8202776: Modularize GC allocations in runtime

Reviewed-by: eosterlund, shade
This commit is contained in:
Roman Kennke 2018-06-05 19:13:53 +02:00
parent fcfd1c85dd
commit 26b8ea76f5
3 changed files with 43 additions and 30 deletions

View file

@ -365,20 +365,32 @@ void CollectedHeap::check_for_valid_allocation_state() {
} }
#endif #endif
HeapWord* CollectedHeap::allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size) { HeapWord* CollectedHeap::obj_allocate_raw(Klass* klass, size_t size,
bool* gc_overhead_limit_was_exceeded, TRAPS) {
if (UseTLAB) {
HeapWord* result = allocate_from_tlab(klass, size, THREAD);
if (result != NULL) {
return result;
}
}
return Universe::heap()->mem_allocate(size, gc_overhead_limit_was_exceeded);
}
HeapWord* CollectedHeap::allocate_from_tlab_slow(Klass* klass, size_t size, TRAPS) {
ThreadLocalAllocBuffer& tlab = THREAD->tlab();
// Retain tlab and allocate object in shared space if // Retain tlab and allocate object in shared space if
// the amount free in the tlab is too large to discard. // the amount free in the tlab is too large to discard.
if (thread->tlab().free() > thread->tlab().refill_waste_limit()) { if (tlab.free() > tlab.refill_waste_limit()) {
thread->tlab().record_slow_allocation(size); tlab.record_slow_allocation(size);
return NULL; return NULL;
} }
// Discard tlab and allocate a new one. // Discard tlab and allocate a new one.
// To minimize fragmentation, the last TLAB may be smaller than the rest. // To minimize fragmentation, the last TLAB may be smaller than the rest.
size_t new_tlab_size = thread->tlab().compute_size(size); size_t new_tlab_size = tlab.compute_size(size);
thread->tlab().clear_before_allocation(); tlab.clear_before_allocation();
if (new_tlab_size == 0) { if (new_tlab_size == 0) {
return NULL; return NULL;
@ -397,7 +409,7 @@ HeapWord* CollectedHeap::allocate_from_tlab_slow(Klass* klass, Thread* thread, s
assert(actual_tlab_size != 0, "Allocation succeeded but actual size not updated. obj at: " PTR_FORMAT " min: " SIZE_FORMAT ", desired: " SIZE_FORMAT, assert(actual_tlab_size != 0, "Allocation succeeded but actual size not updated. obj at: " PTR_FORMAT " min: " SIZE_FORMAT ", desired: " SIZE_FORMAT,
p2i(obj), min_tlab_size, new_tlab_size); p2i(obj), min_tlab_size, new_tlab_size);
AllocTracer::send_allocation_in_new_tlab(klass, obj, actual_tlab_size * HeapWordSize, size * HeapWordSize, thread); AllocTracer::send_allocation_in_new_tlab(klass, obj, actual_tlab_size * HeapWordSize, size * HeapWordSize, THREAD);
if (ZeroTLAB) { if (ZeroTLAB) {
// ..and clear it. // ..and clear it.
@ -412,7 +424,7 @@ HeapWord* CollectedHeap::allocate_from_tlab_slow(Klass* klass, Thread* thread, s
Copy::fill_to_words(obj + hdr_size, actual_tlab_size - hdr_size, badHeapWordVal); Copy::fill_to_words(obj + hdr_size, actual_tlab_size - hdr_size, badHeapWordVal);
#endif // ASSERT #endif // ASSERT
} }
thread->tlab().fill(obj, obj + size, actual_tlab_size); tlab.fill(obj, obj + size, actual_tlab_size);
return obj; return obj;
} }

View file

@ -141,8 +141,15 @@ class CollectedHeap : public CHeapObj<mtInternal> {
virtual void resize_all_tlabs(); virtual void resize_all_tlabs();
// Allocate from the current thread's TLAB, with broken-out slow path. // Allocate from the current thread's TLAB, with broken-out slow path.
inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size); inline static HeapWord* allocate_from_tlab(Klass* klass, size_t size, TRAPS);
static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size); static HeapWord* allocate_from_tlab_slow(Klass* klass, size_t size, TRAPS);
// Raw memory allocation facilities
// The obj and array allocate methods are covers for these methods.
// mem_allocate() should never be
// called to allocate TLABs, only individual objects.
virtual HeapWord* mem_allocate(size_t size,
bool* gc_overhead_limit_was_exceeded) = 0;
// Allocate an uninitialized block of the given size, or returns NULL if // Allocate an uninitialized block of the given size, or returns NULL if
// this is impossible. // this is impossible.
@ -309,12 +316,12 @@ class CollectedHeap : public CHeapObj<mtInternal> {
inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS); inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
inline static oop class_allocate(Klass* klass, int size, TRAPS); inline static oop class_allocate(Klass* klass, int size, TRAPS);
// Raw memory allocation facilities // Raw memory allocation. This may or may not use TLAB allocations to satisfy the
// The obj and array allocate methods are covers for these methods. // allocation. A GC implementation may override this function to satisfy the allocation
// mem_allocate() should never be // in any way. But the default is to try a TLAB allocation, and otherwise perform
// called to allocate TLABs, only individual objects. // mem_allocate.
virtual HeapWord* mem_allocate(size_t size, virtual HeapWord* obj_allocate_raw(Klass* klass, size_t size,
bool* gc_overhead_limit_was_exceeded) = 0; bool* gc_overhead_limit_was_exceeded, TRAPS);
// Utilities for turning raw memory into filler objects. // Utilities for turning raw memory into filler objects.
// //

View file

@ -137,18 +137,10 @@ HeapWord* CollectedHeap::common_mem_allocate_noinit(Klass* klass, size_t size, T
return NULL; // caller does a CHECK_0 too return NULL; // caller does a CHECK_0 too
} }
HeapWord* result = NULL;
if (UseTLAB) {
result = allocate_from_tlab(klass, THREAD, size);
if (result != NULL) {
assert(!HAS_PENDING_EXCEPTION,
"Unexpected exception, will result in uninitialized storage");
return result;
}
}
bool gc_overhead_limit_was_exceeded = false; bool gc_overhead_limit_was_exceeded = false;
result = Universe::heap()->mem_allocate(size, CollectedHeap* heap = Universe::heap();
&gc_overhead_limit_was_exceeded); HeapWord* result = heap->obj_allocate_raw(klass, size, &gc_overhead_limit_was_exceeded, THREAD);
if (result != NULL) { if (result != NULL) {
NOT_PRODUCT(Universe::heap()-> NOT_PRODUCT(Universe::heap()->
check_for_non_bad_heap_word_value(result, size)); check_for_non_bad_heap_word_value(result, size));
@ -161,7 +153,6 @@ HeapWord* CollectedHeap::common_mem_allocate_noinit(Klass* klass, size_t size, T
return result; return result;
} }
if (!gc_overhead_limit_was_exceeded) { if (!gc_overhead_limit_was_exceeded) {
// -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
report_java_out_of_memory("Java heap space"); report_java_out_of_memory("Java heap space");
@ -193,15 +184,18 @@ HeapWord* CollectedHeap::common_mem_allocate_init(Klass* klass, size_t size, TRA
return obj; return obj;
} }
HeapWord* CollectedHeap::allocate_from_tlab(Klass* klass, Thread* thread, size_t size) { HeapWord* CollectedHeap::allocate_from_tlab(Klass* klass, size_t size, TRAPS) {
assert(UseTLAB, "should use UseTLAB"); assert(UseTLAB, "should use UseTLAB");
HeapWord* obj = thread->tlab().allocate(size); HeapWord* obj = THREAD->tlab().allocate(size);
if (obj != NULL) { if (obj != NULL) {
return obj; return obj;
} }
// Otherwise... // Otherwise...
return allocate_from_tlab_slow(klass, thread, size); obj = allocate_from_tlab_slow(klass, size, THREAD);
assert(obj == NULL || !HAS_PENDING_EXCEPTION,
"Unexpected exception, will result in uninitialized storage");
return obj;
} }
void CollectedHeap::init_obj(HeapWord* obj, size_t size) { void CollectedHeap::init_obj(HeapWord* obj, size_t size) {