fq[0] - fw;
|
||||
for (i = 1; i <= jz; i++) {
|
||||
fw += fq[i];
|
||||
}
|
||||
y[1] = (ih == 0)? fw: -fw;
|
||||
break;
|
||||
case 3: // painful
|
||||
for (i = jz; i > 0; i--) {
|
||||
fw = fq[i - 1] + fq[i];
|
||||
fq[i] += fq[i - 1] - fw;
|
||||
fq[i - 1] = fw;
|
||||
}
|
||||
for (i = jz; i>1; i--) {
|
||||
fw = fq[i - 1] + fq[i];
|
||||
fq[i] += fq[i - 1] - fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (fw = 0.0, i = jz; i >= 2; i--) {
|
||||
fw += fq[i];
|
||||
}
|
||||
if (ih == 0) {
|
||||
y[0] = fq[0];
|
||||
y[1] = fq[1];
|
||||
y[2] = fw;
|
||||
} else {
|
||||
y[0] = -fq[0];
|
||||
y[1] = -fq[1];
|
||||
y[2] = -fw;
|
||||
}
|
||||
}
|
||||
return n & 7;
|
||||
}
|
||||
}
|
||||
|
||||
/** Returns the arcsine of x.
|
||||
*
|
||||
* Method :
|
||||
|
|
|
@ -127,7 +127,9 @@ public final class StrictMath {
|
|||
* @param a an angle, in radians.
|
||||
* @return the sine of the argument.
|
||||
*/
|
||||
public static native double sin(double a);
|
||||
public static double sin(double a) {
|
||||
return FdLibm.Sin.compute(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the trigonometric cosine of an angle. Special cases:
|
||||
|
@ -139,7 +141,9 @@ public final class StrictMath {
|
|||
* @param a an angle, in radians.
|
||||
* @return the cosine of the argument.
|
||||
*/
|
||||
public static native double cos(double a);
|
||||
public static double cos(double a) {
|
||||
return FdLibm.Cos.compute(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the trigonometric tangent of an angle. Special cases:
|
||||
|
@ -151,7 +155,9 @@ public final class StrictMath {
|
|||
* @param a an angle, in radians.
|
||||
* @return the tangent of the argument.
|
||||
*/
|
||||
public static native double tan(double a);
|
||||
public static double tan(double a) {
|
||||
return FdLibm.Tan.compute(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the arc sine of a value; the returned angle is in the
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue