6953144: Tiered compilation

Infrastructure for tiered compilation support (interpreter + c1 + c2) for 32 and 64 bit. Simple tiered policy implementation.

Reviewed-by: kvn, never, phh, twisti
This commit is contained in:
Igor Veresov 2010-09-03 17:51:07 -07:00
parent 6e78f6cb4b
commit 2c66a6c3fd
104 changed files with 7720 additions and 1701 deletions

View file

@ -45,10 +45,17 @@ void compilationPolicy_init() {
Unimplemented();
#endif
break;
case 2:
#ifdef TIERED
CompilationPolicy::set_policy(new SimpleThresholdPolicy());
#else
Unimplemented();
#endif
break;
default:
fatal("CompilationPolicyChoice must be in the range: [0-1]");
fatal("CompilationPolicyChoice must be in the range: [0-2]");
}
CompilationPolicy::policy()->initialize();
}
void CompilationPolicy::completed_vm_startup() {
@ -61,16 +68,16 @@ void CompilationPolicy::completed_vm_startup() {
// Returns true if m must be compiled before executing it
// This is intended to force compiles for methods (usually for
// debugging) that would otherwise be interpreted for some reason.
bool CompilationPolicy::mustBeCompiled(methodHandle m) {
bool CompilationPolicy::must_be_compiled(methodHandle m, int comp_level) {
if (m->has_compiled_code()) return false; // already compiled
if (!canBeCompiled(m)) return false;
if (!can_be_compiled(m, comp_level)) return false;
return !UseInterpreter || // must compile all methods
(UseCompiler && AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
}
// Returns true if m is allowed to be compiled
bool CompilationPolicy::canBeCompiled(methodHandle m) {
bool CompilationPolicy::can_be_compiled(methodHandle m, int comp_level) {
if (m->is_abstract()) return false;
if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
@ -83,8 +90,16 @@ bool CompilationPolicy::canBeCompiled(methodHandle m) {
if (!AbstractInterpreter::can_be_compiled(m)) {
return false;
}
if (comp_level == CompLevel_all) {
return !m->is_not_compilable(CompLevel_simple) && !m->is_not_compilable(CompLevel_full_optimization);
} else {
return !m->is_not_compilable(comp_level);
}
}
return !m->is_not_compilable();
bool CompilationPolicy::is_compilation_enabled() {
// NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
return !delay_compilation_during_startup() && CompileBroker::should_compile_new_jobs();
}
#ifndef PRODUCT
@ -94,7 +109,7 @@ void CompilationPolicy::print_time() {
tty->print_cr (" Total: %3.3f sec.", _accumulated_time.seconds());
}
static void trace_osr_completion(nmethod* osr_nm) {
void NonTieredCompPolicy::trace_osr_completion(nmethod* osr_nm) {
if (TraceOnStackReplacement) {
if (osr_nm == NULL) tty->print_cr("compilation failed");
else tty->print_cr("nmethod " INTPTR_FORMAT, osr_nm);
@ -102,7 +117,35 @@ static void trace_osr_completion(nmethod* osr_nm) {
}
#endif // !PRODUCT
void CompilationPolicy::reset_counter_for_invocation_event(methodHandle m) {
void NonTieredCompPolicy::initialize() {
// Setup the compiler thread numbers
if (CICompilerCountPerCPU) {
// Example: if CICompilerCountPerCPU is true, then we get
// max(log2(8)-1,1) = 2 compiler threads on an 8-way machine.
// May help big-app startup time.
_compiler_count = MAX2(log2_intptr(os::active_processor_count())-1,1);
} else {
_compiler_count = CICompilerCount;
}
}
int NonTieredCompPolicy::compiler_count(CompLevel comp_level) {
#ifdef COMPILER1
if (is_c1_compile(comp_level)) {
return _compiler_count;
}
#endif
#ifdef COMPILER2
if (is_c2_compile(comp_level)) {
return _compiler_count;
}
#endif
return 0;
}
void NonTieredCompPolicy::reset_counter_for_invocation_event(methodHandle m) {
// Make sure invocation and backedge counter doesn't overflow again right away
// as would be the case for native methods.
@ -114,7 +157,7 @@ void CompilationPolicy::reset_counter_for_invocation_event(methodHandle m) {
assert(!m->was_never_executed(), "don't reset to 0 -- could be mistaken for never-executed");
}
void CompilationPolicy::reset_counter_for_back_branch_event(methodHandle m) {
void NonTieredCompPolicy::reset_counter_for_back_branch_event(methodHandle m) {
// Delay next back-branch event but pump up invocation counter to triger
// whole method compilation.
InvocationCounter* i = m->invocation_counter();
@ -128,6 +171,185 @@ void CompilationPolicy::reset_counter_for_back_branch_event(methodHandle m) {
b->set(b->state(), CompileThreshold / 2);
}
//
// CounterDecay
//
// Interates through invocation counters and decrements them. This
// is done at each safepoint.
//
class CounterDecay : public AllStatic {
static jlong _last_timestamp;
static void do_method(methodOop m) {
m->invocation_counter()->decay();
}
public:
static void decay();
static bool is_decay_needed() {
return (os::javaTimeMillis() - _last_timestamp) > CounterDecayMinIntervalLength;
}
};
jlong CounterDecay::_last_timestamp = 0;
void CounterDecay::decay() {
_last_timestamp = os::javaTimeMillis();
// This operation is going to be performed only at the end of a safepoint
// and hence GC's will not be going on, all Java mutators are suspended
// at this point and hence SystemDictionary_lock is also not needed.
assert(SafepointSynchronize::is_at_safepoint(), "can only be executed at a safepoint");
int nclasses = SystemDictionary::number_of_classes();
double classes_per_tick = nclasses * (CounterDecayMinIntervalLength * 1e-3 /
CounterHalfLifeTime);
for (int i = 0; i < classes_per_tick; i++) {
klassOop k = SystemDictionary::try_get_next_class();
if (k != NULL && k->klass_part()->oop_is_instance()) {
instanceKlass::cast(k)->methods_do(do_method);
}
}
}
// Called at the end of the safepoint
void NonTieredCompPolicy::do_safepoint_work() {
if(UseCounterDecay && CounterDecay::is_decay_needed()) {
CounterDecay::decay();
}
}
void NonTieredCompPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
ScopeDesc* sd = trap_scope;
for (; !sd->is_top(); sd = sd->sender()) {
// Reset ICs of inlined methods, since they can trigger compilations also.
sd->method()->invocation_counter()->reset();
}
InvocationCounter* c = sd->method()->invocation_counter();
if (is_osr) {
// It was an OSR method, so bump the count higher.
c->set(c->state(), CompileThreshold);
} else {
c->reset();
}
sd->method()->backedge_counter()->reset();
}
// This method can be called by any component of the runtime to notify the policy
// that it's recommended to delay the complation of this method.
void NonTieredCompPolicy::delay_compilation(methodOop method) {
method->invocation_counter()->decay();
method->backedge_counter()->decay();
}
void NonTieredCompPolicy::disable_compilation(methodOop method) {
method->invocation_counter()->set_state(InvocationCounter::wait_for_nothing);
method->backedge_counter()->set_state(InvocationCounter::wait_for_nothing);
}
CompileTask* NonTieredCompPolicy::select_task(CompileQueue* compile_queue) {
return compile_queue->first();
}
bool NonTieredCompPolicy::is_mature(methodOop method) {
methodDataOop mdo = method->method_data();
assert(mdo != NULL, "Should be");
uint current = mdo->mileage_of(method);
uint initial = mdo->creation_mileage();
if (current < initial)
return true; // some sort of overflow
uint target;
if (ProfileMaturityPercentage <= 0)
target = (uint) -ProfileMaturityPercentage; // absolute value
else
target = (uint)( (ProfileMaturityPercentage * CompileThreshold) / 100 );
return (current >= initial + target);
}
nmethod* NonTieredCompPolicy::event(methodHandle method, methodHandle inlinee, int branch_bci, int bci, CompLevel comp_level, TRAPS) {
assert(comp_level == CompLevel_none, "This should be only called from the interpreter");
NOT_PRODUCT(trace_frequency_counter_overflow(method, branch_bci, bci));
if (JvmtiExport::can_post_interpreter_events()) {
assert(THREAD->is_Java_thread(), "Wrong type of thread");
if (((JavaThread*)THREAD)->is_interp_only_mode()) {
// If certain JVMTI events (e.g. frame pop event) are requested then the
// thread is forced to remain in interpreted code. This is
// implemented partly by a check in the run_compiled_code
// section of the interpreter whether we should skip running
// compiled code, and partly by skipping OSR compiles for
// interpreted-only threads.
if (bci != InvocationEntryBci) {
reset_counter_for_back_branch_event(method);
return NULL;
}
}
}
if (bci == InvocationEntryBci) {
// when code cache is full, compilation gets switched off, UseCompiler
// is set to false
if (!method->has_compiled_code() && UseCompiler) {
method_invocation_event(method, CHECK_NULL);
} else {
// Force counter overflow on method entry, even if no compilation
// happened. (The method_invocation_event call does this also.)
reset_counter_for_invocation_event(method);
}
// compilation at an invocation overflow no longer goes and retries test for
// compiled method. We always run the loser of the race as interpreted.
// so return NULL
return NULL;
} else {
// counter overflow in a loop => try to do on-stack-replacement
nmethod* osr_nm = method->lookup_osr_nmethod_for(bci, CompLevel_highest_tier, true);
NOT_PRODUCT(trace_osr_request(method, osr_nm, bci));
// when code cache is full, we should not compile any more...
if (osr_nm == NULL && UseCompiler) {
method_back_branch_event(method, bci, CHECK_NULL);
osr_nm = method->lookup_osr_nmethod_for(bci, CompLevel_highest_tier, true);
}
if (osr_nm == NULL) {
reset_counter_for_back_branch_event(method);
return NULL;
}
return osr_nm;
}
return NULL;
}
#ifndef PRODUCT
void NonTieredCompPolicy::trace_frequency_counter_overflow(methodHandle m, int branch_bci, int bci) {
if (TraceInvocationCounterOverflow) {
InvocationCounter* ic = m->invocation_counter();
InvocationCounter* bc = m->backedge_counter();
ResourceMark rm;
const char* msg =
bci == InvocationEntryBci
? "comp-policy cntr ovfl @ %d in entry of "
: "comp-policy cntr ovfl @ %d in loop of ";
tty->print(msg, bci);
m->print_value();
tty->cr();
ic->print();
bc->print();
if (ProfileInterpreter) {
if (bci != InvocationEntryBci) {
methodDataOop mdo = m->method_data();
if (mdo != NULL) {
int count = mdo->bci_to_data(branch_bci)->as_JumpData()->taken();
tty->print_cr("back branch count = %d", count);
}
}
}
}
}
void NonTieredCompPolicy::trace_osr_request(methodHandle method, nmethod* osr, int bci) {
if (TraceOnStackReplacement) {
ResourceMark rm;
tty->print(osr != NULL ? "Reused OSR entry for " : "Requesting OSR entry for ");
method->print_short_name(tty);
tty->print_cr(" at bci %d", bci);
}
}
#endif // !PRODUCT
// SimpleCompPolicy - compile current method
void SimpleCompPolicy::method_invocation_event( methodHandle m, TRAPS) {
@ -137,59 +359,28 @@ void SimpleCompPolicy::method_invocation_event( methodHandle m, TRAPS) {
reset_counter_for_invocation_event(m);
const char* comment = "count";
if (!delayCompilationDuringStartup() && canBeCompiled(m) && UseCompiler && CompileBroker::should_compile_new_jobs()) {
if (is_compilation_enabled() && can_be_compiled(m)) {
nmethod* nm = m->code();
if (nm == NULL ) {
const char* comment = "count";
CompileBroker::compile_method(m, InvocationEntryBci,
CompileBroker::compile_method(m, InvocationEntryBci, CompLevel_highest_tier,
m, hot_count, comment, CHECK);
} else {
#ifdef TIERED
if (nm->is_compiled_by_c1()) {
const char* comment = "tier1 overflow";
CompileBroker::compile_method(m, InvocationEntryBci,
m, hot_count, comment, CHECK);
}
#endif // TIERED
}
}
}
void SimpleCompPolicy::method_back_branch_event(methodHandle m, int branch_bci, int loop_top_bci, TRAPS) {
void SimpleCompPolicy::method_back_branch_event(methodHandle m, int bci, TRAPS) {
assert(UseCompiler || CompileTheWorld, "UseCompiler should be set by now.");
int hot_count = m->backedge_count();
const char* comment = "backedge_count";
if (!m->is_not_osr_compilable() && !delayCompilationDuringStartup() && canBeCompiled(m) && CompileBroker::should_compile_new_jobs()) {
CompileBroker::compile_method(m, loop_top_bci, m, hot_count, comment, CHECK);
NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(loop_top_bci));)
if (is_compilation_enabled() && !m->is_not_osr_compilable() && can_be_compiled(m)) {
CompileBroker::compile_method(m, bci, CompLevel_highest_tier,
m, hot_count, comment, CHECK);
NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(bci, CompLevel_highest_tier, true));)
}
}
int SimpleCompPolicy::compilation_level(methodHandle m, int branch_bci)
{
#ifdef TIERED
if (!TieredCompilation) {
return CompLevel_highest_tier;
}
if (/* m()->tier1_compile_done() && */
// QQQ HACK FIX ME set tier1_compile_done!!
!m()->is_native()) {
// Grab the nmethod so it doesn't go away while it's being queried
nmethod* code = m()->code();
if (code != NULL && code->is_compiled_by_c1()) {
return CompLevel_highest_tier;
}
}
return CompLevel_fast_compile;
#else
return CompLevel_highest_tier;
#endif // TIERED
}
// StackWalkCompPolicy - walk up stack to find a suitable method to compile
#ifdef COMPILER2
@ -204,7 +395,7 @@ void StackWalkCompPolicy::method_invocation_event(methodHandle m, TRAPS) {
reset_counter_for_invocation_event(m);
const char* comment = "count";
if (m->code() == NULL && !delayCompilationDuringStartup() && canBeCompiled(m) && UseCompiler && CompileBroker::should_compile_new_jobs()) {
if (is_compilation_enabled() && m->code() == NULL && can_be_compiled(m)) {
ResourceMark rm(THREAD);
JavaThread *thread = (JavaThread*)THREAD;
frame fr = thread->last_frame();
@ -224,10 +415,6 @@ void StackWalkCompPolicy::method_invocation_event(methodHandle m, TRAPS) {
if (first->top_method()->code() != NULL) {
// called obsolete method/nmethod -- no need to recompile
if (TraceCompilationPolicy) tty->print_cr(" --> " INTPTR_FORMAT, first->top_method()->code());
} else if (compilation_level(m, InvocationEntryBci) == CompLevel_fast_compile) {
// Tier1 compilation policy avaoids stack walking.
CompileBroker::compile_method(m, InvocationEntryBci,
m, hot_count, comment, CHECK);
} else {
if (TimeCompilationPolicy) accumulated_time()->start();
GrowableArray<RFrame*>* stack = new GrowableArray<RFrame*>(50);
@ -236,53 +423,25 @@ void StackWalkCompPolicy::method_invocation_event(methodHandle m, TRAPS) {
if (TimeCompilationPolicy) accumulated_time()->stop();
assert(top != NULL, "findTopInlinableFrame returned null");
if (TraceCompilationPolicy) top->print();
CompileBroker::compile_method(top->top_method(), InvocationEntryBci,
CompileBroker::compile_method(top->top_method(), InvocationEntryBci, CompLevel_highest_tier,
m, hot_count, comment, CHECK);
}
}
}
void StackWalkCompPolicy::method_back_branch_event(methodHandle m, int branch_bci, int loop_top_bci, TRAPS) {
void StackWalkCompPolicy::method_back_branch_event(methodHandle m, int bci, TRAPS) {
assert(UseCompiler || CompileTheWorld, "UseCompiler should be set by now.");
int hot_count = m->backedge_count();
const char* comment = "backedge_count";
if (!m->is_not_osr_compilable() && !delayCompilationDuringStartup() && canBeCompiled(m) && CompileBroker::should_compile_new_jobs()) {
CompileBroker::compile_method(m, loop_top_bci, m, hot_count, comment, CHECK);
if (is_compilation_enabled() && !m->is_not_osr_compilable() && can_be_compiled(m)) {
CompileBroker::compile_method(m, bci, CompLevel_highest_tier, m, hot_count, comment, CHECK);
NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(loop_top_bci));)
NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(bci, CompLevel_highest_tier, true));)
}
}
int StackWalkCompPolicy::compilation_level(methodHandle m, int osr_bci)
{
int comp_level = CompLevel_full_optimization;
if (TieredCompilation && osr_bci == InvocationEntryBci) {
if (CompileTheWorld) {
// Under CTW, the first compile is tier1, the second tier2
if (m->highest_tier_compile() == CompLevel_none) {
comp_level = CompLevel_fast_compile;
}
} else if (!m->has_osr_nmethod()) {
// Before tier1 is done, use invocation_count + backedge_count to
// compare against the threshold. After that, the counters may/will
// be reset, so rely on the straight interpreter_invocation_count.
if (m->highest_tier_compile() == CompLevel_initial_compile) {
if (m->interpreter_invocation_count() < Tier2CompileThreshold) {
comp_level = CompLevel_fast_compile;
}
} else if (m->invocation_count() + m->backedge_count() <
Tier2CompileThreshold) {
comp_level = CompLevel_fast_compile;
}
}
}
return comp_level;
}
RFrame* StackWalkCompPolicy::findTopInlinableFrame(GrowableArray<RFrame*>* stack) {
// go up the stack until finding a frame that (probably) won't be inlined
// into its caller
@ -372,7 +531,7 @@ RFrame* StackWalkCompPolicy::findTopInlinableFrame(GrowableArray<RFrame*>* stack
// If the caller method is too big or something then we do not want to
// compile it just to inline a method
if (!canBeCompiled(next_m)) {
if (!can_be_compiled(next_m)) {
msg = "caller cannot be compiled";
break;
}