This commit is contained in:
Christian Thalinger 2013-05-13 12:43:10 -07:00
commit 2c7c39072c
91 changed files with 6039 additions and 7644 deletions

View file

@ -151,32 +151,43 @@ else
$(MAKE_ARGS) BUILD_FLAVOR=product docs $(MAKE_ARGS) BUILD_FLAVOR=product docs
endif endif
# Output directories
C1_DIR =$(OUTPUTDIR)/$(VM_PLATFORM)_compiler1
C2_DIR =$(OUTPUTDIR)/$(VM_PLATFORM)_compiler2
MINIMAL1_DIR=$(OUTPUTDIR)/$(VM_PLATFORM)_minimal1
ZERO_DIR =$(OUTPUTDIR)/$(VM_PLATFORM)_zero
SHARK_DIR =$(OUTPUTDIR)/$(VM_PLATFORM)_shark
# Build variation of hotspot # Build variation of hotspot
$(C1_VM_TARGETS): $(C1_VM_TARGETS):
$(CD) $(GAMMADIR)/make; \ $(CD) $(GAMMADIR)/make; \
$(MAKE) BUILD_FLAVOR=$(@:%1=%) VM_TARGET=$@ generic_build1 $(ALT_OUT) $(MAKE) BUILD_DIR=$(C1_DIR) BUILD_FLAVOR=$(@:%1=%) VM_TARGET=$@ generic_build1 $(ALT_OUT)
$(C2_VM_TARGETS): $(C2_VM_TARGETS):
$(CD) $(GAMMADIR)/make; \ $(CD) $(GAMMADIR)/make; \
$(MAKE) BUILD_FLAVOR=$@ VM_TARGET=$@ generic_build2 $(ALT_OUT) $(MAKE) BUILD_DIR=$(C2_DIR) BUILD_FLAVOR=$@ VM_TARGET=$@ generic_build2 $(ALT_OUT)
$(ZERO_VM_TARGETS): $(ZERO_VM_TARGETS):
$(CD) $(GAMMADIR)/make; \ $(CD) $(GAMMADIR)/make; \
$(MAKE) BUILD_FLAVOR=$(@:%zero=%) VM_TARGET=$@ \ $(MAKE) BUILD_DIR=$(ZERO_DIR) BUILD_FLAVOR=$(@:%zero=%) VM_TARGET=$@ generic_buildzero $(ALT_OUT)
generic_buildzero $(ALT_OUT)
$(SHARK_VM_TARGETS): $(SHARK_VM_TARGETS):
$(CD) $(GAMMADIR)/make; \ $(CD) $(GAMMADIR)/make; \
$(MAKE) BUILD_FLAVOR=$(@:%shark=%) VM_TARGET=$@ \ $(MAKE) BUILD_DIR=$(SHARK_DIR) BUILD_FLAVOR=$(@:%shark=%) VM_TARGET=$@ generic_buildshark $(ALT_OUT)
generic_buildshark $(ALT_OUT)
$(MINIMAL1_VM_TARGETS): $(MINIMAL1_VM_TARGETS):
$(CD) $(GAMMADIR)/make; \ $(CD) $(GAMMADIR)/make; \
$(MAKE) BUILD_FLAVOR=$(@:%minimal1=%) VM_TARGET=$@ \ $(MAKE) BUILD_DIR=$(MINIMAL1_DIR) BUILD_FLAVOR=$(@:%minimal1=%) VM_TARGET=$@ generic_buildminimal1 $(ALT_OUT)
generic_buildminimal1 $(ALT_OUT)
# Install hotspot script in build directory
HOTSPOT_SCRIPT=$(BUILD_DIR)/$(BUILD_FLAVOR)/hotspot
$(HOTSPOT_SCRIPT): $(GAMMADIR)/make/hotspot.script
$(QUIETLY) $(MKDIR) -p $(BUILD_DIR)/$(BUILD_FLAVOR)
$(QUIETLY) cat $< | sed -e 's|@@LIBARCH@@|$(LIBARCH)|g' | sed -e 's|@@JDK_IMPORT_PATH@@|$(JDK_IMPORT_PATH)|g' > $@
$(QUIETLY) chmod +x $@
# Build compiler1 (client) rule, different for platforms # Build compiler1 (client) rule, different for platforms
generic_build1: generic_build1: $(HOTSPOT_SCRIPT)
$(MKDIR) -p $(OUTPUTDIR) $(MKDIR) -p $(OUTPUTDIR)
ifeq ($(OSNAME),windows) ifeq ($(OSNAME),windows)
ifeq ($(ARCH_DATA_MODEL), 32) ifeq ($(ARCH_DATA_MODEL), 32)
@ -201,7 +212,7 @@ else
endif endif
# Build compiler2 (server) rule, different for platforms # Build compiler2 (server) rule, different for platforms
generic_build2: generic_build2: $(HOTSPOT_SCRIPT)
$(MKDIR) -p $(OUTPUTDIR) $(MKDIR) -p $(OUTPUTDIR)
ifeq ($(OSNAME),windows) ifeq ($(OSNAME),windows)
$(CD) $(OUTPUTDIR); \ $(CD) $(OUTPUTDIR); \
@ -217,19 +228,19 @@ else
$(MAKE_ARGS) $(VM_TARGET) $(MAKE_ARGS) $(VM_TARGET)
endif endif
generic_buildzero: generic_buildzero: $(HOTSPOT_SCRIPT)
$(MKDIR) -p $(OUTPUTDIR) $(MKDIR) -p $(OUTPUTDIR)
$(CD) $(OUTPUTDIR); \ $(CD) $(OUTPUTDIR); \
$(MAKE) -f $(ABS_OS_MAKEFILE) \ $(MAKE) -f $(ABS_OS_MAKEFILE) \
$(MAKE_ARGS) $(VM_TARGET) $(MAKE_ARGS) $(VM_TARGET)
generic_buildshark: generic_buildshark: $(HOTSPOT_SCRIPT)
$(MKDIR) -p $(OUTPUTDIR) $(MKDIR) -p $(OUTPUTDIR)
$(CD) $(OUTPUTDIR); \ $(CD) $(OUTPUTDIR); \
$(MAKE) -f $(ABS_OS_MAKEFILE) \ $(MAKE) -f $(ABS_OS_MAKEFILE) \
$(MAKE_ARGS) $(VM_TARGET) $(MAKE_ARGS) $(VM_TARGET)
generic_buildminimal1: generic_buildminimal1: $(HOTSPOT_SCRIPT)
ifeq ($(JVM_VARIANT_MINIMAL1),true) ifeq ($(JVM_VARIANT_MINIMAL1),true)
$(MKDIR) -p $(OUTPUTDIR) $(MKDIR) -p $(OUTPUTDIR)
ifeq ($(ARCH_DATA_MODEL), 32) ifeq ($(ARCH_DATA_MODEL), 32)
@ -252,224 +263,210 @@ endif
# Export file rule # Export file rule
generic_export: $(EXPORT_LIST) generic_export: $(EXPORT_LIST)
export_product: export_product:
$(MAKE) BUILD_FLAVOR=$(@:export_%=%) VM_SUBDIR=$(@:export_%=%) \ $(MAKE) BUILD_FLAVOR=$(@:export_%=%) generic_export
generic_export
export_fastdebug: export_fastdebug:
$(MAKE) BUILD_FLAVOR=$(@:export_%=%) VM_SUBDIR=$(@:export_%=%) \ $(MAKE) BUILD_FLAVOR=$(@:export_%=%) EXPORT_SUBDIR=/$(@:export_%=%) generic_export
EXPORT_SUBDIR=/$(@:export_%=%) \
generic_export
export_debug: export_debug:
$(MAKE) BUILD_FLAVOR=$(@:export_%=%) VM_SUBDIR=$(@:export_%=%) \ $(MAKE) BUILD_FLAVOR=$(@:export_%=%) EXPORT_SUBDIR=/$(@:export_%=%) generic_export
EXPORT_SUBDIR=/$(@:export_%=%) \
generic_export
export_optimized: export_optimized:
$(MAKE) BUILD_FLAVOR=$(@:export_%=%) VM_SUBDIR=$(@:export_%=%) \ $(MAKE) BUILD_FLAVOR=$(@:export_%=%) EXPORT_SUBDIR=/$(@:export_%=%) generic_export
EXPORT_SUBDIR=/$(@:export_%=%) \
generic_export
export_product_jdk:: export_product_jdk::
$(MAKE) BUILD_FLAVOR=$(@:export_%_jdk=%) \ $(MAKE) BUILD_FLAVOR=$(@:export_%_jdk=%) ALT_EXPORT_PATH=$(JDK_IMAGE_DIR) generic_export
VM_SUBDIR=$(@:export_%_jdk=%) ALT_EXPORT_PATH=$(JDK_IMAGE_DIR) \
generic_export
export_optimized_jdk:: export_optimized_jdk::
$(MAKE) BUILD_FLAVOR=$(@:export_%_jdk=%) \ $(MAKE) BUILD_FLAVOR=$(@:export_%_jdk=%) ALT_EXPORT_PATH=$(JDK_IMAGE_DIR) generic_export
VM_SUBDIR=$(@:export_%_jdk=%) ALT_EXPORT_PATH=$(JDK_IMAGE_DIR) \
generic_export
export_fastdebug_jdk:: export_fastdebug_jdk::
$(MAKE) BUILD_FLAVOR=$(@:export_%_jdk=%) \ $(MAKE) BUILD_FLAVOR=$(@:export_%_jdk=%) ALT_EXPORT_PATH=$(JDK_IMAGE_DIR)/$(@:export_%_jdk=%) generic_export
VM_SUBDIR=$(@:export_%_jdk=%) \
ALT_EXPORT_PATH=$(JDK_IMAGE_DIR)/$(@:export_%_jdk=%) \
generic_export
export_debug_jdk:: export_debug_jdk::
$(MAKE) BUILD_FLAVOR=$(@:export_%_jdk=%) VM_SUBDIR=$(@:export_%_jdk=%) \ $(MAKE) BUILD_FLAVOR=$(@:export_%_jdk=%) ALT_EXPORT_PATH=$(JDK_IMAGE_DIR)/$(@:export_%_jdk=%) generic_export
ALT_EXPORT_PATH=$(JDK_IMAGE_DIR)/$(@:export_%_jdk=%) \
generic_export
# Export file copy rules # Export file copy rules
XUSAGE=$(HS_SRC_DIR)/share/vm/Xusage.txt XUSAGE=$(HS_SRC_DIR)/share/vm/Xusage.txt
DOCS_DIR =$(OUTPUTDIR)/$(VM_PLATFORM)_docs DOCS_DIR=$(OUTPUTDIR)/$(VM_PLATFORM)_docs
C1_DIR =$(OUTPUTDIR)/$(VM_PLATFORM)_compiler1/$(VM_SUBDIR) C1_BUILD_DIR =$(C1_DIR)/$(BUILD_FLAVOR)
C2_DIR =$(OUTPUTDIR)/$(VM_PLATFORM)_compiler2/$(VM_SUBDIR) C2_BUILD_DIR =$(C2_DIR)/$(BUILD_FLAVOR)
MINIMAL1_DIR=$(OUTPUTDIR)/$(VM_PLATFORM)_minimal1/$(VM_SUBDIR) MINIMAL1_BUILD_DIR=$(MINIMAL1_DIR)/$(BUILD_FLAVOR)
ZERO_DIR =$(OUTPUTDIR)/$(VM_PLATFORM)_zero/$(VM_SUBDIR) ZERO_BUILD_DIR =$(ZERO_DIR)/$(BUILD_FLAVOR)
SHARK_DIR =$(OUTPUTDIR)/$(VM_PLATFORM)_shark/$(VM_SUBDIR) SHARK_BUILD_DIR =$(SHARK_DIR)/$(BUILD_FLAVOR)
# Server (C2) # Server (C2)
ifeq ($(JVM_VARIANT_SERVER), true) ifeq ($(JVM_VARIANT_SERVER), true)
# Common # Common
$(EXPORT_SERVER_DIR)/%.diz: $(C2_DIR)/%.diz $(EXPORT_SERVER_DIR)/%.diz: $(C2_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_LIB_DIR)/%.jar: $(C2_DIR)/../generated/%.jar $(EXPORT_LIB_DIR)/%.jar: $(C2_BUILD_DIR)/../generated/%.jar
$(install-file) $(install-file)
$(EXPORT_INCLUDE_DIR)/%: $(C2_DIR)/../generated/jvmtifiles/% $(EXPORT_INCLUDE_DIR)/%: $(C2_BUILD_DIR)/../generated/jvmtifiles/%
$(install-file) $(install-file)
# Windows # Windows
$(EXPORT_SERVER_DIR)/%.dll: $(C2_DIR)/%.dll $(EXPORT_SERVER_DIR)/%.dll: $(C2_BUILD_DIR)/%.dll
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/%.pdb: $(C2_DIR)/%.pdb $(EXPORT_SERVER_DIR)/%.pdb: $(C2_BUILD_DIR)/%.pdb
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/%.map: $(C2_DIR)/%.map $(EXPORT_SERVER_DIR)/%.map: $(C2_BUILD_DIR)/%.map
$(install-file) $(install-file)
$(EXPORT_LIB_DIR)/%.lib: $(C2_DIR)/%.lib $(EXPORT_LIB_DIR)/%.lib: $(C2_BUILD_DIR)/%.lib
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.diz: $(C2_DIR)/%.diz $(EXPORT_JRE_BIN_DIR)/%.diz: $(C2_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.dll: $(C2_DIR)/%.dll $(EXPORT_JRE_BIN_DIR)/%.dll: $(C2_BUILD_DIR)/%.dll
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.pdb: $(C2_DIR)/%.pdb $(EXPORT_JRE_BIN_DIR)/%.pdb: $(C2_BUILD_DIR)/%.pdb
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.map: $(C2_DIR)/%.map $(EXPORT_JRE_BIN_DIR)/%.map: $(C2_BUILD_DIR)/%.map
$(install-file) $(install-file)
# Unix # Unix
$(EXPORT_JRE_LIB_ARCH_DIR)/%.$(LIBRARY_SUFFIX): $(C2_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_JRE_LIB_ARCH_DIR)/%.$(LIBRARY_SUFFIX): $(C2_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/%.$(LIBRARY_SUFFIX): $(C2_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_SERVER_DIR)/%.$(LIBRARY_SUFFIX): $(C2_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/64/%.$(LIBRARY_SUFFIX): $(C2_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_SERVER_DIR)/64/%.$(LIBRARY_SUFFIX): $(C2_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_JRE_LIB_ARCH_DIR)/%.debuginfo: $(C2_DIR)/%.debuginfo $(EXPORT_JRE_LIB_ARCH_DIR)/%.debuginfo: $(C2_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/%.debuginfo: $(C2_DIR)/%.debuginfo $(EXPORT_SERVER_DIR)/%.debuginfo: $(C2_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/64/%.debuginfo: $(C2_DIR)/%.debuginfo $(EXPORT_SERVER_DIR)/64/%.debuginfo: $(C2_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_JRE_LIB_ARCH_DIR)/%.diz: $(C2_DIR)/%.diz $(EXPORT_JRE_LIB_ARCH_DIR)/%.diz: $(C2_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/64/%.diz: $(C2_DIR)/%.diz $(EXPORT_SERVER_DIR)/64/%.diz: $(C2_BUILD_DIR)/%.diz
$(install-file) $(install-file)
endif endif
# Client (C1) # Client (C1)
ifeq ($(JVM_VARIANT_CLIENT), true) ifeq ($(JVM_VARIANT_CLIENT), true)
# Common # Common
$(EXPORT_CLIENT_DIR)/%.diz: $(C1_DIR)/%.diz $(EXPORT_CLIENT_DIR)/%.diz: $(C1_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_LIB_DIR)/%.jar: $(C1_DIR)/../generated/%.jar $(EXPORT_LIB_DIR)/%.jar: $(C1_BUILD_DIR)/../generated/%.jar
$(install-file) $(install-file)
$(EXPORT_INCLUDE_DIR)/%: $(C1_DIR)/../generated/jvmtifiles/% $(EXPORT_INCLUDE_DIR)/%: $(C1_BUILD_DIR)/../generated/jvmtifiles/%
$(install-file) $(install-file)
# Windows # Windows
$(EXPORT_CLIENT_DIR)/%.dll: $(C1_DIR)/%.dll $(EXPORT_CLIENT_DIR)/%.dll: $(C1_BUILD_DIR)/%.dll
$(install-file) $(install-file)
$(EXPORT_CLIENT_DIR)/%.pdb: $(C1_DIR)/%.pdb $(EXPORT_CLIENT_DIR)/%.pdb: $(C1_BUILD_DIR)/%.pdb
$(install-file) $(install-file)
$(EXPORT_CLIENT_DIR)/%.map: $(C1_DIR)/%.map $(EXPORT_CLIENT_DIR)/%.map: $(C1_BUILD_DIR)/%.map
$(install-file) $(install-file)
$(EXPORT_LIB_DIR)/%.lib: $(C1_DIR)/%.lib $(EXPORT_LIB_DIR)/%.lib: $(C1_BUILD_DIR)/%.lib
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.diz: $(C1_DIR)/%.diz $(EXPORT_JRE_BIN_DIR)/%.diz: $(C1_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.dll: $(C1_DIR)/%.dll $(EXPORT_JRE_BIN_DIR)/%.dll: $(C1_BUILD_DIR)/%.dll
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.pdb: $(C1_DIR)/%.pdb $(EXPORT_JRE_BIN_DIR)/%.pdb: $(C1_BUILD_DIR)/%.pdb
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.map: $(C1_DIR)/%.map $(EXPORT_JRE_BIN_DIR)/%.map: $(C1_BUILD_DIR)/%.map
$(install-file) $(install-file)
# Unix # Unix
$(EXPORT_JRE_LIB_ARCH_DIR)/%.$(LIBRARY_SUFFIX): $(C1_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_JRE_LIB_ARCH_DIR)/%.$(LIBRARY_SUFFIX): $(C1_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_CLIENT_DIR)/%.$(LIBRARY_SUFFIX): $(C1_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_CLIENT_DIR)/%.$(LIBRARY_SUFFIX): $(C1_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_CLIENT_DIR)/64/%.$(LIBRARY_SUFFIX): $(C1_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_CLIENT_DIR)/64/%.$(LIBRARY_SUFFIX): $(C1_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_JRE_LIB_ARCH_DIR)/%.debuginfo: $(C1_DIR)/%.debuginfo $(EXPORT_JRE_LIB_ARCH_DIR)/%.debuginfo: $(C1_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_CLIENT_DIR)/%.debuginfo: $(C1_DIR)/%.debuginfo $(EXPORT_CLIENT_DIR)/%.debuginfo: $(C1_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_CLIENT_DIR)/64/%.debuginfo: $(C1_DIR)/%.debuginfo $(EXPORT_CLIENT_DIR)/64/%.debuginfo: $(C1_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_JRE_LIB_ARCH_DIR)/%.diz: $(C1_DIR)/%.diz $(EXPORT_JRE_LIB_ARCH_DIR)/%.diz: $(C1_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_CLIENT_DIR)/64/%.diz: $(C1_DIR)/%.diz $(EXPORT_CLIENT_DIR)/64/%.diz: $(C1_BUILD_DIR)/%.diz
$(install-file) $(install-file)
endif endif
# Minimal1 # Minimal1
ifeq ($(JVM_VARIANT_MINIMAL1), true) ifeq ($(JVM_VARIANT_MINIMAL1), true)
# Common # Common
$(EXPORT_MINIMAL_DIR)/%.diz: $(MINIMAL1_DIR)/%.diz $(EXPORT_MINIMAL_DIR)/%.diz: $(MINIMAL1_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_LIB_DIR)/%.jar: $(MINIMAL1_DIR)/../generated/%.jar $(EXPORT_LIB_DIR)/%.jar: $(MINIMAL1_BUILD_DIR)/../generated/%.jar
$(install-file) $(install-file)
$(EXPORT_INCLUDE_DIR)/%: $(MINIMAL1_DIR)/../generated/jvmtifiles/% $(EXPORT_INCLUDE_DIR)/%: $(MINIMAL1_BUILD_DIR)/../generated/jvmtifiles/%
$(install-file) $(install-file)
# Windows # Windows
$(EXPORT_MINIMAL_DIR)/%.dll: $(MINIMAL1_DIR)/%.dll $(EXPORT_MINIMAL_DIR)/%.dll: $(MINIMAL1_BUILD_DIR)/%.dll
$(install-file) $(install-file)
$(EXPORT_MINIMAL_DIR)/%.pdb: $(MINIMAL1_DIR)/%.pdb $(EXPORT_MINIMAL_DIR)/%.pdb: $(MINIMAL1_BUILD_DIR)/%.pdb
$(install-file) $(install-file)
$(EXPORT_MINIMAL_DIR)/%.map: $(MINIMAL1_DIR)/%.map $(EXPORT_MINIMAL_DIR)/%.map: $(MINIMAL1_BUILD_DIR)/%.map
$(install-file) $(install-file)
$(EXPORT_LIB_DIR)/%.lib: $(MINIMAL1_DIR)/%.lib $(EXPORT_LIB_DIR)/%.lib: $(MINIMAL1_BUILD_DIR)/%.lib
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.diz: $(MINIMAL1_DIR)/%.diz $(EXPORT_JRE_BIN_DIR)/%.diz: $(MINIMAL1_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.dll: $(MINIMAL1_DIR)/%.dll $(EXPORT_JRE_BIN_DIR)/%.dll: $(MINIMAL1_BUILD_DIR)/%.dll
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.pdb: $(MINIMAL1_DIR)/%.pdb $(EXPORT_JRE_BIN_DIR)/%.pdb: $(MINIMAL1_BUILD_DIR)/%.pdb
$(install-file) $(install-file)
$(EXPORT_JRE_BIN_DIR)/%.map: $(MINIMAL1_DIR)/%.map $(EXPORT_JRE_BIN_DIR)/%.map: $(MINIMAL1_BUILD_DIR)/%.map
$(install-file) $(install-file)
# Unix # Unix
$(EXPORT_JRE_LIB_ARCH_DIR)/%.$(LIBRARY_SUFFIX): $(MINIMAL1_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_JRE_LIB_ARCH_DIR)/%.$(LIBRARY_SUFFIX): $(MINIMAL1_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_MINIMAL_DIR)/%.$(LIBRARY_SUFFIX): $(MINIMAL1_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_MINIMAL_DIR)/%.$(LIBRARY_SUFFIX): $(MINIMAL1_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_MINIMAL_DIR)/64/%.$(LIBRARY_SUFFIX): $(MINIMAL1_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_MINIMAL_DIR)/64/%.$(LIBRARY_SUFFIX): $(MINIMAL1_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_JRE_LIB_ARCH_DIR)/%.debuginfo: $(MINIMAL1_DIR)/%.debuginfo $(EXPORT_JRE_LIB_ARCH_DIR)/%.debuginfo: $(MINIMAL1_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_MINIMAL_DIR)/%.debuginfo: $(MINIMAL1_DIR)/%.debuginfo $(EXPORT_MINIMAL_DIR)/%.debuginfo: $(MINIMAL1_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_MINIMAL_DIR)/64/%.debuginfo: $(MINIMAL1_DIR)/%.debuginfo $(EXPORT_MINIMAL_DIR)/64/%.debuginfo: $(MINIMAL1_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_JRE_LIB_ARCH_DIR)/%.diz: $(MINIMAL1_DIR)/%.diz $(EXPORT_JRE_LIB_ARCH_DIR)/%.diz: $(MINIMAL1_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_MINIMAL_DIR)/64/%.diz: $(MINIMAL1_DIR)/%.diz $(EXPORT_MINIMAL_DIR)/64/%.diz: $(MINIMAL1_BUILD_DIR)/%.diz
$(install-file) $(install-file)
endif endif
# Zero # Zero
ifeq ($(JVM_VARIANT_ZERO), true) ifeq ($(JVM_VARIANT_ZERO), true)
# Common # Common
$(EXPORT_LIB_DIR)/%.jar: $(ZERO_DIR)/../generated/%.jar $(EXPORT_LIB_DIR)/%.jar: $(ZERO_BUILD_DIR)/../generated/%.jar
$(install-file) $(install-file)
$(EXPORT_INCLUDE_DIR)/%: $(ZERO_DIR)/../generated/jvmtifiles/% $(EXPORT_INCLUDE_DIR)/%: $(ZERO_BUILD_DIR)/../generated/jvmtifiles/%
$(install-file) $(install-file)
# Unix # Unix
$(EXPORT_JRE_LIB_ARCH_DIR)/%.$(LIBRARY_SUFFIX): $(ZERO_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_JRE_LIB_ARCH_DIR)/%.$(LIBRARY_SUFFIX): $(ZERO_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_JRE_LIB_ARCH_DIR)/%.debuginfo: $(ZERO_DIR)/%.debuginfo $(EXPORT_JRE_LIB_ARCH_DIR)/%.debuginfo: $(ZERO_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_JRE_LIB_ARCH_DIR)/%.diz: $(ZERO_DIR)/%.diz $(EXPORT_JRE_LIB_ARCH_DIR)/%.diz: $(ZERO_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/%.$(LIBRARY_SUFFIX): $(ZERO_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_SERVER_DIR)/%.$(LIBRARY_SUFFIX): $(ZERO_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/%.debuginfo: $(ZERO_DIR)/%.debuginfo $(EXPORT_SERVER_DIR)/%.debuginfo: $(ZERO_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/%.diz: $(ZERO_DIR)/%.diz $(EXPORT_SERVER_DIR)/%.diz: $(ZERO_BUILD_DIR)/%.diz
$(install-file) $(install-file)
endif endif
# Shark # Shark
ifeq ($(JVM_VARIANT_ZEROSHARK), true) ifeq ($(JVM_VARIANT_ZEROSHARK), true)
# Common # Common
$(EXPORT_LIB_DIR)/%.jar: $(SHARK_DIR)/../generated/%.jar $(EXPORT_LIB_DIR)/%.jar: $(SHARK_BUILD_DIR)/../generated/%.jar
$(install-file) $(install-file)
$(EXPORT_INCLUDE_DIR)/%: $(SHARK_DIR)/../generated/jvmtifiles/% $(EXPORT_INCLUDE_DIR)/%: $(SHARK_BUILD_DIR)/../generated/jvmtifiles/%
$(install-file) $(install-file)
# Unix # Unix
$(EXPORT_JRE_LIB_ARCH_DIR)/%.$(LIBRARY_SUFFIX): $(SHARK_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_JRE_LIB_ARCH_DIR)/%.$(LIBRARY_SUFFIX): $(SHARK_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_JRE_LIB_ARCH_DIR)/%.debuginfo): $(SHARK_DIR)/%.debuginfo $(EXPORT_JRE_LIB_ARCH_DIR)/%.debuginfo): $(SHARK_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_JRE_LIB_ARCH_DIR)/%.diz: $(SHARK_DIR)/%.diz $(EXPORT_JRE_LIB_ARCH_DIR)/%.diz: $(SHARK_BUILD_DIR)/%.diz
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/%.$(LIBRARY_SUFFIX): $(SHARK_DIR)/%.$(LIBRARY_SUFFIX) $(EXPORT_SERVER_DIR)/%.$(LIBRARY_SUFFIX): $(SHARK_BUILD_DIR)/%.$(LIBRARY_SUFFIX)
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/%.debuginfo: $(SHARK_DIR)/%.debuginfo $(EXPORT_SERVER_DIR)/%.debuginfo: $(SHARK_BUILD_DIR)/%.debuginfo
$(install-file) $(install-file)
$(EXPORT_SERVER_DIR)/%.diz: $(SHARK_DIR)/%.diz $(EXPORT_SERVER_DIR)/%.diz: $(SHARK_BUILD_DIR)/%.diz
$(install-file) $(install-file)
endif endif

View file

@ -49,7 +49,6 @@
# adlc.make - # adlc.make -
# jvmti.make - generate JVMTI bindings from the spec (JSR-163) # jvmti.make - generate JVMTI bindings from the spec (JSR-163)
# sa.make - generate SA jar file and natives # sa.make - generate SA jar file and natives
# env.[ck]sh - environment settings
# #
# The makefiles are split this way so that "make foo" will run faster by not # The makefiles are split this way so that "make foo" will run faster by not
# having to read the dependency files for the vm. # having to read the dependency files for the vm.
@ -129,9 +128,7 @@ SUBMAKE_DIRS = $(addprefix $(PLATFORM_DIR)/,$(TARGETS))
BUILDTREE_MAKE = $(GAMMADIR)/make/$(OS_FAMILY)/makefiles/buildtree.make BUILDTREE_MAKE = $(GAMMADIR)/make/$(OS_FAMILY)/makefiles/buildtree.make
# dtrace.make is used on BSD versions that implement Dtrace (like MacOS X) # dtrace.make is used on BSD versions that implement Dtrace (like MacOS X)
BUILDTREE_TARGETS = Makefile flags.make flags_vm.make vm.make adlc.make \ BUILDTREE_TARGETS = Makefile flags.make flags_vm.make vm.make adlc.make jvmti.make sa.make dtrace.make
jvmti.make sa.make dtrace.make \
env.sh env.csh jdkpath.sh
BUILDTREE_VARS = GAMMADIR=$(GAMMADIR) OS_FAMILY=$(OS_FAMILY) \ BUILDTREE_VARS = GAMMADIR=$(GAMMADIR) OS_FAMILY=$(OS_FAMILY) \
SRCARCH=$(SRCARCH) BUILDARCH=$(BUILDARCH) LIBARCH=$(LIBARCH) VARIANT=$(VARIANT) SRCARCH=$(SRCARCH) BUILDARCH=$(BUILDARCH) LIBARCH=$(LIBARCH) VARIANT=$(VARIANT)
@ -354,33 +351,6 @@ dtrace.make: $(BUILDTREE_MAKE)
echo "include \$$(GAMMADIR)/make/$(OS_FAMILY)/makefiles/$(@F)"; \ echo "include \$$(GAMMADIR)/make/$(OS_FAMILY)/makefiles/$(@F)"; \
) > $@ ) > $@
env.sh: $(BUILDTREE_MAKE)
@echo Creating $@ ...
$(QUIETLY) ( \
$(BUILDTREE_COMMENT); \
{ echo "JAVA_HOME=$(JDK_IMPORT_PATH)"; }; \
{ \
echo "CLASSPATH=$${CLASSPATH:+$$CLASSPATH:}.:\$${JAVA_HOME}/jre/lib/rt.jar:\$${JAVA_HOME}/jre/lib/i18n.jar"; \
} | sed s:$${JAVA_HOME:--------}:\$${JAVA_HOME}:g; \
echo "HOTSPOT_BUILD_USER=\"$${LOGNAME:-$$USER} in `basename $(GAMMADIR)`\""; \
echo "export JAVA_HOME CLASSPATH HOTSPOT_BUILD_USER"; \
) > $@
env.csh: env.sh
@echo Creating $@ ...
$(QUIETLY) ( \
$(BUILDTREE_COMMENT); \
{ echo "setenv JAVA_HOME \"$(JDK_IMPORT_PATH)\""; }; \
sed -n 's/^\([A-Za-z_][A-Za-z0-9_]*\)=/setenv \1 /p' $?; \
) > $@
jdkpath.sh: $(BUILDTREE_MAKE)
@echo Creating $@ ...
$(QUIETLY) ( \
$(BUILDTREE_COMMENT); \
echo "JDK=${JAVA_HOME}"; \
) > $@
FORCE: FORCE:
.PHONY: all FORCE .PHONY: all FORCE

View file

@ -1,115 +0,0 @@
#
# Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 2 only, as
# published by the Free Software Foundation.
#
# This code is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# version 2 for more details (a copy is included in the LICENSE file that
# accompanied this code).
#
# You should have received a copy of the GNU General Public License version
# 2 along with this work; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
# or visit www.oracle.com if you need additional information or have any
# questions.
#
#
# Rules to build gamma launcher, used by vm.make
LAUNCHER_SCRIPT = hotspot
LAUNCHER = gamma
LAUNCHERDIR := $(GAMMADIR)/src/os/posix/launcher
LAUNCHERDIR_SHARE := $(GAMMADIR)/src/share/tools/launcher
LAUNCHERFLAGS := $(ARCHFLAG) \
-I$(LAUNCHERDIR) -I$(GAMMADIR)/src/share/vm/prims \
-I$(LAUNCHERDIR_SHARE) \
-DFULL_VERSION=\"$(HOTSPOT_RELEASE_VERSION)\" \
-DJDK_MAJOR_VERSION=\"$(JDK_MAJOR_VERSION)\" \
-DJDK_MINOR_VERSION=\"$(JDK_MINOR_VERSION)\" \
-DARCH=\"$(LIBARCH)\" \
-DGAMMA \
-DLAUNCHER_TYPE=\"gamma\" \
-DLINK_INTO_$(LINK_INTO) \
$(TARGET_DEFINES)
# Give the launcher task_for_pid() privileges so that it can be used to run JStack, JInfo, et al.
LFLAGS_LAUNCHER += -sectcreate __TEXT __info_plist $(GAMMADIR)/src/os/bsd/launcher/Info-privileged.plist
ifeq ($(LINK_INTO),AOUT)
LAUNCHER.o = launcher.o $(JVM_OBJ_FILES)
LAUNCHER_MAPFILE = mapfile_reorder
LFLAGS_LAUNCHER$(LDNOMAP) += $(MAPFLAG:FILENAME=$(LAUNCHER_MAPFILE))
LFLAGS_LAUNCHER += $(SONAMEFLAG:SONAME=$(LIBJVM)) $(STATIC_LIBGCC)
LIBS_LAUNCHER += $(STATIC_STDCXX) $(LIBS)
else
LAUNCHER.o = launcher.o
LFLAGS_LAUNCHER += -L`pwd`
# The gamma launcher runs the JDK from $JAVA_HOME, overriding the JVM with a
# freshly built JVM at ./libjvm.{so|dylib}. This is accomplished by setting
# the library searchpath using ({DY}LD_LIBRARY_PATH) to find the local JVM
# first. Gamma dlopen()s libjava from $JAVA_HOME/jre/lib{/$arch}, which is
# statically linked with CoreFoundation framework libs. Unfortunately, gamma's
# unique searchpath results in some unresolved symbols in the framework
# libraries, because JDK libraries are inadvertently discovered first on the
# searchpath, e.g. libjpeg. On Mac OS X, filenames are case *insensitive*.
# So, the actual filename collision is libjpeg.dylib and libJPEG.dylib.
# To resolve this, gamma needs to also statically link with the CoreFoundation
# framework libraries.
ifeq ($(OS_VENDOR),Darwin)
LFLAGS_LAUNCHER += -framework CoreFoundation
endif
LIBS_LAUNCHER += -l$(JVM) $(LIBS)
endif
LINK_LAUNCHER = $(LINK.CC)
LINK_LAUNCHER/PRE_HOOK = $(LINK_LIB.CXX/PRE_HOOK)
LINK_LAUNCHER/POST_HOOK = $(LINK_LIB.CXX/POST_HOOK)
LAUNCHER_OUT = launcher
SUFFIXES += .d
SOURCES := $(shell find $(LAUNCHERDIR) -name "*.c")
SOURCES_SHARE := $(shell find $(LAUNCHERDIR_SHARE) -name "*.c")
OBJS := $(patsubst $(LAUNCHERDIR)/%.c,$(LAUNCHER_OUT)/%.o,$(SOURCES)) $(patsubst $(LAUNCHERDIR_SHARE)/%.c,$(LAUNCHER_OUT)/%.o,$(SOURCES_SHARE))
DEPFILES := $(patsubst %.o,%.d,$(OBJS))
-include $(DEPFILES)
$(LAUNCHER_OUT)/%.o: $(LAUNCHERDIR_SHARE)/%.c
$(QUIETLY) [ -d $(LAUNCHER_OUT) ] || { mkdir -p $(LAUNCHER_OUT); }
$(QUIETLY) $(CC) -g -o $@ -c $< -MMD $(LAUNCHERFLAGS) $(CXXFLAGS)
$(LAUNCHER_OUT)/%.o: $(LAUNCHERDIR)/%.c
$(QUIETLY) [ -d $(LAUNCHER_OUT) ] || { mkdir -p $(LAUNCHER_OUT); }
$(QUIETLY) $(CC) -g -o $@ -c $< -MMD $(LAUNCHERFLAGS) $(CXXFLAGS)
$(LAUNCHER): $(OBJS) $(LIBJVM) $(LAUNCHER_MAPFILE)
$(QUIETLY) echo Linking launcher...
$(QUIETLY) $(LINK_LAUNCHER/PRE_HOOK)
$(QUIETLY) $(LINK_LAUNCHER) $(LFLAGS_LAUNCHER) -o $@ $(sort $(OBJS)) $(LIBS_LAUNCHER)
$(QUIETLY) $(LINK_LAUNCHER/POST_HOOK)
# Sign the launcher with the development certificate (if present) so that it can be used
# to run JStack, JInfo, et al.
$(QUIETLY) -codesign -s openjdk_codesign $@
$(LAUNCHER): $(LAUNCHER_SCRIPT)
$(LAUNCHER_SCRIPT): $(LAUNCHERDIR)/launcher.script
$(QUIETLY) sed -e 's/@@LIBARCH@@/$(LIBARCH)/g' $< > $@
$(QUIETLY) chmod +x $@

View file

@ -328,9 +328,6 @@ install_jvm: $(LIBJVM)
#---------------------------------------------------------------------- #----------------------------------------------------------------------
# Other files # Other files
# Gamma launcher
include $(MAKEFILES_DIR)/launcher.make
# Signal interposition library # Signal interposition library
include $(MAKEFILES_DIR)/jsig.make include $(MAKEFILES_DIR)/jsig.make

View file

@ -72,6 +72,7 @@ EMACS=emacs
REL_MYDIR=`dirname $0` REL_MYDIR=`dirname $0`
MYDIR=`cd $REL_MYDIR && pwd` MYDIR=`cd $REL_MYDIR && pwd`
#
# Look whether the user wants to run inside gdb # Look whether the user wants to run inside gdb
case "$1" in case "$1" in
-gdb) -gdb)
@ -95,16 +96,14 @@ case "$1" in
;; ;;
esac esac
JDK= if [ "${ALT_JAVA_HOME}" != "" ]; then
if [ "${ALT_JAVA_HOME}" = "" ]; then JDK=${ALT_JAVA_HOME%%/jre}
. ${MYDIR}/jdkpath.sh
else else
JDK=${ALT_JAVA_HOME%%/jre}; JDK=@@JDK_IMPORT_PATH@@
fi fi
if [ "${JDK}" = "" ]; then if [ "${JDK}" = "" ]; then
echo Failed to find JDK. ALT_JAVA_HOME is not set or ./jdkpath.sh is empty or not found. echo "Failed to find JDK. Either ALT_JAVA_HOME is not set or JDK_IMPORT_PATH is empty."
exit 1
fi fi
# We will set the LD_LIBRARY_PATH as follows: # We will set the LD_LIBRARY_PATH as follows:
@ -142,12 +141,12 @@ else
export LD_LIBRARY_PATH export LD_LIBRARY_PATH
fi fi
JPARMS="$@ $JAVA_ARGS"; JPARMS="-Dsun.java.launcher=gamma -XXaltjvm=$MYDIR $@ $JAVA_ARGS";
# Locate the gamma development launcher # Locate the java launcher
LAUNCHER=${MYDIR}/gamma LAUNCHER=$JDK/bin/java
if [ ! -x $LAUNCHER ] ; then if [ ! -x $LAUNCHER ] ; then
echo Error: Cannot find the gamma development launcher \"$LAUNCHER\" echo Error: Cannot find the java launcher \"$LAUNCHER\"
exit 1 exit 1
fi fi
@ -166,9 +165,10 @@ set args $JPARMS
file $LAUNCHER file $LAUNCHER
directory $GDBSRCDIR directory $GDBSRCDIR
# Get us to a point where we can set breakpoints in libjvm.so # Get us to a point where we can set breakpoints in libjvm.so
break InitializeJVM set breakpoint pending on
break JNI_CreateJavaVM
run run
# Stop in InitializeJVM # Stop in JNI_CreateJavaVM
delete 1 delete 1
# We can now set breakpoints wherever we like # We can now set breakpoints wherever we like
EOF EOF
@ -199,7 +199,7 @@ case "$MODE" in
rm -f $GDBSCR rm -f $GDBSCR
;; ;;
dbx) dbx)
$DBX -s $HOME/.dbxrc $LAUNCHER $JPARMS $DBX -s $HOME/.dbxrc -c "loadobject -load libjvm.so; stop in JNI_CreateJavaVM; run $JPARMS; delete all" $LAUNCHER
;; ;;
valgrind) valgrind)
echo Warning: Defaulting to 16Mb heap to make Valgrind run faster, use -Xmx for larger heap echo Warning: Defaulting to 16Mb heap to make Valgrind run faster, use -Xmx for larger heap

View file

@ -134,14 +134,14 @@ jprt.my.windows.x64=${jprt.my.windows.x64.${jprt.tools.default.release}}
jprt.build.targets.standard= \ jprt.build.targets.standard= \
${jprt.my.solaris.sparc}-{product|fastdebug}, \ ${jprt.my.solaris.sparc}-{product|fastdebug}, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}, \ ${jprt.my.solaris.sparcv9}-{product|fastdebug|optimized}, \
${jprt.my.solaris.i586}-{product|fastdebug}, \ ${jprt.my.solaris.i586}-{product|fastdebug}, \
${jprt.my.solaris.x64}-{product|fastdebug}, \ ${jprt.my.solaris.x64}-{product|fastdebug}, \
${jprt.my.linux.i586}-{product|fastdebug}, \ ${jprt.my.linux.i586}-{product|fastdebug}, \
${jprt.my.linux.x64}-{product|fastdebug}, \ ${jprt.my.linux.x64}-{product|fastdebug|optimized}, \
${jprt.my.macosx.x64}-{product|fastdebug}, \ ${jprt.my.macosx.x64}-{product|fastdebug}, \
${jprt.my.windows.i586}-{product|fastdebug}, \ ${jprt.my.windows.i586}-{product|fastdebug}, \
${jprt.my.windows.x64}-{product|fastdebug}, \ ${jprt.my.windows.x64}-{product|fastdebug|optimized}, \
${jprt.my.linux.armvh}-{product|fastdebug} ${jprt.my.linux.armvh}-{product|fastdebug}
jprt.build.targets.open= \ jprt.build.targets.open= \

View file

@ -49,7 +49,6 @@
# adlc.make - # adlc.make -
# jvmti.make - generate JVMTI bindings from the spec (JSR-163) # jvmti.make - generate JVMTI bindings from the spec (JSR-163)
# sa.make - generate SA jar file and natives # sa.make - generate SA jar file and natives
# env.[ck]sh - environment settings
# #
# The makefiles are split this way so that "make foo" will run faster by not # The makefiles are split this way so that "make foo" will run faster by not
# having to read the dependency files for the vm. # having to read the dependency files for the vm.
@ -123,8 +122,7 @@ SUBMAKE_DIRS = $(addprefix $(PLATFORM_DIR)/,$(TARGETS))
# For dependencies and recursive makes. # For dependencies and recursive makes.
BUILDTREE_MAKE = $(GAMMADIR)/make/$(OS_FAMILY)/makefiles/buildtree.make BUILDTREE_MAKE = $(GAMMADIR)/make/$(OS_FAMILY)/makefiles/buildtree.make
BUILDTREE_TARGETS = Makefile flags.make flags_vm.make vm.make adlc.make jvmti.make sa.make \ BUILDTREE_TARGETS = Makefile flags.make flags_vm.make vm.make adlc.make jvmti.make sa.make
env.sh env.csh jdkpath.sh
BUILDTREE_VARS = GAMMADIR=$(GAMMADIR) OS_FAMILY=$(OS_FAMILY) \ BUILDTREE_VARS = GAMMADIR=$(GAMMADIR) OS_FAMILY=$(OS_FAMILY) \
SRCARCH=$(SRCARCH) BUILDARCH=$(BUILDARCH) LIBARCH=$(LIBARCH) VARIANT=$(VARIANT) SRCARCH=$(SRCARCH) BUILDARCH=$(BUILDARCH) LIBARCH=$(LIBARCH) VARIANT=$(VARIANT)
@ -349,33 +347,6 @@ sa.make: $(BUILDTREE_MAKE)
echo "include \$$(GAMMADIR)/make/$(OS_FAMILY)/makefiles/$(@F)"; \ echo "include \$$(GAMMADIR)/make/$(OS_FAMILY)/makefiles/$(@F)"; \
) > $@ ) > $@
env.sh: $(BUILDTREE_MAKE)
@echo Creating $@ ...
$(QUIETLY) ( \
$(BUILDTREE_COMMENT); \
{ echo "JAVA_HOME=$(JDK_IMPORT_PATH)"; }; \
{ \
echo "CLASSPATH=$${CLASSPATH:+$$CLASSPATH:}.:\$${JAVA_HOME}/jre/lib/rt.jar:\$${JAVA_HOME}/jre/lib/i18n.jar"; \
} | sed s:$${JAVA_HOME:--------}:\$${JAVA_HOME}:g; \
echo "HOTSPOT_BUILD_USER=\"$${LOGNAME:-$$USER} in `basename $(GAMMADIR)`\""; \
echo "export JAVA_HOME CLASSPATH HOTSPOT_BUILD_USER"; \
) > $@
env.csh: env.sh
@echo Creating $@ ...
$(QUIETLY) ( \
$(BUILDTREE_COMMENT); \
{ echo "setenv JAVA_HOME \"$(JDK_IMPORT_PATH)\""; }; \
sed -n 's/^\([A-Za-z_][A-Za-z0-9_]*\)=/setenv \1 /p' $?; \
) > $@
jdkpath.sh: $(BUILDTREE_MAKE)
@echo Creating $@ ...
$(QUIETLY) ( \
$(BUILDTREE_COMMENT); \
echo "JDK=${JAVA_HOME}"; \
) > $@
FORCE: FORCE:
.PHONY: all FORCE .PHONY: all FORCE

View file

@ -1,93 +0,0 @@
#
# Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 2 only, as
# published by the Free Software Foundation.
#
# This code is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# version 2 for more details (a copy is included in the LICENSE file that
# accompanied this code).
#
# You should have received a copy of the GNU General Public License version
# 2 along with this work; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
# or visit www.oracle.com if you need additional information or have any
# questions.
#
#
# Rules to build gamma launcher, used by vm.make
LAUNCHER_SCRIPT = hotspot
LAUNCHER = gamma
LAUNCHERDIR := $(GAMMADIR)/src/os/posix/launcher
LAUNCHERDIR_SHARE := $(GAMMADIR)/src/share/tools/launcher
LAUNCHERFLAGS := $(ARCHFLAG) \
-I$(LAUNCHERDIR) -I$(GAMMADIR)/src/share/vm/prims \
-I$(LAUNCHERDIR_SHARE) \
-DFULL_VERSION=\"$(HOTSPOT_RELEASE_VERSION)\" \
-DJDK_MAJOR_VERSION=\"$(JDK_MAJOR_VERSION)\" \
-DJDK_MINOR_VERSION=\"$(JDK_MINOR_VERSION)\" \
-DARCH=\"$(LIBARCH)\" \
-DGAMMA \
-DLAUNCHER_TYPE=\"gamma\" \
-DLINK_INTO_$(LINK_INTO) \
$(TARGET_DEFINES)
ifeq ($(LINK_INTO),AOUT)
LAUNCHER.o = launcher.o $(JVM_OBJ_FILES)
LAUNCHER_MAPFILE = mapfile_reorder
LFLAGS_LAUNCHER$(LDNOMAP) += $(MAPFLAG:FILENAME=$(LAUNCHER_MAPFILE))
LFLAGS_LAUNCHER += $(SONAMEFLAG:SONAME=$(LIBJVM)) $(STATIC_LIBGCC)
LIBS_LAUNCHER += $(STATIC_STDCXX) $(LIBS)
else
LAUNCHER.o = launcher.o
LFLAGS_LAUNCHER += -L `pwd`
LIBS_LAUNCHER += -l$(JVM) $(LIBS)
endif
LINK_LAUNCHER = $(LINK.CC)
LINK_LAUNCHER/PRE_HOOK = $(LINK_LIB.CXX/PRE_HOOK)
LINK_LAUNCHER/POST_HOOK = $(LINK_LIB.CXX/POST_HOOK)
LAUNCHER_OUT = launcher
SUFFIXES += .d
SOURCES := $(shell find $(LAUNCHERDIR) -name "*.c")
SOURCES_SHARE := $(shell find $(LAUNCHERDIR_SHARE) -name "*.c")
OBJS := $(patsubst $(LAUNCHERDIR)/%.c,$(LAUNCHER_OUT)/%.o,$(SOURCES)) $(patsubst $(LAUNCHERDIR_SHARE)/%.c,$(LAUNCHER_OUT)/%.o,$(SOURCES_SHARE))
DEPFILES := $(patsubst %.o,%.d,$(OBJS))
-include $(DEPFILES)
$(LAUNCHER_OUT)/%.o: $(LAUNCHERDIR_SHARE)/%.c
$(QUIETLY) [ -d $(LAUNCHER_OUT) ] || { mkdir -p $(LAUNCHER_OUT); }
$(QUIETLY) $(CC) -g -o $@ -c $< -MMD $(LAUNCHERFLAGS) $(CXXFLAGS)
$(LAUNCHER_OUT)/%.o: $(LAUNCHERDIR)/%.c
$(QUIETLY) [ -d $(LAUNCHER_OUT) ] || { mkdir -p $(LAUNCHER_OUT); }
$(QUIETLY) $(CC) -g -o $@ -c $< -MMD $(LAUNCHERFLAGS) $(CXXFLAGS)
$(LAUNCHER): $(OBJS) $(LIBJVM) $(LAUNCHER_MAPFILE)
$(QUIETLY) echo Linking launcher...
$(QUIETLY) $(LINK_LAUNCHER/PRE_HOOK)
$(QUIETLY) $(LINK_LAUNCHER) $(LFLAGS_LAUNCHER) -o $@ $(sort $(OBJS)) $(LIBS_LAUNCHER)
$(QUIETLY) $(LINK_LAUNCHER/POST_HOOK)
$(LAUNCHER): $(LAUNCHER_SCRIPT)
$(LAUNCHER_SCRIPT): $(LAUNCHERDIR)/launcher.script
$(QUIETLY) sed -e 's/@@LIBARCH@@/$(LIBARCH)/g' $< > $@
$(QUIETLY) chmod +x $@

View file

@ -372,9 +372,6 @@ install_jvm: $(LIBJVM)
#---------------------------------------------------------------------- #----------------------------------------------------------------------
# Other files # Other files
# Gamma launcher
include $(MAKEFILES_DIR)/launcher.make
# Signal interposition library # Signal interposition library
include $(MAKEFILES_DIR)/jsig.make include $(MAKEFILES_DIR)/jsig.make

View file

@ -49,7 +49,6 @@
# adlc.make - # adlc.make -
# jvmti.make - generate JVMTI bindings from the spec (JSR-163) # jvmti.make - generate JVMTI bindings from the spec (JSR-163)
# sa.make - generate SA jar file and natives # sa.make - generate SA jar file and natives
# env.[ck]sh - environment settings
# #
# The makefiles are split this way so that "make foo" will run faster by not # The makefiles are split this way so that "make foo" will run faster by not
# having to read the dependency files for the vm. # having to read the dependency files for the vm.
@ -116,8 +115,7 @@ SUBMAKE_DIRS = $(addprefix $(PLATFORM_DIR)/,$(TARGETS))
# For dependencies and recursive makes. # For dependencies and recursive makes.
BUILDTREE_MAKE = $(GAMMADIR)/make/$(OS_FAMILY)/makefiles/buildtree.make BUILDTREE_MAKE = $(GAMMADIR)/make/$(OS_FAMILY)/makefiles/buildtree.make
BUILDTREE_TARGETS = Makefile flags.make flags_vm.make vm.make adlc.make jvmti.make sa.make \ BUILDTREE_TARGETS = Makefile flags.make flags_vm.make vm.make adlc.make jvmti.make sa.make
env.sh env.csh jdkpath.sh
BUILDTREE_VARS = GAMMADIR=$(GAMMADIR) OS_FAMILY=$(OS_FAMILY) \ BUILDTREE_VARS = GAMMADIR=$(GAMMADIR) OS_FAMILY=$(OS_FAMILY) \
ARCH=$(ARCH) BUILDARCH=$(BUILDARCH) LIBARCH=$(LIBARCH) VARIANT=$(VARIANT) ARCH=$(ARCH) BUILDARCH=$(BUILDARCH) LIBARCH=$(LIBARCH) VARIANT=$(VARIANT)
@ -339,33 +337,6 @@ sa.make: $(BUILDTREE_MAKE)
echo "include \$$(GAMMADIR)/make/$(OS_FAMILY)/makefiles/$(@F)"; \ echo "include \$$(GAMMADIR)/make/$(OS_FAMILY)/makefiles/$(@F)"; \
) > $@ ) > $@
env.sh: $(BUILDTREE_MAKE)
@echo Creating $@ ...
$(QUIETLY) ( \
$(BUILDTREE_COMMENT); \
{ echo "JAVA_HOME=$(JDK_IMPORT_PATH)"; }; \
{ \
echo "CLASSPATH=$${CLASSPATH:+$$CLASSPATH:}.:\$${JAVA_HOME}/jre/lib/rt.jar:\$${JAVA_HOME}/jre/lib/i18n.jar"; \
} | sed s:$${JAVA_HOME:--------}:\$${JAVA_HOME}:g; \
echo "HOTSPOT_BUILD_USER=\"$${LOGNAME:-$$USER} in `basename $(GAMMADIR)`\""; \
echo "export JAVA_HOME LD_LIBRARY_PATH CLASSPATH HOTSPOT_BUILD_USER"; \
) > $@
env.csh: env.sh
@echo Creating $@ ...
$(QUIETLY) ( \
$(BUILDTREE_COMMENT); \
{ echo "setenv JAVA_HOME \"$(JDK_IMPORT_PATH)\""; }; \
sed -n 's/^\([A-Za-z_][A-Za-z0-9_]*\)=/setenv \1 /p' $?; \
) > $@
jdkpath.sh: $(BUILDTREE_MAKE)
@echo Creating $@ ...
$(QUIETLY) ( \
$(BUILDTREE_COMMENT); \
echo "JDK=${JAVA_HOME}"; \
) > $@
FORCE: FORCE:
.PHONY: all FORCE .PHONY: all FORCE

View file

@ -1,108 +0,0 @@
#
# Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 2 only, as
# published by the Free Software Foundation.
#
# This code is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# version 2 for more details (a copy is included in the LICENSE file that
# accompanied this code).
#
# You should have received a copy of the GNU General Public License version
# 2 along with this work; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
# or visit www.oracle.com if you need additional information or have any
# questions.
#
#
# Rules to build gamma launcher, used by vm.make
LAUNCHER_SCRIPT = hotspot
LAUNCHER = gamma
LAUNCHERDIR = $(GAMMADIR)/src/os/posix/launcher
LAUNCHERDIR_SHARE := $(GAMMADIR)/src/share/tools/launcher
LAUNCHERFLAGS = $(ARCHFLAG) \
-I$(LAUNCHERDIR) -I$(GAMMADIR)/src/share/vm/prims \
-I$(LAUNCHERDIR_SHARE) \
-DFULL_VERSION=\"$(HOTSPOT_RELEASE_VERSION)\" \
-DJDK_MAJOR_VERSION=\"$(JDK_MAJOR_VERSION)\" \
-DJDK_MINOR_VERSION=\"$(JDK_MINOR_VERSION)\" \
-DARCH=\"$(LIBARCH)\" \
-DGAMMA \
-DLAUNCHER_TYPE=\"gamma\" \
-DLINK_INTO_$(LINK_INTO) \
$(TARGET_DEFINES)
ifeq ($(LINK_INTO),AOUT)
LAUNCHER.o = launcher.o $(JVM_OBJ_FILES)
LAUNCHER_MAPFILE = mapfile_extended
LFLAGS_LAUNCHER$(LDNOMAP) += $(MAPFLAG:FILENAME=$(LAUNCHER_MAPFILE))
LIBS_LAUNCHER += $(LIBS)
else
LAUNCHER.o = launcher.o
LFLAGS_LAUNCHER += -L `pwd`
LIBS_LAUNCHER += -l$(JVM) $(LIBS)
endif
LINK_LAUNCHER = $(LINK.CXX)
LINK_LAUNCHER/PRE_HOOK = $(LINK_LIB.CXX/PRE_HOOK)
LINK_LAUNCHER/POST_HOOK = $(LINK_LIB.CXX/POST_HOOK)
ifeq ("${Platform_compiler}", "sparcWorks")
# Enable the following LAUNCHERFLAGS addition if you need to compare the
# built ELF objects.
#
# The -g option makes static data global and the "-W0,-noglobal"
# option tells the compiler to not globalize static data using a unique
# globalization prefix. Instead force the use of a static globalization
# prefix based on the source filepath so the objects from two identical
# compilations are the same.
#
# Note: The blog says to use "-W0,-xglobalstatic", but that doesn't
# seem to work. I got "-W0,-noglobal" from Kelly and that works.
#LAUNCHERFLAGS += -W0,-noglobal
endif # Platform_compiler == sparcWorks
LAUNCHER_OUT = launcher
SUFFIXES += .d
SOURCES := $(shell find $(LAUNCHERDIR) -name "*.c")
SOURCES_SHARE := $(shell find $(LAUNCHERDIR_SHARE) -name "*.c")
OBJS := $(patsubst $(LAUNCHERDIR)/%.c,$(LAUNCHER_OUT)/%.o,$(SOURCES)) $(patsubst $(LAUNCHERDIR_SHARE)/%.c,$(LAUNCHER_OUT)/%.o,$(SOURCES_SHARE))
DEPFILES := $(patsubst %.o,%.d,$(OBJS))
-include $(DEPFILES)
$(LAUNCHER_OUT)/%.o: $(LAUNCHERDIR_SHARE)/%.c
$(QUIETLY) [ -d $(LAUNCHER_OUT) ] || { mkdir -p $(LAUNCHER_OUT); }
$(QUIETLY) $(CC) -g -o $@ -c $< -MMD $(LAUNCHERFLAGS) $(CXXFLAGS)
$(LAUNCHER_OUT)/%.o: $(LAUNCHERDIR)/%.c
$(QUIETLY) [ -d $(LAUNCHER_OUT) ] || { mkdir -p $(LAUNCHER_OUT); }
$(QUIETLY) $(CC) -g -o $@ -c $< -MMD $(LAUNCHERFLAGS) $(CXXFLAGS)
$(LAUNCHER): $(OBJS) $(LIBJVM) $(LAUNCHER_MAPFILE)
ifeq ($(filter -sbfast -xsbfast, $(CFLAGS_BROWSE)),)
$(QUIETLY) echo Linking launcher...
$(QUIETLY) $(LINK_LAUNCHER/PRE_HOOK)
$(QUIETLY) $(LINK_LAUNCHER) $(LFLAGS_LAUNCHER) -o $@ $(sort $(OBJS)) $(LIBS_LAUNCHER)
$(QUIETLY) $(LINK_LAUNCHER/POST_HOOK)
endif # filter -sbfast -xsbfast
$(LAUNCHER): $(LAUNCHER_SCRIPT)
$(LAUNCHER_SCRIPT): $(LAUNCHERDIR)/launcher.script
$(QUIETLY) sed -e 's/@@LIBARCH@@/$(LIBARCH)/g' $< > $@
$(QUIETLY) chmod +x $@

View file

@ -338,9 +338,6 @@ install_jvm: $(LIBJVM)
#---------------------------------------------------------------------- #----------------------------------------------------------------------
# Other files # Other files
# Gamma launcher
include $(MAKEFILES_DIR)/launcher.make
# Signal interposition library # Signal interposition library
include $(MAKEFILES_DIR)/jsig.make include $(MAKEFILES_DIR)/jsig.make

View file

@ -33,7 +33,7 @@ GENERATED=../generated
BUILD_PCH_FILE=_build_pch_file.obj BUILD_PCH_FILE=_build_pch_file.obj
!endif !endif
default:: $(BUILD_PCH_FILE) $(AOUT) launcher checkAndBuildSA default:: $(BUILD_PCH_FILE) $(AOUT) checkAndBuildSA
!include ../local.make !include ../local.make
!include compile.make !include compile.make
@ -71,4 +71,3 @@ $(AOUT): $(Res_Files) $(Obj_Files) vm.def
!include $(WorkSpace)/make/windows/makefiles/shared.make !include $(WorkSpace)/make/windows/makefiles/shared.make
!include $(WorkSpace)/make/windows/makefiles/sa.make !include $(WorkSpace)/make/windows/makefiles/sa.make
!include $(WorkSpace)/make/windows/makefiles/launcher.make

View file

@ -33,7 +33,7 @@ GENERATED=../generated
BUILD_PCH_FILE=_build_pch_file.obj BUILD_PCH_FILE=_build_pch_file.obj
!endif !endif
default:: $(BUILD_PCH_FILE) $(AOUT) launcher checkAndBuildSA default:: $(BUILD_PCH_FILE) $(AOUT) checkAndBuildSA
!include ../local.make !include ../local.make
!include compile.make !include compile.make
@ -70,4 +70,3 @@ $(AOUT): $(Res_Files) $(Obj_Files) vm.def
!include $(WorkSpace)/make/windows/makefiles/shared.make !include $(WorkSpace)/make/windows/makefiles/shared.make
!include $(WorkSpace)/make/windows/makefiles/sa.make !include $(WorkSpace)/make/windows/makefiles/sa.make
!include $(WorkSpace)/make/windows/makefiles/launcher.make

View file

@ -1,73 +0,0 @@
#
# Copyright (c) 2010, 2012, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 2 only, as
# published by the Free Software Foundation.
#
# This code is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# version 2 for more details (a copy is included in the LICENSE file that
# accompanied this code).
#
# You should have received a copy of the GNU General Public License version
# 2 along with this work; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
# or visit www.oracle.com if you need additional information or have any
# questions.
#
#
LAUNCHER_FLAGS=$(CXX_FLAGS) $(ARCHFLAG) \
/D FULL_VERSION=\"$(HOTSPOT_RELEASE_VERSION)\" \
/D JDK_MAJOR_VERSION=\"$(JDK_MAJOR_VERSION)\" \
/D JDK_MINOR_VERSION=\"$(JDK_MINOR_VERSION)\" \
/D GAMMA \
/D LAUNCHER_TYPE=\"gamma\" \
/D _CRT_SECURE_NO_WARNINGS \
/D _CRT_SECURE_NO_DEPRECATE \
/D LINK_INTO_LIBJVM \
/I $(WorkSpace)\src\os\windows\launcher \
/I $(WorkSpace)\src\share\tools\launcher \
/I $(WorkSpace)\src\share\vm\prims \
/I $(WorkSpace)\src\share\vm \
/I $(WorkSpace)\src\cpu\$(Platform_arch)\vm \
/I $(WorkSpace)\src\os\windows\vm
LD_FLAGS=/manifest $(HS_INTERNAL_NAME).lib kernel32.lib user32.lib /nologo /machine:$(MACHINE) /map /debug /subsystem:console
!if "$(COMPILER_NAME)" == "VS2005"
# This VS2005 compiler has /GS as a default and requires bufferoverflowU.lib
# on the link command line, otherwise we get missing __security_check_cookie
# externals at link time. Even with /GS-, you need bufferoverflowU.lib.
BUFFEROVERFLOWLIB = bufferoverflowU.lib
LD_FLAGS = $(LD_FLAGS) $(BUFFEROVERFLOWLIB)
!endif
!if "$(COMPILER_NAME)" == "VS2010" && "$(BUILDARCH)" == "i486"
LD_FLAGS = /SAFESEH $(LD_FLAGS)
!endif
LAUNCHERDIR = $(WorkSpace)/src/os/windows/launcher
LAUNCHERDIR_SHARE = $(WorkSpace)/src/share/tools/launcher
OUTDIR = launcher
{$(LAUNCHERDIR)}.c{$(OUTDIR)}.obj:
-mkdir $(OUTDIR) 2>NUL >NUL
$(CXX) $(LAUNCHER_FLAGS) /c /Fo$@ $<
{$(LAUNCHERDIR_SHARE)}.c{$(OUTDIR)}.obj:
-mkdir $(OUTDIR) 2>NUL >NUL
$(CXX) $(LAUNCHER_FLAGS) /c /Fo$@ $<
$(OUTDIR)\*.obj: $(LAUNCHERDIR)\*.c $(LAUNCHERDIR)\*.h $(LAUNCHERDIR_SHARE)\*.c $(LAUNCHERDIR_SHARE)\*.h
launcher: $(OUTDIR)\java.obj $(OUTDIR)\java_md.obj $(OUTDIR)\jli_util.obj
echo $(JAVA_HOME) > jdkpath.txt
$(LD) $(LD_FLAGS) /out:hotspot.exe $**

View file

@ -32,7 +32,7 @@ GENERATED=../generated
BUILD_PCH_FILE=_build_pch_file.obj BUILD_PCH_FILE=_build_pch_file.obj
!endif !endif
default:: $(BUILD_PCH_FILE) $(AOUT) launcher checkAndBuildSA default:: $(BUILD_PCH_FILE) $(AOUT) checkAndBuildSA
!include ../local.make !include ../local.make
!include compile.make !include compile.make
@ -73,4 +73,3 @@ $(AOUT): $(Res_Files) $(Obj_Files) vm.def
!include $(WorkSpace)/make/windows/makefiles/shared.make !include $(WorkSpace)/make/windows/makefiles/shared.make
!include $(WorkSpace)/make/windows/makefiles/sa.make !include $(WorkSpace)/make/windows/makefiles/sa.make
!include $(WorkSpace)/make/windows/makefiles/launcher.make

View file

@ -59,7 +59,6 @@ ProjectCreatorIncludesPRIVATE=\
-relativeSrcInclude src \ -relativeSrcInclude src \
-absoluteSrcInclude $(HOTSPOTBUILDSPACE) \ -absoluteSrcInclude $(HOTSPOTBUILDSPACE) \
-ignorePath $(HOTSPOTBUILDSPACE) \ -ignorePath $(HOTSPOTBUILDSPACE) \
-ignorePath launcher \
-ignorePath share\vm\adlc \ -ignorePath share\vm\adlc \
-ignorePath share\vm\shark \ -ignorePath share\vm\shark \
-ignorePath share\tools \ -ignorePath share\tools \
@ -105,7 +104,6 @@ ProjectCreatorIDEOptions=\
-define ALIGN_STACK_FRAMES \ -define ALIGN_STACK_FRAMES \
-define VM_LITTLE_ENDIAN \ -define VM_LITTLE_ENDIAN \
-prelink "" "Generating vm.def..." "cd $(HOTSPOTBUILDSPACE)\%f\%b set HOTSPOTMKSHOME=$(HOTSPOTMKSHOME) set JAVA_HOME=$(HOTSPOTJDKDIST) $(HOTSPOTMKSHOME)\sh $(HOTSPOTWORKSPACE)\make\windows\build_vm_def.sh $(LD_VER)" \ -prelink "" "Generating vm.def..." "cd $(HOTSPOTBUILDSPACE)\%f\%b set HOTSPOTMKSHOME=$(HOTSPOTMKSHOME) set JAVA_HOME=$(HOTSPOTJDKDIST) $(HOTSPOTMKSHOME)\sh $(HOTSPOTWORKSPACE)\make\windows\build_vm_def.sh $(LD_VER)" \
-postbuild "" "Building hotspot.exe..." "cd $(HOTSPOTBUILDSPACE)\%f\%b set HOTSPOTMKSHOME=$(HOTSPOTMKSHOME) nmake -f $(HOTSPOTWORKSPACE)\make\windows\projectfiles\common\Makefile LOCAL_MAKE=$(HOTSPOTBUILDSPACE)\%f\local.make JAVA_HOME=$(HOTSPOTJDKDIST) launcher" \
-ignoreFile jsig.c \ -ignoreFile jsig.c \
-ignoreFile jvmtiEnvRecommended.cpp \ -ignoreFile jvmtiEnvRecommended.cpp \
-ignoreFile jvmtiEnvStub.cpp \ -ignoreFile jvmtiEnvStub.cpp \

View file

@ -65,7 +65,6 @@ JvmtiOutDir=$(HOTSPOTBUILDSPACE)\$(Variant)\generated\jvmtifiles
!endif !endif
HS_INTERNAL_NAME=jvm HS_INTERNAL_NAME=jvm
!include $(HOTSPOTWORKSPACE)/make/windows/makefiles/launcher.make
default:: $(AdditionalTargets) $(JvmtiGeneratedFiles) default:: $(AdditionalTargets) $(JvmtiGeneratedFiles)

File diff suppressed because it is too large Load diff

View file

@ -1,82 +0,0 @@
/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef JAVA_MD_H
#define JAVA_MD_H
#include <limits.h>
#include <unistd.h>
#include <sys/param.h>
#ifndef GAMMA
#include "manifest_info.h"
#endif
#include "jli_util.h"
#define PATH_SEPARATOR ':'
#define FILESEP "/"
#define FILE_SEPARATOR '/'
#define IS_FILE_SEPARATOR(c) ((c) == '/')
#ifndef MAXNAMELEN
#define MAXNAMELEN PATH_MAX
#endif
#ifdef JAVA_ARGS
/*
* ApplicationHome is prepended to each of these entries; the resulting
* strings are concatenated (separated by PATH_SEPARATOR) and used as the
* value of -cp option to the launcher.
*/
#ifndef APP_CLASSPATH
#define APP_CLASSPATH { "/lib/tools.jar", "/classes" }
#endif
#endif
#ifdef HAVE_GETHRTIME
/*
* Support for doing cheap, accurate interval timing.
*/
#include <sys/time.h>
#define CounterGet() (gethrtime()/1000)
#define Counter2Micros(counts) (counts)
#else
#define CounterGet() (0)
#define Counter2Micros(counts) (1)
#endif /* HAVE_GETHRTIME */
#ifdef _LP64
#define JLONG_FORMAT "%ld"
#else
#define JLONG_FORMAT "%lld"
#endif
/*
* Function prototypes.
*/
#ifndef GAMMA
char *LocateJRE(manifest_info *info);
void ExecJRE(char *jre, char **argv);
#endif
int UnsetEnv(char *name);
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,83 +0,0 @@
/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef JAVA_MD_H
#define JAVA_MD_H
#include <jni.h>
#include <windows.h>
#include <io.h>
#ifndef GAMMA
#include "manifest_info.h"
#endif
#include "jli_util.h"
#ifdef GAMMA
#define stricmp _stricmp
#define strnicmp _strnicmp
#define snprintf _snprintf
#define strdup _strdup
#endif
#define PATH_SEPARATOR ';'
#define FILESEP "\\"
#define FILE_SEPARATOR '\\'
#define IS_FILE_SEPARATOR(c) ((c) == '\\' || (c) == '/')
#define MAXPATHLEN MAX_PATH
#define MAXNAMELEN MAX_PATH
#ifdef JAVA_ARGS
/*
* ApplicationHome is prepended to each of these entries; the resulting
* strings are concatenated (separated by PATH_SEPARATOR) and used as the
* value of -cp option to the launcher.
*/
#ifndef APP_CLASSPATH
#define APP_CLASSPATH { "\\lib\\tools.jar", "\\classes" }
#endif
#endif
/*
* Support for doing cheap, accurate interval timing.
*/
extern jlong CounterGet(void);
extern jlong Counter2Micros(jlong counts);
#ifdef JAVAW
#define main _main
extern int _main(int argc, char **argv);
#endif
#define JLONG_FORMAT "%I64d"
/*
* Function prototypes.
*/
#ifndef GAMMA
char *LocateJRE(manifest_info *info);
void ExecJRE(char *jre, char **argv);
#endif
int UnsetEnv(char *name);
#endif

View file

@ -65,6 +65,7 @@ class BuildConfig {
String sourceBase = getFieldString(null, "SourceBase"); String sourceBase = getFieldString(null, "SourceBase");
String buildSpace = getFieldString(null, "BuildSpace"); String buildSpace = getFieldString(null, "BuildSpace");
String outDir = buildBase; String outDir = buildBase;
String jdkTargetRoot = getFieldString(null, "JdkTargetRoot");
put("Id", flavourBuild); put("Id", flavourBuild);
put("OutputDir", outDir); put("OutputDir", outDir);
@ -72,6 +73,7 @@ class BuildConfig {
put("BuildBase", buildBase); put("BuildBase", buildBase);
put("BuildSpace", buildSpace); put("BuildSpace", buildSpace);
put("OutputDll", outDir + Util.sep + outDll); put("OutputDll", outDir + Util.sep + outDll);
put("JdkTargetRoot", jdkTargetRoot);
context = new String [] {flavourBuild, flavour, build, null}; context = new String [] {flavourBuild, flavour, build, null};
} }

View file

@ -98,11 +98,6 @@ public class WinGammaPlatformVC10 extends WinGammaPlatformVC7 {
tagV(cfg.getV("LinkerFlags")); tagV(cfg.getV("LinkerFlags"));
endTag(); endTag();
startTag("PostBuildEvent");
tagData("Message", BuildConfig.getFieldString(null, "PostbuildDescription"));
tagData("Command", cfg.expandFormat(BuildConfig.getFieldString(null, "PostbuildCommand").replace("\t", "\r\n")));
endTag();
startTag("PreLinkEvent"); startTag("PreLinkEvent");
tagData("Message", BuildConfig.getFieldString(null, "PrelinkDescription")); tagData("Message", BuildConfig.getFieldString(null, "PrelinkDescription"));
tagData("Command", cfg.expandFormat(BuildConfig.getFieldString(null, "PrelinkCommand").replace("\t", "\r\n"))); tagData("Command", cfg.expandFormat(BuildConfig.getFieldString(null, "PrelinkCommand").replace("\t", "\r\n")));
@ -141,7 +136,9 @@ public class WinGammaPlatformVC10 extends WinGammaPlatformVC7 {
for (BuildConfig cfg : allConfigs) { for (BuildConfig cfg : allConfigs) {
startTag(cfg, "PropertyGroup"); startTag(cfg, "PropertyGroup");
tagData("LocalDebuggerCommand", "$(TargetDir)/hotspot.exe"); tagData("LocalDebuggerCommand", cfg.get("JdkTargetRoot") + "\\bin\\java.exe");
tagData("LocalDebuggerCommandArguments", "-XXaltjvm=$(TargetDir) -Dsun.java.launcher=gamma");
tagData("LocalDebuggerEnvironment", "JAVA_HOME=" + cfg.get("JdkTargetRoot"));
endTag(); endTag();
} }

File diff suppressed because it is too large Load diff

View file

@ -1,110 +0,0 @@
/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef _JAVA_H_
#define _JAVA_H_
/*
* Get system specific defines.
*/
#include "jni.h"
#include "java_md.h"
#include "jli_util.h"
/*
* Pointers to the needed JNI invocation API, initialized by LoadJavaVM.
*/
typedef jint (JNICALL *CreateJavaVM_t)(JavaVM **pvm, void **env, void *args);
typedef jint (JNICALL *GetDefaultJavaVMInitArgs_t)(void *args);
typedef struct {
CreateJavaVM_t CreateJavaVM;
GetDefaultJavaVMInitArgs_t GetDefaultJavaVMInitArgs;
} InvocationFunctions;
/*
* Prototypes for launcher functions in the system specific java_md.c.
*/
jboolean
LoadJavaVM(const char *jvmpath, InvocationFunctions *ifn);
void
GetXUsagePath(char *buf, jint bufsize);
jboolean
GetApplicationHome(char *buf, jint bufsize);
const char *
GetArch();
void CreateExecutionEnvironment(int *_argc,
char ***_argv,
char jrepath[],
jint so_jrepath,
char jvmpath[],
jint so_jvmpath,
char **original_argv);
/*
* Report an error message to stderr or a window as appropriate. The
* flag always is set to JNI_TRUE if message is to be reported to both
* strerr and windows and set to JNI_FALSE if the message should only
* be sent to a window.
*/
void ReportErrorMessage(char * message, jboolean always);
void ReportErrorMessage2(char * format, char * string, jboolean always);
/*
* Report an exception which terminates the vm to stderr or a window
* as appropriate.
*/
void ReportExceptionDescription(JNIEnv * env);
jboolean RemovableMachineDependentOption(char * option);
void PrintMachineDependentOptions();
/*
* Block current thread and continue execution in new thread
*/
int ContinueInNewThread(int (JNICALL *continuation)(void *),
jlong stack_size, void * args);
/* sun.java.launcher.* platform properties. */
void SetJavaLauncherPlatformProps(void);
/*
* Functions defined in java.c and used in java_md.c.
*/
jint ReadKnownVMs(const char *jrepath, char * arch, jboolean speculative);
char *CheckJvmType(int *argc, char ***argv, jboolean speculative);
void AddOption(char *str, void *info);
/*
* Make launcher spit debug output.
*/
extern jboolean _launcher_debug;
#endif /* _JAVA_H_ */

View file

@ -1,89 +0,0 @@
/*
* Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include <stdio.h>
#include <string.h>
#include "jli_util.h"
#ifdef GAMMA
#ifdef TARGET_OS_FAMILY_windows
#define strdup _strdup
#endif
#endif
/*
* Returns a pointer to a block of at least 'size' bytes of memory.
* Prints error message and exits if the memory could not be allocated.
*/
void *
JLI_MemAlloc(size_t size)
{
void *p = malloc(size);
if (p == 0) {
perror("malloc");
exit(1);
}
return p;
}
/*
* Equivalent to realloc(size).
* Prints error message and exits if the memory could not be reallocated.
*/
void *
JLI_MemRealloc(void *ptr, size_t size)
{
void *p = realloc(ptr, size);
if (p == 0) {
perror("realloc");
exit(1);
}
return p;
}
/*
* Wrapper over strdup(3C) which prints an error message and exits if memory
* could not be allocated.
*/
char *
JLI_StringDup(const char *s1)
{
char *s = strdup(s1);
if (s == NULL) {
perror("strdup");
exit(1);
}
return s;
}
/*
* Very equivalent to free(ptr).
* Here to maintain pairing with the above routines.
*/
void
JLI_MemFree(void *ptr)
{
free(ptr);
}

View file

@ -1,35 +0,0 @@
/*
* Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef _JLI_UTIL_H
#define _JLI_UTIL_H
#include <stdlib.h>
void *JLI_MemAlloc(size_t size);
void *JLI_MemRealloc(void *ptr, size_t size);
char *JLI_StringDup(const char *s1);
void JLI_MemFree(void *ptr);
#endif /* _JLI_UTIL_H */

View file

@ -1,496 +0,0 @@
/*
* Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
/*
* Class-Path Wildcards
*
* The syntax for wildcards is a single asterisk. The class path
* foo/"*", e.g., loads all jar files in the directory named foo.
* (This requires careful quotation when used in shell scripts.)
*
* Only files whose names end in .jar or .JAR are matched.
* Files whose names end in .zip, or which have a particular
* magic number, regardless of filename extension, are not
* matched.
*
* Files are considered regardless of whether or not they are
* "hidden" in the UNIX sense, i.e., have names beginning with '.'.
*
* A wildcard only matches jar files, not class files in the same
* directory. If you want to load both class files and jar files from
* a single directory foo then you can say foo:foo/"*", or foo/"*":foo
* if you want the jar files to take precedence.
*
* Subdirectories are not searched recursively, i.e., foo/"*" only
* looks for jar files in foo, not in foo/bar, foo/baz, etc.
*
* Expansion of wildcards is done early, prior to the invocation of a
* program's main method, rather than late, during the class-loading
* process itself. Each element of the input class path containing a
* wildcard is replaced by the (possibly empty) sequence of elements
* generated by enumerating the jar files in the named directory. If
* the directory foo contains a.jar, b.jar, and c.jar,
* e.g., then the class path foo/"*" is expanded into
* foo/a.jar:foo/b.jar:foo/c.jar, and that string would be the value
* of the system property java.class.path.
*
* The order in which the jar files in a directory are enumerated in
* the expanded class path is not specified and may vary from platform
* to platform and even from moment to moment on the same machine. A
* well-constructed application should not depend upon any particular
* order. If a specific order is required then the jar files can be
* enumerated explicitly in the class path.
*
* The CLASSPATH environment variable is not treated any differently
* from the -classpath (equiv. -cp) command-line option,
* i.e. wildcards are honored in all these cases.
*
* Class-path wildcards are not honored in the Class-Path jar-manifest
* header.
*
* Class-path wildcards are honored not only by the Java launcher but
* also by most other command-line tools that accept class paths, and
* in particular by javac and javadoc.
*
* Class-path wildcards are not honored in any other kind of path, and
* especially not in the bootstrap class path, which is a mere
* artifact of our implementation and not something that developers
* should use.
*
* Classpath wildcards are only expanded in the Java launcher code,
* supporting the use of wildcards on the command line and in the
* CLASSPATH environment variable. We do not support the use of
* wildcards by applications that embed the JVM.
*/
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include "java.h" /* Strictly for PATH_SEPARATOR/FILE_SEPARATOR */
#include "jli_util.h"
#ifdef _WIN32
#include <windows.h>
#else /* Unix */
#include <unistd.h>
#include <dirent.h>
#endif /* Unix */
static int
exists(const char* filename)
{
#ifdef _WIN32
return _access(filename, 0) == 0;
#else
return access(filename, F_OK) == 0;
#endif
}
#define NEW_(TYPE) ((TYPE) JLI_MemAlloc(sizeof(struct TYPE##_)))
/*
* Wildcard directory iteration.
* WildcardIterator_for(wildcard) returns an iterator.
* Each call to that iterator's next() method returns the basename
* of an entry in the wildcard's directory. The basename's memory
* belongs to the iterator. The caller is responsible for prepending
* the directory name and file separator, if necessary.
* When done with the iterator, call the close method to clean up.
*/
typedef struct WildcardIterator_* WildcardIterator;
#ifdef _WIN32
struct WildcardIterator_
{
HANDLE handle;
char *firstFile; /* Stupid FindFirstFile...FindNextFile */
};
static WildcardIterator
WildcardIterator_for(const char *wildcard)
{
WIN32_FIND_DATA find_data;
WildcardIterator it = NEW_(WildcardIterator);
HANDLE handle = FindFirstFile(wildcard, &find_data);
if (handle == INVALID_HANDLE_VALUE)
return NULL;
it->handle = handle;
it->firstFile = find_data.cFileName;
return it;
}
static char *
WildcardIterator_next(WildcardIterator it)
{
WIN32_FIND_DATA find_data;
if (it->firstFile != NULL) {
char *firstFile = it->firstFile;
it->firstFile = NULL;
return firstFile;
}
return FindNextFile(it->handle, &find_data)
? find_data.cFileName : NULL;
}
static void
WildcardIterator_close(WildcardIterator it)
{
if (it) {
FindClose(it->handle);
JLI_MemFree(it->firstFile);
JLI_MemFree(it);
}
}
#else /* Unix */
struct WildcardIterator_
{
DIR *dir;
};
static WildcardIterator
WildcardIterator_for(const char *wildcard)
{
DIR *dir;
int wildlen = strlen(wildcard);
if (wildlen < 2) {
dir = opendir(".");
} else {
char *dirname = JLI_StringDup(wildcard);
dirname[wildlen - 1] = '\0';
dir = opendir(dirname);
JLI_MemFree(dirname);
}
if (dir == NULL)
return NULL;
else {
WildcardIterator it = NEW_(WildcardIterator);
it->dir = dir;
return it;
}
}
static char *
WildcardIterator_next(WildcardIterator it)
{
struct dirent* dirp = readdir(it->dir);
return dirp ? dirp->d_name : NULL;
}
static void
WildcardIterator_close(WildcardIterator it)
{
if (it) {
closedir(it->dir);
JLI_MemFree(it);
}
}
#endif /* Unix */
static int
equal(const char *s1, const char *s2)
{
return strcmp(s1, s2) == 0;
}
/*
* FileList ADT - a dynamic list of C filenames
*/
struct FileList_
{
char **files;
int size;
int capacity;
};
typedef struct FileList_ *FileList;
static FileList
FileList_new(int capacity)
{
FileList fl = NEW_(FileList);
fl->capacity = capacity;
fl->files = (char **) JLI_MemAlloc(capacity * sizeof(fl->files[0]));
fl->size = 0;
return fl;
}
#ifdef DEBUG_WILDCARD
static void
FileList_print(FileList fl)
{
int i;
putchar('[');
for (i = 0; i < fl->size; i++) {
if (i > 0) printf(", ");
printf("\"%s\"",fl->files[i]);
}
putchar(']');
}
#endif
static void
FileList_free(FileList fl)
{
if (fl) {
if (fl->files) {
int i;
for (i = 0; i < fl->size; i++)
JLI_MemFree(fl->files[i]);
JLI_MemFree(fl->files);
}
JLI_MemFree(fl);
}
}
static void
FileList_ensureCapacity(FileList fl, int capacity)
{
if (fl->capacity < capacity) {
while (fl->capacity < capacity)
fl->capacity *= 2;
fl->files = JLI_MemRealloc(fl->files,
fl->capacity * sizeof(fl->files[0]));
}
}
static void
FileList_add(FileList fl, char *file)
{
FileList_ensureCapacity(fl, fl->size+1);
fl->files[fl->size++] = file;
}
static void
FileList_addSubstring(FileList fl, const char *beg, int len)
{
char *filename = (char *) JLI_MemAlloc(len+1);
memcpy(filename, beg, len);
filename[len] = '\0';
FileList_ensureCapacity(fl, fl->size+1);
fl->files[fl->size++] = filename;
}
static char *
FileList_join(FileList fl, char sep)
{
int i;
int size;
char *path;
char *p;
for (i = 0, size = 1; i < fl->size; i++)
size += strlen(fl->files[i]) + 1;
path = JLI_MemAlloc(size);
for (i = 0, p = path; i < fl->size; i++) {
int len = strlen(fl->files[i]);
if (i > 0) *p++ = sep;
memcpy(p, fl->files[i], len);
p += len;
}
*p = '\0';
return path;
}
static FileList
FileList_split(const char *path, char sep)
{
const char *p, *q;
int len = strlen(path);
int count;
FileList fl;
for (count = 1, p = path; p < path + len; p++)
count += (*p == sep);
fl = FileList_new(count);
for (p = path;;) {
for (q = p; q <= path + len; q++) {
if (*q == sep || *q == '\0') {
FileList_addSubstring(fl, p, q - p);
if (*q == '\0')
return fl;
p = q + 1;
}
}
}
}
static int
isJarFileName(const char *filename)
{
int len = strlen(filename);
return (len >= 4) &&
(filename[len - 4] == '.') &&
(equal(filename + len - 3, "jar") ||
equal(filename + len - 3, "JAR")) &&
/* Paranoia: Maybe filename is "DIR:foo.jar" */
(strchr(filename, PATH_SEPARATOR) == NULL);
}
static char *
wildcardConcat(const char *wildcard, const char *basename)
{
int wildlen = strlen(wildcard);
int baselen = strlen(basename);
char *filename = (char *) JLI_MemAlloc(wildlen + baselen);
/* Replace the trailing '*' with basename */
memcpy(filename, wildcard, wildlen-1);
memcpy(filename+wildlen-1, basename, baselen+1);
return filename;
}
static FileList
wildcardFileList(const char *wildcard)
{
const char *basename;
FileList fl = FileList_new(16);
WildcardIterator it = WildcardIterator_for(wildcard);
if (it == NULL) {
FileList_free(fl);
return NULL;
}
while ((basename = WildcardIterator_next(it)) != NULL)
if (isJarFileName(basename))
FileList_add(fl, wildcardConcat(wildcard, basename));
WildcardIterator_close(it);
return fl;
}
static int
isWildcard(const char *filename)
{
int len = strlen(filename);
return (len > 0) &&
(filename[len - 1] == '*') &&
(len == 1 || IS_FILE_SEPARATOR(filename[len - 2])) &&
(! exists(filename));
}
static void
FileList_expandWildcards(FileList fl)
{
int i, j;
for (i = 0; i < fl->size; i++) {
if (isWildcard(fl->files[i])) {
FileList expanded = wildcardFileList(fl->files[i]);
if (expanded != NULL && expanded->size > 0) {
JLI_MemFree(fl->files[i]);
FileList_ensureCapacity(fl, fl->size + expanded->size);
for (j = fl->size - 1; j >= i+1; j--)
fl->files[j+expanded->size-1] = fl->files[j];
for (j = 0; j < expanded->size; j++)
fl->files[i+j] = expanded->files[j];
i += expanded->size - 1;
fl->size += expanded->size - 1;
/* fl expropriates expanded's elements. */
expanded->size = 0;
}
FileList_free(expanded);
}
}
}
const char *
JLI_WildcardExpandClasspath(const char *classpath)
{
char *expanded;
FileList fl;
if (strchr(classpath, '*') == NULL)
return classpath;
fl = FileList_split(classpath, PATH_SEPARATOR);
FileList_expandWildcards(fl);
expanded = FileList_join(fl, PATH_SEPARATOR);
FileList_free(fl);
if (getenv("_JAVA_LAUNCHER_DEBUG") != 0)
printf("Expanded wildcards:\n"
" before: \"%s\"\n"
" after : \"%s\"\n",
classpath, expanded);
return expanded;
}
#ifdef DEBUG_WILDCARD
static void
wildcardExpandArgv(const char ***argv)
{
int i;
for (i = 0; (*argv)[i]; i++) {
if (equal((*argv)[i], "-cp") ||
equal((*argv)[i], "-classpath")) {
i++;
(*argv)[i] = wildcardExpandClasspath((*argv)[i]);
}
}
}
static void
debugPrintArgv(char *argv[])
{
int i;
putchar('[');
for (i = 0; argv[i]; i++) {
if (i > 0) printf(", ");
printf("\"%s\"", argv[i]);
}
printf("]\n");
}
int
main(int argc, char *argv[])
{
argv[0] = "java";
wildcardExpandArgv((const char***)&argv);
debugPrintArgv(argv);
/* execvp("java", argv); */
return 0;
}
#endif /* DEBUG_WILDCARD */
/* Cute little perl prototype implementation....
my $sep = ($^O =~ /^(Windows|cygwin)/) ? ";" : ":";
sub expand($) {
opendir DIR, $_[0] or return $_[0];
join $sep, map {"$_[0]/$_"} grep {/\.(jar|JAR)$/} readdir DIR;
}
sub munge($) {
join $sep,
map {(! -r $_ and s/[\/\\]+\*$//) ? expand $_ : $_} split $sep, $_[0];
}
for (my $i = 0; $i < @ARGV - 1; $i++) {
$ARGV[$i+1] = munge $ARGV[$i+1] if $ARGV[$i] =~ /^-c(p|lasspath)$/;
}
$ENV{CLASSPATH} = munge $ENV{CLASSPATH} if exists $ENV{CLASSPATH};
@ARGV = ("java", @ARGV);
print "@ARGV\n";
exec @ARGV;
*/

View file

@ -1,34 +0,0 @@
/*
* Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef WILDCARD_H_
#define WILDCARD_H_
#ifdef EXPAND_CLASSPATH_WILDCARDS
const char *JLI_WildcardExpandClasspath(const char *classpath);
#else
#define JLI_WildcardExpandClasspath(s) (s)
#endif
#endif /* include guard */

View file

@ -211,12 +211,41 @@ bool ciInstanceKlass::is_java_lang_Object() const {
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciInstanceKlass::uses_default_loader // ciInstanceKlass::uses_default_loader
bool ciInstanceKlass::uses_default_loader() { bool ciInstanceKlass::uses_default_loader() const {
// Note: We do not need to resolve the handle or enter the VM // Note: We do not need to resolve the handle or enter the VM
// in order to test null-ness. // in order to test null-ness.
return _loader == NULL; return _loader == NULL;
} }
// ------------------------------------------------------------------
/**
* Return basic type of boxed value for box klass or T_OBJECT if not.
*/
BasicType ciInstanceKlass::box_klass_type() const {
if (uses_default_loader() && is_loaded()) {
return SystemDictionary::box_klass_type(get_Klass());
} else {
return T_OBJECT;
}
}
/**
* Is this boxing klass?
*/
bool ciInstanceKlass::is_box_klass() const {
return is_java_primitive(box_klass_type());
}
/**
* Is this boxed value offset?
*/
bool ciInstanceKlass::is_boxed_value_offset(int offset) const {
BasicType bt = box_klass_type();
return is_java_primitive(bt) &&
(offset == java_lang_boxing_object::value_offset_in_bytes(bt));
}
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciInstanceKlass::is_in_package // ciInstanceKlass::is_in_package
// //

View file

@ -217,10 +217,14 @@ public:
ciInstanceKlass* implementor(); ciInstanceKlass* implementor();
// Is the defining class loader of this class the default loader? // Is the defining class loader of this class the default loader?
bool uses_default_loader(); bool uses_default_loader() const;
bool is_java_lang_Object() const; bool is_java_lang_Object() const;
BasicType box_klass_type() const;
bool is_box_klass() const;
bool is_boxed_value_offset(int offset) const;
// Is this klass in the given package? // Is this klass in the given package?
bool is_in_package(const char* packagename) { bool is_in_package(const char* packagename) {
return is_in_package(packagename, (int) strlen(packagename)); return is_in_package(packagename, (int) strlen(packagename));

View file

@ -1179,6 +1179,44 @@ bool ciMethod::has_jsrs () const { FETCH_FLAG_FROM_VM(has_jsrs);
bool ciMethod::is_accessor () const { FETCH_FLAG_FROM_VM(is_accessor); } bool ciMethod::is_accessor () const { FETCH_FLAG_FROM_VM(is_accessor); }
bool ciMethod::is_initializer () const { FETCH_FLAG_FROM_VM(is_initializer); } bool ciMethod::is_initializer () const { FETCH_FLAG_FROM_VM(is_initializer); }
bool ciMethod::is_boxing_method() const {
if (holder()->is_box_klass()) {
switch (intrinsic_id()) {
case vmIntrinsics::_Boolean_valueOf:
case vmIntrinsics::_Byte_valueOf:
case vmIntrinsics::_Character_valueOf:
case vmIntrinsics::_Short_valueOf:
case vmIntrinsics::_Integer_valueOf:
case vmIntrinsics::_Long_valueOf:
case vmIntrinsics::_Float_valueOf:
case vmIntrinsics::_Double_valueOf:
return true;
default:
return false;
}
}
return false;
}
bool ciMethod::is_unboxing_method() const {
if (holder()->is_box_klass()) {
switch (intrinsic_id()) {
case vmIntrinsics::_booleanValue:
case vmIntrinsics::_byteValue:
case vmIntrinsics::_charValue:
case vmIntrinsics::_shortValue:
case vmIntrinsics::_intValue:
case vmIntrinsics::_longValue:
case vmIntrinsics::_floatValue:
case vmIntrinsics::_doubleValue:
return true;
default:
return false;
}
}
return false;
}
BCEscapeAnalyzer *ciMethod::get_bcea() { BCEscapeAnalyzer *ciMethod::get_bcea() {
#ifdef COMPILER2 #ifdef COMPILER2
if (_bcea == NULL) { if (_bcea == NULL) {

View file

@ -298,6 +298,8 @@ class ciMethod : public ciMetadata {
bool is_initializer () const; bool is_initializer () const;
bool can_be_statically_bound() const { return _can_be_statically_bound; } bool can_be_statically_bound() const { return _can_be_statically_bound; }
void dump_replay_data(outputStream* st); void dump_replay_data(outputStream* st);
bool is_boxing_method() const;
bool is_unboxing_method() const;
// Print the bytecodes of this method. // Print the bytecodes of this method.
void print_codes_on(outputStream* st); void print_codes_on(outputStream* st);

View file

@ -3028,7 +3028,7 @@ AnnotationArray* ClassFileParser::assemble_annotations(u1* runtime_visible_annot
} }
#ifndef PRODUCT #ifdef ASSERT
static void parseAndPrintGenericSignatures( static void parseAndPrintGenericSignatures(
instanceKlassHandle this_klass, TRAPS) { instanceKlassHandle this_klass, TRAPS) {
assert(ParseAllGenericSignatures == true, "Shouldn't call otherwise"); assert(ParseAllGenericSignatures == true, "Shouldn't call otherwise");
@ -3053,7 +3053,7 @@ static void parseAndPrintGenericSignatures(
} }
} }
} }
#endif // ndef PRODUCT #endif // def ASSERT
instanceKlassHandle ClassFileParser::parse_super_class(int super_class_index, instanceKlassHandle ClassFileParser::parse_super_class(int super_class_index,

View file

@ -49,7 +49,7 @@ extern "C" {
} }
} }
#ifndef PRODUCT #ifdef ASSERT
#define VM_SYMBOL_ENUM_NAME_BODY(name, string) #name "\0" #define VM_SYMBOL_ENUM_NAME_BODY(name, string) #name "\0"
static const char* vm_symbol_enum_names = static const char* vm_symbol_enum_names =
VM_SYMBOLS_DO(VM_SYMBOL_ENUM_NAME_BODY, VM_ALIAS_IGNORE) VM_SYMBOLS_DO(VM_SYMBOL_ENUM_NAME_BODY, VM_ALIAS_IGNORE)
@ -64,7 +64,7 @@ static const char* vm_symbol_enum_name(vmSymbols::SID sid) {
} }
return string; return string;
} }
#endif //PRODUCT #endif //ASSERT
// Put all the VM symbol strings in one place. // Put all the VM symbol strings in one place.
// Makes for a more compact libjvm. // Makes for a more compact libjvm.

View file

@ -68,7 +68,7 @@
template(java_lang_Float, "java/lang/Float") \ template(java_lang_Float, "java/lang/Float") \
template(java_lang_Double, "java/lang/Double") \ template(java_lang_Double, "java/lang/Double") \
template(java_lang_Byte, "java/lang/Byte") \ template(java_lang_Byte, "java/lang/Byte") \
template(java_lang_Byte_Cache, "java/lang/Byte$ByteCache") \ template(java_lang_Byte_ByteCache, "java/lang/Byte$ByteCache") \
template(java_lang_Short, "java/lang/Short") \ template(java_lang_Short, "java/lang/Short") \
template(java_lang_Short_ShortCache, "java/lang/Short$ShortCache") \ template(java_lang_Short_ShortCache, "java/lang/Short$ShortCache") \
template(java_lang_Integer, "java/lang/Integer") \ template(java_lang_Integer, "java/lang/Integer") \

View file

@ -1854,8 +1854,10 @@ void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp
tty->print("%4d ", compile_id); // print compilation number tty->print("%4d ", compile_id); // print compilation number
tty->print("%s ", (is_osr ? "%" : " ")); tty->print("%s ", (is_osr ? "%" : " "));
int code_size = (task->code() == NULL) ? 0 : task->code()->total_size(); if (task->code() != NULL) {
tty->print_cr("size: %d time: %d inlined: %d bytes", code_size, (int)time.milliseconds(), task->num_inlined_bytecodes()); tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
}
tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
} }
if (PrintCodeCacheOnCompilation) if (PrintCodeCacheOnCompilation)

View file

@ -832,7 +832,9 @@ void Method::link_method(methodHandle h_method, TRAPS) {
assert(entry != NULL, "interpreter entry must be non-null"); assert(entry != NULL, "interpreter entry must be non-null");
// Sets both _i2i_entry and _from_interpreted_entry // Sets both _i2i_entry and _from_interpreted_entry
set_interpreter_entry(entry); set_interpreter_entry(entry);
if (is_native() && !is_method_handle_intrinsic()) {
// Don't overwrite already registered native entries.
if (is_native() && !has_native_function()) {
set_native_function( set_native_function(
SharedRuntime::native_method_throw_unsatisfied_link_error_entry(), SharedRuntime::native_method_throw_unsatisfied_link_error_entry(),
!native_bind_event_is_interesting); !native_bind_event_is_interesting);

View file

@ -97,6 +97,11 @@ static bool is_init_with_ea(ciMethod* callee_method,
); );
} }
static bool is_unboxing_method(ciMethod* callee_method, Compile* C) {
// Force inlining unboxing accessor.
return C->eliminate_boxing() && callee_method->is_unboxing_method();
}
// positive filter: should callee be inlined? // positive filter: should callee be inlined?
bool InlineTree::should_inline(ciMethod* callee_method, ciMethod* caller_method, bool InlineTree::should_inline(ciMethod* callee_method, ciMethod* caller_method,
int caller_bci, ciCallProfile& profile, int caller_bci, ciCallProfile& profile,
@ -144,6 +149,7 @@ bool InlineTree::should_inline(ciMethod* callee_method, ciMethod* caller_method,
// bump the max size if the call is frequent // bump the max size if the call is frequent
if ((freq >= InlineFrequencyRatio) || if ((freq >= InlineFrequencyRatio) ||
(call_site_count >= InlineFrequencyCount) || (call_site_count >= InlineFrequencyCount) ||
is_unboxing_method(callee_method, C) ||
is_init_with_ea(callee_method, caller_method, C)) { is_init_with_ea(callee_method, caller_method, C)) {
max_inline_size = C->freq_inline_size(); max_inline_size = C->freq_inline_size();
@ -237,8 +243,25 @@ bool InlineTree::should_not_inline(ciMethod *callee_method,
return false; return false;
} }
if (callee_method->should_not_inline()) {
set_msg("disallowed by CompilerOracle");
return true;
}
#ifndef PRODUCT
if (ciReplay::should_not_inline(callee_method)) {
set_msg("disallowed by ciReplay");
return true;
}
#endif
// Now perform checks which are heuristic // Now perform checks which are heuristic
if (is_unboxing_method(callee_method, C)) {
// Inline unboxing methods.
return false;
}
if (!callee_method->force_inline()) { if (!callee_method->force_inline()) {
if (callee_method->has_compiled_code() && if (callee_method->has_compiled_code() &&
callee_method->instructions_size() > InlineSmallCode) { callee_method->instructions_size() > InlineSmallCode) {
@ -260,18 +283,6 @@ bool InlineTree::should_not_inline(ciMethod *callee_method,
} }
} }
if (callee_method->should_not_inline()) {
set_msg("disallowed by CompilerOracle");
return true;
}
#ifndef PRODUCT
if (ciReplay::should_not_inline(callee_method)) {
set_msg("disallowed by ciReplay");
return true;
}
#endif
if (UseStringCache) { if (UseStringCache) {
// Do not inline StringCache::profile() method used only at the beginning. // Do not inline StringCache::profile() method used only at the beginning.
if (callee_method->name() == ciSymbol::profile_name() && if (callee_method->name() == ciSymbol::profile_name() &&
@ -296,9 +307,8 @@ bool InlineTree::should_not_inline(ciMethod *callee_method,
} }
if (is_init_with_ea(callee_method, caller_method, C)) { if (is_init_with_ea(callee_method, caller_method, C)) {
// Escape Analysis: inline all executed constructors // Escape Analysis: inline all executed constructors
return false;
} else if (!callee_method->was_executed_more_than(MIN2(MinInliningThreshold, } else if (!callee_method->was_executed_more_than(MIN2(MinInliningThreshold,
CompileThreshold >> 1))) { CompileThreshold >> 1))) {
set_msg("executed < MinInliningThreshold times"); set_msg("executed < MinInliningThreshold times");

View file

@ -442,12 +442,15 @@
notproduct(bool, PrintEliminateLocks, false, \ notproduct(bool, PrintEliminateLocks, false, \
"Print out when locks are eliminated") \ "Print out when locks are eliminated") \
\ \
diagnostic(bool, EliminateAutoBox, false, \ product(bool, EliminateAutoBox, true, \
"Private flag to control optimizations for autobox elimination") \ "Control optimizations for autobox elimination") \
\ \
product(intx, AutoBoxCacheMax, 128, \ product(intx, AutoBoxCacheMax, 128, \
"Sets max value cached by the java.lang.Integer autobox cache") \ "Sets max value cached by the java.lang.Integer autobox cache") \
\ \
experimental(bool, AggressiveUnboxing, false, \
"Control optimizations for aggressive boxing elimination") \
\
product(bool, DoEscapeAnalysis, true, \ product(bool, DoEscapeAnalysis, true, \
"Perform escape analysis") \ "Perform escape analysis") \
\ \

View file

@ -125,9 +125,10 @@ void C2Compiler::compile_method(ciEnv* env,
bool subsume_loads = SubsumeLoads; bool subsume_loads = SubsumeLoads;
bool do_escape_analysis = DoEscapeAnalysis && bool do_escape_analysis = DoEscapeAnalysis &&
!env->jvmti_can_access_local_variables(); !env->jvmti_can_access_local_variables();
bool eliminate_boxing = EliminateAutoBox;
while (!env->failing()) { while (!env->failing()) {
// Attempt to compile while subsuming loads into machine instructions. // Attempt to compile while subsuming loads into machine instructions.
Compile C(env, this, target, entry_bci, subsume_loads, do_escape_analysis); Compile C(env, this, target, entry_bci, subsume_loads, do_escape_analysis, eliminate_boxing);
// Check result and retry if appropriate. // Check result and retry if appropriate.
@ -142,6 +143,12 @@ void C2Compiler::compile_method(ciEnv* env,
do_escape_analysis = false; do_escape_analysis = false;
continue; // retry continue; // retry
} }
if (C.has_boxed_value()) {
// Recompile without boxing elimination regardless failure reason.
assert(eliminate_boxing, "must make progress");
eliminate_boxing = false;
continue; // retry
}
// Pass any other failure reason up to the ciEnv. // Pass any other failure reason up to the ciEnv.
// Note that serious, irreversible failures are already logged // Note that serious, irreversible failures are already logged
// on the ciEnv via env->record_method_not_compilable(). // on the ciEnv via env->record_method_not_compilable().

View file

@ -134,7 +134,7 @@ JVMState* DirectCallGenerator::generate(JVMState* jvms) {
kit.C->log()->elem("direct_call bci='%d'", jvms->bci()); kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
} }
CallStaticJavaNode *call = new (kit.C) CallStaticJavaNode(tf(), target, method(), kit.bci()); CallStaticJavaNode *call = new (kit.C) CallStaticJavaNode(kit.C, tf(), target, method(), kit.bci());
_call_node = call; // Save the call node in case we need it later _call_node = call; // Save the call node in case we need it later
if (!is_static) { if (!is_static) {
// Make an explicit receiver null_check as part of this call. // Make an explicit receiver null_check as part of this call.
@ -304,29 +304,34 @@ class LateInlineCallGenerator : public DirectCallGenerator {
void LateInlineCallGenerator::do_late_inline() { void LateInlineCallGenerator::do_late_inline() {
// Can't inline it // Can't inline it
if (call_node() == NULL || call_node()->outcnt() == 0 || CallStaticJavaNode* call = call_node();
call_node()->in(0) == NULL || call_node()->in(0)->is_top()) { if (call == NULL || call->outcnt() == 0 ||
call->in(0) == NULL || call->in(0)->is_top()) {
return; return;
} }
const TypeTuple *r = call_node()->tf()->domain(); const TypeTuple *r = call->tf()->domain();
for (int i1 = 0; i1 < method()->arg_size(); i1++) { for (int i1 = 0; i1 < method()->arg_size(); i1++) {
if (call_node()->in(TypeFunc::Parms + i1)->is_top() && r->field_at(TypeFunc::Parms + i1) != Type::HALF) { if (call->in(TypeFunc::Parms + i1)->is_top() && r->field_at(TypeFunc::Parms + i1) != Type::HALF) {
assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing"); assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
return; return;
} }
} }
if (call_node()->in(TypeFunc::Memory)->is_top()) { if (call->in(TypeFunc::Memory)->is_top()) {
assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing"); assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
return; return;
} }
CallStaticJavaNode* call = call_node(); Compile* C = Compile::current();
// Remove inlined methods from Compiler's lists.
if (call->is_macro()) {
C->remove_macro_node(call);
}
// Make a clone of the JVMState that appropriate to use for driving a parse // Make a clone of the JVMState that appropriate to use for driving a parse
Compile* C = Compile::current(); JVMState* old_jvms = call->jvms();
JVMState* jvms = call->jvms()->clone_shallow(C); JVMState* jvms = old_jvms->clone_shallow(C);
uint size = call->req(); uint size = call->req();
SafePointNode* map = new (C) SafePointNode(size, jvms); SafePointNode* map = new (C) SafePointNode(size, jvms);
for (uint i1 = 0; i1 < size; i1++) { for (uint i1 = 0; i1 < size; i1++) {
@ -340,16 +345,23 @@ void LateInlineCallGenerator::do_late_inline() {
map->set_req(TypeFunc::Memory, mem); map->set_req(TypeFunc::Memory, mem);
} }
// Make enough space for the expression stack and transfer the incoming arguments uint nargs = method()->arg_size();
int nargs = method()->arg_size(); // blow away old call arguments
Node* top = C->top();
for (uint i1 = 0; i1 < nargs; i1++) {
map->set_req(TypeFunc::Parms + i1, top);
}
jvms->set_map(map); jvms->set_map(map);
// Make enough space in the expression stack to transfer
// the incoming arguments and return value.
map->ensure_stack(jvms, jvms->method()->max_stack()); map->ensure_stack(jvms, jvms->method()->max_stack());
if (nargs > 0) { for (uint i1 = 0; i1 < nargs; i1++) {
for (int i1 = 0; i1 < nargs; i1++) { map->set_argument(jvms, i1, call->in(TypeFunc::Parms + i1));
map->set_req(i1 + jvms->argoff(), call->in(TypeFunc::Parms + i1));
}
} }
// This check is done here because for_method_handle_inline() method
// needs jvms for inlined state.
if (!do_late_inline_check(jvms)) { if (!do_late_inline_check(jvms)) {
map->disconnect_inputs(NULL, C); map->disconnect_inputs(NULL, C);
return; return;
@ -480,6 +492,26 @@ CallGenerator* CallGenerator::for_string_late_inline(ciMethod* method, CallGener
return new LateInlineStringCallGenerator(method, inline_cg); return new LateInlineStringCallGenerator(method, inline_cg);
} }
class LateInlineBoxingCallGenerator : public LateInlineCallGenerator {
public:
LateInlineBoxingCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
LateInlineCallGenerator(method, inline_cg) {}
virtual JVMState* generate(JVMState* jvms) {
Compile *C = Compile::current();
C->print_inlining_skip(this);
C->add_boxing_late_inline(this);
JVMState* new_jvms = DirectCallGenerator::generate(jvms);
return new_jvms;
}
};
CallGenerator* CallGenerator::for_boxing_late_inline(ciMethod* method, CallGenerator* inline_cg) {
return new LateInlineBoxingCallGenerator(method, inline_cg);
}
//---------------------------WarmCallGenerator-------------------------------- //---------------------------WarmCallGenerator--------------------------------
// Internal class which handles initial deferral of inlining decisions. // Internal class which handles initial deferral of inlining decisions.

View file

@ -125,6 +125,7 @@ class CallGenerator : public ResourceObj {
static CallGenerator* for_late_inline(ciMethod* m, CallGenerator* inline_cg); static CallGenerator* for_late_inline(ciMethod* m, CallGenerator* inline_cg);
static CallGenerator* for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const); static CallGenerator* for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const);
static CallGenerator* for_string_late_inline(ciMethod* m, CallGenerator* inline_cg); static CallGenerator* for_string_late_inline(ciMethod* m, CallGenerator* inline_cg);
static CallGenerator* for_boxing_late_inline(ciMethod* m, CallGenerator* inline_cg);
// How to make a call but defer the decision whether to inline or not. // How to make a call but defer the decision whether to inline or not.
static CallGenerator* for_warm_call(WarmCallInfo* ci, static CallGenerator* for_warm_call(WarmCallInfo* ci,

View file

@ -523,7 +523,9 @@ void JVMState::dump_spec(outputStream *st) const {
void JVMState::dump_on(outputStream* st) const { void JVMState::dump_on(outputStream* st) const {
if (_map && !((uintptr_t)_map & 1)) { bool print_map = _map && !((uintptr_t)_map & 1) &&
((caller() == NULL) || (caller()->map() != _map));
if (print_map) {
if (_map->len() > _map->req()) { // _map->has_exceptions() if (_map->len() > _map->req()) { // _map->has_exceptions()
Node* ex = _map->in(_map->req()); // _map->next_exception() Node* ex = _map->in(_map->req()); // _map->next_exception()
// skip the first one; it's already being printed // skip the first one; it's already being printed
@ -532,7 +534,10 @@ void JVMState::dump_on(outputStream* st) const {
ex->dump(1); ex->dump(1);
} }
} }
_map->dump(2); _map->dump(Verbose ? 2 : 1);
}
if (caller() != NULL) {
caller()->dump_on(st);
} }
st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=", st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false"); depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
@ -546,9 +551,6 @@ void JVMState::dump_on(outputStream* st) const {
_method->print_codes_on(bci(), bci()+1, st); _method->print_codes_on(bci(), bci()+1, st);
} }
} }
if (caller() != NULL) {
caller()->dump_on(st);
}
} }
// Extra way to dump a jvms from the debugger, // Extra way to dump a jvms from the debugger,
@ -584,6 +586,15 @@ JVMState* JVMState::clone_deep(Compile* C) const {
return n; return n;
} }
/**
* Reset map for all callers
*/
void JVMState::set_map_deep(SafePointNode* map) {
for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
p->set_map(map);
}
}
//============================================================================= //=============================================================================
uint CallNode::cmp( const Node &n ) const uint CallNode::cmp( const Node &n ) const
{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; } { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
@ -663,17 +674,49 @@ uint CallNode::match_edge(uint idx) const {
// Determine whether the call could modify the field of the specified // Determine whether the call could modify the field of the specified
// instance at the specified offset. // instance at the specified offset.
// //
bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) { bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
const TypeOopPtr *adrInst_t = addr_t->isa_oopptr(); assert((t_oop != NULL), "sanity");
if (t_oop->is_known_instance()) {
// If not an OopPtr or not an instance type, assume the worst. // The instance_id is set only for scalar-replaceable allocations which
// Note: currently this method is called only for instance types. // are not passed as arguments according to Escape Analysis.
if (adrInst_t == NULL || !adrInst_t->is_known_instance()) { return false;
return true;
} }
// The instance_id is set only for scalar-replaceable allocations which if (t_oop->is_ptr_to_boxed_value()) {
// are not passed as arguments according to Escape Analysis. ciKlass* boxing_klass = t_oop->klass();
return false; if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
// Skip unrelated boxing methods.
Node* proj = proj_out(TypeFunc::Parms);
if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
return false;
}
}
if (is_CallJava() && as_CallJava()->method() != NULL) {
ciMethod* meth = as_CallJava()->method();
if (meth->is_accessor()) {
return false;
}
// May modify (by reflection) if an boxing object is passed
// as argument or returned.
if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) {
Node* proj = proj_out(TypeFunc::Parms);
const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
(inst_t->klass() == boxing_klass))) {
return true;
}
}
const TypeTuple* d = tf()->domain();
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
(inst_t->klass() == boxing_klass))) {
return true;
}
}
return false;
}
}
return true;
} }
// Does this call have a direct reference to n other than debug information? // Does this call have a direct reference to n other than debug information?
@ -1020,6 +1063,7 @@ void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
int scloff = jvms->scloff(); int scloff = jvms->scloff();
int endoff = jvms->endoff(); int endoff = jvms->endoff();
assert(endoff == (int)req(), "no other states or debug info after me"); assert(endoff == (int)req(), "no other states or debug info after me");
assert(jvms->scl_size() == 0, "parsed code should not have scalar objects");
Node* top = Compile::current()->top(); Node* top = Compile::current()->top();
for (uint i = 0; i < grow_by; i++) { for (uint i = 0; i < grow_by; i++) {
ins_req(monoff, top); ins_req(monoff, top);
@ -1035,6 +1079,7 @@ void SafePointNode::push_monitor(const FastLockNode *lock) {
const int MonitorEdges = 2; const int MonitorEdges = 2;
assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
assert(req() == jvms()->endoff(), "correct sizing"); assert(req() == jvms()->endoff(), "correct sizing");
assert((jvms()->scl_size() == 0), "parsed code should not have scalar objects");
int nextmon = jvms()->scloff(); int nextmon = jvms()->scloff();
if (GenerateSynchronizationCode) { if (GenerateSynchronizationCode) {
add_req(lock->box_node()); add_req(lock->box_node());
@ -1050,6 +1095,7 @@ void SafePointNode::push_monitor(const FastLockNode *lock) {
void SafePointNode::pop_monitor() { void SafePointNode::pop_monitor() {
// Delete last monitor from debug info // Delete last monitor from debug info
assert((jvms()->scl_size() == 0), "parsed code should not have scalar objects");
debug_only(int num_before_pop = jvms()->nof_monitors()); debug_only(int num_before_pop = jvms()->nof_monitors());
const int MonitorEdges = (1<<JVMState::logMonitorEdges); const int MonitorEdges = (1<<JVMState::logMonitorEdges);
int scloff = jvms()->scloff(); int scloff = jvms()->scloff();
@ -1154,6 +1200,7 @@ AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
init_class_id(Class_Allocate); init_class_id(Class_Allocate);
init_flags(Flag_is_macro); init_flags(Flag_is_macro);
_is_scalar_replaceable = false; _is_scalar_replaceable = false;
_is_non_escaping = false;
Node *topnode = C->top(); Node *topnode = C->top();
init_req( TypeFunc::Control , ctrl ); init_req( TypeFunc::Control , ctrl );
@ -1169,8 +1216,6 @@ AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
} }
//============================================================================= //=============================================================================
uint AllocateArrayNode::size_of() const { return sizeof(*this); }
Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if (remove_dead_region(phase, can_reshape)) return this; if (remove_dead_region(phase, can_reshape)) return this;
// Don't bother trying to transform a dead node // Don't bother trying to transform a dead node
@ -1235,6 +1280,8 @@ Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTran
// - the narrow_length is 0 // - the narrow_length is 0
// - the narrow_length is not wider than length // - the narrow_length is not wider than length
assert(narrow_length_type == TypeInt::ZERO || assert(narrow_length_type == TypeInt::ZERO ||
length_type->is_con() && narrow_length_type->is_con() &&
(narrow_length_type->_hi <= length_type->_lo) ||
(narrow_length_type->_hi <= length_type->_hi && (narrow_length_type->_hi <= length_type->_hi &&
narrow_length_type->_lo >= length_type->_lo), narrow_length_type->_lo >= length_type->_lo),
"narrow type must be narrower than length type"); "narrow type must be narrower than length type");

View file

@ -49,6 +49,7 @@ class CallLeafNode;
class CallLeafNoFPNode; class CallLeafNoFPNode;
class AllocateNode; class AllocateNode;
class AllocateArrayNode; class AllocateArrayNode;
class BoxLockNode;
class LockNode; class LockNode;
class UnlockNode; class UnlockNode;
class JVMState; class JVMState;
@ -235,7 +236,6 @@ public:
int loc_size() const { return stkoff() - locoff(); } int loc_size() const { return stkoff() - locoff(); }
int stk_size() const { return monoff() - stkoff(); } int stk_size() const { return monoff() - stkoff(); }
int arg_size() const { return monoff() - argoff(); }
int mon_size() const { return scloff() - monoff(); } int mon_size() const { return scloff() - monoff(); }
int scl_size() const { return endoff() - scloff(); } int scl_size() const { return endoff() - scloff(); }
@ -298,6 +298,7 @@ public:
// Miscellaneous utility functions // Miscellaneous utility functions
JVMState* clone_deep(Compile* C) const; // recursively clones caller chain JVMState* clone_deep(Compile* C) const; // recursively clones caller chain
JVMState* clone_shallow(Compile* C) const; // retains uncloned caller JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
void set_map_deep(SafePointNode *map);// reset map for all callers
#ifndef PRODUCT #ifndef PRODUCT
void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const; void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
@ -439,7 +440,7 @@ public:
static bool needs_polling_address_input(); static bool needs_polling_address_input();
#ifndef PRODUCT #ifndef PRODUCT
virtual void dump_spec(outputStream *st) const; virtual void dump_spec(outputStream *st) const;
#endif #endif
}; };
@ -554,10 +555,10 @@ public:
virtual bool guaranteed_safepoint() { return true; } virtual bool guaranteed_safepoint() { return true; }
// For macro nodes, the JVMState gets modified during expansion, so when cloning // For macro nodes, the JVMState gets modified during expansion, so when cloning
// the node the JVMState must be cloned. // the node the JVMState must be cloned.
virtual void clone_jvms() { } // default is not to clone virtual void clone_jvms(Compile* C) { } // default is not to clone
// Returns true if the call may modify n // Returns true if the call may modify n
virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase); virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
// Does this node have a use of n other than in debug information? // Does this node have a use of n other than in debug information?
bool has_non_debug_use(Node *n); bool has_non_debug_use(Node *n);
// Returns the unique CheckCastPP of a call // Returns the unique CheckCastPP of a call
@ -630,9 +631,15 @@ class CallStaticJavaNode : public CallJavaNode {
virtual uint cmp( const Node &n ) const; virtual uint cmp( const Node &n ) const;
virtual uint size_of() const; // Size is bigger virtual uint size_of() const; // Size is bigger
public: public:
CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci) CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
: CallJavaNode(tf, addr, method, bci), _name(NULL) { : CallJavaNode(tf, addr, method, bci), _name(NULL) {
init_class_id(Class_CallStaticJava); init_class_id(Class_CallStaticJava);
if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
init_flags(Flag_is_macro);
C->add_macro_node(this);
}
_is_scalar_replaceable = false;
_is_non_escaping = false;
} }
CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci, CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
const TypePtr* adr_type) const TypePtr* adr_type)
@ -640,13 +647,31 @@ public:
init_class_id(Class_CallStaticJava); init_class_id(Class_CallStaticJava);
// This node calls a runtime stub, which often has narrow memory effects. // This node calls a runtime stub, which often has narrow memory effects.
_adr_type = adr_type; _adr_type = adr_type;
_is_scalar_replaceable = false;
_is_non_escaping = false;
} }
const char *_name; // Runtime wrapper name const char *_name; // Runtime wrapper name
// Result of Escape Analysis
bool _is_scalar_replaceable;
bool _is_non_escaping;
// If this is an uncommon trap, return the request code, else zero. // If this is an uncommon trap, return the request code, else zero.
int uncommon_trap_request() const; int uncommon_trap_request() const;
static int extract_uncommon_trap_request(const Node* call); static int extract_uncommon_trap_request(const Node* call);
bool is_boxing_method() const {
return is_macro() && (method() != NULL) && method()->is_boxing_method();
}
// Later inlining modifies the JVMState, so we need to clone it
// when the call node is cloned (because it is macro node).
virtual void clone_jvms(Compile* C) {
if ((jvms() != NULL) && is_boxing_method()) {
set_jvms(jvms()->clone_deep(C));
jvms()->set_map_deep(this);
}
}
virtual int Opcode() const; virtual int Opcode() const;
#ifndef PRODUCT #ifndef PRODUCT
virtual void dump_spec(outputStream *st) const; virtual void dump_spec(outputStream *st) const;
@ -748,12 +773,12 @@ public:
ParmLimit ParmLimit
}; };
static const TypeFunc* alloc_type() { static const TypeFunc* alloc_type(const Type* t) {
const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms); const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
fields[AllocSize] = TypeInt::POS; fields[AllocSize] = TypeInt::POS;
fields[KlassNode] = TypeInstPtr::NOTNULL; fields[KlassNode] = TypeInstPtr::NOTNULL;
fields[InitialTest] = TypeInt::BOOL; fields[InitialTest] = TypeInt::BOOL;
fields[ALength] = TypeInt::INT; // length (can be a bad length) fields[ALength] = t; // length (can be a bad length)
const TypeTuple *domain = TypeTuple::make(ParmLimit, fields); const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
@ -766,21 +791,26 @@ public:
return TypeFunc::make(domain, range); return TypeFunc::make(domain, range);
} }
bool _is_scalar_replaceable; // Result of Escape Analysis // Result of Escape Analysis
bool _is_scalar_replaceable;
bool _is_non_escaping;
virtual uint size_of() const; // Size is bigger virtual uint size_of() const; // Size is bigger
AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
Node *size, Node *klass_node, Node *initial_test); Node *size, Node *klass_node, Node *initial_test);
// Expansion modifies the JVMState, so we need to clone it // Expansion modifies the JVMState, so we need to clone it
virtual void clone_jvms() { virtual void clone_jvms(Compile* C) {
set_jvms(jvms()->clone_deep(Compile::current())); if (jvms() != NULL) {
set_jvms(jvms()->clone_deep(C));
jvms()->set_map_deep(this);
}
} }
virtual int Opcode() const; virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegP; } virtual uint ideal_reg() const { return Op_RegP; }
virtual bool guaranteed_safepoint() { return false; } virtual bool guaranteed_safepoint() { return false; }
// allocations do not modify their arguments // allocations do not modify their arguments
virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;} virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
// Pattern-match a possible usage of AllocateNode. // Pattern-match a possible usage of AllocateNode.
// Return null if no allocation is recognized. // Return null if no allocation is recognized.
@ -815,10 +845,6 @@ public:
// are defined in graphKit.cpp, which sets up the bidirectional relation.) // are defined in graphKit.cpp, which sets up the bidirectional relation.)
InitializeNode* initialization(); InitializeNode* initialization();
// Return the corresponding storestore barrier (or null if none).
// Walks out edges to find it...
MemBarStoreStoreNode* storestore();
// Convenience for initialization->maybe_set_complete(phase) // Convenience for initialization->maybe_set_complete(phase)
bool maybe_set_complete(PhaseGVN* phase); bool maybe_set_complete(PhaseGVN* phase);
}; };
@ -840,7 +866,6 @@ public:
set_req(AllocateNode::ALength, count_val); set_req(AllocateNode::ALength, count_val);
} }
virtual int Opcode() const; virtual int Opcode() const;
virtual uint size_of() const; // Size is bigger
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
// Dig the length operand out of a array allocation site. // Dig the length operand out of a array allocation site.
@ -918,7 +943,7 @@ public:
void set_nested() { _kind = Nested; set_eliminated_lock_counter(); } void set_nested() { _kind = Nested; set_eliminated_lock_counter(); }
// locking does not modify its arguments // locking does not modify its arguments
virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;} virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
#ifndef PRODUCT #ifndef PRODUCT
void create_lock_counter(JVMState* s); void create_lock_counter(JVMState* s);
@ -965,8 +990,11 @@ public:
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
// Expansion modifies the JVMState, so we need to clone it // Expansion modifies the JVMState, so we need to clone it
virtual void clone_jvms() { virtual void clone_jvms(Compile* C) {
set_jvms(jvms()->clone_deep(Compile::current())); if (jvms() != NULL) {
set_jvms(jvms()->clone_deep(C));
jvms()->set_map_deep(this);
}
} }
bool is_nested_lock_region(); // Is this Lock nested? bool is_nested_lock_region(); // Is this Lock nested?

View file

@ -806,7 +806,7 @@ PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) cons
Node *in = ophi->in(i); Node *in = ophi->in(i);
if (in == NULL || igvn->type(in) == Type::TOP) if (in == NULL || igvn->type(in) == Type::TOP)
continue; continue;
Node *opt = MemNode::optimize_simple_memory_chain(in, at, igvn); Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL; PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) { if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
opt = node_map[optphi->_idx]; opt = node_map[optphi->_idx];
@ -1921,7 +1921,7 @@ Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
const TypePtr* at = adr_type(); const TypePtr* at = adr_type();
for( uint i=1; i<req(); ++i ) {// For all paths in for( uint i=1; i<req(); ++i ) {// For all paths in
Node *ii = in(i); Node *ii = in(i);
Node *new_in = MemNode::optimize_memory_chain(ii, at, phase); Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
if (ii != new_in ) { if (ii != new_in ) {
set_req(i, new_in); set_req(i, new_in);
progress = this; progress = this;

View file

@ -418,6 +418,7 @@ void Compile::remove_useless_nodes(Unique_Node_List &useful) {
} }
// clean up the late inline lists // clean up the late inline lists
remove_useless_late_inlines(&_string_late_inlines, useful); remove_useless_late_inlines(&_string_late_inlines, useful);
remove_useless_late_inlines(&_boxing_late_inlines, useful);
remove_useless_late_inlines(&_late_inlines, useful); remove_useless_late_inlines(&_late_inlines, useful);
debug_only(verify_graph_edges(true/*check for no_dead_code*/);) debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
} }
@ -485,6 +486,12 @@ void Compile::print_compile_messages() {
tty->print_cr("** Bailout: Recompile without escape analysis **"); tty->print_cr("** Bailout: Recompile without escape analysis **");
tty->print_cr("*********************************************************"); tty->print_cr("*********************************************************");
} }
if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
// Recompiling without boxing elimination
tty->print_cr("*********************************************************");
tty->print_cr("** Bailout: Recompile without boxing elimination **");
tty->print_cr("*********************************************************");
}
if (env()->break_at_compile()) { if (env()->break_at_compile()) {
// Open the debugger when compiling this method. // Open the debugger when compiling this method.
tty->print("### Breaking when compiling: "); tty->print("### Breaking when compiling: ");
@ -601,7 +608,8 @@ debug_only( int Compile::_debug_idx = 100000; )
// the continuation bci for on stack replacement. // the continuation bci for on stack replacement.
Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis ) Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
: Phase(Compiler), : Phase(Compiler),
_env(ci_env), _env(ci_env),
_log(ci_env->log()), _log(ci_env->log()),
@ -617,6 +625,7 @@ Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr
_warm_calls(NULL), _warm_calls(NULL),
_subsume_loads(subsume_loads), _subsume_loads(subsume_loads),
_do_escape_analysis(do_escape_analysis), _do_escape_analysis(do_escape_analysis),
_eliminate_boxing(eliminate_boxing),
_failure_reason(NULL), _failure_reason(NULL),
_code_buffer("Compile::Fill_buffer"), _code_buffer("Compile::Fill_buffer"),
_orig_pc_slot(0), _orig_pc_slot(0),
@ -638,6 +647,7 @@ Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr
_congraph(NULL), _congraph(NULL),
_late_inlines(comp_arena(), 2, 0, NULL), _late_inlines(comp_arena(), 2, 0, NULL),
_string_late_inlines(comp_arena(), 2, 0, NULL), _string_late_inlines(comp_arena(), 2, 0, NULL),
_boxing_late_inlines(comp_arena(), 2, 0, NULL),
_late_inlines_pos(0), _late_inlines_pos(0),
_number_of_mh_late_inlines(0), _number_of_mh_late_inlines(0),
_inlining_progress(false), _inlining_progress(false),
@ -906,6 +916,7 @@ Compile::Compile( ciEnv* ci_env,
_orig_pc_slot_offset_in_bytes(0), _orig_pc_slot_offset_in_bytes(0),
_subsume_loads(true), _subsume_loads(true),
_do_escape_analysis(false), _do_escape_analysis(false),
_eliminate_boxing(false),
_failure_reason(NULL), _failure_reason(NULL),
_code_buffer("Compile::Fill_buffer"), _code_buffer("Compile::Fill_buffer"),
_has_method_handle_invokes(false), _has_method_handle_invokes(false),
@ -1016,6 +1027,7 @@ void Compile::Init(int aliaslevel) {
set_has_split_ifs(false); set_has_split_ifs(false);
set_has_loops(has_method() && method()->has_loops()); // first approximation set_has_loops(has_method() && method()->has_loops()); // first approximation
set_has_stringbuilder(false); set_has_stringbuilder(false);
set_has_boxed_value(false);
_trap_can_recompile = false; // no traps emitted yet _trap_can_recompile = false; // no traps emitted yet
_major_progress = true; // start out assuming good things will happen _major_progress = true; // start out assuming good things will happen
set_has_unsafe_access(false); set_has_unsafe_access(false);
@ -1807,6 +1819,38 @@ void Compile::inline_string_calls(bool parse_time) {
_string_late_inlines.trunc_to(0); _string_late_inlines.trunc_to(0);
} }
// Late inlining of boxing methods
void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
if (_boxing_late_inlines.length() > 0) {
assert(has_boxed_value(), "inconsistent");
PhaseGVN* gvn = initial_gvn();
set_inlining_incrementally(true);
assert( igvn._worklist.size() == 0, "should be done with igvn" );
for_igvn()->clear();
gvn->replace_with(&igvn);
while (_boxing_late_inlines.length() > 0) {
CallGenerator* cg = _boxing_late_inlines.pop();
cg->do_late_inline();
if (failing()) return;
}
_boxing_late_inlines.trunc_to(0);
{
ResourceMark rm;
PhaseRemoveUseless pru(gvn, for_igvn());
}
igvn = PhaseIterGVN(gvn);
igvn.optimize();
set_inlining_progress(false);
set_inlining_incrementally(false);
}
}
void Compile::inline_incrementally_one(PhaseIterGVN& igvn) { void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
assert(IncrementalInline, "incremental inlining should be on"); assert(IncrementalInline, "incremental inlining should be on");
PhaseGVN* gvn = initial_gvn(); PhaseGVN* gvn = initial_gvn();
@ -1831,7 +1875,7 @@ void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
{ {
ResourceMark rm; ResourceMark rm;
PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn()); PhaseRemoveUseless pru(gvn, for_igvn());
} }
igvn = PhaseIterGVN(gvn); igvn = PhaseIterGVN(gvn);
@ -1929,12 +1973,25 @@ void Compile::Optimize() {
if (failing()) return; if (failing()) return;
inline_incrementally(igvn); {
NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
inline_incrementally(igvn);
}
print_method("Incremental Inline", 2); print_method("Incremental Inline", 2);
if (failing()) return; if (failing()) return;
if (eliminate_boxing()) {
NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
// Inline valueOf() methods now.
inline_boxing_calls(igvn);
print_method("Incremental Boxing Inline", 2);
if (failing()) return;
}
// No more new expensive nodes will be added to the list from here // No more new expensive nodes will be added to the list from here
// so keep only the actual candidates for optimizations. // so keep only the actual candidates for optimizations.
cleanup_expensive_nodes(igvn); cleanup_expensive_nodes(igvn);
@ -2896,6 +2953,7 @@ void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
} }
break; break;
case Op_MemBarStoreStore: case Op_MemBarStoreStore:
case Op_MemBarRelease:
// Break the link with AllocateNode: it is no longer useful and // Break the link with AllocateNode: it is no longer useful and
// confuses register allocation. // confuses register allocation.
if (n->req() > MemBarNode::Precedent) { if (n->req() > MemBarNode::Precedent) {

View file

@ -262,6 +262,7 @@ class Compile : public Phase {
const bool _save_argument_registers; // save/restore arg regs for trampolines const bool _save_argument_registers; // save/restore arg regs for trampolines
const bool _subsume_loads; // Load can be matched as part of a larger op. const bool _subsume_loads; // Load can be matched as part of a larger op.
const bool _do_escape_analysis; // Do escape analysis. const bool _do_escape_analysis; // Do escape analysis.
const bool _eliminate_boxing; // Do boxing elimination.
ciMethod* _method; // The method being compiled. ciMethod* _method; // The method being compiled.
int _entry_bci; // entry bci for osr methods. int _entry_bci; // entry bci for osr methods.
const TypeFunc* _tf; // My kind of signature const TypeFunc* _tf; // My kind of signature
@ -287,6 +288,7 @@ class Compile : public Phase {
bool _has_split_ifs; // True if the method _may_ have some split-if bool _has_split_ifs; // True if the method _may_ have some split-if
bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores.
bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated
bool _has_boxed_value; // True if a boxed object is allocated
int _max_vector_size; // Maximum size of generated vectors int _max_vector_size; // Maximum size of generated vectors
uint _trap_hist[trapHistLength]; // Cumulative traps uint _trap_hist[trapHistLength]; // Cumulative traps
bool _trap_can_recompile; // Have we emitted a recompiling trap? bool _trap_can_recompile; // Have we emitted a recompiling trap?
@ -375,6 +377,8 @@ class Compile : public Phase {
// main parsing has finished. // main parsing has finished.
GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations
GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations
int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining)
uint _number_of_mh_late_inlines; // number of method handle late inlining still pending uint _number_of_mh_late_inlines; // number of method handle late inlining still pending
@ -486,8 +490,12 @@ class Compile : public Phase {
// instructions that subsume a load may result in an unschedulable // instructions that subsume a load may result in an unschedulable
// instruction sequence. // instruction sequence.
bool subsume_loads() const { return _subsume_loads; } bool subsume_loads() const { return _subsume_loads; }
// Do escape analysis. /** Do escape analysis. */
bool do_escape_analysis() const { return _do_escape_analysis; } bool do_escape_analysis() const { return _do_escape_analysis; }
/** Do boxing elimination. */
bool eliminate_boxing() const { return _eliminate_boxing; }
/** Do aggressive boxing elimination. */
bool aggressive_unboxing() const { return _eliminate_boxing && AggressiveUnboxing; }
bool save_argument_registers() const { return _save_argument_registers; } bool save_argument_registers() const { return _save_argument_registers; }
@ -527,6 +535,8 @@ class Compile : public Phase {
void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } void set_has_unsafe_access(bool z) { _has_unsafe_access = z; }
bool has_stringbuilder() const { return _has_stringbuilder; } bool has_stringbuilder() const { return _has_stringbuilder; }
void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } void set_has_stringbuilder(bool z) { _has_stringbuilder = z; }
bool has_boxed_value() const { return _has_boxed_value; }
void set_has_boxed_value(bool z) { _has_boxed_value = z; }
int max_vector_size() const { return _max_vector_size; } int max_vector_size() const { return _max_vector_size; }
void set_max_vector_size(int s) { _max_vector_size = s; } void set_max_vector_size(int s) { _max_vector_size = s; }
void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; }
@ -579,12 +589,12 @@ class Compile : public Phase {
#endif #endif
} }
int macro_count() { return _macro_nodes->length(); } int macro_count() const { return _macro_nodes->length(); }
int predicate_count() { return _predicate_opaqs->length();} int predicate_count() const { return _predicate_opaqs->length();}
int expensive_count() { return _expensive_nodes->length(); } int expensive_count() const { return _expensive_nodes->length(); }
Node* macro_node(int idx) { return _macro_nodes->at(idx); } Node* macro_node(int idx) const { return _macro_nodes->at(idx); }
Node* predicate_opaque1_node(int idx) { return _predicate_opaqs->at(idx);} Node* predicate_opaque1_node(int idx) const { return _predicate_opaqs->at(idx);}
Node* expensive_node(int idx) { return _expensive_nodes->at(idx); } Node* expensive_node(int idx) const { return _expensive_nodes->at(idx); }
ConnectionGraph* congraph() { return _congraph;} ConnectionGraph* congraph() { return _congraph;}
void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;}
void add_macro_node(Node * n) { void add_macro_node(Node * n) {
@ -766,7 +776,12 @@ class Compile : public Phase {
// Decide how to build a call. // Decide how to build a call.
// The profile factor is a discount to apply to this site's interp. profile. // The profile factor is a discount to apply to this site's interp. profile.
CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, JVMState* jvms, bool allow_inline, float profile_factor, bool allow_intrinsics = true, bool delayed_forbidden = false); CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, JVMState* jvms, bool allow_inline, float profile_factor, bool allow_intrinsics = true, bool delayed_forbidden = false);
bool should_delay_inlining(ciMethod* call_method, JVMState* jvms); bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
return should_delay_string_inlining(call_method, jvms) ||
should_delay_boxing_inlining(call_method, jvms);
}
bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);
// Helper functions to identify inlining potential at call-site // Helper functions to identify inlining potential at call-site
ciMethod* optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass, ciMethod* optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass,
@ -822,6 +837,10 @@ class Compile : public Phase {
_string_late_inlines.push(cg); _string_late_inlines.push(cg);
} }
void add_boxing_late_inline(CallGenerator* cg) {
_boxing_late_inlines.push(cg);
}
void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);
void dump_inlining(); void dump_inlining();
@ -841,6 +860,7 @@ class Compile : public Phase {
void inline_incrementally_one(PhaseIterGVN& igvn); void inline_incrementally_one(PhaseIterGVN& igvn);
void inline_incrementally(PhaseIterGVN& igvn); void inline_incrementally(PhaseIterGVN& igvn);
void inline_string_calls(bool parse_time); void inline_string_calls(bool parse_time);
void inline_boxing_calls(PhaseIterGVN& igvn);
// Matching, CFG layout, allocation, code generation // Matching, CFG layout, allocation, code generation
PhaseCFG* cfg() { return _cfg; } PhaseCFG* cfg() { return _cfg; }
@ -913,7 +933,8 @@ class Compile : public Phase {
// replacement, entry_bci indicates the bytecode for which to compile a // replacement, entry_bci indicates the bytecode for which to compile a
// continuation. // continuation.
Compile(ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, Compile(ciEnv* ci_env, C2Compiler* compiler, ciMethod* target,
int entry_bci, bool subsume_loads, bool do_escape_analysis); int entry_bci, bool subsume_loads, bool do_escape_analysis,
bool eliminate_boxing);
// Second major entry point. From the TypeFunc signature, generate code // Second major entry point. From the TypeFunc signature, generate code
// to pass arguments from the Java calling convention to the C calling // to pass arguments from the Java calling convention to the C calling

View file

@ -176,9 +176,12 @@ CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool
// Delay the inlining of this method to give us the // Delay the inlining of this method to give us the
// opportunity to perform some high level optimizations // opportunity to perform some high level optimizations
// first. // first.
if (should_delay_inlining(callee, jvms)) { if (should_delay_string_inlining(callee, jvms)) {
assert(!delayed_forbidden, "strange"); assert(!delayed_forbidden, "strange");
return CallGenerator::for_string_late_inline(callee, cg); return CallGenerator::for_string_late_inline(callee, cg);
} else if (should_delay_boxing_inlining(callee, jvms)) {
assert(!delayed_forbidden, "strange");
return CallGenerator::for_boxing_late_inline(callee, cg);
} else if ((should_delay || AlwaysIncrementalInline) && !delayed_forbidden) { } else if ((should_delay || AlwaysIncrementalInline) && !delayed_forbidden) {
return CallGenerator::for_late_inline(callee, cg); return CallGenerator::for_late_inline(callee, cg);
} }
@ -276,7 +279,7 @@ CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool
// Return true for methods that shouldn't be inlined early so that // Return true for methods that shouldn't be inlined early so that
// they are easier to analyze and optimize as intrinsics. // they are easier to analyze and optimize as intrinsics.
bool Compile::should_delay_inlining(ciMethod* call_method, JVMState* jvms) { bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) {
if (has_stringbuilder()) { if (has_stringbuilder()) {
if ((call_method->holder() == C->env()->StringBuilder_klass() || if ((call_method->holder() == C->env()->StringBuilder_klass() ||
@ -327,6 +330,13 @@ bool Compile::should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
return false; return false;
} }
bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) {
if (eliminate_boxing() && call_method->is_boxing_method()) {
set_has_boxed_value(true);
return true;
}
return false;
}
// uncommon-trap call-sites where callee is unloaded, uninitialized or will not link // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link
bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) { bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) {

View file

@ -63,15 +63,19 @@ bool ConnectionGraph::has_candidates(Compile *C) {
// EA brings benefits only when the code has allocations and/or locks which // EA brings benefits only when the code has allocations and/or locks which
// are represented by ideal Macro nodes. // are represented by ideal Macro nodes.
int cnt = C->macro_count(); int cnt = C->macro_count();
for( int i=0; i < cnt; i++ ) { for (int i = 0; i < cnt; i++) {
Node *n = C->macro_node(i); Node *n = C->macro_node(i);
if ( n->is_Allocate() ) if (n->is_Allocate())
return true; return true;
if( n->is_Lock() ) { if (n->is_Lock()) {
Node* obj = n->as_Lock()->obj_node()->uncast(); Node* obj = n->as_Lock()->obj_node()->uncast();
if( !(obj->is_Parm() || obj->is_Con()) ) if (!(obj->is_Parm() || obj->is_Con()))
return true; return true;
} }
if (n->is_CallStaticJava() &&
n->as_CallStaticJava()->is_boxing_method()) {
return true;
}
} }
return false; return false;
} }
@ -115,7 +119,7 @@ bool ConnectionGraph::compute_escape() {
{ Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true); { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
// 1. Populate Connection Graph (CG) with PointsTo nodes. // 1. Populate Connection Graph (CG) with PointsTo nodes.
ideal_nodes.map(C->unique(), NULL); // preallocate space ideal_nodes.map(C->live_nodes(), NULL); // preallocate space
// Initialize worklist // Initialize worklist
if (C->root() != NULL) { if (C->root() != NULL) {
ideal_nodes.push(C->root()); ideal_nodes.push(C->root());
@ -152,8 +156,11 @@ bool ConnectionGraph::compute_escape() {
// escape status of the associated Allocate node some of them // escape status of the associated Allocate node some of them
// may be eliminated. // may be eliminated.
storestore_worklist.append(n); storestore_worklist.append(n);
} else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
(n->req() > MemBarNode::Precedent)) {
record_for_optimizer(n);
#ifdef ASSERT #ifdef ASSERT
} else if(n->is_AddP()) { } else if (n->is_AddP()) {
// Collect address nodes for graph verification. // Collect address nodes for graph verification.
addp_worklist.append(n); addp_worklist.append(n);
#endif #endif
@ -206,8 +213,15 @@ bool ConnectionGraph::compute_escape() {
int non_escaped_length = non_escaped_worklist.length(); int non_escaped_length = non_escaped_worklist.length();
for (int next = 0; next < non_escaped_length; next++) { for (int next = 0; next < non_escaped_length; next++) {
JavaObjectNode* ptn = non_escaped_worklist.at(next); JavaObjectNode* ptn = non_escaped_worklist.at(next);
if (ptn->escape_state() == PointsToNode::NoEscape && bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
ptn->scalar_replaceable()) { Node* n = ptn->ideal_node();
if (n->is_Allocate()) {
n->as_Allocate()->_is_non_escaping = noescape;
}
if (n->is_CallStaticJava()) {
n->as_CallStaticJava()->_is_non_escaping = noescape;
}
if (noescape && ptn->scalar_replaceable()) {
adjust_scalar_replaceable_state(ptn); adjust_scalar_replaceable_state(ptn);
if (ptn->scalar_replaceable()) { if (ptn->scalar_replaceable()) {
alloc_worklist.append(ptn->ideal_node()); alloc_worklist.append(ptn->ideal_node());
@ -330,8 +344,10 @@ void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *de
// Don't mark as processed since call's arguments have to be processed. // Don't mark as processed since call's arguments have to be processed.
delayed_worklist->push(n); delayed_worklist->push(n);
// Check if a call returns an object. // Check if a call returns an object.
if (n->as_Call()->returns_pointer() && if ((n->as_Call()->returns_pointer() &&
n->as_Call()->proj_out(TypeFunc::Parms) != NULL) { n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
(n->is_CallStaticJava() &&
n->as_CallStaticJava()->is_boxing_method())) {
add_call_node(n->as_Call()); add_call_node(n->as_Call());
} }
} }
@ -387,8 +403,8 @@ void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *de
case Op_ConNKlass: { case Op_ConNKlass: {
// assume all oop constants globally escape except for null // assume all oop constants globally escape except for null
PointsToNode::EscapeState es; PointsToNode::EscapeState es;
if (igvn->type(n) == TypePtr::NULL_PTR || const Type* t = igvn->type(n);
igvn->type(n) == TypeNarrowOop::NULL_PTR) { if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
es = PointsToNode::NoEscape; es = PointsToNode::NoEscape;
} else { } else {
es = PointsToNode::GlobalEscape; es = PointsToNode::GlobalEscape;
@ -468,6 +484,9 @@ void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *de
Node* adr = n->in(MemNode::Address); Node* adr = n->in(MemNode::Address);
const Type *adr_type = igvn->type(adr); const Type *adr_type = igvn->type(adr);
adr_type = adr_type->make_ptr(); adr_type = adr_type->make_ptr();
if (adr_type == NULL) {
break; // skip dead nodes
}
if (adr_type->isa_oopptr() || if (adr_type->isa_oopptr() ||
(opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) && (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
(adr_type == TypeRawPtr::NOTNULL && (adr_type == TypeRawPtr::NOTNULL &&
@ -660,14 +679,18 @@ void ConnectionGraph::add_final_edges(Node *n) {
case Op_GetAndSetP: case Op_GetAndSetP:
case Op_GetAndSetN: { case Op_GetAndSetN: {
Node* adr = n->in(MemNode::Address); Node* adr = n->in(MemNode::Address);
if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
const Type* t = _igvn->type(n);
if (t->make_ptr() != NULL) {
add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
}
}
const Type *adr_type = _igvn->type(adr); const Type *adr_type = _igvn->type(adr);
adr_type = adr_type->make_ptr(); adr_type = adr_type->make_ptr();
#ifdef ASSERT
if (adr_type == NULL) {
n->dump(1);
assert(adr_type != NULL, "dead node should not be on list");
break;
}
#endif
if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
}
if (adr_type->isa_oopptr() || if (adr_type->isa_oopptr() ||
(opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) && (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
(adr_type == TypeRawPtr::NOTNULL && (adr_type == TypeRawPtr::NOTNULL &&
@ -797,6 +820,9 @@ void ConnectionGraph::add_call_node(CallNode* call) {
// Returns a newly allocated unescaped object. // Returns a newly allocated unescaped object.
add_java_object(call, PointsToNode::NoEscape); add_java_object(call, PointsToNode::NoEscape);
ptnode_adr(call_idx)->set_scalar_replaceable(false); ptnode_adr(call_idx)->set_scalar_replaceable(false);
} else if (meth->is_boxing_method()) {
// Returns boxing object
add_java_object(call, PointsToNode::NoEscape);
} else { } else {
BCEscapeAnalyzer* call_analyzer = meth->get_bcea(); BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
call_analyzer->copy_dependencies(_compile->dependencies()); call_analyzer->copy_dependencies(_compile->dependencies());
@ -943,6 +969,9 @@ void ConnectionGraph::process_call_arguments(CallNode *call) {
assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only"); assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
#endif #endif
ciMethod* meth = call->as_CallJava()->method(); ciMethod* meth = call->as_CallJava()->method();
if ((meth != NULL) && meth->is_boxing_method()) {
break; // Boxing methods do not modify any oops.
}
BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL; BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
// fall-through if not a Java method or no analyzer information // fall-through if not a Java method or no analyzer information
if (call_analyzer != NULL) { if (call_analyzer != NULL) {
@ -1791,9 +1820,8 @@ Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
jobj2->ideal_node()->is_Con()) { jobj2->ideal_node()->is_Con()) {
// Klass or String constants compare. Need to be careful with // Klass or String constants compare. Need to be careful with
// compressed pointers - compare types of ConN and ConP instead of nodes. // compressed pointers - compare types of ConN and ConP instead of nodes.
const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr(); const Type* t1 = jobj1->ideal_node()->get_ptr_type();
const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr(); const Type* t2 = jobj2->ideal_node()->get_ptr_type();
assert(t1 != NULL && t2 != NULL, "sanity");
if (t1->make_ptr() == t2->make_ptr()) { if (t1->make_ptr() == t2->make_ptr()) {
return _pcmp_eq; return _pcmp_eq;
} else { } else {
@ -2744,6 +2772,11 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
// so it could be eliminated if it has no uses. // so it could be eliminated if it has no uses.
alloc->as_Allocate()->_is_scalar_replaceable = true; alloc->as_Allocate()->_is_scalar_replaceable = true;
} }
if (alloc->is_CallStaticJava()) {
// Set the scalar_replaceable flag for boxing method
// so it could be eliminated if it has no uses.
alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
}
continue; continue;
} }
if (!n->is_CheckCastPP()) { // not unique CheckCastPP. if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
@ -2782,6 +2815,11 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
// so it could be eliminated. // so it could be eliminated.
alloc->as_Allocate()->_is_scalar_replaceable = true; alloc->as_Allocate()->_is_scalar_replaceable = true;
} }
if (alloc->is_CallStaticJava()) {
// Set the scalar_replaceable flag for boxing method
// so it could be eliminated.
alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
}
set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
// in order for an object to be scalar-replaceable, it must be: // in order for an object to be scalar-replaceable, it must be:
// - a direct allocation (not a call returning an object) // - a direct allocation (not a call returning an object)
@ -2911,7 +2949,9 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
// Load/store to instance's field // Load/store to instance's field
memnode_worklist.append_if_missing(use); memnode_worklist.append_if_missing(use);
} else if (use->is_MemBar()) { } else if (use->is_MemBar()) {
memnode_worklist.append_if_missing(use); if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
memnode_worklist.append_if_missing(use);
}
} else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
Node* addp2 = find_second_addp(use, n); Node* addp2 = find_second_addp(use, n);
if (addp2 != NULL) { if (addp2 != NULL) {
@ -3028,7 +3068,9 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
continue; continue;
memnode_worklist.append_if_missing(use); memnode_worklist.append_if_missing(use);
} else if (use->is_MemBar()) { } else if (use->is_MemBar()) {
memnode_worklist.append_if_missing(use); if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
memnode_worklist.append_if_missing(use);
}
#ifdef ASSERT #ifdef ASSERT
} else if(use->is_Mem()) { } else if(use->is_Mem()) {
assert(use->in(MemNode::Memory) != n, "EA: missing memory path"); assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
@ -3264,7 +3306,12 @@ void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
if (ptn == NULL || !ptn->is_JavaObject()) if (ptn == NULL || !ptn->is_JavaObject())
continue; continue;
PointsToNode::EscapeState es = ptn->escape_state(); PointsToNode::EscapeState es = ptn->escape_state();
if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) { if ((es != PointsToNode::NoEscape) && !Verbose) {
continue;
}
Node* n = ptn->ideal_node();
if (n->is_Allocate() || (n->is_CallStaticJava() &&
n->as_CallStaticJava()->is_boxing_method())) {
if (first) { if (first) {
tty->cr(); tty->cr();
tty->print("======== Connection graph for "); tty->print("======== Connection graph for ");

View file

@ -333,6 +333,7 @@ void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* ph
assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals"); assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes"); assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS"); assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
assert(ex_map->req() == phi_map->req(), "matching maps"); assert(ex_map->req() == phi_map->req(), "matching maps");
uint tos = ex_jvms->stkoff() + ex_jvms->sp(); uint tos = ex_jvms->stkoff() + ex_jvms->sp();
Node* hidden_merge_mark = root(); Node* hidden_merge_mark = root();
@ -409,7 +410,7 @@ void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* ph
while (dst->req() > orig_width) dst->del_req(dst->req()-1); while (dst->req() > orig_width) dst->del_req(dst->req()-1);
} else { } else {
assert(dst->is_Phi(), "nobody else uses a hidden region"); assert(dst->is_Phi(), "nobody else uses a hidden region");
phi = (PhiNode*)dst; phi = dst->as_Phi();
} }
if (add_multiple && src->in(0) == ex_control) { if (add_multiple && src->in(0) == ex_control) {
// Both are phis. // Both are phis.
@ -1438,7 +1439,12 @@ Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
} else { } else {
ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt); ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
} }
return _gvn.transform(ld); ld = _gvn.transform(ld);
if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
// Improve graph before escape analysis and boxing elimination.
record_for_igvn(ld);
}
return ld;
} }
Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
@ -3144,7 +3150,7 @@ Node* GraphKit::new_instance(Node* klass_node,
set_all_memory(mem); // Create new memory state set_all_memory(mem); // Create new memory state
AllocateNode* alloc AllocateNode* alloc
= new (C) AllocateNode(C, AllocateNode::alloc_type(), = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
control(), mem, i_o(), control(), mem, i_o(),
size, klass_node, size, klass_node,
initial_slow_test); initial_slow_test);
@ -3285,7 +3291,7 @@ Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable)
// Create the AllocateArrayNode and its result projections // Create the AllocateArrayNode and its result projections
AllocateArrayNode* alloc AllocateArrayNode* alloc
= new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(), = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
control(), mem, i_o(), control(), mem, i_o(),
size, klass_node, size, klass_node,
initial_slow_test, initial_slow_test,
@ -3326,10 +3332,9 @@ AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
if (ptr == NULL) { // reduce dumb test in callers if (ptr == NULL) { // reduce dumb test in callers
return NULL; return NULL;
} }
if (ptr->is_CheckCastPP()) { // strip a raw-to-oop cast ptr = ptr->uncast(); // strip a raw-to-oop cast
ptr = ptr->in(1); if (ptr == NULL) return NULL;
if (ptr == NULL) return NULL;
}
if (ptr->is_Proj()) { if (ptr->is_Proj()) {
Node* allo = ptr->in(0); Node* allo = ptr->in(0);
if (allo != NULL && allo->is_Allocate()) { if (allo != NULL && allo->is_Allocate()) {
@ -3374,19 +3379,6 @@ InitializeNode* AllocateNode::initialization() {
return NULL; return NULL;
} }
// Trace Allocate -> Proj[Parm] -> MemBarStoreStore
MemBarStoreStoreNode* AllocateNode::storestore() {
ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
if (rawoop == NULL) return NULL;
for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
Node* storestore = rawoop->fast_out(i);
if (storestore->is_MemBarStoreStore()) {
return storestore->as_MemBarStoreStore();
}
}
return NULL;
}
//----------------------------- loop predicates --------------------------- //----------------------------- loop predicates ---------------------------
//------------------------------add_predicate_impl---------------------------- //------------------------------add_predicate_impl----------------------------

View file

@ -673,7 +673,7 @@ const TypeInt* IfNode::filtered_int_type(PhaseGVN* gvn, Node *val, Node* if_proj
// / Region // / Region
// //
Node* IfNode::fold_compares(PhaseGVN* phase) { Node* IfNode::fold_compares(PhaseGVN* phase) {
if (!EliminateAutoBox || Opcode() != Op_If) return NULL; if (!phase->C->eliminate_boxing() || Opcode() != Op_If) return NULL;
Node* this_cmp = in(1)->in(1); Node* this_cmp = in(1)->in(1);
if (this_cmp != NULL && this_cmp->Opcode() == Op_CmpI && if (this_cmp != NULL && this_cmp->Opcode() == Op_CmpI &&

View file

@ -219,9 +219,10 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
// cannot reason about it; is probably not implicit null exception // cannot reason about it; is probably not implicit null exception
} else { } else {
const TypePtr* tptr; const TypePtr* tptr;
if (UseCompressedOops && Universe::narrow_oop_shift() == 0) { if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
Universe::narrow_klass_shift() == 0)) {
// 32-bits narrow oop can be the base of address expressions // 32-bits narrow oop can be the base of address expressions
tptr = base->bottom_type()->make_ptr(); tptr = base->get_ptr_type();
} else { } else {
// only regular oops are expected here // only regular oops are expected here
tptr = base->bottom_type()->is_ptr(); tptr = base->bottom_type()->is_ptr();

View file

@ -2783,7 +2783,7 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
#ifdef _LP64 #ifdef _LP64
if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) { if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->bottom_type()->make_ptr())); load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
} }
#endif #endif
@ -3703,7 +3703,7 @@ LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual
CallJavaNode* slow_call; CallJavaNode* slow_call;
if (is_static) { if (is_static) {
assert(!is_virtual, ""); assert(!is_virtual, "");
slow_call = new(C) CallStaticJavaNode(tf, slow_call = new(C) CallStaticJavaNode(C, tf,
SharedRuntime::get_resolve_static_call_stub(), SharedRuntime::get_resolve_static_call_stub(),
method, bci()); method, bci());
} else if (is_virtual) { } else if (is_virtual) {
@ -3722,7 +3722,7 @@ LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual
method, vtable_index, bci()); method, vtable_index, bci());
} else { // neither virtual nor static: opt_virtual } else { // neither virtual nor static: opt_virtual
null_check_receiver(); null_check_receiver();
slow_call = new(C) CallStaticJavaNode(tf, slow_call = new(C) CallStaticJavaNode(C, tf,
SharedRuntime::get_resolve_opt_virtual_call_stub(), SharedRuntime::get_resolve_opt_virtual_call_stub(),
method, bci()); method, bci());
slow_call->set_optimized_virtual(true); slow_call->set_optimized_virtual(true);

View file

@ -821,8 +821,8 @@ bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
loop->dump_head(); loop->dump_head();
} }
#endif #endif
} else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) { } else if ((cl != NULL) && (proj->_con == predicate_proj->_con) &&
assert(proj->_con == predicate_proj->_con, "must match"); loop->is_range_check_if(iff, this, invar)) {
// Range check for counted loops // Range check for counted loops
const Node* cmp = bol->in(1)->as_Cmp(); const Node* cmp = bol->in(1)->as_Cmp();

View file

@ -349,11 +349,11 @@ const class TypePtr *MachNode::adr_type() const {
if (base == NodeSentinel) return TypePtr::BOTTOM; if (base == NodeSentinel) return TypePtr::BOTTOM;
const Type* t = base->bottom_type(); const Type* t = base->bottom_type();
if (UseCompressedOops && Universe::narrow_oop_shift() == 0) { if (t->isa_narrowoop() && Universe::narrow_oop_shift() == 0) {
// 32-bit unscaled narrow oop can be the base of any address expression // 32-bit unscaled narrow oop can be the base of any address expression
t = t->make_ptr(); t = t->make_ptr();
} }
if (UseCompressedKlassPointers && Universe::narrow_klass_shift() == 0) { if (t->isa_narrowklass() && Universe::narrow_klass_shift() == 0) {
// 32-bit unscaled narrow oop can be the base of any address expression // 32-bit unscaled narrow oop can be the base of any address expression
t = t->make_ptr(); t = t->make_ptr();
} }

View file

@ -666,7 +666,7 @@ bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArr
alloc->dump(); alloc->dump();
else else
res->dump(); res->dump();
} else { } else if (alloc->_is_scalar_replaceable) {
tty->print("NotScalar (%s)", fail_eliminate); tty->print("NotScalar (%s)", fail_eliminate);
if (res == NULL) if (res == NULL)
alloc->dump(); alloc->dump();
@ -834,7 +834,7 @@ bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <Sa
if (field_val->is_EncodeP()) { if (field_val->is_EncodeP()) {
field_val = field_val->in(1); field_val = field_val->in(1);
} else { } else {
field_val = transform_later(new (C) DecodeNNode(field_val, field_val->bottom_type()->make_ptr())); field_val = transform_later(new (C) DecodeNNode(field_val, field_val->get_ptr_type()));
} }
} }
sfpt->add_req(field_val); sfpt->add_req(field_val);
@ -845,18 +845,14 @@ bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <Sa
// to the allocated object with "sobj" // to the allocated object with "sobj"
int start = jvms->debug_start(); int start = jvms->debug_start();
int end = jvms->debug_end(); int end = jvms->debug_end();
for (int i = start; i < end; i++) { sfpt->replace_edges_in_range(res, sobj, start, end);
if (sfpt->in(i) == res) {
sfpt->set_req(i, sobj);
}
}
safepoints_done.append_if_missing(sfpt); // keep it for rollback safepoints_done.append_if_missing(sfpt); // keep it for rollback
} }
return true; return true;
} }
// Process users of eliminated allocation. // Process users of eliminated allocation.
void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) { void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
Node* res = alloc->result_cast(); Node* res = alloc->result_cast();
if (res != NULL) { if (res != NULL) {
for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
@ -899,6 +895,17 @@ void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
// Process other users of allocation's projections // Process other users of allocation's projections
// //
if (_resproj != NULL && _resproj->outcnt() != 0) { if (_resproj != NULL && _resproj->outcnt() != 0) {
// First disconnect stores captured by Initialize node.
// If Initialize node is eliminated first in the following code,
// it will kill such stores and DUIterator_Last will assert.
for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax); j < jmax; j++) {
Node *use = _resproj->fast_out(j);
if (use->is_AddP()) {
// raw memory addresses used only by the initialization
_igvn.replace_node(use, C->top());
--j; --jmax;
}
}
for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) { for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
Node *use = _resproj->last_out(j); Node *use = _resproj->last_out(j);
uint oc1 = _resproj->outcnt(); uint oc1 = _resproj->outcnt();
@ -923,9 +930,6 @@ void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
#endif #endif
_igvn.replace_node(mem_proj, mem); _igvn.replace_node(mem_proj, mem);
} }
} else if (use->is_AddP()) {
// raw memory addresses used only by the initialization
_igvn.replace_node(use, C->top());
} else { } else {
assert(false, "only Initialize or AddP expected"); assert(false, "only Initialize or AddP expected");
} }
@ -953,8 +957,18 @@ void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
} }
bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
if (!EliminateAllocations || !alloc->_is_non_escaping) {
if (!EliminateAllocations || !alloc->_is_scalar_replaceable) { return false;
}
Node* klass = alloc->in(AllocateNode::KlassNode);
const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
Node* res = alloc->result_cast();
// Eliminate boxing allocations which are not used
// regardless scalar replacable status.
bool boxing_alloc = C->eliminate_boxing() &&
tklass->klass()->is_instance_klass() &&
tklass->klass()->as_instance_klass()->is_box_klass();
if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
return false; return false;
} }
@ -965,14 +979,22 @@ bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
return false; return false;
} }
if (!alloc->_is_scalar_replaceable) {
assert(res == NULL, "sanity");
// We can only eliminate allocation if all debug info references
// are already replaced with SafePointScalarObject because
// we can't search for a fields value without instance_id.
if (safepoints.length() > 0) {
return false;
}
}
if (!scalar_replacement(alloc, safepoints)) { if (!scalar_replacement(alloc, safepoints)) {
return false; return false;
} }
CompileLog* log = C->log(); CompileLog* log = C->log();
if (log != NULL) { if (log != NULL) {
Node* klass = alloc->in(AllocateNode::KlassNode);
const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
log->head("eliminate_allocation type='%d'", log->head("eliminate_allocation type='%d'",
log->identify(tklass->klass())); log->identify(tklass->klass()));
JVMState* p = alloc->jvms(); JVMState* p = alloc->jvms();
@ -997,6 +1019,43 @@ bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
return true; return true;
} }
bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
// EA should remove all uses of non-escaping boxing node.
if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
return false;
}
extract_call_projections(boxing);
const TypeTuple* r = boxing->tf()->range();
assert(r->cnt() > TypeFunc::Parms, "sanity");
const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
assert(t != NULL, "sanity");
CompileLog* log = C->log();
if (log != NULL) {
log->head("eliminate_boxing type='%d'",
log->identify(t->klass()));
JVMState* p = boxing->jvms();
while (p != NULL) {
log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
p = p->caller();
}
log->tail("eliminate_boxing");
}
process_users_of_allocation(boxing);
#ifndef PRODUCT
if (PrintEliminateAllocations) {
tty->print("++++ Eliminated: %d ", boxing->_idx);
boxing->method()->print_short_name(tty);
tty->cr();
}
#endif
return true;
}
//---------------------------set_eden_pointers------------------------- //---------------------------set_eden_pointers-------------------------
void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) { void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
@ -2384,6 +2443,9 @@ void PhaseMacroExpand::eliminate_macro_nodes() {
case Node::Class_AllocateArray: case Node::Class_AllocateArray:
success = eliminate_allocate_node(n->as_Allocate()); success = eliminate_allocate_node(n->as_Allocate());
break; break;
case Node::Class_CallStaticJava:
success = eliminate_boxing_node(n->as_CallStaticJava());
break;
case Node::Class_Lock: case Node::Class_Lock:
case Node::Class_Unlock: case Node::Class_Unlock:
assert(!n->as_AbstractLock()->is_eliminated(), "sanity"); assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
@ -2424,6 +2486,11 @@ bool PhaseMacroExpand::expand_macro_nodes() {
C->remove_macro_node(n); C->remove_macro_node(n);
_igvn._worklist.push(n); _igvn._worklist.push(n);
success = true; success = true;
} else if (n->Opcode() == Op_CallStaticJava) {
// Remove it from macro list and put on IGVN worklist to optimize.
C->remove_macro_node(n);
_igvn._worklist.push(n);
success = true;
} else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) { } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
_igvn.replace_node(n, n->in(1)); _igvn.replace_node(n, n->in(1));
success = true; success = true;

View file

@ -86,10 +86,11 @@ private:
Node *value_from_mem(Node *mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc); Node *value_from_mem(Node *mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc);
Node *value_from_mem_phi(Node *mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level); Node *value_from_mem_phi(Node *mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level);
bool eliminate_boxing_node(CallStaticJavaNode *boxing);
bool eliminate_allocate_node(AllocateNode *alloc); bool eliminate_allocate_node(AllocateNode *alloc);
bool can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints); bool can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints);
bool scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints_done); bool scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints_done);
void process_users_of_allocation(AllocateNode *alloc); void process_users_of_allocation(CallNode *alloc);
void eliminate_card_mark(Node *cm); void eliminate_card_mark(Node *cm);
void mark_eliminated_box(Node* box, Node* obj); void mark_eliminated_box(Node* box, Node* obj);

View file

@ -103,11 +103,15 @@ extern void print_alias_types();
#endif #endif
Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) { Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
const TypeOopPtr *tinst = t_adr->isa_oopptr(); assert((t_oop != NULL), "sanity");
if (tinst == NULL || !tinst->is_known_instance_field()) bool is_instance = t_oop->is_known_instance_field();
bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
(load != NULL) && load->is_Load() &&
(phase->is_IterGVN() != NULL);
if (!(is_instance || is_boxed_value_load))
return mchain; // don't try to optimize non-instance types return mchain; // don't try to optimize non-instance types
uint instance_id = tinst->instance_id(); uint instance_id = t_oop->instance_id();
Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory); Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
Node *prev = NULL; Node *prev = NULL;
Node *result = mchain; Node *result = mchain;
@ -122,15 +126,24 @@ Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr,
break; // hit one of our sentinels break; // hit one of our sentinels
} else if (proj_in->is_Call()) { } else if (proj_in->is_Call()) {
CallNode *call = proj_in->as_Call(); CallNode *call = proj_in->as_Call();
if (!call->may_modify(t_adr, phase)) { if (!call->may_modify(t_oop, phase)) { // returns false for instances
result = call->in(TypeFunc::Memory); result = call->in(TypeFunc::Memory);
} }
} else if (proj_in->is_Initialize()) { } else if (proj_in->is_Initialize()) {
AllocateNode* alloc = proj_in->as_Initialize()->allocation(); AllocateNode* alloc = proj_in->as_Initialize()->allocation();
// Stop if this is the initialization for the object instance which // Stop if this is the initialization for the object instance which
// which contains this memory slice, otherwise skip over it. // which contains this memory slice, otherwise skip over it.
if (alloc != NULL && alloc->_idx != instance_id) { if ((alloc == NULL) || (alloc->_idx == instance_id)) {
break;
}
if (is_instance) {
result = proj_in->in(TypeFunc::Memory); result = proj_in->in(TypeFunc::Memory);
} else if (is_boxed_value_load) {
Node* klass = alloc->in(AllocateNode::KlassNode);
const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
result = proj_in->in(TypeFunc::Memory); // not related allocation
}
} }
} else if (proj_in->is_MemBar()) { } else if (proj_in->is_MemBar()) {
result = proj_in->in(TypeFunc::Memory); result = proj_in->in(TypeFunc::Memory);
@ -138,25 +151,26 @@ Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr,
assert(false, "unexpected projection"); assert(false, "unexpected projection");
} }
} else if (result->is_ClearArray()) { } else if (result->is_ClearArray()) {
if (!ClearArrayNode::step_through(&result, instance_id, phase)) { if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
// Can not bypass initialization of the instance // Can not bypass initialization of the instance
// we are looking for. // we are looking for.
break; break;
} }
// Otherwise skip it (the call updated 'result' value). // Otherwise skip it (the call updated 'result' value).
} else if (result->is_MergeMem()) { } else if (result->is_MergeMem()) {
result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty); result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
} }
} }
return result; return result;
} }
Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) { Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
const TypeOopPtr *t_oop = t_adr->isa_oopptr(); const TypeOopPtr* t_oop = t_adr->isa_oopptr();
bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field(); if (t_oop == NULL)
return mchain; // don't try to optimize non-oop types
Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
bool is_instance = t_oop->is_known_instance_field();
PhaseIterGVN *igvn = phase->is_IterGVN(); PhaseIterGVN *igvn = phase->is_IterGVN();
Node *result = mchain;
result = optimize_simple_memory_chain(result, t_adr, phase);
if (is_instance && igvn != NULL && result->is_Phi()) { if (is_instance && igvn != NULL && result->is_Phi()) {
PhiNode *mphi = result->as_Phi(); PhiNode *mphi = result->as_Phi();
assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
@ -383,7 +397,7 @@ bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
// Or Region for the check in LoadNode::Ideal(); // Or Region for the check in LoadNode::Ideal();
// 'sub' should have sub->in(0) != NULL. // 'sub' should have sub->in(0) != NULL.
assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
sub->is_Region(), "expecting only these nodes"); sub->is_Region() || sub->is_Call(), "expecting only these nodes");
// Get control edge of 'sub'. // Get control edge of 'sub'.
Node* orig_sub = sub; Node* orig_sub = sub;
@ -957,11 +971,14 @@ uint LoadNode::hash() const {
// of aliasing. // of aliasing.
Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const { Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
Node* ld_adr = in(MemNode::Address); Node* ld_adr = in(MemNode::Address);
intptr_t ld_off = 0;
AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL; Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw && // This is more general than load from boxing objects.
atp->field() != NULL && !atp->field()->is_volatile()) { if (phase->C->eliminate_boxing() && (atp != NULL) &&
(atp->index() >= Compile::AliasIdxRaw) &&
(atp->field() != NULL) && !atp->field()->is_volatile()) {
uint alias_idx = atp->index(); uint alias_idx = atp->index();
bool final = atp->field()->is_final(); bool final = atp->field()->is_final();
Node* result = NULL; Node* result = NULL;
@ -983,7 +1000,7 @@ Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
Node* new_st = merge->memory_at(alias_idx); Node* new_st = merge->memory_at(alias_idx);
if (new_st == merge->base_memory()) { if (new_st == merge->base_memory()) {
// Keep searching // Keep searching
current = merge->base_memory(); current = new_st;
continue; continue;
} }
// Save the new memory state for the slice and fall through // Save the new memory state for the slice and fall through
@ -1010,9 +1027,7 @@ Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
intptr_t st_off = 0; intptr_t st_off = 0;
AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off); AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
if (alloc == NULL) return NULL; if (alloc == NULL) return NULL;
intptr_t ld_off = 0; if (alloc != ld_alloc) return NULL;
AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
if (alloc != allo2) return NULL;
if (ld_off != st_off) return NULL; if (ld_off != st_off) return NULL;
// At this point we have proven something like this setup: // At this point we have proven something like this setup:
// A = Allocate(...) // A = Allocate(...)
@ -1029,14 +1044,12 @@ Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
return st->in(MemNode::ValueIn); return st->in(MemNode::ValueIn);
} }
intptr_t offset = 0; // scratch
// A load from a freshly-created object always returns zero. // A load from a freshly-created object always returns zero.
// (This can happen after LoadNode::Ideal resets the load's memory input // (This can happen after LoadNode::Ideal resets the load's memory input
// to find_captured_store, which returned InitializeNode::zero_memory.) // to find_captured_store, which returned InitializeNode::zero_memory.)
if (st->is_Proj() && st->in(0)->is_Allocate() && if (st->is_Proj() && st->in(0)->is_Allocate() &&
st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) && (st->in(0) == ld_alloc) &&
offset >= st->in(0)->as_Allocate()->minimum_header_size()) { (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
// return a zero value for the load's basic type // return a zero value for the load's basic type
// (This is one of the few places where a generic PhaseTransform // (This is one of the few places where a generic PhaseTransform
// can create new nodes. Think of it as lazily manifesting // can create new nodes. Think of it as lazily manifesting
@ -1048,15 +1061,27 @@ Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
if (st->is_Proj() && st->in(0)->is_Initialize()) { if (st->is_Proj() && st->in(0)->is_Initialize()) {
InitializeNode* init = st->in(0)->as_Initialize(); InitializeNode* init = st->in(0)->as_Initialize();
AllocateNode* alloc = init->allocation(); AllocateNode* alloc = init->allocation();
if (alloc != NULL && if ((alloc != NULL) && (alloc == ld_alloc)) {
alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
// examine a captured store value // examine a captured store value
st = init->find_captured_store(offset, memory_size(), phase); st = init->find_captured_store(ld_off, memory_size(), phase);
if (st != NULL) if (st != NULL)
continue; // take one more trip around continue; // take one more trip around
} }
} }
// Load boxed value from result of valueOf() call is input parameter.
if (this->is_Load() && ld_adr->is_AddP() &&
(tp != NULL) && tp->is_ptr_to_boxed_value()) {
intptr_t ignore = 0;
Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
if (base != NULL && base->is_Proj() &&
base->as_Proj()->_con == TypeFunc::Parms &&
base->in(0)->is_CallStaticJava() &&
base->in(0)->as_CallStaticJava()->is_boxing_method()) {
return base->in(0)->in(TypeFunc::Parms);
}
}
break; break;
} }
@ -1065,11 +1090,13 @@ Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
//----------------------is_instance_field_load_with_local_phi------------------ //----------------------is_instance_field_load_with_local_phi------------------
bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl && if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
in(MemNode::Address)->is_AddP() ) { in(Address)->is_AddP() ) {
const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr(); const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
// Only instances. // Only instances and boxed values.
if( t_oop != NULL && t_oop->is_known_instance_field() && if( t_oop != NULL &&
(t_oop->is_ptr_to_boxed_value() ||
t_oop->is_known_instance_field()) &&
t_oop->offset() != Type::OffsetBot && t_oop->offset() != Type::OffsetBot &&
t_oop->offset() != Type::OffsetTop) { t_oop->offset() != Type::OffsetTop) {
return true; return true;
@ -1083,7 +1110,7 @@ bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
Node *LoadNode::Identity( PhaseTransform *phase ) { Node *LoadNode::Identity( PhaseTransform *phase ) {
// If the previous store-maker is the right kind of Store, and the store is // If the previous store-maker is the right kind of Store, and the store is
// to the same address, then we are equal to the value stored. // to the same address, then we are equal to the value stored.
Node* mem = in(MemNode::Memory); Node* mem = in(Memory);
Node* value = can_see_stored_value(mem, phase); Node* value = can_see_stored_value(mem, phase);
if( value ) { if( value ) {
// byte, short & char stores truncate naturally. // byte, short & char stores truncate naturally.
@ -1105,15 +1132,22 @@ Node *LoadNode::Identity( PhaseTransform *phase ) {
// instance's field to avoid infinite generation of phis in a loop. // instance's field to avoid infinite generation of phis in a loop.
Node *region = mem->in(0); Node *region = mem->in(0);
if (is_instance_field_load_with_local_phi(region)) { if (is_instance_field_load_with_local_phi(region)) {
const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr(); const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
int this_index = phase->C->get_alias_index(addr_t); int this_index = phase->C->get_alias_index(addr_t);
int this_offset = addr_t->offset(); int this_offset = addr_t->offset();
int this_id = addr_t->is_oopptr()->instance_id(); int this_iid = addr_t->instance_id();
if (!addr_t->is_known_instance() &&
addr_t->is_ptr_to_boxed_value()) {
// Use _idx of address base (could be Phi node) for boxed values.
intptr_t ignore = 0;
Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
this_iid = base->_idx;
}
const Type* this_type = bottom_type(); const Type* this_type = bottom_type();
for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
Node* phi = region->fast_out(i); Node* phi = region->fast_out(i);
if (phi->is_Phi() && phi != mem && if (phi->is_Phi() && phi != mem &&
phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) { phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
return phi; return phi;
} }
} }
@ -1122,170 +1156,106 @@ Node *LoadNode::Identity( PhaseTransform *phase ) {
return this; return this;
} }
// Returns true if the AliasType refers to the field that holds the
// cached box array. Currently only handles the IntegerCache case.
static bool is_autobox_cache(Compile::AliasType* atp) {
if (atp != NULL && atp->field() != NULL) {
ciField* field = atp->field();
ciSymbol* klass = field->holder()->name();
if (field->name() == ciSymbol::cache_field_name() &&
field->holder()->uses_default_loader() &&
klass == ciSymbol::java_lang_Integer_IntegerCache()) {
return true;
}
}
return false;
}
// Fetch the base value in the autobox array
static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
if (atp != NULL && atp->field() != NULL) {
ciField* field = atp->field();
ciSymbol* klass = field->holder()->name();
if (field->name() == ciSymbol::cache_field_name() &&
field->holder()->uses_default_loader() &&
klass == ciSymbol::java_lang_Integer_IntegerCache()) {
assert(field->is_constant(), "what?");
ciObjArray* array = field->constant_value().as_object()->as_obj_array();
// Fetch the box object at the base of the array and get its value
ciInstance* box = array->obj_at(0)->as_instance();
ciInstanceKlass* ik = box->klass()->as_instance_klass();
if (ik->nof_nonstatic_fields() == 1) {
// This should be true nonstatic_field_at requires calling
// nof_nonstatic_fields so check it anyway
ciConstant c = box->field_value(ik->nonstatic_field_at(0));
cache_offset = c.as_int();
}
return true;
}
}
return false;
}
// Returns true if the AliasType refers to the value field of an
// autobox object. Currently only handles Integer.
static bool is_autobox_object(Compile::AliasType* atp) {
if (atp != NULL && atp->field() != NULL) {
ciField* field = atp->field();
ciSymbol* klass = field->holder()->name();
if (field->name() == ciSymbol::value_name() &&
field->holder()->uses_default_loader() &&
klass == ciSymbol::java_lang_Integer()) {
return true;
}
}
return false;
}
// We're loading from an object which has autobox behaviour. // We're loading from an object which has autobox behaviour.
// If this object is result of a valueOf call we'll have a phi // If this object is result of a valueOf call we'll have a phi
// merging a newly allocated object and a load from the cache. // merging a newly allocated object and a load from the cache.
// We want to replace this load with the original incoming // We want to replace this load with the original incoming
// argument to the valueOf call. // argument to the valueOf call.
Node* LoadNode::eliminate_autobox(PhaseGVN* phase) { Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
Node* base = in(Address)->in(AddPNode::Base); assert(phase->C->eliminate_boxing(), "sanity");
if (base->is_Phi() && base->req() == 3) { intptr_t ignore = 0;
AllocateNode* allocation = NULL; Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
int allocation_index = -1; if ((base == NULL) || base->is_Phi()) {
int load_index = -1; // Push the loads from the phi that comes from valueOf up
for (uint i = 1; i < base->req(); i++) { // through it to allow elimination of the loads and the recovery
allocation = AllocateNode::Ideal_allocation(base->in(i), phase); // of the original value. It is done in split_through_phi().
if (allocation != NULL) { return NULL;
allocation_index = i;
load_index = 3 - allocation_index;
break;
}
}
bool has_load = ( allocation != NULL &&
(base->in(load_index)->is_Load() ||
base->in(load_index)->is_DecodeN() &&
base->in(load_index)->in(1)->is_Load()) );
if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
// Push the loads from the phi that comes from valueOf up
// through it to allow elimination of the loads and the recovery
// of the original value.
Node* mem_phi = in(Memory);
Node* offset = in(Address)->in(AddPNode::Offset);
Node* region = base->in(0);
Node* in1 = clone();
Node* in1_addr = in1->in(Address)->clone();
in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
in1_addr->set_req(AddPNode::Offset, offset);
in1->set_req(0, region->in(allocation_index));
in1->set_req(Address, in1_addr);
in1->set_req(Memory, mem_phi->in(allocation_index));
Node* in2 = clone();
Node* in2_addr = in2->in(Address)->clone();
in2_addr->set_req(AddPNode::Base, base->in(load_index));
in2_addr->set_req(AddPNode::Address, base->in(load_index));
in2_addr->set_req(AddPNode::Offset, offset);
in2->set_req(0, region->in(load_index));
in2->set_req(Address, in2_addr);
in2->set_req(Memory, mem_phi->in(load_index));
in1_addr = phase->transform(in1_addr);
in1 = phase->transform(in1);
in2_addr = phase->transform(in2_addr);
in2 = phase->transform(in2);
PhiNode* result = PhiNode::make_blank(region, this);
result->set_req(allocation_index, in1);
result->set_req(load_index, in2);
return result;
}
} else if (base->is_Load() || } else if (base->is_Load() ||
base->is_DecodeN() && base->in(1)->is_Load()) { base->is_DecodeN() && base->in(1)->is_Load()) {
if (base->is_DecodeN()) { // Eliminate the load of boxed value for integer types from the cache
// Get LoadN node which loads cached Integer object
base = base->in(1);
}
// Eliminate the load of Integer.value for integers from the cache
// array by deriving the value from the index into the array. // array by deriving the value from the index into the array.
// Capture the offset of the load and then reverse the computation. // Capture the offset of the load and then reverse the computation.
Node* load_base = base->in(Address)->in(AddPNode::Base);
if (load_base->is_DecodeN()) { // Get LoadN node which loads a boxing object from 'cache' array.
// Get LoadN node which loads IntegerCache.cache field if (base->is_DecodeN()) {
load_base = load_base->in(1); base = base->in(1);
} }
if (load_base != NULL) { if (!base->in(Address)->is_AddP()) {
Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type()); return NULL; // Complex address
intptr_t cache_offset; }
int shift = -1; AddPNode* address = base->in(Address)->as_AddP();
Node* cache = NULL; Node* cache_base = address->in(AddPNode::Base);
if (is_autobox_cache(atp)) { if ((cache_base != NULL) && cache_base->is_DecodeN()) {
shift = exact_log2(type2aelembytes(T_OBJECT)); // Get ConP node which is static 'cache' field.
cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset); cache_base = cache_base->in(1);
} }
if (cache != NULL && base->in(Address)->is_AddP()) { if ((cache_base != NULL) && cache_base->is_Con()) {
const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
if ((base_type != NULL) && base_type->is_autobox_cache()) {
Node* elements[4]; Node* elements[4];
int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements)); int shift = exact_log2(type2aelembytes(T_OBJECT));
int cache_low; int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
if (count > 0 && fetch_autobox_base(atp, cache_low)) { if ((count > 0) && elements[0]->is_Con() &&
int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift); ((count == 1) ||
// Add up all the offsets making of the address of the load (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
Node* result = elements[0]; elements[1]->in(2) == phase->intcon(shift))) {
for (int i = 1; i < count; i++) { ciObjArray* array = base_type->const_oop()->as_obj_array();
result = phase->transform(new (phase->C) AddXNode(result, elements[i])); // Fetch the box object cache[0] at the base of the array and get its value
} ciInstance* box = array->obj_at(0)->as_instance();
// Remove the constant offset from the address and then ciInstanceKlass* ik = box->klass()->as_instance_klass();
// remove the scaling of the offset to recover the original index. assert(ik->is_box_klass(), "sanity");
result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-offset))); assert(ik->nof_nonstatic_fields() == 1, "change following code");
if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) { if (ik->nof_nonstatic_fields() == 1) {
// Peel the shift off directly but wrap it in a dummy node // This should be true nonstatic_field_at requires calling
// since Ideal can't return existing nodes // nof_nonstatic_fields so check it anyway
result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0)); ciConstant c = box->field_value(ik->nonstatic_field_at(0));
} else { BasicType bt = c.basic_type();
result = new (phase->C) RShiftXNode(result, phase->intcon(shift)); // Only integer types have boxing cache.
} assert(bt == T_BOOLEAN || bt == T_CHAR ||
bt == T_BYTE || bt == T_SHORT ||
bt == T_INT || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
if (cache_low != (int)cache_low) {
return NULL; // should not happen since cache is array indexed by value
}
jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
if (offset != (int)offset) {
return NULL; // should not happen since cache is array indexed by value
}
// Add up all the offsets making of the address of the load
Node* result = elements[0];
for (int i = 1; i < count; i++) {
result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
}
// Remove the constant offset from the address and then
result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
// remove the scaling of the offset to recover the original index.
if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
// Peel the shift off directly but wrap it in a dummy node
// since Ideal can't return existing nodes
result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
} else if (result->is_Add() && result->in(2)->is_Con() &&
result->in(1)->Opcode() == Op_LShiftX &&
result->in(1)->in(2) == phase->intcon(shift)) {
// We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
// but for boxing cache access we know that X<<Z will not overflow
// (there is range check) so we do this optimizatrion by hand here.
Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
} else {
result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
}
#ifdef _LP64 #ifdef _LP64
result = new (phase->C) ConvL2INode(phase->transform(result)); if (bt != T_LONG) {
result = new (phase->C) ConvL2INode(phase->transform(result));
}
#else
if (bt == T_LONG) {
result = new (phase->C) ConvI2LNode(phase->transform(result));
}
#endif #endif
return result; return result;
}
} }
} }
} }
@ -1293,65 +1263,131 @@ Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
return NULL; return NULL;
} }
//------------------------------split_through_phi------------------------------ static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
// Split instance field load through Phi. Node* region = phi->in(0);
Node *LoadNode::split_through_phi(PhaseGVN *phase) {
Node* mem = in(MemNode::Memory);
Node* address = in(MemNode::Address);
const TypePtr *addr_t = phase->type(address)->isa_ptr();
const TypeOopPtr *t_oop = addr_t->isa_oopptr();
assert(mem->is_Phi() && (t_oop != NULL) &&
t_oop->is_known_instance_field(), "invalide conditions");
Node *region = mem->in(0);
if (region == NULL) { if (region == NULL) {
return NULL; // Wait stable graph return false; // Wait stable graph
} }
uint cnt = mem->req(); uint cnt = phi->req();
for (uint i = 1; i < cnt; i++) { for (uint i = 1; i < cnt; i++) {
Node* rc = region->in(i); Node* rc = region->in(i);
if (rc == NULL || phase->type(rc) == Type::TOP) if (rc == NULL || phase->type(rc) == Type::TOP)
return NULL; // Wait stable graph return false; // Wait stable graph
Node *in = mem->in(i); Node* in = phi->in(i);
if (in == NULL) { if (in == NULL || phase->type(in) == Type::TOP)
return false; // Wait stable graph
}
return true;
}
//------------------------------split_through_phi------------------------------
// Split instance or boxed field load through Phi.
Node *LoadNode::split_through_phi(PhaseGVN *phase) {
Node* mem = in(Memory);
Node* address = in(Address);
const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
assert((t_oop != NULL) &&
(t_oop->is_known_instance_field() ||
t_oop->is_ptr_to_boxed_value()), "invalide conditions");
Compile* C = phase->C;
intptr_t ignore = 0;
Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
bool base_is_phi = (base != NULL) && base->is_Phi();
bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
(base != NULL) && (base == address->in(AddPNode::Base)) &&
phase->type(base)->higher_equal(TypePtr::NOTNULL);
if (!((mem->is_Phi() || base_is_phi) &&
(load_boxed_values || t_oop->is_known_instance_field()))) {
return NULL; // memory is not Phi
}
if (mem->is_Phi()) {
if (!stable_phi(mem->as_Phi(), phase)) {
return NULL; // Wait stable graph return NULL; // Wait stable graph
} }
} uint cnt = mem->req();
// Check for loop invariant. // Check for loop invariant memory.
if (cnt == 3) { if (cnt == 3) {
for (uint i = 1; i < cnt; i++) { for (uint i = 1; i < cnt; i++) {
Node *in = mem->in(i); Node* in = mem->in(i);
Node* m = MemNode::optimize_memory_chain(in, addr_t, phase); Node* m = optimize_memory_chain(in, t_oop, this, phase);
if (m == mem) { if (m == mem) {
set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi. set_req(Memory, mem->in(cnt - i));
return this; return this; // made change
}
} }
} }
} }
if (base_is_phi) {
if (!stable_phi(base->as_Phi(), phase)) {
return NULL; // Wait stable graph
}
uint cnt = base->req();
// Check for loop invariant memory.
if (cnt == 3) {
for (uint i = 1; i < cnt; i++) {
if (base->in(i) == base) {
return NULL; // Wait stable graph
}
}
}
}
bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
// Split through Phi (see original code in loopopts.cpp). // Split through Phi (see original code in loopopts.cpp).
assert(phase->C->have_alias_type(addr_t), "instance should have alias type"); assert(C->have_alias_type(t_oop), "instance should have alias type");
// Do nothing here if Identity will find a value // Do nothing here if Identity will find a value
// (to avoid infinite chain of value phis generation). // (to avoid infinite chain of value phis generation).
if (!phase->eqv(this, this->Identity(phase))) if (!phase->eqv(this, this->Identity(phase)))
return NULL; return NULL;
// Skip the split if the region dominates some control edge of the address. // Select Region to split through.
if (!MemNode::all_controls_dominate(address, region)) Node* region;
return NULL; if (!base_is_phi) {
assert(mem->is_Phi(), "sanity");
region = mem->in(0);
// Skip if the region dominates some control edge of the address.
if (!MemNode::all_controls_dominate(address, region))
return NULL;
} else if (!mem->is_Phi()) {
assert(base_is_phi, "sanity");
region = base->in(0);
// Skip if the region dominates some control edge of the memory.
if (!MemNode::all_controls_dominate(mem, region))
return NULL;
} else if (base->in(0) != mem->in(0)) {
assert(base_is_phi && mem->is_Phi(), "sanity");
if (MemNode::all_controls_dominate(mem, base->in(0))) {
region = base->in(0);
} else if (MemNode::all_controls_dominate(address, mem->in(0))) {
region = mem->in(0);
} else {
return NULL; // complex graph
}
} else {
assert(base->in(0) == mem->in(0), "sanity");
region = mem->in(0);
}
const Type* this_type = this->bottom_type(); const Type* this_type = this->bottom_type();
int this_index = phase->C->get_alias_index(addr_t); int this_index = C->get_alias_index(t_oop);
int this_offset = addr_t->offset(); int this_offset = t_oop->offset();
int this_iid = addr_t->is_oopptr()->instance_id(); int this_iid = t_oop->instance_id();
PhaseIterGVN *igvn = phase->is_IterGVN(); if (!t_oop->is_known_instance() && load_boxed_values) {
Node *phi = new (igvn->C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset); // Use _idx of address base for boxed values.
this_iid = base->_idx;
}
PhaseIterGVN* igvn = phase->is_IterGVN();
Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
for (uint i = 1; i < region->req(); i++) { for (uint i = 1; i < region->req(); i++) {
Node *x; Node* x;
Node* the_clone = NULL; Node* the_clone = NULL;
if (region->in(i) == phase->C->top()) { if (region->in(i) == C->top()) {
x = phase->C->top(); // Dead path? Use a dead data op x = C->top(); // Dead path? Use a dead data op
} else { } else {
x = this->clone(); // Else clone up the data op x = this->clone(); // Else clone up the data op
the_clone = x; // Remember for possible deletion. the_clone = x; // Remember for possible deletion.
@ -1361,10 +1397,16 @@ Node *LoadNode::split_through_phi(PhaseGVN *phase) {
} else { } else {
x->set_req(0, NULL); x->set_req(0, NULL);
} }
for (uint j = 1; j < this->req(); j++) { if (mem->is_Phi() && (mem->in(0) == region)) {
Node *in = this->in(j); x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
if (in->is_Phi() && in->in(0) == region) }
x->set_req(j, in->in(i)); // Use pre-Phi input for the clone if (address->is_Phi() && address->in(0) == region) {
x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
}
if (base_is_phi && (base->in(0) == region)) {
Node* base_x = base->in(i); // Clone address for loads from boxed objects.
Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
x->set_req(Address, adr_x);
} }
} }
// Check for a 'win' on some paths // Check for a 'win' on some paths
@ -1394,7 +1436,7 @@ Node *LoadNode::split_through_phi(PhaseGVN *phase) {
if (y != x) { if (y != x) {
x = y; x = y;
} else { } else {
y = igvn->hash_find(x); y = igvn->hash_find_insert(x);
if (y) { if (y) {
x = y; x = y;
} else { } else {
@ -1405,8 +1447,9 @@ Node *LoadNode::split_through_phi(PhaseGVN *phase) {
} }
} }
} }
if (x != the_clone && the_clone != NULL) if (x != the_clone && the_clone != NULL) {
igvn->remove_dead_node(the_clone); igvn->remove_dead_node(the_clone);
}
phi->set_req(i, x); phi->set_req(i, x);
} }
// Record Phi // Record Phi
@ -1445,31 +1488,23 @@ Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// A method-invariant, non-null address (constant or 'this' argument). // A method-invariant, non-null address (constant or 'this' argument).
set_req(MemNode::Control, NULL); set_req(MemNode::Control, NULL);
} }
if (EliminateAutoBox && can_reshape) {
assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
Compile::AliasType* atp = phase->C->alias_type(adr_type());
if (is_autobox_object(atp)) {
Node* result = eliminate_autobox(phase);
if (result != NULL) return result;
}
}
} }
Node* mem = in(MemNode::Memory); Node* mem = in(MemNode::Memory);
const TypePtr *addr_t = phase->type(address)->isa_ptr(); const TypePtr *addr_t = phase->type(address)->isa_ptr();
if (addr_t != NULL) { if (can_reshape && (addr_t != NULL)) {
// try to optimize our memory input // try to optimize our memory input
Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase); Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
if (opt_mem != mem) { if (opt_mem != mem) {
set_req(MemNode::Memory, opt_mem); set_req(MemNode::Memory, opt_mem);
if (phase->type( opt_mem ) == Type::TOP) return NULL; if (phase->type( opt_mem ) == Type::TOP) return NULL;
return this; return this;
} }
const TypeOopPtr *t_oop = addr_t->isa_oopptr(); const TypeOopPtr *t_oop = addr_t->isa_oopptr();
if (can_reshape && opt_mem->is_Phi() && if ((t_oop != NULL) &&
(t_oop != NULL) && t_oop->is_known_instance_field()) { (t_oop->is_known_instance_field() ||
t_oop->is_ptr_to_boxed_value())) {
PhaseIterGVN *igvn = phase->is_IterGVN(); PhaseIterGVN *igvn = phase->is_IterGVN();
if (igvn != NULL && igvn->_worklist.member(opt_mem)) { if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
// Delay this transformation until memory Phi is processed. // Delay this transformation until memory Phi is processed.
@ -1479,6 +1514,11 @@ Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Split instance field load through Phi. // Split instance field load through Phi.
Node* result = split_through_phi(phase); Node* result = split_through_phi(phase);
if (result != NULL) return result; if (result != NULL) return result;
if (t_oop->is_ptr_to_boxed_value()) {
Node* result = eliminate_autobox(phase);
if (result != NULL) return result;
}
} }
} }
@ -1587,18 +1627,23 @@ const Type *LoadNode::Value( PhaseTransform *phase ) const {
// This can happen if a interface-typed array narrows to a class type. // This can happen if a interface-typed array narrows to a class type.
jt = _type; jt = _type;
} }
#ifdef ASSERT
if (EliminateAutoBox && adr->is_AddP()) { if (phase->C->eliminate_boxing() && adr->is_AddP()) {
// The pointers in the autobox arrays are always non-null // The pointers in the autobox arrays are always non-null
Node* base = adr->in(AddPNode::Base); Node* base = adr->in(AddPNode::Base);
if (base != NULL && if ((base != NULL) && base->is_DecodeN()) {
!phase->type(base)->higher_equal(TypePtr::NULL_PTR)) { // Get LoadN node which loads IntegerCache.cache field
Compile::AliasType* atp = C->alias_type(base->adr_type()); base = base->in(1);
if (is_autobox_cache(atp)) { }
return jt->join(TypePtr::NOTNULL)->is_ptr(); if ((base != NULL) && base->is_Con()) {
const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
if ((base_type != NULL) && base_type->is_autobox_cache()) {
// It could be narrow oop
assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
} }
} }
} }
#endif
return jt; return jt;
} }
} }
@ -1638,6 +1683,10 @@ const Type *LoadNode::Value( PhaseTransform *phase ) const {
// Optimizations for constant objects // Optimizations for constant objects
ciObject* const_oop = tinst->const_oop(); ciObject* const_oop = tinst->const_oop();
if (const_oop != NULL) { if (const_oop != NULL) {
// For constant Boxed value treat the target field as a compile time constant.
if (tinst->is_ptr_to_boxed_value()) {
return tinst->get_const_boxed_value();
} else
// For constant CallSites treat the target field as a compile time constant. // For constant CallSites treat the target field as a compile time constant.
if (const_oop->is_call_site()) { if (const_oop->is_call_site()) {
ciCallSite* call_site = const_oop->as_call_site(); ciCallSite* call_site = const_oop->as_call_site();
@ -1759,7 +1808,8 @@ const Type *LoadNode::Value( PhaseTransform *phase ) const {
// (Also allow a variable load from a fresh array to produce zero.) // (Also allow a variable load from a fresh array to produce zero.)
const TypeOopPtr *tinst = tp->isa_oopptr(); const TypeOopPtr *tinst = tp->isa_oopptr();
bool is_instance = (tinst != NULL) && tinst->is_known_instance_field(); bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
if (ReduceFieldZeroing || is_instance) { bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
if (ReduceFieldZeroing || is_instance || is_boxed_value) {
Node* value = can_see_stored_value(mem,phase); Node* value = can_see_stored_value(mem,phase);
if (value != NULL && value->is_Con()) { if (value != NULL && value->is_Con()) {
assert(value->bottom_type()->higher_equal(_type),"sanity"); assert(value->bottom_type()->higher_equal(_type),"sanity");
@ -2883,24 +2933,38 @@ Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if (in(0) && in(0)->is_top()) return NULL; if (in(0) && in(0)->is_top()) return NULL;
// Eliminate volatile MemBars for scalar replaced objects. // Eliminate volatile MemBars for scalar replaced objects.
if (can_reshape && req() == (Precedent+1) && if (can_reshape && req() == (Precedent+1)) {
(Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) { bool eliminate = false;
// Volatile field loads and stores. int opc = Opcode();
Node* my_mem = in(MemBarNode::Precedent); if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
if (my_mem != NULL && my_mem->is_Mem()) { // Volatile field loads and stores.
const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); Node* my_mem = in(MemBarNode::Precedent);
// Check for scalar replaced object reference. if (my_mem != NULL && my_mem->is_Mem()) {
if( t_oop != NULL && t_oop->is_known_instance_field() && const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
t_oop->offset() != Type::OffsetBot && // Check for scalar replaced object reference.
t_oop->offset() != Type::OffsetTop) { if( t_oop != NULL && t_oop->is_known_instance_field() &&
// Replace MemBar projections by its inputs. t_oop->offset() != Type::OffsetBot &&
PhaseIterGVN* igvn = phase->is_IterGVN(); t_oop->offset() != Type::OffsetTop) {
igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); eliminate = true;
igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); }
// Must return either the original node (now dead) or a new node
// (Do not return a top here, since that would break the uniqueness of top.)
return new (phase->C) ConINode(TypeInt::ZERO);
} }
} else if (opc == Op_MemBarRelease) {
// Final field stores.
Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
if ((alloc != NULL) && alloc->is_Allocate() &&
alloc->as_Allocate()->_is_non_escaping) {
// The allocated object does not escape.
eliminate = true;
}
}
if (eliminate) {
// Replace MemBar projections by its inputs.
PhaseIterGVN* igvn = phase->is_IterGVN();
igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
// Must return either the original node (now dead) or a new node
// (Do not return a top here, since that would break the uniqueness of top.)
return new (phase->C) ConINode(TypeInt::ZERO);
} }
} }
return NULL; return NULL;
@ -3113,9 +3177,7 @@ intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
// within the initialization without creating a vicious cycle, such as: // within the initialization without creating a vicious cycle, such as:
// { Foo p = new Foo(); p.next = p; } // { Foo p = new Foo(); p.next = p; }
// True for constants and parameters and small combinations thereof. // True for constants and parameters and small combinations thereof.
bool InitializeNode::detect_init_independence(Node* n, bool InitializeNode::detect_init_independence(Node* n, int& count) {
bool st_is_pinned,
int& count) {
if (n == NULL) return true; // (can this really happen?) if (n == NULL) return true; // (can this really happen?)
if (n->is_Proj()) n = n->in(0); if (n->is_Proj()) n = n->in(0);
if (n == this) return false; // found a cycle if (n == this) return false; // found a cycle
@ -3135,7 +3197,6 @@ bool InitializeNode::detect_init_independence(Node* n,
// a store is never pinned *before* the availability of its inputs. // a store is never pinned *before* the availability of its inputs.
if (!MemNode::all_controls_dominate(n, this)) if (!MemNode::all_controls_dominate(n, this))
return false; // failed to prove a good control return false; // failed to prove a good control
} }
// Check data edges for possible dependencies on 'this'. // Check data edges for possible dependencies on 'this'.
@ -3145,7 +3206,7 @@ bool InitializeNode::detect_init_independence(Node* n,
if (m == NULL || m == n || m->is_top()) continue; if (m == NULL || m == n || m->is_top()) continue;
uint first_i = n->find_edge(m); uint first_i = n->find_edge(m);
if (i != first_i) continue; // process duplicate edge just once if (i != first_i) continue; // process duplicate edge just once
if (!detect_init_independence(m, st_is_pinned, count)) { if (!detect_init_independence(m, count)) {
return false; return false;
} }
} }
@ -3176,7 +3237,7 @@ intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase,
return FAIL; // wrong allocation! (store needs to float up) return FAIL; // wrong allocation! (store needs to float up)
Node* val = st->in(MemNode::ValueIn); Node* val = st->in(MemNode::ValueIn);
int complexity_count = 0; int complexity_count = 0;
if (!detect_init_independence(val, true, complexity_count)) if (!detect_init_independence(val, complexity_count))
return FAIL; // stored value must be 'simple enough' return FAIL; // stored value must be 'simple enough'
// The Store can be captured only if nothing after the allocation // The Store can be captured only if nothing after the allocation

View file

@ -75,8 +75,8 @@ public:
PhaseTransform* phase); PhaseTransform* phase);
static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast); static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase); static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase); static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
// This one should probably be a phase-specific function: // This one should probably be a phase-specific function:
static bool all_controls_dominate(Node* dom, Node* sub); static bool all_controls_dominate(Node* dom, Node* sub);
@ -1099,7 +1099,7 @@ public:
Node* make_raw_address(intptr_t offset, PhaseTransform* phase); Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
bool detect_init_independence(Node* n, bool st_is_pinned, int& count); bool detect_init_independence(Node* n, int& count);
void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes, void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
PhaseGVN* phase); PhaseGVN* phase);

View file

@ -23,6 +23,7 @@
*/ */
#include "precompiled.hpp" #include "precompiled.hpp"
#include "opto/callnode.hpp"
#include "opto/matcher.hpp" #include "opto/matcher.hpp"
#include "opto/multnode.hpp" #include "opto/multnode.hpp"
#include "opto/opcodes.hpp" #include "opto/opcodes.hpp"
@ -73,13 +74,26 @@ bool ProjNode::is_CFG() const {
return (_con == TypeFunc::Control && def->is_CFG()); return (_con == TypeFunc::Control && def->is_CFG());
} }
const Type* ProjNode::proj_type(const Type* t) const {
if (t == Type::TOP) {
return Type::TOP;
}
if (t == Type::BOTTOM) {
return Type::BOTTOM;
}
t = t->is_tuple()->field_at(_con);
Node* n = in(0);
if ((_con == TypeFunc::Parms) &&
n->is_CallStaticJava() && n->as_CallStaticJava()->is_boxing_method()) {
// The result of autoboxing is always non-null on normal path.
t = t->join(TypePtr::NOTNULL);
}
return t;
}
const Type *ProjNode::bottom_type() const { const Type *ProjNode::bottom_type() const {
if (in(0) == NULL) return Type::TOP; if (in(0) == NULL) return Type::TOP;
const Type *tb = in(0)->bottom_type(); return proj_type(in(0)->bottom_type());
if( tb == Type::TOP ) return Type::TOP;
if( tb == Type::BOTTOM ) return Type::BOTTOM;
const TypeTuple *t = tb->is_tuple();
return t->field_at(_con);
} }
const TypePtr *ProjNode::adr_type() const { const TypePtr *ProjNode::adr_type() const {
@ -115,11 +129,8 @@ void ProjNode::check_con() const {
//------------------------------Value------------------------------------------ //------------------------------Value------------------------------------------
const Type *ProjNode::Value( PhaseTransform *phase ) const { const Type *ProjNode::Value( PhaseTransform *phase ) const {
if( !in(0) ) return Type::TOP; if (in(0) == NULL) return Type::TOP;
const Type *t = phase->type(in(0)); return proj_type(phase->type(in(0)));
if( t == Type::TOP ) return t;
if( t == Type::BOTTOM ) return t;
return t->is_tuple()->field_at(_con);
} }
//------------------------------out_RegMask------------------------------------ //------------------------------out_RegMask------------------------------------

View file

@ -60,6 +60,7 @@ protected:
virtual uint cmp( const Node &n ) const; virtual uint cmp( const Node &n ) const;
virtual uint size_of() const; virtual uint size_of() const;
void check_con() const; // Called from constructor. void check_con() const; // Called from constructor.
const Type* proj_type(const Type* t) const;
public: public:
ProjNode( Node *src, uint con, bool io_use = false ) ProjNode( Node *src, uint con, bool io_use = false )
@ -83,6 +84,7 @@ public:
virtual const Type *Value( PhaseTransform *phase ) const; virtual const Type *Value( PhaseTransform *phase ) const;
virtual uint ideal_reg() const; virtual uint ideal_reg() const;
virtual const RegMask &out_RegMask() const; virtual const RegMask &out_RegMask() const;
#ifndef PRODUCT #ifndef PRODUCT
virtual void dump_spec(outputStream *st) const; virtual void dump_spec(outputStream *st) const;
#endif #endif

View file

@ -67,7 +67,8 @@ void Node::verify_construction() {
} }
Compile::set_debug_idx(new_debug_idx); Compile::set_debug_idx(new_debug_idx);
set_debug_idx( new_debug_idx ); set_debug_idx( new_debug_idx );
assert(Compile::current()->unique() < (UINT_MAX - 1), "Node limit exceeded UINT_MAX"); assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
assert(Compile::current()->live_nodes() < (uint)MaxNodeLimit, "Live Node limit exceeded limit");
if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) { if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx); tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
BREAKPOINT; BREAKPOINT;
@ -471,9 +472,9 @@ Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
//------------------------------clone------------------------------------------ //------------------------------clone------------------------------------------
// Clone a Node. // Clone a Node.
Node *Node::clone() const { Node *Node::clone() const {
Compile *compile = Compile::current(); Compile* C = Compile::current();
uint s = size_of(); // Size of inherited Node uint s = size_of(); // Size of inherited Node
Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*)); Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s); Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
// Set the new input pointer array // Set the new input pointer array
n->_in = (Node**)(((char*)n)+s); n->_in = (Node**)(((char*)n)+s);
@ -492,18 +493,18 @@ Node *Node::clone() const {
if (x != NULL) x->add_out(n); if (x != NULL) x->add_out(n);
} }
if (is_macro()) if (is_macro())
compile->add_macro_node(n); C->add_macro_node(n);
if (is_expensive()) if (is_expensive())
compile->add_expensive_node(n); C->add_expensive_node(n);
n->set_idx(compile->next_unique()); // Get new unique index as well n->set_idx(C->next_unique()); // Get new unique index as well
debug_only( n->verify_construction() ); debug_only( n->verify_construction() );
NOT_PRODUCT(nodes_created++); NOT_PRODUCT(nodes_created++);
// Do not patch over the debug_idx of a clone, because it makes it // Do not patch over the debug_idx of a clone, because it makes it
// impossible to break on the clone's moment of creation. // impossible to break on the clone's moment of creation.
//debug_only( n->set_debug_idx( debug_idx() ) ); //debug_only( n->set_debug_idx( debug_idx() ) );
compile->copy_node_notes_to(n, (Node*) this); C->copy_node_notes_to(n, (Node*) this);
// MachNode clone // MachNode clone
uint nopnds; uint nopnds;
@ -518,13 +519,12 @@ Node *Node::clone() const {
(const void*)(&mthis->_opnds), 1)); (const void*)(&mthis->_opnds), 1));
mach->_opnds = to; mach->_opnds = to;
for ( uint i = 0; i < nopnds; ++i ) { for ( uint i = 0; i < nopnds; ++i ) {
to[i] = from[i]->clone(compile); to[i] = from[i]->clone(C);
} }
} }
// cloning CallNode may need to clone JVMState // cloning CallNode may need to clone JVMState
if (n->is_Call()) { if (n->is_Call()) {
CallNode *call = n->as_Call(); n->as_Call()->clone_jvms(C);
call->clone_jvms();
} }
return n; // Return the clone return n; // Return the clone
} }
@ -811,6 +811,21 @@ int Node::replace_edge(Node* old, Node* neww) {
return nrep; return nrep;
} }
/**
* Replace input edges in the range pointing to 'old' node.
*/
int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
if (old == neww) return 0; // nothing to do
uint nrep = 0;
for (int i = start; i < end; i++) {
if (in(i) == old) {
set_req(i, neww);
nrep++;
}
}
return nrep;
}
//-------------------------disconnect_inputs----------------------------------- //-------------------------disconnect_inputs-----------------------------------
// NULL out all inputs to eliminate incoming Def-Use edges. // NULL out all inputs to eliminate incoming Def-Use edges.
// Return the number of edges between 'n' and 'this' // Return the number of edges between 'n' and 'this'
@ -1383,6 +1398,21 @@ const TypeLong* Node::find_long_type() const {
return NULL; return NULL;
} }
/**
* Return a ptr type for nodes which should have it.
*/
const TypePtr* Node::get_ptr_type() const {
const TypePtr* tp = this->bottom_type()->make_ptr();
#ifdef ASSERT
if (tp == NULL) {
this->dump(1);
assert((tp != NULL), "unexpected node type");
}
#endif
return tp;
}
// Get a double constant from a ConstNode. // Get a double constant from a ConstNode.
// Returns the constant if it is a double ConstNode // Returns the constant if it is a double ConstNode
jdouble Node::getd() const { jdouble Node::getd() const {

View file

@ -410,6 +410,7 @@ protected:
// Find first occurrence of n among my edges: // Find first occurrence of n among my edges:
int find_edge(Node* n); int find_edge(Node* n);
int replace_edge(Node* old, Node* neww); int replace_edge(Node* old, Node* neww);
int replace_edges_in_range(Node* old, Node* neww, int start, int end);
// NULL out all inputs to eliminate incoming Def-Use edges. // NULL out all inputs to eliminate incoming Def-Use edges.
// Return the number of edges between 'n' and 'this' // Return the number of edges between 'n' and 'this'
int disconnect_inputs(Node *n, Compile *c); int disconnect_inputs(Node *n, Compile *c);
@ -964,6 +965,8 @@ public:
} }
const TypeLong* find_long_type() const; const TypeLong* find_long_type() const;
const TypePtr* get_ptr_type() const;
// These guys are called by code generated by ADLC: // These guys are called by code generated by ADLC:
intptr_t get_ptr() const; intptr_t get_ptr() const;
intptr_t get_narrowcon() const; intptr_t get_narrowcon() const;

View file

@ -929,7 +929,7 @@ void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
scval = new_loc_value( _regalloc, obj_reg, Location::oop ); scval = new_loc_value( _regalloc, obj_reg, Location::oop );
} }
} else { } else {
const TypePtr *tp = obj_node->bottom_type()->make_ptr(); const TypePtr *tp = obj_node->get_ptr_type();
scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
} }

View file

@ -330,6 +330,7 @@ class Parse : public GraphKit {
bool _wrote_final; // Did we write a final field? bool _wrote_final; // Did we write a final field?
bool _count_invocations; // update and test invocation counter bool _count_invocations; // update and test invocation counter
bool _method_data_update; // update method data oop bool _method_data_update; // update method data oop
Node* _alloc_with_final; // An allocation node with final field
// Variables which track Java semantics during bytecode parsing: // Variables which track Java semantics during bytecode parsing:
@ -370,6 +371,11 @@ class Parse : public GraphKit {
void set_wrote_final(bool z) { _wrote_final = z; } void set_wrote_final(bool z) { _wrote_final = z; }
bool count_invocations() const { return _count_invocations; } bool count_invocations() const { return _count_invocations; }
bool method_data_update() const { return _method_data_update; } bool method_data_update() const { return _method_data_update; }
Node* alloc_with_final() const { return _alloc_with_final; }
void set_alloc_with_final(Node* n) {
assert((_alloc_with_final == NULL) || (_alloc_with_final == n), "different init objects?");
_alloc_with_final = n;
}
Block* block() const { return _block; } Block* block() const { return _block; }
ciBytecodeStream& iter() { return _iter; } ciBytecodeStream& iter() { return _iter; }
@ -512,7 +518,7 @@ class Parse : public GraphKit {
// loading from a constant field or the constant pool // loading from a constant field or the constant pool
// returns false if push failed (non-perm field constants only, not ldcs) // returns false if push failed (non-perm field constants only, not ldcs)
bool push_constant(ciConstant con, bool require_constant = false); bool push_constant(ciConstant con, bool require_constant = false, bool is_autobox_cache = false);
// implementation of object creation bytecodes // implementation of object creation bytecodes
void emit_guard_for_new(ciInstanceKlass* klass); void emit_guard_for_new(ciInstanceKlass* klass);

View file

@ -390,6 +390,7 @@ Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
_expected_uses = expected_uses; _expected_uses = expected_uses;
_depth = 1 + (caller->has_method() ? caller->depth() : 0); _depth = 1 + (caller->has_method() ? caller->depth() : 0);
_wrote_final = false; _wrote_final = false;
_alloc_with_final = NULL;
_entry_bci = InvocationEntryBci; _entry_bci = InvocationEntryBci;
_tf = NULL; _tf = NULL;
_block = NULL; _block = NULL;
@ -723,6 +724,8 @@ void Parse::build_exits() {
// Note: iophi and memphi are not transformed until do_exits. // Note: iophi and memphi are not transformed until do_exits.
Node* iophi = new (C) PhiNode(region, Type::ABIO); Node* iophi = new (C) PhiNode(region, Type::ABIO);
Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
gvn().set_type_bottom(iophi);
gvn().set_type_bottom(memphi);
_exits.set_i_o(iophi); _exits.set_i_o(iophi);
_exits.set_all_memory(memphi); _exits.set_all_memory(memphi);
@ -738,6 +741,7 @@ void Parse::build_exits() {
} }
int ret_size = type2size[ret_type->basic_type()]; int ret_size = type2size[ret_type->basic_type()];
Node* ret_phi = new (C) PhiNode(region, ret_type); Node* ret_phi = new (C) PhiNode(region, ret_type);
gvn().set_type_bottom(ret_phi);
_exits.ensure_stack(ret_size); _exits.ensure_stack(ret_size);
assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
@ -917,7 +921,7 @@ void Parse::do_exits() {
// such unusual early publications. But no barrier is needed on // such unusual early publications. But no barrier is needed on
// exceptional returns, since they cannot publish normally. // exceptional returns, since they cannot publish normally.
// //
_exits.insert_mem_bar(Op_MemBarRelease); _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
#ifndef PRODUCT #ifndef PRODUCT
if (PrintOpto && (Verbose || WizardMode)) { if (PrintOpto && (Verbose || WizardMode)) {
method()->print_name(); method()->print_name();

View file

@ -987,7 +987,7 @@ void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
uncommon_trap(Deoptimization::Reason_unreached, uncommon_trap(Deoptimization::Reason_unreached,
Deoptimization::Action_reinterpret, Deoptimization::Action_reinterpret,
NULL, "cold"); NULL, "cold");
if (EliminateAutoBox) { if (C->eliminate_boxing()) {
// Mark the successor blocks as parsed // Mark the successor blocks as parsed
branch_block->next_path_num(); branch_block->next_path_num();
next_block->next_path_num(); next_block->next_path_num();
@ -1012,7 +1012,7 @@ void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
if (stopped()) { // Path is dead? if (stopped()) { // Path is dead?
explicit_null_checks_elided++; explicit_null_checks_elided++;
if (EliminateAutoBox) { if (C->eliminate_boxing()) {
// Mark the successor block as parsed // Mark the successor block as parsed
branch_block->next_path_num(); branch_block->next_path_num();
} }
@ -1032,7 +1032,7 @@ void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
if (stopped()) { // Path is dead? if (stopped()) { // Path is dead?
explicit_null_checks_elided++; explicit_null_checks_elided++;
if (EliminateAutoBox) { if (C->eliminate_boxing()) {
// Mark the successor block as parsed // Mark the successor block as parsed
next_block->next_path_num(); next_block->next_path_num();
} }
@ -1069,7 +1069,7 @@ void Parse::do_if(BoolTest::mask btest, Node* c) {
uncommon_trap(Deoptimization::Reason_unreached, uncommon_trap(Deoptimization::Reason_unreached,
Deoptimization::Action_reinterpret, Deoptimization::Action_reinterpret,
NULL, "cold"); NULL, "cold");
if (EliminateAutoBox) { if (C->eliminate_boxing()) {
// Mark the successor blocks as parsed // Mark the successor blocks as parsed
branch_block->next_path_num(); branch_block->next_path_num();
next_block->next_path_num(); next_block->next_path_num();
@ -1135,7 +1135,7 @@ void Parse::do_if(BoolTest::mask btest, Node* c) {
set_control(taken_branch); set_control(taken_branch);
if (stopped()) { if (stopped()) {
if (EliminateAutoBox) { if (C->eliminate_boxing()) {
// Mark the successor block as parsed // Mark the successor block as parsed
branch_block->next_path_num(); branch_block->next_path_num();
} }
@ -1154,7 +1154,7 @@ void Parse::do_if(BoolTest::mask btest, Node* c) {
// Branch not taken. // Branch not taken.
if (stopped()) { if (stopped()) {
if (EliminateAutoBox) { if (C->eliminate_boxing()) {
// Mark the successor block as parsed // Mark the successor block as parsed
next_block->next_path_num(); next_block->next_path_num();
} }

View file

@ -150,6 +150,23 @@ void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
// final field // final field
if (field->is_static()) { if (field->is_static()) {
// final static field // final static field
if (C->eliminate_boxing()) {
// The pointers in the autobox arrays are always non-null.
ciSymbol* klass_name = field->holder()->name();
if (field->name() == ciSymbol::cache_field_name() &&
field->holder()->uses_default_loader() &&
(klass_name == ciSymbol::java_lang_Character_CharacterCache() ||
klass_name == ciSymbol::java_lang_Byte_ByteCache() ||
klass_name == ciSymbol::java_lang_Short_ShortCache() ||
klass_name == ciSymbol::java_lang_Integer_IntegerCache() ||
klass_name == ciSymbol::java_lang_Long_LongCache())) {
bool require_const = true;
bool autobox_cache = true;
if (push_constant(field->constant_value(), require_const, autobox_cache)) {
return;
}
}
}
if (push_constant(field->constant_value())) if (push_constant(field->constant_value()))
return; return;
} }
@ -304,11 +321,18 @@ void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
// out of the constructor. // out of the constructor.
if (is_field && field->is_final()) { if (is_field && field->is_final()) {
set_wrote_final(true); set_wrote_final(true);
// Preserve allocation ptr to create precedent edge to it in membar
// generated on exit from constructor.
if (C->eliminate_boxing() &&
adr_type->isa_oopptr() && adr_type->is_oopptr()->is_ptr_to_boxed_value() &&
AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
set_alloc_with_final(obj);
}
} }
} }
bool Parse::push_constant(ciConstant constant, bool require_constant) { bool Parse::push_constant(ciConstant constant, bool require_constant, bool is_autobox_cache) {
switch (constant.basic_type()) { switch (constant.basic_type()) {
case T_BOOLEAN: push( intcon(constant.as_boolean()) ); break; case T_BOOLEAN: push( intcon(constant.as_boolean()) ); break;
case T_INT: push( intcon(constant.as_int()) ); break; case T_INT: push( intcon(constant.as_int()) ); break;
@ -329,7 +353,7 @@ bool Parse::push_constant(ciConstant constant, bool require_constant) {
push( zerocon(T_OBJECT) ); push( zerocon(T_OBJECT) );
break; break;
} else if (require_constant || oop_constant->should_be_constant()) { } else if (require_constant || oop_constant->should_be_constant()) {
push( makecon(TypeOopPtr::make_from_constant(oop_constant, require_constant)) ); push( makecon(TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache)) );
break; break;
} else { } else {
// we cannot inline the oop, but we can use it later to narrow a type // we cannot inline the oop, but we can use it later to narrow a type

View file

@ -284,6 +284,11 @@ void Parse::do_new() {
klass == C->env()->StringBuffer_klass())) { klass == C->env()->StringBuffer_klass())) {
C->set_has_stringbuilder(true); C->set_has_stringbuilder(true);
} }
// Keep track of boxed values for EliminateAutoBox optimizations.
if (C->eliminate_boxing() && klass->is_box_klass()) {
C->set_has_boxed_value(true);
}
} }
#ifndef PRODUCT #ifndef PRODUCT

View file

@ -64,6 +64,7 @@ elapsedTimer Phase::_t_idealLoopVerify;
// Subtimers for _t_optimizer // Subtimers for _t_optimizer
elapsedTimer Phase::_t_iterGVN; elapsedTimer Phase::_t_iterGVN;
elapsedTimer Phase::_t_iterGVN2; elapsedTimer Phase::_t_iterGVN2;
elapsedTimer Phase::_t_incrInline;
// Subtimers for _t_registerAllocation // Subtimers for _t_registerAllocation
elapsedTimer Phase::_t_ctorChaitin; elapsedTimer Phase::_t_ctorChaitin;
@ -110,6 +111,7 @@ void Phase::print_timers() {
tty->print_cr (" macroEliminate : %3.3f sec", Phase::_t_macroEliminate.seconds()); tty->print_cr (" macroEliminate : %3.3f sec", Phase::_t_macroEliminate.seconds());
} }
tty->print_cr (" iterGVN : %3.3f sec", Phase::_t_iterGVN.seconds()); tty->print_cr (" iterGVN : %3.3f sec", Phase::_t_iterGVN.seconds());
tty->print_cr (" incrInline : %3.3f sec", Phase::_t_incrInline.seconds());
tty->print_cr (" idealLoop : %3.3f sec", Phase::_t_idealLoop.seconds()); tty->print_cr (" idealLoop : %3.3f sec", Phase::_t_idealLoop.seconds());
tty->print_cr (" idealLoopVerify: %3.3f sec", Phase::_t_idealLoopVerify.seconds()); tty->print_cr (" idealLoopVerify: %3.3f sec", Phase::_t_idealLoopVerify.seconds());
tty->print_cr (" ccp : %3.3f sec", Phase::_t_ccp.seconds()); tty->print_cr (" ccp : %3.3f sec", Phase::_t_ccp.seconds());

View file

@ -100,6 +100,7 @@ protected:
// Subtimers for _t_optimizer // Subtimers for _t_optimizer
static elapsedTimer _t_iterGVN; static elapsedTimer _t_iterGVN;
static elapsedTimer _t_iterGVN2; static elapsedTimer _t_iterGVN2;
static elapsedTimer _t_incrInline;
// Subtimers for _t_registerAllocation // Subtimers for _t_registerAllocation
static elapsedTimer _t_ctorChaitin; static elapsedTimer _t_ctorChaitin;

View file

@ -882,7 +882,7 @@ void PhaseIterGVN::optimize() {
return; return;
} }
Node *n = _worklist.pop(); Node *n = _worklist.pop();
if (++loop_count >= K * C->unique()) { if (++loop_count >= K * C->live_nodes()) {
debug_only(n->dump(4);) debug_only(n->dump(4);)
assert(false, "infinite loop in PhaseIterGVN::optimize"); assert(false, "infinite loop in PhaseIterGVN::optimize");
C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize"); C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");

View file

@ -126,17 +126,15 @@ ExceptionBlob* OptoRuntime::_exception_blob;
// This should be called in an assertion at the start of OptoRuntime routines // This should be called in an assertion at the start of OptoRuntime routines
// which are entered from compiled code (all of them) // which are entered from compiled code (all of them)
#ifndef PRODUCT #ifdef ASSERT
static bool check_compiled_frame(JavaThread* thread) { static bool check_compiled_frame(JavaThread* thread) {
assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
#ifdef ASSERT
RegisterMap map(thread, false); RegisterMap map(thread, false);
frame caller = thread->last_frame().sender(&map); frame caller = thread->last_frame().sender(&map);
assert(caller.is_compiled_frame(), "not being called from compiled like code"); assert(caller.is_compiled_frame(), "not being called from compiled like code");
#endif /* ASSERT */
return true; return true;
} }
#endif #endif // ASSERT
#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \ #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \

View file

@ -863,10 +863,11 @@ const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
const TypePtr *r1 = t2->make_ptr(); const TypePtr *r1 = t2->make_ptr();
// Undefined inputs makes for an undefined result // Undefined inputs makes for an undefined result
if( TypePtr::above_centerline(r0->_ptr) || if ((r0 == NULL) || (r1 == NULL) ||
TypePtr::above_centerline(r1->_ptr) ) TypePtr::above_centerline(r0->_ptr) ||
TypePtr::above_centerline(r1->_ptr)) {
return Type::TOP; return Type::TOP;
}
if (r0 == r1 && r0->singleton()) { if (r0 == r1 && r0->singleton()) {
// Equal pointer constants (klasses, nulls, etc.) // Equal pointer constants (klasses, nulls, etc.)
return TypeInt::CC_EQ; return TypeInt::CC_EQ;

View file

@ -2372,7 +2372,12 @@ TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int
_klass_is_exact(xk), _klass_is_exact(xk),
_is_ptr_to_narrowoop(false), _is_ptr_to_narrowoop(false),
_is_ptr_to_narrowklass(false), _is_ptr_to_narrowklass(false),
_is_ptr_to_boxed_value(false),
_instance_id(instance_id) { _instance_id(instance_id) {
if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
(offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
_is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
}
#ifdef _LP64 #ifdef _LP64
if (_offset != 0) { if (_offset != 0) {
if (_offset == oopDesc::klass_offset_in_bytes()) { if (_offset == oopDesc::klass_offset_in_bytes()) {
@ -2613,44 +2618,50 @@ const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_
//------------------------------make_from_constant----------------------------- //------------------------------make_from_constant-----------------------------
// Make a java pointer from an oop constant // Make a java pointer from an oop constant
const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
assert(!o->is_null_object(), "null object not yet handled here."); bool require_constant,
ciKlass* klass = o->klass(); bool is_autobox_cache) {
if (klass->is_instance_klass()) { assert(!o->is_null_object(), "null object not yet handled here.");
// Element is an instance ciKlass* klass = o->klass();
if (require_constant) { if (klass->is_instance_klass()) {
if (!o->can_be_constant()) return NULL; // Element is an instance
} else if (!o->should_be_constant()) { if (require_constant) {
return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0); if (!o->can_be_constant()) return NULL;
} } else if (!o->should_be_constant()) {
return TypeInstPtr::make(o); return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
} else if (klass->is_obj_array_klass()) { }
// Element is an object array. Recursively call ourself. return TypeInstPtr::make(o);
const Type *etype = } else if (klass->is_obj_array_klass()) {
// Element is an object array. Recursively call ourself.
const TypeOopPtr *etype =
TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass()); TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); if (is_autobox_cache) {
// We used to pass NotNull in here, asserting that the sub-arrays // The pointers in the autobox arrays are always non-null.
// are all not-null. This is not true in generally, as code can etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
// slam NULLs down in the subarrays. }
if (require_constant) { const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
if (!o->can_be_constant()) return NULL; // We used to pass NotNull in here, asserting that the sub-arrays
} else if (!o->should_be_constant()) { // are all not-null. This is not true in generally, as code can
return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); // slam NULLs down in the subarrays.
} if (require_constant) {
const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); if (!o->can_be_constant()) return NULL;
} else if (!o->should_be_constant()) {
return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
}
const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, is_autobox_cache);
return arr; return arr;
} else if (klass->is_type_array_klass()) { } else if (klass->is_type_array_klass()) {
// Element is an typeArray // Element is an typeArray
const Type* etype = const Type* etype =
(Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
// We used to pass NotNull in here, asserting that the array pointer // We used to pass NotNull in here, asserting that the array pointer
// is not-null. That was not true in general. // is not-null. That was not true in general.
if (require_constant) { if (require_constant) {
if (!o->can_be_constant()) return NULL; if (!o->can_be_constant()) return NULL;
} else if (!o->should_be_constant()) { } else if (!o->should_be_constant()) {
return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
} }
const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
return arr; return arr;
} }
@ -2856,6 +2867,28 @@ const TypeInstPtr *TypeInstPtr::make(PTR ptr,
return result; return result;
} }
/**
* Create constant type for a constant boxed value
*/
const Type* TypeInstPtr::get_const_boxed_value() const {
assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
assert((const_oop() != NULL), "should be called only for constant object");
ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
BasicType bt = constant.basic_type();
switch (bt) {
case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
case T_INT: return TypeInt::make(constant.as_int());
case T_CHAR: return TypeInt::make(constant.as_char());
case T_BYTE: return TypeInt::make(constant.as_byte());
case T_SHORT: return TypeInt::make(constant.as_short());
case T_FLOAT: return TypeF::make(constant.as_float());
case T_DOUBLE: return TypeD::make(constant.as_double());
case T_LONG: return TypeLong::make(constant.as_long());
default: break;
}
fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
return NULL;
}
//------------------------------cast_to_ptr_type------------------------------- //------------------------------cast_to_ptr_type-------------------------------
const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const { const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
@ -3330,18 +3363,18 @@ const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, boo
if (!xk) xk = ary->ary_must_be_exact(); if (!xk) xk = ary->ary_must_be_exact();
assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed"); assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
if (!UseExactTypes) xk = (ptr == Constant); if (!UseExactTypes) xk = (ptr == Constant);
return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons(); return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false))->hashcons();
} }
//------------------------------make------------------------------------------- //------------------------------make-------------------------------------------
const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) { const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, bool is_autobox_cache) {
assert(!(k == NULL && ary->_elem->isa_int()), assert(!(k == NULL && ary->_elem->isa_int()),
"integral arrays must be pre-equipped with a class"); "integral arrays must be pre-equipped with a class");
assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
if (!xk) xk = (o != NULL) || ary->ary_must_be_exact(); if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed"); assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
if (!UseExactTypes) xk = (ptr == Constant); if (!UseExactTypes) xk = (ptr == Constant);
return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons(); return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache))->hashcons();
} }
//------------------------------cast_to_ptr_type------------------------------- //------------------------------cast_to_ptr_type-------------------------------
@ -3397,8 +3430,20 @@ const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
jint max_hi = max_array_length(elem()->basic_type()); jint max_hi = max_array_length(elem()->basic_type());
//if (index_not_size) --max_hi; // type of a valid array index, FTR //if (index_not_size) --max_hi; // type of a valid array index, FTR
bool chg = false; bool chg = false;
if (lo < min_lo) { lo = min_lo; chg = true; } if (lo < min_lo) {
if (hi > max_hi) { hi = max_hi; chg = true; } lo = min_lo;
if (size->is_con()) {
hi = lo;
}
chg = true;
}
if (hi > max_hi) {
hi = max_hi;
if (size->is_con()) {
lo = hi;
}
chg = true;
}
// Negative length arrays will produce weird intermediate dead fast-path code // Negative length arrays will produce weird intermediate dead fast-path code
if (lo > hi) if (lo > hi)
return TypeInt::ZERO; return TypeInt::ZERO;
@ -3630,7 +3675,7 @@ const Type *TypeAryPtr::xmeet( const Type *t ) const {
//------------------------------xdual------------------------------------------ //------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual // Dual: compute field-by-field dual
const Type *TypeAryPtr::xdual() const { const Type *TypeAryPtr::xdual() const {
return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() ); return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache() );
} }
//----------------------interface_vs_oop--------------------------------------- //----------------------interface_vs_oop---------------------------------------

View file

@ -234,6 +234,9 @@ public:
bool is_ptr_to_narrowoop() const; bool is_ptr_to_narrowoop() const;
bool is_ptr_to_narrowklass() const; bool is_ptr_to_narrowklass() const;
bool is_ptr_to_boxing_obj() const;
// Convenience access // Convenience access
float getf() const; float getf() const;
double getd() const; double getd() const;
@ -794,6 +797,7 @@ protected:
bool _klass_is_exact; bool _klass_is_exact;
bool _is_ptr_to_narrowoop; bool _is_ptr_to_narrowoop;
bool _is_ptr_to_narrowklass; bool _is_ptr_to_narrowklass;
bool _is_ptr_to_boxed_value;
// If not InstanceTop or InstanceBot, indicates that this is // If not InstanceTop or InstanceBot, indicates that this is
// a particular instance of this type which is distinct. // a particular instance of this type which is distinct.
@ -826,7 +830,9 @@ public:
// If the object cannot be rendered as a constant, // If the object cannot be rendered as a constant,
// may return a non-singleton type. // may return a non-singleton type.
// If require_constant, produce a NULL if a singleton is not possible. // If require_constant, produce a NULL if a singleton is not possible.
static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false); static const TypeOopPtr* make_from_constant(ciObject* o,
bool require_constant = false,
bool not_null_elements = false);
// Make a generic (unclassed) pointer to an oop. // Make a generic (unclassed) pointer to an oop.
static const TypeOopPtr* make(PTR ptr, int offset, int instance_id); static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
@ -839,7 +845,7 @@ public:
// compressed oop references. // compressed oop references.
bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; } bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; } bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
bool is_known_instance() const { return _instance_id > 0; } bool is_known_instance() const { return _instance_id > 0; }
int instance_id() const { return _instance_id; } int instance_id() const { return _instance_id; }
bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; } bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
@ -912,6 +918,9 @@ class TypeInstPtr : public TypeOopPtr {
// Make a pointer to an oop. // Make a pointer to an oop.
static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot ); static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
/** Create constant type for a constant boxed value */
const Type* get_const_boxed_value() const;
// If this is a java.lang.Class constant, return the type for it or NULL. // If this is a java.lang.Class constant, return the type for it or NULL.
// Pass to Type::get_const_type to turn it to a type, which will usually // Pass to Type::get_const_type to turn it to a type, which will usually
// be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc. // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
@ -943,7 +952,12 @@ class TypeInstPtr : public TypeOopPtr {
//------------------------------TypeAryPtr------------------------------------- //------------------------------TypeAryPtr-------------------------------------
// Class of Java array pointers // Class of Java array pointers
class TypeAryPtr : public TypeOopPtr { class TypeAryPtr : public TypeOopPtr {
TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) { TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
int offset, int instance_id, bool is_autobox_cache )
: TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id),
_ary(ary),
_is_autobox_cache(is_autobox_cache)
{
#ifdef ASSERT #ifdef ASSERT
if (k != NULL) { if (k != NULL) {
// Verify that specified klass and TypeAryPtr::klass() follow the same rules. // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
@ -964,6 +978,7 @@ class TypeAryPtr : public TypeOopPtr {
virtual bool eq( const Type *t ) const; virtual bool eq( const Type *t ) const;
virtual int hash() const; // Type specific hashing virtual int hash() const; // Type specific hashing
const TypeAry *_ary; // Array we point into const TypeAry *_ary; // Array we point into
const bool _is_autobox_cache;
ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const; ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
@ -974,9 +989,11 @@ public:
const Type* elem() const { return _ary->_elem; } const Type* elem() const { return _ary->_elem; }
const TypeInt* size() const { return _ary->_size; } const TypeInt* size() const { return _ary->_size; }
bool is_autobox_cache() const { return _is_autobox_cache; }
static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot); static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
// Constant pointer to array // Constant pointer to array
static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot); static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, bool is_autobox_cache = false);
// Return a 'ptr' version of this type // Return a 'ptr' version of this type
virtual const Type *cast_to_ptr_type(PTR ptr) const; virtual const Type *cast_to_ptr_type(PTR ptr) const;
@ -1504,6 +1521,13 @@ inline bool Type::is_floatingpoint() const {
return false; return false;
} }
inline bool Type::is_ptr_to_boxing_obj() const {
const TypeInstPtr* tp = isa_instptr();
return (tp != NULL) && (tp->offset() == 0) &&
tp->klass()->is_instance_klass() &&
tp->klass()->as_instance_klass()->is_box_klass();
}
// =============================================================== // ===============================================================
// Things that need to be 64-bits in the 64-bit build but // Things that need to be 64-bits in the 64-bit build but

View file

@ -1298,6 +1298,28 @@ JVM_ENTRY(void, MHN_setCallSiteTargetVolatile(JNIEnv* env, jobject igcls, jobjec
} }
JVM_END JVM_END
/**
* Throws a java/lang/UnsupportedOperationException unconditionally.
* This is required by the specification of MethodHandle.invoke if
* invoked directly.
*/
JVM_ENTRY(jobject, MH_invoke_UOE(JNIEnv* env, jobject mh, jobjectArray args)) {
THROW_MSG_NULL(vmSymbols::java_lang_UnsupportedOperationException(), "MethodHandle.invoke cannot be invoked reflectively");
return NULL;
}
JVM_END
/**
* Throws a java/lang/UnsupportedOperationException unconditionally.
* This is required by the specification of MethodHandle.invokeExact if
* invoked directly.
*/
JVM_ENTRY(jobject, MH_invokeExact_UOE(JNIEnv* env, jobject mh, jobjectArray args)) {
THROW_MSG_NULL(vmSymbols::java_lang_UnsupportedOperationException(), "MethodHandle.invokeExact cannot be invoked reflectively");
return NULL;
}
JVM_END
/// JVM_RegisterMethodHandleMethods /// JVM_RegisterMethodHandleMethods
#undef CS // Solaris builds complain #undef CS // Solaris builds complain
@ -1317,7 +1339,7 @@ JVM_END
#define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f) #define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f)
// These are the native methods on java.lang.invoke.MethodHandleNatives. // These are the native methods on java.lang.invoke.MethodHandleNatives.
static JNINativeMethod required_methods_JDK8[] = { static JNINativeMethod MHN_methods[] = {
{CC"init", CC"("MEM""OBJ")V", FN_PTR(MHN_init_Mem)}, {CC"init", CC"("MEM""OBJ")V", FN_PTR(MHN_init_Mem)},
{CC"expand", CC"("MEM")V", FN_PTR(MHN_expand_Mem)}, {CC"expand", CC"("MEM")V", FN_PTR(MHN_expand_Mem)},
{CC"resolve", CC"("MEM""CLS")"MEM, FN_PTR(MHN_resolve_Mem)}, {CC"resolve", CC"("MEM""CLS")"MEM, FN_PTR(MHN_resolve_Mem)},
@ -1335,8 +1357,28 @@ static JNINativeMethod required_methods_JDK8[] = {
{CC"getMemberVMInfo", CC"("MEM")"OBJ, FN_PTR(MHN_getMemberVMInfo)} {CC"getMemberVMInfo", CC"("MEM")"OBJ, FN_PTR(MHN_getMemberVMInfo)}
}; };
// This one function is exported, used by NativeLookup. static JNINativeMethod MH_methods[] = {
// UnsupportedOperationException throwers
{CC"invoke", CC"(["OBJ")"OBJ, FN_PTR(MH_invoke_UOE)},
{CC"invokeExact", CC"(["OBJ")"OBJ, FN_PTR(MH_invokeExact_UOE)}
};
/**
* Helper method to register native methods.
*/
static bool register_natives(JNIEnv* env, jclass clazz, const JNINativeMethod* methods, jint nMethods) {
int status = env->RegisterNatives(clazz, methods, nMethods);
if (status != JNI_OK || env->ExceptionOccurred()) {
warning("JSR 292 method handle code is mismatched to this JVM. Disabling support.");
env->ExceptionClear();
return false;
}
return true;
}
/**
* This one function is exported, used by NativeLookup.
*/
JVM_ENTRY(void, JVM_RegisterMethodHandleMethods(JNIEnv *env, jclass MHN_class)) { JVM_ENTRY(void, JVM_RegisterMethodHandleMethods(JNIEnv *env, jclass MHN_class)) {
if (!EnableInvokeDynamic) { if (!EnableInvokeDynamic) {
warning("JSR 292 is disabled in this JVM. Use -XX:+UnlockDiagnosticVMOptions -XX:+EnableInvokeDynamic to enable."); warning("JSR 292 is disabled in this JVM. Use -XX:+UnlockDiagnosticVMOptions -XX:+EnableInvokeDynamic to enable.");
@ -1354,16 +1396,14 @@ JVM_ENTRY(void, JVM_RegisterMethodHandleMethods(JNIEnv *env, jclass MHN_class))
MH_class = (jclass) JNIHandles::make_local(env, mirror); MH_class = (jclass) JNIHandles::make_local(env, mirror);
} }
int status;
if (enable_MH) { if (enable_MH) {
ThreadToNativeFromVM ttnfv(thread); ThreadToNativeFromVM ttnfv(thread);
status = env->RegisterNatives(MHN_class, required_methods_JDK8, sizeof(required_methods_JDK8)/sizeof(JNINativeMethod)); if (enable_MH) {
if (status != JNI_OK || env->ExceptionOccurred()) { enable_MH = register_natives(env, MHN_class, MHN_methods, sizeof(MHN_methods)/sizeof(JNINativeMethod));
warning("JSR 292 method handle code is mismatched to this JVM. Disabling support."); }
enable_MH = false; if (enable_MH) {
env->ExceptionClear(); enable_MH = register_natives(env, MH_class, MH_methods, sizeof(MH_methods)/sizeof(JNINativeMethod));
} }
} }

View file

@ -383,10 +383,7 @@ address NativeLookup::lookup_base(methodHandle method, bool& in_base_library, TR
address NativeLookup::lookup(methodHandle method, bool& in_base_library, TRAPS) { address NativeLookup::lookup(methodHandle method, bool& in_base_library, TRAPS) {
if (!method->has_native_function()) { if (!method->has_native_function()) {
address entry = address entry = lookup_base(method, in_base_library, CHECK_NULL);
method->intrinsic_id() == vmIntrinsics::_invokeGeneric ?
SharedRuntime::native_method_throw_unsupported_operation_exception_entry() :
lookup_base(method, in_base_library, CHECK_NULL);
method->set_native_function(entry, method->set_native_function(entry,
Method::native_bind_event_is_interesting); Method::native_bind_event_is_interesting);
// -verbose:jni printing // -verbose:jni printing

View file

@ -1089,6 +1089,10 @@ void Arguments::set_tiered_flags() {
if (FLAG_IS_DEFAULT(ReservedCodeCacheSize)) { if (FLAG_IS_DEFAULT(ReservedCodeCacheSize)) {
FLAG_SET_DEFAULT(ReservedCodeCacheSize, ReservedCodeCacheSize * 5); FLAG_SET_DEFAULT(ReservedCodeCacheSize, ReservedCodeCacheSize * 5);
} }
if (!UseInterpreter) { // -Xcomp
Tier3InvokeNotifyFreqLog = 0;
Tier4InvocationThreshold = 0;
}
} }
#if INCLUDE_ALL_GCS #if INCLUDE_ALL_GCS
@ -1669,6 +1673,20 @@ void Arguments::set_bytecode_flags() {
// Aggressive optimization flags -XX:+AggressiveOpts // Aggressive optimization flags -XX:+AggressiveOpts
void Arguments::set_aggressive_opts_flags() { void Arguments::set_aggressive_opts_flags() {
#ifdef COMPILER2 #ifdef COMPILER2
if (AggressiveUnboxing) {
if (FLAG_IS_DEFAULT(EliminateAutoBox)) {
FLAG_SET_DEFAULT(EliminateAutoBox, true);
} else if (!EliminateAutoBox) {
// warning("AggressiveUnboxing is disabled because EliminateAutoBox is disabled");
AggressiveUnboxing = false;
}
if (FLAG_IS_DEFAULT(DoEscapeAnalysis)) {
FLAG_SET_DEFAULT(DoEscapeAnalysis, true);
} else if (!DoEscapeAnalysis) {
// warning("AggressiveUnboxing is disabled because DoEscapeAnalysis is disabled");
AggressiveUnboxing = false;
}
}
if (AggressiveOpts || !FLAG_IS_DEFAULT(AutoBoxCacheMax)) { if (AggressiveOpts || !FLAG_IS_DEFAULT(AutoBoxCacheMax)) {
if (FLAG_IS_DEFAULT(EliminateAutoBox)) { if (FLAG_IS_DEFAULT(EliminateAutoBox)) {
FLAG_SET_DEFAULT(EliminateAutoBox, true); FLAG_SET_DEFAULT(EliminateAutoBox, true);

View file

@ -883,15 +883,23 @@ address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
} }
JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...)) /**
* Throws an java/lang/UnsatisfiedLinkError. The address of this method is
* installed in the native function entry of all native Java methods before
* they get linked to their actual native methods.
*
* \note
* This method actually never gets called! The reason is because
* the interpreter's native entries call NativeLookup::lookup() which
* throws the exception when the lookup fails. The exception is then
* caught and forwarded on the return from NativeLookup::lookup() call
* before the call to the native function. This might change in the future.
*/
JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
{ {
THROW(vmSymbols::java_lang_UnsatisfiedLinkError()); // We return a bad value here to make sure that the exception is
} // forwarded before we look at the return value.
JNI_END THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
JNI_ENTRY(void, throw_unsupported_operation_exception(JNIEnv* env, ...))
{
THROW(vmSymbols::java_lang_UnsupportedOperationException());
} }
JNI_END JNI_END
@ -899,10 +907,6 @@ address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
} }
address SharedRuntime::native_method_throw_unsupported_operation_exception_entry() {
return CAST_FROM_FN_PTR(address, &throw_unsupported_operation_exception);
}
#ifndef PRODUCT #ifndef PRODUCT
JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))

View file

@ -1057,6 +1057,7 @@ typedef BinaryTreeDictionary<Metablock, FreeList> MetablockTreeDictionary;
c2_nonstatic_field(Compile, _save_argument_registers, const bool) \ c2_nonstatic_field(Compile, _save_argument_registers, const bool) \
c2_nonstatic_field(Compile, _subsume_loads, const bool) \ c2_nonstatic_field(Compile, _subsume_loads, const bool) \
c2_nonstatic_field(Compile, _do_escape_analysis, const bool) \ c2_nonstatic_field(Compile, _do_escape_analysis, const bool) \
c2_nonstatic_field(Compile, _eliminate_boxing, const bool) \
c2_nonstatic_field(Compile, _ilt, InlineTree*) \ c2_nonstatic_field(Compile, _ilt, InlineTree*) \
\ \
c2_nonstatic_field(InlineTree, _caller_jvms, JVMState*) \ c2_nonstatic_field(InlineTree, _caller_jvms, JVMState*) \

View file

@ -32,6 +32,7 @@
#include "utilities/quickSort.hpp" #include "utilities/quickSort.hpp"
#include <stdlib.h> #include <stdlib.h>
#ifdef ASSERT
static int test_comparator(int a, int b) { static int test_comparator(int a, int b) {
if (a == b) { if (a == b) {
return 0; return 0;
@ -41,6 +42,7 @@ static int test_comparator(int a, int b) {
} }
return 1; return 1;
} }
#endif // ASSERT
static int test_even_odd_comparator(int a, int b) { static int test_even_odd_comparator(int a, int b) {
bool a_is_odd = (a % 2) == 1; bool a_is_odd = (a % 2) == 1;

View file

@ -0,0 +1,777 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 6934604
* @summary enable parts of EliminateAutoBox by default
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox TestByteBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox
* -XX:CompileCommand=exclude,TestByteBoxing.dummy -XX:CompileCommand=exclude,TestByteBoxing.foo -XX:CompileCommand=exclude,TestByteBoxing.foob TestByteBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:-EliminateAutoBox
* -XX:CompileCommand=exclude,TestByteBoxing.dummy -XX:CompileCommand=exclude,TestByteBoxing.foo -XX:CompileCommand=exclude,TestByteBoxing.foob TestByteBoxing
*
*/
public class TestByteBoxing {
static final Byte ibc = new Byte((byte)1);
//===============================================
// Non-inlined methods to test deoptimization info
static void dummy() { }
static byte foo(byte i) { return i; }
static Byte foob(byte i) { return Byte.valueOf(i); }
static byte simple(byte i) {
Byte ib = new Byte(i);
return ib;
}
static byte simpleb(byte i) {
Byte ib = Byte.valueOf(i);
return ib;
}
static byte simplec() {
Byte ib = ibc;
return ib;
}
static byte simplef(byte i) {
Byte ib = foob(i);
return ib;
}
static byte simplep(Byte ib) {
return ib;
}
static byte simple2(byte i) {
Byte ib1 = new Byte(i);
Byte ib2 = new Byte((byte)(i+1));
return (byte)(ib1 + ib2);
}
static byte simpleb2(byte i) {
Byte ib1 = Byte.valueOf(i);
Byte ib2 = Byte.valueOf((byte)(i+1));
return (byte)(ib1 + ib2);
}
static byte simplem2(byte i) {
Byte ib1 = new Byte(i);
Byte ib2 = Byte.valueOf((byte)(i+1));
return (byte)(ib1 + ib2);
}
static byte simplep2(byte i, Byte ib1) {
Byte ib2 = Byte.valueOf((byte)(i+1));
return (byte)(ib1 + ib2);
}
static byte simplec2(byte i) {
Byte ib1 = ibc;
Byte ib2 = Byte.valueOf((byte)(i+1));
return (byte)(ib1 + ib2);
}
//===============================================
static byte test(byte i) {
Byte ib = new Byte(i);
if ((i&1) == 0)
ib = (byte)(i+1);
return ib;
}
static byte testb(byte i) {
Byte ib = i;
if ((i&1) == 0)
ib = (byte)(i+1);
return ib;
}
static byte testm(byte i) {
Byte ib = i;
if ((i&1) == 0)
ib = new Byte((byte)(i+1));
return ib;
}
static byte testp(byte i, Byte ib) {
if ((i&1) == 0)
ib = new Byte((byte)(i+1));
return ib;
}
static byte testc(byte i) {
Byte ib = ibc;
if ((i&1) == 0)
ib = new Byte((byte)(i+1));
return ib;
}
static byte test2(byte i) {
Byte ib1 = new Byte(i);
Byte ib2 = new Byte((byte)(i+1));
if ((i&1) == 0) {
ib1 = new Byte((byte)(i+1));
ib2 = new Byte((byte)(i+2));
}
return (byte)(ib1+ib2);
}
static byte testb2(byte i) {
Byte ib1 = i;
Byte ib2 = (byte)(i+1);
if ((i&1) == 0) {
ib1 = (byte)(i+1);
ib2 = (byte)(i+2);
}
return (byte)(ib1 + ib2);
}
static byte testm2(byte i) {
Byte ib1 = new Byte(i);
Byte ib2 = (byte)(i+1);
if ((i&1) == 0) {
ib1 = new Byte((byte)(i+1));
ib2 = (byte)(i+2);
}
return (byte)(ib1 + ib2);
}
static byte testp2(byte i, Byte ib1) {
Byte ib2 = (byte)(i+1);
if ((i&1) == 0) {
ib1 = new Byte((byte)(i+1));
ib2 = (byte)(i+2);
}
return (byte)(ib1 + ib2);
}
static byte testc2(byte i) {
Byte ib1 = ibc;
Byte ib2 = (byte)(i+1);
if ((i&1) == 0) {
ib1 = (byte)(ibc+1);
ib2 = (byte)(i+2);
}
return (byte)(ib1 + ib2);
}
//===============================================
static byte sum(byte[] a) {
byte result = 1;
for (Byte i : a)
result += i;
return result;
}
static byte sumb(byte[] a) {
Byte result = 1;
for (Byte i : a)
result = (byte)(result + i);
return result;
}
static byte sumc(byte[] a) {
Byte result = ibc;
for (Byte i : a)
result = (byte)(result + i);
return result;
}
static byte sumf(byte[] a) {
Byte result = foob((byte)1);
for (Byte i : a)
result = (byte)(result + i);
return result;
}
static byte sump(byte[] a, Byte result) {
for (Byte i : a)
result = (byte)(result + i);
return result;
}
static byte sum2(byte[] a) {
byte result1 = 1;
byte result2 = 1;
for (Byte i : a) {
result1 += i;
result2 += i + 1;
}
return (byte)(result1 + result2);
}
static byte sumb2(byte[] a) {
Byte result1 = 1;
Byte result2 = 1;
for (Byte i : a) {
result1 = (byte)(result1 + i);
result2 = (byte)(result2 + i + 1);
}
return (byte)(result1 + result2);
}
static byte summ2(byte[] a) {
Byte result1 = 1;
Byte result2 = new Byte((byte)1);
for (Byte i : a) {
result1 = (byte)(result1 + i);
result2 = (byte)(result2 + new Byte((byte)(i + 1)));
}
return (byte)(result1 + result2);
}
static byte sump2(byte[] a, Byte result2) {
Byte result1 = 1;
for (Byte i : a) {
result1 = (byte)(result1 + i);
result2 = (byte)(result2 + i + 1);
}
return (byte)(result1 + result2);
}
static byte sumc2(byte[] a) {
Byte result1 = 1;
Byte result2 = ibc;
for (Byte i : a) {
result1 = (byte)(result1 + i);
result2 = (byte)(result2 + i + ibc);
}
return (byte)(result1 + result2);
}
//===============================================
static byte remi_sum() {
Byte j = new Byte((byte)1);
for (int i = 0; i< 1000; i++) {
j = new Byte((byte)(j + 1));
}
return j;
}
static byte remi_sumb() {
Byte j = Byte.valueOf((byte)1);
for (int i = 0; i< 1000; i++) {
j = (byte)(j + 1);
}
return j;
}
static byte remi_sumf() {
Byte j = foob((byte)1);
for (int i = 0; i< 1000; i++) {
j = (byte)(j + 1);
}
return j;
}
static byte remi_sump(Byte j) {
for (int i = 0; i< 1000; i++) {
j = new Byte((byte)(j + 1));
}
return j;
}
static byte remi_sumc() {
Byte j = ibc;
for (int i = 0; i< 1000; i++) {
j = (byte)(j + ibc);
}
return j;
}
static byte remi_sum2() {
Byte j1 = new Byte((byte)1);
Byte j2 = new Byte((byte)1);
for (int i = 0; i< 1000; i++) {
j1 = new Byte((byte)(j1 + 1));
j2 = new Byte((byte)(j2 + 2));
}
return (byte)(j1 + j2);
}
static byte remi_sumb2() {
Byte j1 = Byte.valueOf((byte)1);
Byte j2 = Byte.valueOf((byte)1);
for (int i = 0; i< 1000; i++) {
j1 = (byte)(j1 + 1);
j2 = (byte)(j2 + 2);
}
return (byte)(j1 + j2);
}
static byte remi_summ2() {
Byte j1 = new Byte((byte)1);
Byte j2 = Byte.valueOf((byte)1);
for (int i = 0; i< 1000; i++) {
j1 = new Byte((byte)(j1 + 1));
j2 = (byte)(j2 + 2);
}
return (byte)(j1 + j2);
}
static byte remi_sump2(Byte j1) {
Byte j2 = Byte.valueOf((byte)1);
for (int i = 0; i< 1000; i++) {
j1 = new Byte((byte)(j1 + 1));
j2 = (byte)(j2 + 2);
}
return (byte)(j1 + j2);
}
static byte remi_sumc2() {
Byte j1 = ibc;
Byte j2 = Byte.valueOf((byte)1);
for (int i = 0; i< 1000; i++) {
j1 = (byte)(j1 + ibc);
j2 = (byte)(j2 + 2);
}
return (byte)(j1 + j2);
}
//===============================================
// Safepointa and debug info for deoptimization
static byte simple_deop(byte i) {
Byte ib = new Byte(foo(i));
dummy();
return ib;
}
static byte simpleb_deop(byte i) {
Byte ib = Byte.valueOf(foo(i));
dummy();
return ib;
}
static byte simplef_deop(byte i) {
Byte ib = foob(i);
dummy();
return ib;
}
static byte simplep_deop(Byte ib) {
dummy();
return ib;
}
static byte simplec_deop(byte i) {
Byte ib = ibc;
dummy();
return ib;
}
static byte test_deop(byte i) {
Byte ib = new Byte(foo(i));
if ((i&1) == 0)
ib = foo((byte)(i+1));
dummy();
return ib;
}
static byte testb_deop(byte i) {
Byte ib = foo(i);
if ((i&1) == 0)
ib = foo((byte)(i+1));
dummy();
return ib;
}
static byte testf_deop(byte i) {
Byte ib = foob(i);
if ((i&1) == 0)
ib = foo((byte)(i+1));
dummy();
return ib;
}
static byte testp_deop(byte i, Byte ib) {
if ((i&1) == 0)
ib = foo((byte)(i+1));
dummy();
return ib;
}
static byte testc_deop(byte i) {
Byte ib = ibc;
if ((i&1) == 0)
ib = foo((byte)(i+1));
dummy();
return ib;
}
static byte sum_deop(byte[] a) {
byte result = 1;
for (Byte i : a)
result += foo(i);
dummy();
return result;
}
static byte sumb_deop(byte[] a) {
Byte result = 1;
for (Byte i : a)
result = (byte)(result + foo(i));
dummy();
return result;
}
static byte sumf_deop(byte[] a) {
Byte result = 1;
for (Byte i : a)
result = (byte)(result + foob(i));
dummy();
return result;
}
static byte sump_deop(byte[] a, Byte result) {
for (Byte i : a)
result = (byte)(result + foob(i));
dummy();
return result;
}
static byte sumc_deop(byte[] a) {
Byte result = ibc;
for (Byte i : a)
result = (byte)(result + foo(i));
dummy();
return result;
}
static byte remi_sum_deop() {
Byte j = new Byte(foo((byte)1));
for (int i = 0; i< 1000; i++) {
j = new Byte(foo((byte)(j + 1)));
}
dummy();
return j;
}
static byte remi_sumb_deop() {
Byte j = Byte.valueOf(foo((byte)1));
for (int i = 0; i< 1000; i++) {
j = foo((byte)(j + 1));
}
dummy();
return j;
}
static byte remi_sumf_deop() {
Byte j = foob((byte)1);
for (int i = 0; i< 1000; i++) {
j = foo((byte)(j + 1));
}
dummy();
return j;
}
static byte remi_sump_deop(Byte j) {
for (int i = 0; i< 1000; i++) {
j = foo((byte)(j + 1));
}
dummy();
return j;
}
static byte remi_sumc_deop() {
Byte j = ibc;
for (int i = 0; i< 1000; i++) {
j = foo((byte)(j + 1));
}
dummy();
return j;
}
//===============================================
// Conditional increment
static byte remi_sum_cond() {
Byte j = new Byte((byte)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = new Byte((byte)(j + 1));
}
}
return j;
}
static byte remi_sumb_cond() {
Byte j = Byte.valueOf((byte)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = (byte)(j + 1);
}
}
return j;
}
static byte remi_sumf_cond() {
Byte j = foob((byte)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = (byte)(j + 1);
}
}
return j;
}
static byte remi_sump_cond(Byte j) {
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = (byte)(j + 1);
}
}
return j;
}
static byte remi_sumc_cond() {
Byte j = ibc;
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = (byte)(j + ibc);
}
}
return j;
}
static byte remi_sum2_cond() {
Byte j1 = new Byte((byte)1);
Byte j2 = new Byte((byte)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Byte((byte)(j1 + 1));
} else {
j2 = new Byte((byte)(j2 + 2));
}
}
return (byte)(j1 + j2);
}
static byte remi_sumb2_cond() {
Byte j1 = Byte.valueOf((byte)1);
Byte j2 = Byte.valueOf((byte)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = (byte)(j1 + 1);
} else {
j2 = (byte)(j2 + 2);
}
}
return (byte)(j1 + j2);
}
static byte remi_summ2_cond() {
Byte j1 = new Byte((byte)1);
Byte j2 = Byte.valueOf((byte)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Byte((byte)(j1 + 1));
} else {
j2 = (byte)(j2 + 2);
}
}
return (byte)(j1 + j2);
}
static byte remi_sump2_cond(Byte j1) {
Byte j2 = Byte.valueOf((byte)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Byte((byte)(j1 + 1));
} else {
j2 = (byte)(j2 + 2);
}
}
return (byte)(j1 + j2);
}
static byte remi_sumc2_cond() {
Byte j1 = ibc;
Byte j2 = Byte.valueOf((byte)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = (byte)(j1 + ibc);
} else {
j2 = (byte)(j2 + 2);
}
}
return (byte)(j1 + j2);
}
public static void main(String[] args) {
final int ntests = 70;
String[] test_name = new String[] {
"simple", "simpleb", "simplec", "simplef", "simplep",
"simple2", "simpleb2", "simplec2", "simplem2", "simplep2",
"simple_deop", "simpleb_deop", "simplec_deop", "simplef_deop", "simplep_deop",
"test", "testb", "testc", "testm", "testp",
"test2", "testb2", "testc2", "testm2", "testp2",
"test_deop", "testb_deop", "testc_deop", "testf_deop", "testp_deop",
"sum", "sumb", "sumc", "sumf", "sump",
"sum2", "sumb2", "sumc2", "summ2", "sump2",
"sum_deop", "sumb_deop", "sumc_deop", "sumf_deop", "sump_deop",
"remi_sum", "remi_sumb", "remi_sumc", "remi_sumf", "remi_sump",
"remi_sum2", "remi_sumb2", "remi_sumc2", "remi_summ2", "remi_sump2",
"remi_sum_deop", "remi_sumb_deop", "remi_sumc_deop", "remi_sumf_deop", "remi_sump_deop",
"remi_sum_cond", "remi_sumb_cond", "remi_sumc_cond", "remi_sumf_cond", "remi_sump_cond",
"remi_sum2_cond", "remi_sumb2_cond", "remi_sumc2_cond", "remi_summ2_cond", "remi_sump2_cond"
};
final int[] val = new int[] {
-5488, -5488, 12000, -5488, -5488,
1024, 1024, -5552, 1024, 1024,
-5488, -5488, 12000, -5488, -5488,
512, 512, 6256, 512, 512,
13024, 13024, -5584, 13024, 13024,
512, 512, 6256, 512, 512,
45, 45, 45, 45, 45,
66, 66, 66, 66, 66,
45, 45, 45, 45, 45,
-23, -23, -23, -23, -23,
-70, -70, -70, -70, -70,
-23, -23, -23, -23, -23,
-11, -11, -11, -11, -11,
-34, -34, -34, -34, -34
};
int[] res = new int[ntests];
for (int i = 0; i < ntests; i++) {
res[i] = 0;
}
for (int i = 0; i < 12000; i++) {
res[0] += simple((byte)i);
res[1] += simpleb((byte)i);
res[2] += simplec();
res[3] += simplef((byte)i);
res[4] += simplep((byte)i);
res[5] += simple2((byte)i);
res[6] += simpleb2((byte)i);
res[7] += simplec2((byte)i);
res[8] += simplem2((byte)i);
res[9] += simplep2((byte)i, (byte)i);
res[10] += simple_deop((byte)i);
res[11] += simpleb_deop((byte)i);
res[12] += simplec_deop((byte)i);
res[13] += simplef_deop((byte)i);
res[14] += simplep_deop((byte)i);
res[15] += test((byte)i);
res[16] += testb((byte)i);
res[17] += testc((byte)i);
res[18] += testm((byte)i);
res[19] += testp((byte)i, (byte)i);
res[20] += test2((byte)i);
res[21] += testb2((byte)i);
res[22] += testc2((byte)i);
res[23] += testm2((byte)i);
res[24] += testp2((byte)i, (byte)i);
res[25] += test_deop((byte)i);
res[26] += testb_deop((byte)i);
res[27] += testc_deop((byte)i);
res[28] += testf_deop((byte)i);
res[29] += testp_deop((byte)i, (byte)i);
}
byte[] ia = new byte[1000];
for (int i = 0; i < 1000; i++) {
ia[i] = (byte)i;
}
for (int i = 0; i < 100; i++) {
res[30] = sum(ia);
res[31] = sumb(ia);
res[32] = sumc(ia);
res[33] = sumf(ia);
res[34] = sump(ia, (byte)1);
res[35] = sum2(ia);
res[36] = sumb2(ia);
res[37] = sumc2(ia);
res[38] = summ2(ia);
res[39] = sump2(ia, (byte)1);
res[40] = sum_deop(ia);
res[41] = sumb_deop(ia);
res[42] = sumc_deop(ia);
res[43] = sumf_deop(ia);
res[44] = sump_deop(ia, (byte)1);
res[45] = remi_sum();
res[46] = remi_sumb();
res[47] = remi_sumc();
res[48] = remi_sumf();
res[49] = remi_sump((byte)1);
res[50] = remi_sum2();
res[51] = remi_sumb2();
res[52] = remi_sumc2();
res[53] = remi_summ2();
res[54] = remi_sump2((byte)1);
res[55] = remi_sum_deop();
res[56] = remi_sumb_deop();
res[57] = remi_sumc_deop();
res[58] = remi_sumf_deop();
res[59] = remi_sump_deop((byte)1);
res[60] = remi_sum_cond();
res[61] = remi_sumb_cond();
res[62] = remi_sumc_cond();
res[63] = remi_sumf_cond();
res[64] = remi_sump_cond((byte)1);
res[65] = remi_sum2_cond();
res[66] = remi_sumb2_cond();
res[67] = remi_sumc2_cond();
res[68] = remi_summ2_cond();
res[69] = remi_sump2_cond((byte)1);
}
int failed = 0;
for (int i = 0; i < ntests; i++) {
if (res[i] != val[i]) {
System.err.println(test_name[i] + ": " + res[i] + " != " + val[i]);
failed++;
}
}
if (failed > 0) {
System.err.println("Failed " + failed + " tests.");
throw new InternalError();
} else {
System.out.println("Passed.");
}
}
}

View file

@ -0,0 +1,777 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 6934604
* @summary enable parts of EliminateAutoBox by default
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox TestDoubleBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox
* -XX:CompileCommand=exclude,TestDoubleBoxing.dummy -XX:CompileCommand=exclude,TestDoubleBoxing.foo -XX:CompileCommand=exclude,TestDoubleBoxing.foob TestDoubleBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:-EliminateAutoBox
* -XX:CompileCommand=exclude,TestDoubleBoxing.dummy -XX:CompileCommand=exclude,TestDoubleBoxing.foo -XX:CompileCommand=exclude,TestDoubleBoxing.foob TestDoubleBoxing
*
*/
public class TestDoubleBoxing {
static final Double ibc = new Double(1.);
//===============================================
// Non-inlined methods to test deoptimization info
static void dummy() { }
static double foo(double i) { return i; }
static Double foob(double i) { return Double.valueOf(i); }
static double simple(double i) {
Double ib = new Double(i);
return ib;
}
static double simpleb(double i) {
Double ib = Double.valueOf(i);
return ib;
}
static double simplec() {
Double ib = ibc;
return ib;
}
static double simplef(double i) {
Double ib = foob(i);
return ib;
}
static double simplep(Double ib) {
return ib;
}
static double simple2(double i) {
Double ib1 = new Double(i);
Double ib2 = new Double(i+1.);
return ib1 + ib2;
}
static double simpleb2(double i) {
Double ib1 = Double.valueOf(i);
Double ib2 = Double.valueOf(i+1.);
return ib1 + ib2;
}
static double simplem2(double i) {
Double ib1 = new Double(i);
Double ib2 = Double.valueOf(i+1.);
return ib1 + ib2;
}
static double simplep2(double i, Double ib1) {
Double ib2 = Double.valueOf(i+1.);
return ib1 + ib2;
}
static double simplec2(double i) {
Double ib1 = ibc;
Double ib2 = Double.valueOf(i+1.);
return ib1 + ib2;
}
//===============================================
static double test(double f, int i) {
Double ib = new Double(f);
if ((i&1) == 0)
ib = f+1.;
return ib;
}
static double testb(double f, int i) {
Double ib = f;
if ((i&1) == 0)
ib = (f+1.);
return ib;
}
static double testm(double f, int i) {
Double ib = f;
if ((i&1) == 0)
ib = new Double(f+1.);
return ib;
}
static double testp(double f, int i, Double ib) {
if ((i&1) == 0)
ib = new Double(f+1.);
return ib;
}
static double testc(double f, int i) {
Double ib = ibc;
if ((i&1) == 0)
ib = new Double(f+1.);
return ib;
}
static double test2(double f, int i) {
Double ib1 = new Double(f);
Double ib2 = new Double(f+1.);
if ((i&1) == 0) {
ib1 = new Double(f+1.);
ib2 = new Double(f+2.);
}
return ib1+ib2;
}
static double testb2(double f, int i) {
Double ib1 = f;
Double ib2 = f+1.;
if ((i&1) == 0) {
ib1 = (f+1.);
ib2 = (f+2.);
}
return ib1+ib2;
}
static double testm2(double f, int i) {
Double ib1 = new Double(f);
Double ib2 = f+1.;
if ((i&1) == 0) {
ib1 = new Double(f+1.);
ib2 = (f+2.);
}
return ib1+ib2;
}
static double testp2(double f, int i, Double ib1) {
Double ib2 = f+1.;
if ((i&1) == 0) {
ib1 = new Double(f+1.);
ib2 = (f+2.);
}
return ib1+ib2;
}
static double testc2(double f, int i) {
Double ib1 = ibc;
Double ib2 = f+1.;
if ((i&1) == 0) {
ib1 = (ibc+1.);
ib2 = (f+2.);
}
return ib1+ib2;
}
//===============================================
static double sum(double[] a) {
double result = 1.;
for (Double i : a)
result += i;
return result;
}
static double sumb(double[] a) {
Double result = 1.;
for (Double i : a)
result += i;
return result;
}
static double sumc(double[] a) {
Double result = ibc;
for (Double i : a)
result += i;
return result;
}
static double sumf(double[] a) {
Double result = foob(1.);
for (Double i : a)
result += i;
return result;
}
static double sump(double[] a, Double result) {
for (Double i : a)
result += i;
return result;
}
static double sum2(double[] a) {
double result1 = 1.;
double result2 = 1.;
for (Double i : a) {
result1 += i;
result2 += i + 1.;
}
return result1 + result2;
}
static double sumb2(double[] a) {
Double result1 = 1.;
Double result2 = 1.;
for (Double i : a) {
result1 += i;
result2 += i + 1.;
}
return result1 + result2;
}
static double summ2(double[] a) {
Double result1 = 1.;
Double result2 = new Double(1.);
for (Double i : a) {
result1 += i;
result2 += new Double(i + 1.);
}
return result1 + result2;
}
static double sump2(double[] a, Double result2) {
Double result1 = 1.;
for (Double i : a) {
result1 += i;
result2 += i + 1.;
}
return result1 + result2;
}
static double sumc2(double[] a) {
Double result1 = 1.;
Double result2 = ibc;
for (Double i : a) {
result1 += i;
result2 += i + ibc;
}
return result1 + result2;
}
//===============================================
static double remi_sum() {
Double j = new Double(1.);
for (int i = 0; i< 1000; i++) {
j = new Double(j + 1.);
}
return j;
}
static double remi_sumb() {
Double j = Double.valueOf(1.);
for (int i = 0; i< 1000; i++) {
j = j + 1.;
}
return j;
}
static double remi_sumf() {
Double j = foob(1.);
for (int i = 0; i< 1000; i++) {
j = j + 1.;
}
return j;
}
static double remi_sump(Double j) {
for (int i = 0; i< 1000; i++) {
j = new Double(j + 1.);
}
return j;
}
static double remi_sumc() {
Double j = ibc;
for (int i = 0; i< 1000; i++) {
j = j + ibc;
}
return j;
}
static double remi_sum2() {
Double j1 = new Double(1.);
Double j2 = new Double(1.);
for (int i = 0; i< 1000; i++) {
j1 = new Double(j1 + 1.);
j2 = new Double(j2 + 2.);
}
return j1 + j2;
}
static double remi_sumb2() {
Double j1 = Double.valueOf(1.);
Double j2 = Double.valueOf(1.);
for (int i = 0; i< 1000; i++) {
j1 = j1 + 1.;
j2 = j2 + 2.;
}
return j1 + j2;
}
static double remi_summ2() {
Double j1 = new Double(1.);
Double j2 = Double.valueOf(1.);
for (int i = 0; i< 1000; i++) {
j1 = new Double(j1 + 1.);
j2 = j2 + 2.;
}
return j1 + j2;
}
static double remi_sump2(Double j1) {
Double j2 = Double.valueOf(1.);
for (int i = 0; i< 1000; i++) {
j1 = new Double(j1 + 1.);
j2 = j2 + 2.;
}
return j1 + j2;
}
static double remi_sumc2() {
Double j1 = ibc;
Double j2 = Double.valueOf(1.);
for (int i = 0; i< 1000; i++) {
j1 = j1 + ibc;
j2 = j2 + 2.;
}
return j1 + j2;
}
//===============================================
// Safepointa and debug info for deoptimization
static double simple_deop(double i) {
Double ib = new Double(foo(i));
dummy();
return ib;
}
static double simpleb_deop(double i) {
Double ib = Double.valueOf(foo(i));
dummy();
return ib;
}
static double simplef_deop(double i) {
Double ib = foob(i);
dummy();
return ib;
}
static double simplep_deop(Double ib) {
dummy();
return ib;
}
static double simplec_deop(double i) {
Double ib = ibc;
dummy();
return ib;
}
static double test_deop(double f, int i) {
Double ib = new Double(foo(f));
if ((i&1) == 0)
ib = foo(f+1.);
dummy();
return ib;
}
static double testb_deop(double f, int i) {
Double ib = foo(f);
if ((i&1) == 0)
ib = foo(f+1.);
dummy();
return ib;
}
static double testf_deop(double f, int i) {
Double ib = foob(f);
if ((i&1) == 0)
ib = foo(f+1.);
dummy();
return ib;
}
static double testp_deop(double f, int i, Double ib) {
if ((i&1) == 0)
ib = foo(f+1.);
dummy();
return ib;
}
static double testc_deop(double f, int i) {
Double ib = ibc;
if ((i&1) == 0)
ib = foo(f+1.);
dummy();
return ib;
}
static double sum_deop(double[] a) {
double result = 1.;
for (Double i : a)
result += foo(i);
dummy();
return result;
}
static double sumb_deop(double[] a) {
Double result = 1.;
for (Double i : a)
result += foo(i);
dummy();
return result;
}
static double sumf_deop(double[] a) {
Double result = 1.;
for (Double i : a)
result += foob(i);
dummy();
return result;
}
static double sump_deop(double[] a, Double result) {
for (Double i : a)
result += foob(i);
dummy();
return result;
}
static double sumc_deop(double[] a) {
Double result = ibc;
for (Double i : a)
result += foo(i);
dummy();
return result;
}
static double remi_sum_deop() {
Double j = new Double(foo(1.));
for (int i = 0; i< 1000; i++) {
j = new Double(foo(j + 1.));
}
dummy();
return j;
}
static double remi_sumb_deop() {
Double j = Double.valueOf(foo(1.));
for (int i = 0; i< 1000; i++) {
j = foo(j + 1.);
}
dummy();
return j;
}
static double remi_sumf_deop() {
Double j = foob(1.);
for (int i = 0; i< 1000; i++) {
j = foo(j + 1.);
}
dummy();
return j;
}
static double remi_sump_deop(Double j) {
for (int i = 0; i< 1000; i++) {
j = foo(j + 1.);
}
dummy();
return j;
}
static double remi_sumc_deop() {
Double j = ibc;
for (int i = 0; i< 1000; i++) {
j = foo(j + 1.);
}
dummy();
return j;
}
//===============================================
// Conditional increment
static double remi_sum_cond() {
Double j = new Double(1.);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = new Double(j + 1.);
}
}
return j;
}
static double remi_sumb_cond() {
Double j = Double.valueOf(1.);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1.;
}
}
return j;
}
static double remi_sumf_cond() {
Double j = foob(1.);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1.;
}
}
return j;
}
static double remi_sump_cond(Double j) {
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1.;
}
}
return j;
}
static double remi_sumc_cond() {
Double j = ibc;
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + ibc;
}
}
return j;
}
static double remi_sum2_cond() {
Double j1 = new Double(1.);
Double j2 = new Double(1.);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Double(j1 + 1.);
} else {
j2 = new Double(j2 + 2.);
}
}
return j1 + j2;
}
static double remi_sumb2_cond() {
Double j1 = Double.valueOf(1.);
Double j2 = Double.valueOf(1.);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = j1 + 1.;
} else {
j2 = j2 + 2.;
}
}
return j1 + j2;
}
static double remi_summ2_cond() {
Double j1 = new Double(1.);
Double j2 = Double.valueOf(1.);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Double(j1 + 1.);
} else {
j2 = j2 + 2.;
}
}
return j1 + j2;
}
static double remi_sump2_cond(Double j1) {
Double j2 = Double.valueOf(1.);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Double(j1 + 1.);
} else {
j2 = j2 + 2.;
}
}
return j1 + j2;
}
static double remi_sumc2_cond() {
Double j1 = ibc;
Double j2 = Double.valueOf(1.);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = j1 + ibc;
} else {
j2 = j2 + 2;
}
}
return j1 + j2;
}
public static void main(String[] args) {
final int ntests = 70;
String[] test_name = new String[] {
"simple", "simpleb", "simplec", "simplef", "simplep",
"simple2", "simpleb2", "simplec2", "simplem2", "simplep2",
"simple_deop", "simpleb_deop", "simplec_deop", "simplef_deop", "simplep_deop",
"test", "testb", "testc", "testm", "testp",
"test2", "testb2", "testc2", "testm2", "testp2",
"test_deop", "testb_deop", "testc_deop", "testf_deop", "testp_deop",
"sum", "sumb", "sumc", "sumf", "sump",
"sum2", "sumb2", "sumc2", "summ2", "sump2",
"sum_deop", "sumb_deop", "sumc_deop", "sumf_deop", "sump_deop",
"remi_sum", "remi_sumb", "remi_sumc", "remi_sumf", "remi_sump",
"remi_sum2", "remi_sumb2", "remi_sumc2", "remi_summ2", "remi_sump2",
"remi_sum_deop", "remi_sumb_deop", "remi_sumc_deop", "remi_sumf_deop", "remi_sump_deop",
"remi_sum_cond", "remi_sumb_cond", "remi_sumc_cond", "remi_sumf_cond", "remi_sump_cond",
"remi_sum2_cond", "remi_sumb2_cond", "remi_sumc2_cond", "remi_summ2_cond", "remi_sump2_cond"
};
final double[] val = new double[] {
71994000., 71994000., 12000., 71994000., 71994000.,
144000000., 144000000., 72018000., 144000000., 144000000.,
71994000., 71994000., 12000., 71994000., 71994000.,
72000000., 72000000., 36006000., 72000000., 72000000.,
144012000., 144012000., 72030000., 144012000., 144012000.,
72000000., 72000000., 36006000., 72000000., 72000000.,
499501., 499501., 499501., 499501., 499501.,
1000002., 1000002., 1000002., 1000002., 1000002.,
499501., 499501., 499501., 499501., 499501.,
1001., 1001., 1001., 1001., 1001.,
3002., 3002., 3002., 3002., 3002.,
1001., 1001., 1001., 1001., 1001.,
501., 501., 501., 501., 501.,
1502., 1502., 1502., 1502., 1502.
};
double[] res = new double[ntests];
for (int i = 0; i < ntests; i++) {
res[i] = 0.;
}
for (int i = 0; i < 12000; i++) {
res[0] += simple(i);
res[1] += simpleb(i);
res[2] += simplec();
res[3] += simplef(i);
res[4] += simplep((double)i);
res[5] += simple2((double)i);
res[6] += simpleb2((double)i);
res[7] += simplec2((double)i);
res[8] += simplem2((double)i);
res[9] += simplep2((double)i, (double)i);
res[10] += simple_deop((double)i);
res[11] += simpleb_deop((double)i);
res[12] += simplec_deop((double)i);
res[13] += simplef_deop((double)i);
res[14] += simplep_deop((double)i);
res[15] += test((double)i, i);
res[16] += testb((double)i, i);
res[17] += testc((double)i, i);
res[18] += testm((double)i, i);
res[19] += testp((double)i, i, (double)i);
res[20] += test2((double)i, i);
res[21] += testb2((double)i, i);
res[22] += testc2((double)i, i);
res[23] += testm2((double)i, i);
res[24] += testp2((double)i, i, (double)i);
res[25] += test_deop((double)i, i);
res[26] += testb_deop((double)i, i);
res[27] += testc_deop((double)i, i);
res[28] += testf_deop((double)i, i);
res[29] += testp_deop((double)i, i, (double)i);
}
double[] ia = new double[1000];
for (int i = 0; i < 1000; i++) {
ia[i] = i;
}
for (int i = 0; i < 100; i++) {
res[30] = sum(ia);
res[31] = sumb(ia);
res[32] = sumc(ia);
res[33] = sumf(ia);
res[34] = sump(ia, 1.);
res[35] = sum2(ia);
res[36] = sumb2(ia);
res[37] = sumc2(ia);
res[38] = summ2(ia);
res[39] = sump2(ia, 1.);
res[40] = sum_deop(ia);
res[41] = sumb_deop(ia);
res[42] = sumc_deop(ia);
res[43] = sumf_deop(ia);
res[44] = sump_deop(ia, 1.);
res[45] = remi_sum();
res[46] = remi_sumb();
res[47] = remi_sumc();
res[48] = remi_sumf();
res[49] = remi_sump(1.);
res[50] = remi_sum2();
res[51] = remi_sumb2();
res[52] = remi_sumc2();
res[53] = remi_summ2();
res[54] = remi_sump2(1.);
res[55] = remi_sum_deop();
res[56] = remi_sumb_deop();
res[57] = remi_sumc_deop();
res[58] = remi_sumf_deop();
res[59] = remi_sump_deop(1.);
res[60] = remi_sum_cond();
res[61] = remi_sumb_cond();
res[62] = remi_sumc_cond();
res[63] = remi_sumf_cond();
res[64] = remi_sump_cond(1.);
res[65] = remi_sum2_cond();
res[66] = remi_sumb2_cond();
res[67] = remi_sumc2_cond();
res[68] = remi_summ2_cond();
res[69] = remi_sump2_cond(1.);
}
int failed = 0;
for (int i = 0; i < ntests; i++) {
if (res[i] != val[i]) {
System.err.println(test_name[i] + ": " + res[i] + " != " + val[i]);
failed++;
}
}
if (failed > 0) {
System.err.println("Failed " + failed + " tests.");
throw new InternalError();
} else {
System.out.println("Passed.");
}
}
}

View file

@ -0,0 +1,777 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 6934604
* @summary enable parts of EliminateAutoBox by default
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox TestFloatBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox
* -XX:CompileCommand=exclude,TestFloatBoxing.dummy -XX:CompileCommand=exclude,TestFloatBoxing.foo -XX:CompileCommand=exclude,TestFloatBoxing.foob TestFloatBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:-EliminateAutoBox
* -XX:CompileCommand=exclude,TestFloatBoxing.dummy -XX:CompileCommand=exclude,TestFloatBoxing.foo -XX:CompileCommand=exclude,TestFloatBoxing.foob TestFloatBoxing
*
*/
public class TestFloatBoxing {
static final Float ibc = new Float(1.f);
//===============================================
// Non-inlined methods to test deoptimization info
static void dummy() { }
static float foo(float i) { return i; }
static Float foob(float i) { return Float.valueOf(i); }
static float simple(float i) {
Float ib = new Float(i);
return ib;
}
static float simpleb(float i) {
Float ib = Float.valueOf(i);
return ib;
}
static float simplec() {
Float ib = ibc;
return ib;
}
static float simplef(float i) {
Float ib = foob(i);
return ib;
}
static float simplep(Float ib) {
return ib;
}
static float simple2(float i) {
Float ib1 = new Float(i);
Float ib2 = new Float(i+1.f);
return ib1 + ib2;
}
static float simpleb2(float i) {
Float ib1 = Float.valueOf(i);
Float ib2 = Float.valueOf(i+1.f);
return ib1 + ib2;
}
static float simplem2(float i) {
Float ib1 = new Float(i);
Float ib2 = Float.valueOf(i+1.f);
return ib1 + ib2;
}
static float simplep2(float i, Float ib1) {
Float ib2 = Float.valueOf(i+1.f);
return ib1 + ib2;
}
static float simplec2(float i) {
Float ib1 = ibc;
Float ib2 = Float.valueOf(i+1.f);
return ib1 + ib2;
}
//===============================================
static float test(float f, int i) {
Float ib = new Float(f);
if ((i&1) == 0)
ib = f+1.f;
return ib;
}
static float testb(float f, int i) {
Float ib = f;
if ((i&1) == 0)
ib = (f+1.f);
return ib;
}
static float testm(float f, int i) {
Float ib = f;
if ((i&1) == 0)
ib = new Float(f+1.f);
return ib;
}
static float testp(float f, int i, Float ib) {
if ((i&1) == 0)
ib = new Float(f+1.f);
return ib;
}
static float testc(float f, int i) {
Float ib = ibc;
if ((i&1) == 0)
ib = new Float(f+1.f);
return ib;
}
static float test2(float f, int i) {
Float ib1 = new Float(f);
Float ib2 = new Float(f+1.f);
if ((i&1) == 0) {
ib1 = new Float(f+1.f);
ib2 = new Float(f+2.f);
}
return ib1+ib2;
}
static float testb2(float f, int i) {
Float ib1 = f;
Float ib2 = f+1.f;
if ((i&1) == 0) {
ib1 = (f+1.f);
ib2 = (f+2.f);
}
return ib1+ib2;
}
static float testm2(float f, int i) {
Float ib1 = new Float(f);
Float ib2 = f+1.f;
if ((i&1) == 0) {
ib1 = new Float(f+1.f);
ib2 = (f+2.f);
}
return ib1+ib2;
}
static float testp2(float f, int i, Float ib1) {
Float ib2 = f+1.f;
if ((i&1) == 0) {
ib1 = new Float(f+1.f);
ib2 = (f+2.f);
}
return ib1+ib2;
}
static float testc2(float f, int i) {
Float ib1 = ibc;
Float ib2 = f+1.f;
if ((i&1) == 0) {
ib1 = (ibc+1.f);
ib2 = (f+2.f);
}
return ib1+ib2;
}
//===============================================
static float sum(float[] a) {
float result = 1.f;
for (Float i : a)
result += i;
return result;
}
static float sumb(float[] a) {
Float result = 1.f;
for (Float i : a)
result += i;
return result;
}
static float sumc(float[] a) {
Float result = ibc;
for (Float i : a)
result += i;
return result;
}
static float sumf(float[] a) {
Float result = foob(1.f);
for (Float i : a)
result += i;
return result;
}
static float sump(float[] a, Float result) {
for (Float i : a)
result += i;
return result;
}
static float sum2(float[] a) {
float result1 = 1.f;
float result2 = 1.f;
for (Float i : a) {
result1 += i;
result2 += i + 1.f;
}
return result1 + result2;
}
static float sumb2(float[] a) {
Float result1 = 1.f;
Float result2 = 1.f;
for (Float i : a) {
result1 += i;
result2 += i + 1.f;
}
return result1 + result2;
}
static float summ2(float[] a) {
Float result1 = 1.f;
Float result2 = new Float(1.f);
for (Float i : a) {
result1 += i;
result2 += new Float(i + 1.f);
}
return result1 + result2;
}
static float sump2(float[] a, Float result2) {
Float result1 = 1.f;
for (Float i : a) {
result1 += i;
result2 += i + 1.f;
}
return result1 + result2;
}
static float sumc2(float[] a) {
Float result1 = 1.f;
Float result2 = ibc;
for (Float i : a) {
result1 += i;
result2 += i + ibc;
}
return result1 + result2;
}
//===============================================
static float remi_sum() {
Float j = new Float(1.f);
for (int i = 0; i< 1000; i++) {
j = new Float(j + 1.f);
}
return j;
}
static float remi_sumb() {
Float j = Float.valueOf(1.f);
for (int i = 0; i< 1000; i++) {
j = j + 1.f;
}
return j;
}
static float remi_sumf() {
Float j = foob(1.f);
for (int i = 0; i< 1000; i++) {
j = j + 1.f;
}
return j;
}
static float remi_sump(Float j) {
for (int i = 0; i< 1000; i++) {
j = new Float(j + 1.f);
}
return j;
}
static float remi_sumc() {
Float j = ibc;
for (int i = 0; i< 1000; i++) {
j = j + ibc;
}
return j;
}
static float remi_sum2() {
Float j1 = new Float(1.f);
Float j2 = new Float(1.f);
for (int i = 0; i< 1000; i++) {
j1 = new Float(j1 + 1.f);
j2 = new Float(j2 + 2.f);
}
return j1 + j2;
}
static float remi_sumb2() {
Float j1 = Float.valueOf(1.f);
Float j2 = Float.valueOf(1.f);
for (int i = 0; i< 1000; i++) {
j1 = j1 + 1.f;
j2 = j2 + 2.f;
}
return j1 + j2;
}
static float remi_summ2() {
Float j1 = new Float(1.f);
Float j2 = Float.valueOf(1.f);
for (int i = 0; i< 1000; i++) {
j1 = new Float(j1 + 1.f);
j2 = j2 + 2.f;
}
return j1 + j2;
}
static float remi_sump2(Float j1) {
Float j2 = Float.valueOf(1.f);
for (int i = 0; i< 1000; i++) {
j1 = new Float(j1 + 1.f);
j2 = j2 + 2.f;
}
return j1 + j2;
}
static float remi_sumc2() {
Float j1 = ibc;
Float j2 = Float.valueOf(1.f);
for (int i = 0; i< 1000; i++) {
j1 = j1 + ibc;
j2 = j2 + 2.f;
}
return j1 + j2;
}
//===============================================
// Safepointa and debug info for deoptimization
static float simple_deop(float i) {
Float ib = new Float(foo(i));
dummy();
return ib;
}
static float simpleb_deop(float i) {
Float ib = Float.valueOf(foo(i));
dummy();
return ib;
}
static float simplef_deop(float i) {
Float ib = foob(i);
dummy();
return ib;
}
static float simplep_deop(Float ib) {
dummy();
return ib;
}
static float simplec_deop(float i) {
Float ib = ibc;
dummy();
return ib;
}
static float test_deop(float f, int i) {
Float ib = new Float(foo(f));
if ((i&1) == 0)
ib = foo(f+1.f);
dummy();
return ib;
}
static float testb_deop(float f, int i) {
Float ib = foo(f);
if ((i&1) == 0)
ib = foo(f+1.f);
dummy();
return ib;
}
static float testf_deop(float f, int i) {
Float ib = foob(f);
if ((i&1) == 0)
ib = foo(f+1.f);
dummy();
return ib;
}
static float testp_deop(float f, int i, Float ib) {
if ((i&1) == 0)
ib = foo(f+1.f);
dummy();
return ib;
}
static float testc_deop(float f, int i) {
Float ib = ibc;
if ((i&1) == 0)
ib = foo(f+1.f);
dummy();
return ib;
}
static float sum_deop(float[] a) {
float result = 1.f;
for (Float i : a)
result += foo(i);
dummy();
return result;
}
static float sumb_deop(float[] a) {
Float result = 1.f;
for (Float i : a)
result += foo(i);
dummy();
return result;
}
static float sumf_deop(float[] a) {
Float result = 1.f;
for (Float i : a)
result += foob(i);
dummy();
return result;
}
static float sump_deop(float[] a, Float result) {
for (Float i : a)
result += foob(i);
dummy();
return result;
}
static float sumc_deop(float[] a) {
Float result = ibc;
for (Float i : a)
result += foo(i);
dummy();
return result;
}
static float remi_sum_deop() {
Float j = new Float(foo(1.f));
for (int i = 0; i< 1000; i++) {
j = new Float(foo(j + 1.f));
}
dummy();
return j;
}
static float remi_sumb_deop() {
Float j = Float.valueOf(foo(1.f));
for (int i = 0; i< 1000; i++) {
j = foo(j + 1.f);
}
dummy();
return j;
}
static float remi_sumf_deop() {
Float j = foob(1.f);
for (int i = 0; i< 1000; i++) {
j = foo(j + 1.f);
}
dummy();
return j;
}
static float remi_sump_deop(Float j) {
for (int i = 0; i< 1000; i++) {
j = foo(j + 1.f);
}
dummy();
return j;
}
static float remi_sumc_deop() {
Float j = ibc;
for (int i = 0; i< 1000; i++) {
j = foo(j + 1.f);
}
dummy();
return j;
}
//===============================================
// Conditional increment
static float remi_sum_cond() {
Float j = new Float(1.f);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = new Float(j + 1.f);
}
}
return j;
}
static float remi_sumb_cond() {
Float j = Float.valueOf(1.f);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1.f;
}
}
return j;
}
static float remi_sumf_cond() {
Float j = foob(1.f);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1.f;
}
}
return j;
}
static float remi_sump_cond(Float j) {
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1.f;
}
}
return j;
}
static float remi_sumc_cond() {
Float j = ibc;
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + ibc;
}
}
return j;
}
static float remi_sum2_cond() {
Float j1 = new Float(1.f);
Float j2 = new Float(1.f);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Float(j1 + 1.f);
} else {
j2 = new Float(j2 + 2.f);
}
}
return j1 + j2;
}
static float remi_sumb2_cond() {
Float j1 = Float.valueOf(1.f);
Float j2 = Float.valueOf(1.f);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = j1 + 1.f;
} else {
j2 = j2 + 2.f;
}
}
return j1 + j2;
}
static float remi_summ2_cond() {
Float j1 = new Float(1.f);
Float j2 = Float.valueOf(1.f);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Float(j1 + 1.f);
} else {
j2 = j2 + 2.f;
}
}
return j1 + j2;
}
static float remi_sump2_cond(Float j1) {
Float j2 = Float.valueOf(1.f);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Float(j1 + 1.f);
} else {
j2 = j2 + 2.f;
}
}
return j1 + j2;
}
static float remi_sumc2_cond() {
Float j1 = ibc;
Float j2 = Float.valueOf(1.f);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = j1 + ibc;
} else {
j2 = j2 + 2;
}
}
return j1 + j2;
}
public static void main(String[] args) {
final int ntests = 70;
String[] test_name = new String[] {
"simple", "simpleb", "simplec", "simplef", "simplep",
"simple2", "simpleb2", "simplec2", "simplem2", "simplep2",
"simple_deop", "simpleb_deop", "simplec_deop", "simplef_deop", "simplep_deop",
"test", "testb", "testc", "testm", "testp",
"test2", "testb2", "testc2", "testm2", "testp2",
"test_deop", "testb_deop", "testc_deop", "testf_deop", "testp_deop",
"sum", "sumb", "sumc", "sumf", "sump",
"sum2", "sumb2", "sumc2", "summ2", "sump2",
"sum_deop", "sumb_deop", "sumc_deop", "sumf_deop", "sump_deop",
"remi_sum", "remi_sumb", "remi_sumc", "remi_sumf", "remi_sump",
"remi_sum2", "remi_sumb2", "remi_sumc2", "remi_summ2", "remi_sump2",
"remi_sum_deop", "remi_sumb_deop", "remi_sumc_deop", "remi_sumf_deop", "remi_sump_deop",
"remi_sum_cond", "remi_sumb_cond", "remi_sumc_cond", "remi_sumf_cond", "remi_sump_cond",
"remi_sum2_cond", "remi_sumb2_cond", "remi_sumc2_cond", "remi_summ2_cond", "remi_sump2_cond"
};
final float[] val = new float[] {
71990896.f, 71990896.f, 12000.f, 71990896.f, 71990896.f,
144000000.f, 144000000.f, 72014896.f, 144000000.f, 144000000.f,
71990896.f, 71990896.f, 12000.f, 71990896.f, 71990896.f,
72000000.f, 72000000.f, 36004096.f, 72000000.f, 72000000.f,
144012288.f, 144012288.f, 72033096.f, 144012288.f, 144012288.f,
72000000.f, 72000000.f, 36004096.f, 72000000.f, 72000000.f,
499501.f, 499501.f, 499501.f, 499501.f, 499501.f,
1000002.f, 1000002.f, 1000002.f, 1000002.f, 1000002.f,
499501.f, 499501.f, 499501.f, 499501.f, 499501.f,
1001.f, 1001.f, 1001.f, 1001.f, 1001.f,
3002.f, 3002.f, 3002.f, 3002.f, 3002.f,
1001.f, 1001.f, 1001.f, 1001.f, 1001.f,
501.f, 501.f, 501.f, 501.f, 501.f,
1502.f, 1502.f, 1502.f, 1502.f, 1502.f
};
float[] res = new float[ntests];
for (int i = 0; i < ntests; i++) {
res[i] = 0.f;
}
for (int i = 0; i < 12000; i++) {
res[0] += simple(i);
res[1] += simpleb(i);
res[2] += simplec();
res[3] += simplef(i);
res[4] += simplep((float)i);
res[5] += simple2((float)i);
res[6] += simpleb2((float)i);
res[7] += simplec2((float)i);
res[8] += simplem2((float)i);
res[9] += simplep2((float)i, (float)i);
res[10] += simple_deop((float)i);
res[11] += simpleb_deop((float)i);
res[12] += simplec_deop((float)i);
res[13] += simplef_deop((float)i);
res[14] += simplep_deop((float)i);
res[15] += test((float)i, i);
res[16] += testb((float)i, i);
res[17] += testc((float)i, i);
res[18] += testm((float)i, i);
res[19] += testp((float)i, i, (float)i);
res[20] += test2((float)i, i);
res[21] += testb2((float)i, i);
res[22] += testc2((float)i, i);
res[23] += testm2((float)i, i);
res[24] += testp2((float)i, i, (float)i);
res[25] += test_deop((float)i, i);
res[26] += testb_deop((float)i, i);
res[27] += testc_deop((float)i, i);
res[28] += testf_deop((float)i, i);
res[29] += testp_deop((float)i, i, (float)i);
}
float[] ia = new float[1000];
for (int i = 0; i < 1000; i++) {
ia[i] = i;
}
for (int i = 0; i < 100; i++) {
res[30] = sum(ia);
res[31] = sumb(ia);
res[32] = sumc(ia);
res[33] = sumf(ia);
res[34] = sump(ia, 1.f);
res[35] = sum2(ia);
res[36] = sumb2(ia);
res[37] = sumc2(ia);
res[38] = summ2(ia);
res[39] = sump2(ia, 1.f);
res[40] = sum_deop(ia);
res[41] = sumb_deop(ia);
res[42] = sumc_deop(ia);
res[43] = sumf_deop(ia);
res[44] = sump_deop(ia, 1.f);
res[45] = remi_sum();
res[46] = remi_sumb();
res[47] = remi_sumc();
res[48] = remi_sumf();
res[49] = remi_sump(1.f);
res[50] = remi_sum2();
res[51] = remi_sumb2();
res[52] = remi_sumc2();
res[53] = remi_summ2();
res[54] = remi_sump2(1.f);
res[55] = remi_sum_deop();
res[56] = remi_sumb_deop();
res[57] = remi_sumc_deop();
res[58] = remi_sumf_deop();
res[59] = remi_sump_deop(1.f);
res[60] = remi_sum_cond();
res[61] = remi_sumb_cond();
res[62] = remi_sumc_cond();
res[63] = remi_sumf_cond();
res[64] = remi_sump_cond(1.f);
res[65] = remi_sum2_cond();
res[66] = remi_sumb2_cond();
res[67] = remi_sumc2_cond();
res[68] = remi_summ2_cond();
res[69] = remi_sump2_cond(1.f);
}
int failed = 0;
for (int i = 0; i < ntests; i++) {
if (res[i] != val[i]) {
System.err.println(test_name[i] + ": " + res[i] + " != " + val[i]);
failed++;
}
}
if (failed > 0) {
System.err.println("Failed " + failed + " tests.");
throw new InternalError();
} else {
System.out.println("Passed.");
}
}
}

View file

@ -0,0 +1,777 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 6934604
* @summary enable parts of EliminateAutoBox by default
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox TestIntBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox
* -XX:CompileCommand=exclude,TestIntBoxing.dummy -XX:CompileCommand=exclude,TestIntBoxing.foo -XX:CompileCommand=exclude,TestIntBoxing.foob TestIntBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:-EliminateAutoBox
* -XX:CompileCommand=exclude,TestIntBoxing.dummy -XX:CompileCommand=exclude,TestIntBoxing.foo -XX:CompileCommand=exclude,TestIntBoxing.foob TestIntBoxing
*
*/
public class TestIntBoxing {
static final Integer ibc = new Integer(1);
//===============================================
// Non-inlined methods to test deoptimization info
static void dummy() { }
static int foo(int i) { return i; }
static Integer foob(int i) { return Integer.valueOf(i); }
static int simple(int i) {
Integer ib = new Integer(i);
return ib;
}
static int simpleb(int i) {
Integer ib = Integer.valueOf(i);
return ib;
}
static int simplec() {
Integer ib = ibc;
return ib;
}
static int simplef(int i) {
Integer ib = foob(i);
return ib;
}
static int simplep(Integer ib) {
return ib;
}
static int simple2(int i) {
Integer ib1 = new Integer(i);
Integer ib2 = new Integer(i+1);
return ib1 + ib2;
}
static int simpleb2(int i) {
Integer ib1 = Integer.valueOf(i);
Integer ib2 = Integer.valueOf(i+1);
return ib1 + ib2;
}
static int simplem2(int i) {
Integer ib1 = new Integer(i);
Integer ib2 = Integer.valueOf(i+1);
return ib1 + ib2;
}
static int simplep2(int i, Integer ib1) {
Integer ib2 = Integer.valueOf(i+1);
return ib1 + ib2;
}
static int simplec2(int i) {
Integer ib1 = ibc;
Integer ib2 = Integer.valueOf(i+1);
return ib1 + ib2;
}
//===============================================
static int test(int i) {
Integer ib = new Integer(i);
if ((i&1) == 0)
ib = i+1;
return ib;
}
static int testb(int i) {
Integer ib = i;
if ((i&1) == 0)
ib = (i+1);
return ib;
}
static int testm(int i) {
Integer ib = i;
if ((i&1) == 0)
ib = new Integer(i+1);
return ib;
}
static int testp(int i, Integer ib) {
if ((i&1) == 0)
ib = new Integer(i+1);
return ib;
}
static int testc(int i) {
Integer ib = ibc;
if ((i&1) == 0)
ib = new Integer(i+1);
return ib;
}
static int test2(int i) {
Integer ib1 = new Integer(i);
Integer ib2 = new Integer(i+1);
if ((i&1) == 0) {
ib1 = new Integer(i+1);
ib2 = new Integer(i+2);
}
return ib1+ib2;
}
static int testb2(int i) {
Integer ib1 = i;
Integer ib2 = i+1;
if ((i&1) == 0) {
ib1 = (i+1);
ib2 = (i+2);
}
return ib1+ib2;
}
static int testm2(int i) {
Integer ib1 = new Integer(i);
Integer ib2 = i+1;
if ((i&1) == 0) {
ib1 = new Integer(i+1);
ib2 = (i+2);
}
return ib1+ib2;
}
static int testp2(int i, Integer ib1) {
Integer ib2 = i+1;
if ((i&1) == 0) {
ib1 = new Integer(i+1);
ib2 = (i+2);
}
return ib1+ib2;
}
static int testc2(int i) {
Integer ib1 = ibc;
Integer ib2 = i+1;
if ((i&1) == 0) {
ib1 = (ibc+1);
ib2 = (i+2);
}
return ib1+ib2;
}
//===============================================
static int sum(int[] a) {
int result = 1;
for (Integer i : a)
result += i;
return result;
}
static int sumb(int[] a) {
Integer result = 1;
for (Integer i : a)
result += i;
return result;
}
static int sumc(int[] a) {
Integer result = ibc;
for (Integer i : a)
result += i;
return result;
}
static int sumf(int[] a) {
Integer result = foob(1);
for (Integer i : a)
result += i;
return result;
}
static int sump(int[] a, Integer result) {
for (Integer i : a)
result += i;
return result;
}
static int sum2(int[] a) {
int result1 = 1;
int result2 = 1;
for (Integer i : a) {
result1 += i;
result2 += i + 1;
}
return result1 + result2;
}
static int sumb2(int[] a) {
Integer result1 = 1;
Integer result2 = 1;
for (Integer i : a) {
result1 += i;
result2 += i + 1;
}
return result1 + result2;
}
static int summ2(int[] a) {
Integer result1 = 1;
Integer result2 = new Integer(1);
for (Integer i : a) {
result1 += i;
result2 += new Integer(i + 1);
}
return result1 + result2;
}
static int sump2(int[] a, Integer result2) {
Integer result1 = 1;
for (Integer i : a) {
result1 += i;
result2 += i + 1;
}
return result1 + result2;
}
static int sumc2(int[] a) {
Integer result1 = 1;
Integer result2 = ibc;
for (Integer i : a) {
result1 += i;
result2 += i + ibc;
}
return result1 + result2;
}
//===============================================
static int remi_sum() {
Integer j = new Integer(1);
for (int i = 0; i< 1000; i++) {
j = new Integer(j + 1);
}
return j;
}
static int remi_sumb() {
Integer j = Integer.valueOf(1);
for (int i = 0; i< 1000; i++) {
j = j + 1;
}
return j;
}
static int remi_sumf() {
Integer j = foob(1);
for (int i = 0; i< 1000; i++) {
j = j + 1;
}
return j;
}
static int remi_sump(Integer j) {
for (int i = 0; i< 1000; i++) {
j = new Integer(j + 1);
}
return j;
}
static int remi_sumc() {
Integer j = ibc;
for (int i = 0; i< 1000; i++) {
j = j + ibc;
}
return j;
}
static int remi_sum2() {
Integer j1 = new Integer(1);
Integer j2 = new Integer(1);
for (int i = 0; i< 1000; i++) {
j1 = new Integer(j1 + 1);
j2 = new Integer(j2 + 2);
}
return j1 + j2;
}
static int remi_sumb2() {
Integer j1 = Integer.valueOf(1);
Integer j2 = Integer.valueOf(1);
for (int i = 0; i< 1000; i++) {
j1 = j1 + 1;
j2 = j2 + 2;
}
return j1 + j2;
}
static int remi_summ2() {
Integer j1 = new Integer(1);
Integer j2 = Integer.valueOf(1);
for (int i = 0; i< 1000; i++) {
j1 = new Integer(j1 + 1);
j2 = j2 + 2;
}
return j1 + j2;
}
static int remi_sump2(Integer j1) {
Integer j2 = Integer.valueOf(1);
for (int i = 0; i< 1000; i++) {
j1 = new Integer(j1 + 1);
j2 = j2 + 2;
}
return j1 + j2;
}
static int remi_sumc2() {
Integer j1 = ibc;
Integer j2 = Integer.valueOf(1);
for (int i = 0; i< 1000; i++) {
j1 = j1 + ibc;
j2 = j2 + 2;
}
return j1 + j2;
}
//===============================================
// Safepointa and debug info for deoptimization
static int simple_deop(int i) {
Integer ib = new Integer(foo(i));
dummy();
return ib;
}
static int simpleb_deop(int i) {
Integer ib = Integer.valueOf(foo(i));
dummy();
return ib;
}
static int simplef_deop(int i) {
Integer ib = foob(i);
dummy();
return ib;
}
static int simplep_deop(Integer ib) {
dummy();
return ib;
}
static int simplec_deop(int i) {
Integer ib = ibc;
dummy();
return ib;
}
static int test_deop(int i) {
Integer ib = new Integer(foo(i));
if ((i&1) == 0)
ib = foo(i+1);
dummy();
return ib;
}
static int testb_deop(int i) {
Integer ib = foo(i);
if ((i&1) == 0)
ib = foo(i+1);
dummy();
return ib;
}
static int testf_deop(int i) {
Integer ib = foob(i);
if ((i&1) == 0)
ib = foo(i+1);
dummy();
return ib;
}
static int testp_deop(int i, Integer ib) {
if ((i&1) == 0)
ib = foo(i+1);
dummy();
return ib;
}
static int testc_deop(int i) {
Integer ib = ibc;
if ((i&1) == 0)
ib = foo(i+1);
dummy();
return ib;
}
static int sum_deop(int[] a) {
int result = 1;
for (Integer i : a)
result += foo(i);
dummy();
return result;
}
static int sumb_deop(int[] a) {
Integer result = 1;
for (Integer i : a)
result += foo(i);
dummy();
return result;
}
static int sumf_deop(int[] a) {
Integer result = 1;
for (Integer i : a)
result += foob(i);
dummy();
return result;
}
static int sump_deop(int[] a, Integer result) {
for (Integer i : a)
result += foob(i);
dummy();
return result;
}
static int sumc_deop(int[] a) {
Integer result = ibc;
for (Integer i : a)
result += foo(i);
dummy();
return result;
}
static int remi_sum_deop() {
Integer j = new Integer(foo(1));
for (int i = 0; i< 1000; i++) {
j = new Integer(foo(j + 1));
}
dummy();
return j;
}
static int remi_sumb_deop() {
Integer j = Integer.valueOf(foo(1));
for (int i = 0; i< 1000; i++) {
j = foo(j + 1);
}
dummy();
return j;
}
static int remi_sumf_deop() {
Integer j = foob(1);
for (int i = 0; i< 1000; i++) {
j = foo(j + 1);
}
dummy();
return j;
}
static int remi_sump_deop(Integer j) {
for (int i = 0; i< 1000; i++) {
j = foo(j + 1);
}
dummy();
return j;
}
static int remi_sumc_deop() {
Integer j = ibc;
for (int i = 0; i< 1000; i++) {
j = foo(j + 1);
}
dummy();
return j;
}
//===============================================
// Conditional increment
static int remi_sum_cond() {
Integer j = new Integer(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = new Integer(j + 1);
}
}
return j;
}
static int remi_sumb_cond() {
Integer j = Integer.valueOf(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1;
}
}
return j;
}
static int remi_sumf_cond() {
Integer j = foob(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1;
}
}
return j;
}
static int remi_sump_cond(Integer j) {
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1;
}
}
return j;
}
static int remi_sumc_cond() {
Integer j = ibc;
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + ibc;
}
}
return j;
}
static int remi_sum2_cond() {
Integer j1 = new Integer(1);
Integer j2 = new Integer(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Integer(j1 + 1);
} else {
j2 = new Integer(j2 + 2);
}
}
return j1 + j2;
}
static int remi_sumb2_cond() {
Integer j1 = Integer.valueOf(1);
Integer j2 = Integer.valueOf(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = j1 + 1;
} else {
j2 = j2 + 2;
}
}
return j1 + j2;
}
static int remi_summ2_cond() {
Integer j1 = new Integer(1);
Integer j2 = Integer.valueOf(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Integer(j1 + 1);
} else {
j2 = j2 + 2;
}
}
return j1 + j2;
}
static int remi_sump2_cond(Integer j1) {
Integer j2 = Integer.valueOf(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Integer(j1 + 1);
} else {
j2 = j2 + 2;
}
}
return j1 + j2;
}
static int remi_sumc2_cond() {
Integer j1 = ibc;
Integer j2 = Integer.valueOf(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = j1 + ibc;
} else {
j2 = j2 + 2;
}
}
return j1 + j2;
}
public static void main(String[] args) {
final int ntests = 70;
String[] test_name = new String[] {
"simple", "simpleb", "simplec", "simplef", "simplep",
"simple2", "simpleb2", "simplec2", "simplem2", "simplep2",
"simple_deop", "simpleb_deop", "simplec_deop", "simplef_deop", "simplep_deop",
"test", "testb", "testc", "testm", "testp",
"test2", "testb2", "testc2", "testm2", "testp2",
"test_deop", "testb_deop", "testc_deop", "testf_deop", "testp_deop",
"sum", "sumb", "sumc", "sumf", "sump",
"sum2", "sumb2", "sumc2", "summ2", "sump2",
"sum_deop", "sumb_deop", "sumc_deop", "sumf_deop", "sump_deop",
"remi_sum", "remi_sumb", "remi_sumc", "remi_sumf", "remi_sump",
"remi_sum2", "remi_sumb2", "remi_sumc2", "remi_summ2", "remi_sump2",
"remi_sum_deop", "remi_sumb_deop", "remi_sumc_deop", "remi_sumf_deop", "remi_sump_deop",
"remi_sum_cond", "remi_sumb_cond", "remi_sumc_cond", "remi_sumf_cond", "remi_sump_cond",
"remi_sum2_cond", "remi_sumb2_cond", "remi_sumc2_cond", "remi_summ2_cond", "remi_sump2_cond"
};
final int[] val = new int[] {
71994000, 71994000, 12000, 71994000, 71994000,
144000000, 144000000, 72018000, 144000000, 144000000,
71994000, 71994000, 12000, 71994000, 71994000,
72000000, 72000000, 36006000, 72000000, 72000000,
144012000, 144012000, 72030000, 144012000, 144012000,
72000000, 72000000, 36006000, 72000000, 72000000,
499501, 499501, 499501, 499501, 499501,
1000002, 1000002, 1000002, 1000002, 1000002,
499501, 499501, 499501, 499501, 499501,
1001, 1001, 1001, 1001, 1001,
3002, 3002, 3002, 3002, 3002,
1001, 1001, 1001, 1001, 1001,
501, 501, 501, 501, 501,
1502, 1502, 1502, 1502, 1502
};
int[] res = new int[ntests];
for (int i = 0; i < ntests; i++) {
res[i] = 0;
}
for (int i = 0; i < 12000; i++) {
res[0] += simple(i);
res[1] += simpleb(i);
res[2] += simplec();
res[3] += simplef(i);
res[4] += simplep(i);
res[5] += simple2(i);
res[6] += simpleb2(i);
res[7] += simplec2(i);
res[8] += simplem2(i);
res[9] += simplep2(i, i);
res[10] += simple_deop(i);
res[11] += simpleb_deop(i);
res[12] += simplec_deop(i);
res[13] += simplef_deop(i);
res[14] += simplep_deop(i);
res[15] += test(i);
res[16] += testb(i);
res[17] += testc(i);
res[18] += testm(i);
res[19] += testp(i, i);
res[20] += test2(i);
res[21] += testb2(i);
res[22] += testc2(i);
res[23] += testm2(i);
res[24] += testp2(i, i);
res[25] += test_deop(i);
res[26] += testb_deop(i);
res[27] += testc_deop(i);
res[28] += testf_deop(i);
res[29] += testp_deop(i, i);
}
int[] ia = new int[1000];
for (int i = 0; i < 1000; i++) {
ia[i] = i;
}
for (int i = 0; i < 100; i++) {
res[30] = sum(ia);
res[31] = sumb(ia);
res[32] = sumc(ia);
res[33] = sumf(ia);
res[34] = sump(ia, 1);
res[35] = sum2(ia);
res[36] = sumb2(ia);
res[37] = sumc2(ia);
res[38] = summ2(ia);
res[39] = sump2(ia, 1);
res[40] = sum_deop(ia);
res[41] = sumb_deop(ia);
res[42] = sumc_deop(ia);
res[43] = sumf_deop(ia);
res[44] = sump_deop(ia, 1);
res[45] = remi_sum();
res[46] = remi_sumb();
res[47] = remi_sumc();
res[48] = remi_sumf();
res[49] = remi_sump(1);
res[50] = remi_sum2();
res[51] = remi_sumb2();
res[52] = remi_sumc2();
res[53] = remi_summ2();
res[54] = remi_sump2(1);
res[55] = remi_sum_deop();
res[56] = remi_sumb_deop();
res[57] = remi_sumc_deop();
res[58] = remi_sumf_deop();
res[59] = remi_sump_deop(1);
res[60] = remi_sum_cond();
res[61] = remi_sumb_cond();
res[62] = remi_sumc_cond();
res[63] = remi_sumf_cond();
res[64] = remi_sump_cond(1);
res[65] = remi_sum2_cond();
res[66] = remi_sumb2_cond();
res[67] = remi_sumc2_cond();
res[68] = remi_summ2_cond();
res[69] = remi_sump2_cond(1);
}
int failed = 0;
for (int i = 0; i < ntests; i++) {
if (res[i] != val[i]) {
System.err.println(test_name[i] + ": " + res[i] + " != " + val[i]);
failed++;
}
}
if (failed > 0) {
System.err.println("Failed " + failed + " tests.");
throw new InternalError();
} else {
System.out.println("Passed.");
}
}
}

View file

@ -0,0 +1,777 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 6934604
* @summary enable parts of EliminateAutoBox by default
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox TestLongBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox
* -XX:CompileCommand=exclude,TestLongBoxing.dummy -XX:CompileCommand=exclude,TestLongBoxing.foo -XX:CompileCommand=exclude,TestLongBoxing.foob TestLongBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:-EliminateAutoBox
* -XX:CompileCommand=exclude,TestLongBoxing.dummy -XX:CompileCommand=exclude,TestLongBoxing.foo -XX:CompileCommand=exclude,TestLongBoxing.foob TestLongBoxing
*
*/
public class TestLongBoxing {
static final Long ibc = new Long(1);
//===============================================
// Non-inlined methods to test deoptimization info
static void dummy() { }
static long foo(long i) { return i; }
static Long foob(long i) { return Long.valueOf(i); }
static long simple(long i) {
Long ib = new Long(i);
return ib;
}
static long simpleb(long i) {
Long ib = Long.valueOf(i);
return ib;
}
static long simplec() {
Long ib = ibc;
return ib;
}
static long simplef(long i) {
Long ib = foob(i);
return ib;
}
static long simplep(Long ib) {
return ib;
}
static long simple2(long i) {
Long ib1 = new Long(i);
Long ib2 = new Long(i+1);
return ib1 + ib2;
}
static long simpleb2(long i) {
Long ib1 = Long.valueOf(i);
Long ib2 = Long.valueOf(i+1);
return ib1 + ib2;
}
static long simplem2(long i) {
Long ib1 = new Long(i);
Long ib2 = Long.valueOf(i+1);
return ib1 + ib2;
}
static long simplep2(long i, Long ib1) {
Long ib2 = Long.valueOf(i+1);
return ib1 + ib2;
}
static long simplec2(long i) {
Long ib1 = ibc;
Long ib2 = Long.valueOf(i+1);
return ib1 + ib2;
}
//===============================================
static long test(long i) {
Long ib = new Long(i);
if ((i&1) == 0)
ib = i+1;
return ib;
}
static long testb(long i) {
Long ib = i;
if ((i&1) == 0)
ib = (i+1);
return ib;
}
static long testm(long i) {
Long ib = i;
if ((i&1) == 0)
ib = new Long(i+1);
return ib;
}
static long testp(long i, Long ib) {
if ((i&1) == 0)
ib = new Long(i+1);
return ib;
}
static long testc(long i) {
Long ib = ibc;
if ((i&1) == 0)
ib = new Long(i+1);
return ib;
}
static long test2(long i) {
Long ib1 = new Long(i);
Long ib2 = new Long(i+1);
if ((i&1) == 0) {
ib1 = new Long(i+1);
ib2 = new Long(i+2);
}
return ib1+ib2;
}
static long testb2(long i) {
Long ib1 = i;
Long ib2 = i+1;
if ((i&1) == 0) {
ib1 = (i+1);
ib2 = (i+2);
}
return ib1+ib2;
}
static long testm2(long i) {
Long ib1 = new Long(i);
Long ib2 = i+1;
if ((i&1) == 0) {
ib1 = new Long(i+1);
ib2 = (i+2);
}
return ib1+ib2;
}
static long testp2(long i, Long ib1) {
Long ib2 = i+1;
if ((i&1) == 0) {
ib1 = new Long(i+1);
ib2 = (i+2);
}
return ib1+ib2;
}
static long testc2(long i) {
Long ib1 = ibc;
Long ib2 = i+1;
if ((i&1) == 0) {
ib1 = (ibc+1);
ib2 = (i+2);
}
return ib1+ib2;
}
//===============================================
static long sum(long[] a) {
long result = 1;
for (Long i : a)
result += i;
return result;
}
static long sumb(long[] a) {
Long result = 1l;
for (Long i : a)
result += i;
return result;
}
static long sumc(long[] a) {
Long result = ibc;
for (Long i : a)
result += i;
return result;
}
static long sumf(long[] a) {
Long result = foob(1);
for (Long i : a)
result += i;
return result;
}
static long sump(long[] a, Long result) {
for (Long i : a)
result += i;
return result;
}
static long sum2(long[] a) {
long result1 = 1;
long result2 = 1;
for (Long i : a) {
result1 += i;
result2 += i + 1;
}
return result1 + result2;
}
static long sumb2(long[] a) {
Long result1 = 1l;
Long result2 = 1l;
for (Long i : a) {
result1 += i;
result2 += i + 1;
}
return result1 + result2;
}
static long summ2(long[] a) {
Long result1 = 1l;
Long result2 = new Long(1);
for (Long i : a) {
result1 += i;
result2 += new Long(i + 1);
}
return result1 + result2;
}
static long sump2(long[] a, Long result2) {
Long result1 = 1l;
for (Long i : a) {
result1 += i;
result2 += i + 1;
}
return result1 + result2;
}
static long sumc2(long[] a) {
Long result1 = 1l;
Long result2 = ibc;
for (Long i : a) {
result1 += i;
result2 += i + ibc;
}
return result1 + result2;
}
//===============================================
static long remi_sum() {
Long j = new Long(1);
for (int i = 0; i< 1000; i++) {
j = new Long(j + 1);
}
return j;
}
static long remi_sumb() {
Long j = Long.valueOf(1);
for (int i = 0; i< 1000; i++) {
j = j + 1;
}
return j;
}
static long remi_sumf() {
Long j = foob(1);
for (int i = 0; i< 1000; i++) {
j = j + 1;
}
return j;
}
static long remi_sump(Long j) {
for (int i = 0; i< 1000; i++) {
j = new Long(j + 1);
}
return j;
}
static long remi_sumc() {
Long j = ibc;
for (int i = 0; i< 1000; i++) {
j = j + ibc;
}
return j;
}
static long remi_sum2() {
Long j1 = new Long(1);
Long j2 = new Long(1);
for (int i = 0; i< 1000; i++) {
j1 = new Long(j1 + 1);
j2 = new Long(j2 + 2);
}
return j1 + j2;
}
static long remi_sumb2() {
Long j1 = Long.valueOf(1);
Long j2 = Long.valueOf(1);
for (int i = 0; i< 1000; i++) {
j1 = j1 + 1;
j2 = j2 + 2;
}
return j1 + j2;
}
static long remi_summ2() {
Long j1 = new Long(1);
Long j2 = Long.valueOf(1);
for (int i = 0; i< 1000; i++) {
j1 = new Long(j1 + 1);
j2 = j2 + 2;
}
return j1 + j2;
}
static long remi_sump2(Long j1) {
Long j2 = Long.valueOf(1);
for (int i = 0; i< 1000; i++) {
j1 = new Long(j1 + 1);
j2 = j2 + 2;
}
return j1 + j2;
}
static long remi_sumc2() {
Long j1 = ibc;
Long j2 = Long.valueOf(1);
for (int i = 0; i< 1000; i++) {
j1 = j1 + ibc;
j2 = j2 + 2;
}
return j1 + j2;
}
//===============================================
// Safepointa and debug info for deoptimization
static long simple_deop(long i) {
Long ib = new Long(foo(i));
dummy();
return ib;
}
static long simpleb_deop(long i) {
Long ib = Long.valueOf(foo(i));
dummy();
return ib;
}
static long simplef_deop(long i) {
Long ib = foob(i);
dummy();
return ib;
}
static long simplep_deop(Long ib) {
dummy();
return ib;
}
static long simplec_deop(long i) {
Long ib = ibc;
dummy();
return ib;
}
static long test_deop(long i) {
Long ib = new Long(foo(i));
if ((i&1) == 0)
ib = foo(i+1);
dummy();
return ib;
}
static long testb_deop(long i) {
Long ib = foo(i);
if ((i&1) == 0)
ib = foo(i+1);
dummy();
return ib;
}
static long testf_deop(long i) {
Long ib = foob(i);
if ((i&1) == 0)
ib = foo(i+1);
dummy();
return ib;
}
static long testp_deop(long i, Long ib) {
if ((i&1) == 0)
ib = foo(i+1);
dummy();
return ib;
}
static long testc_deop(long i) {
Long ib = ibc;
if ((i&1) == 0)
ib = foo(i+1);
dummy();
return ib;
}
static long sum_deop(long[] a) {
long result = 1;
for (Long i : a)
result += foo(i);
dummy();
return result;
}
static long sumb_deop(long[] a) {
Long result = 1l;
for (Long i : a)
result += foo(i);
dummy();
return result;
}
static long sumf_deop(long[] a) {
Long result = 1l;
for (Long i : a)
result += foob(i);
dummy();
return result;
}
static long sump_deop(long[] a, Long result) {
for (Long i : a)
result += foob(i);
dummy();
return result;
}
static long sumc_deop(long[] a) {
Long result = ibc;
for (Long i : a)
result += foo(i);
dummy();
return result;
}
static long remi_sum_deop() {
Long j = new Long(foo(1));
for (int i = 0; i< 1000; i++) {
j = new Long(foo(j + 1));
}
dummy();
return j;
}
static long remi_sumb_deop() {
Long j = Long.valueOf(foo(1));
for (int i = 0; i< 1000; i++) {
j = foo(j + 1);
}
dummy();
return j;
}
static long remi_sumf_deop() {
Long j = foob(1);
for (int i = 0; i< 1000; i++) {
j = foo(j + 1);
}
dummy();
return j;
}
static long remi_sump_deop(Long j) {
for (int i = 0; i< 1000; i++) {
j = foo(j + 1);
}
dummy();
return j;
}
static long remi_sumc_deop() {
Long j = ibc;
for (int i = 0; i< 1000; i++) {
j = foo(j + 1);
}
dummy();
return j;
}
//===============================================
// Conditional increment
static long remi_sum_cond() {
Long j = new Long(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = new Long(j + 1);
}
}
return j;
}
static long remi_sumb_cond() {
Long j = Long.valueOf(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1;
}
}
return j;
}
static long remi_sumf_cond() {
Long j = foob(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1;
}
}
return j;
}
static long remi_sump_cond(Long j) {
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + 1;
}
}
return j;
}
static long remi_sumc_cond() {
Long j = ibc;
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = j + ibc;
}
}
return j;
}
static long remi_sum2_cond() {
Long j1 = new Long(1);
Long j2 = new Long(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Long(j1 + 1);
} else {
j2 = new Long(j2 + 2);
}
}
return j1 + j2;
}
static long remi_sumb2_cond() {
Long j1 = Long.valueOf(1);
Long j2 = Long.valueOf(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = j1 + 1;
} else {
j2 = j2 + 2;
}
}
return j1 + j2;
}
static long remi_summ2_cond() {
Long j1 = new Long(1);
Long j2 = Long.valueOf(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Long(j1 + 1);
} else {
j2 = j2 + 2;
}
}
return j1 + j2;
}
static long remi_sump2_cond(Long j1) {
Long j2 = Long.valueOf(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Long(j1 + 1);
} else {
j2 = j2 + 2;
}
}
return j1 + j2;
}
static long remi_sumc2_cond() {
Long j1 = ibc;
Long j2 = Long.valueOf(1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = j1 + ibc;
} else {
j2 = j2 + 2;
}
}
return j1 + j2;
}
public static void main(String[] args) {
final int ntests = 70;
String[] test_name = new String[] {
"simple", "simpleb", "simplec", "simplef", "simplep",
"simple2", "simpleb2", "simplec2", "simplem2", "simplep2",
"simple_deop", "simpleb_deop", "simplec_deop", "simplef_deop", "simplep_deop",
"test", "testb", "testc", "testm", "testp",
"test2", "testb2", "testc2", "testm2", "testp2",
"test_deop", "testb_deop", "testc_deop", "testf_deop", "testp_deop",
"sum", "sumb", "sumc", "sumf", "sump",
"sum2", "sumb2", "sumc2", "summ2", "sump2",
"sum_deop", "sumb_deop", "sumc_deop", "sumf_deop", "sump_deop",
"remi_sum", "remi_sumb", "remi_sumc", "remi_sumf", "remi_sump",
"remi_sum2", "remi_sumb2", "remi_sumc2", "remi_summ2", "remi_sump2",
"remi_sum_deop", "remi_sumb_deop", "remi_sumc_deop", "remi_sumf_deop", "remi_sump_deop",
"remi_sum_cond", "remi_sumb_cond", "remi_sumc_cond", "remi_sumf_cond", "remi_sump_cond",
"remi_sum2_cond", "remi_sumb2_cond", "remi_sumc2_cond", "remi_summ2_cond", "remi_sump2_cond"
};
final long[] val = new long[] {
71994000, 71994000, 12000, 71994000, 71994000,
144000000, 144000000, 72018000, 144000000, 144000000,
71994000, 71994000, 12000, 71994000, 71994000,
72000000, 72000000, 36006000, 72000000, 72000000,
144012000, 144012000, 72030000, 144012000, 144012000,
72000000, 72000000, 36006000, 72000000, 72000000,
499501, 499501, 499501, 499501, 499501,
1000002, 1000002, 1000002, 1000002, 1000002,
499501, 499501, 499501, 499501, 499501,
1001, 1001, 1001, 1001, 1001,
3002, 3002, 3002, 3002, 3002,
1001, 1001, 1001, 1001, 1001,
501, 501, 501, 501, 501,
1502, 1502, 1502, 1502, 1502
};
long[] res = new long[ntests];
for (int i = 0; i < ntests; i++) {
res[i] = 0;
}
for (long i = 0; i < 12000; i++) {
res[0] += simple(i);
res[1] += simpleb(i);
res[2] += simplec();
res[3] += simplef(i);
res[4] += simplep(i);
res[5] += simple2(i);
res[6] += simpleb2(i);
res[7] += simplec2(i);
res[8] += simplem2(i);
res[9] += simplep2(i, i);
res[10] += simple_deop(i);
res[11] += simpleb_deop(i);
res[12] += simplec_deop(i);
res[13] += simplef_deop(i);
res[14] += simplep_deop(i);
res[15] += test(i);
res[16] += testb(i);
res[17] += testc(i);
res[18] += testm(i);
res[19] += testp(i, i);
res[20] += test2(i);
res[21] += testb2(i);
res[22] += testc2(i);
res[23] += testm2(i);
res[24] += testp2(i, i);
res[25] += test_deop(i);
res[26] += testb_deop(i);
res[27] += testc_deop(i);
res[28] += testf_deop(i);
res[29] += testp_deop(i, i);
}
long[] ia = new long[1000];
for (int i = 0; i < 1000; i++) {
ia[i] = i;
}
for (int i = 0; i < 100; i++) {
res[30] = sum(ia);
res[31] = sumb(ia);
res[32] = sumc(ia);
res[33] = sumf(ia);
res[34] = sump(ia, (long)1);
res[35] = sum2(ia);
res[36] = sumb2(ia);
res[37] = sumc2(ia);
res[38] = summ2(ia);
res[39] = sump2(ia, (long)1);
res[40] = sum_deop(ia);
res[41] = sumb_deop(ia);
res[42] = sumc_deop(ia);
res[43] = sumf_deop(ia);
res[44] = sump_deop(ia, (long)1);
res[45] = remi_sum();
res[46] = remi_sumb();
res[47] = remi_sumc();
res[48] = remi_sumf();
res[49] = remi_sump((long)1);
res[50] = remi_sum2();
res[51] = remi_sumb2();
res[52] = remi_sumc2();
res[53] = remi_summ2();
res[54] = remi_sump2((long)1);
res[55] = remi_sum_deop();
res[56] = remi_sumb_deop();
res[57] = remi_sumc_deop();
res[58] = remi_sumf_deop();
res[59] = remi_sump_deop((long)1);
res[60] = remi_sum_cond();
res[61] = remi_sumb_cond();
res[62] = remi_sumc_cond();
res[63] = remi_sumf_cond();
res[64] = remi_sump_cond((long)1);
res[65] = remi_sum2_cond();
res[66] = remi_sumb2_cond();
res[67] = remi_sumc2_cond();
res[68] = remi_summ2_cond();
res[69] = remi_sump2_cond((long)1);
}
int failed = 0;
for (int i = 0; i < ntests; i++) {
if (res[i] != val[i]) {
System.err.println(test_name[i] + ": " + res[i] + " != " + val[i]);
failed++;
}
}
if (failed > 0) {
System.err.println("Failed " + failed + " tests.");
throw new InternalError();
} else {
System.out.println("Passed.");
}
}
}

View file

@ -0,0 +1,777 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 6934604
* @summary enable parts of EliminateAutoBox by default
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox TestShortBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:+EliminateAutoBox
* -XX:CompileCommand=exclude,TestShortBoxing.dummy -XX:CompileCommand=exclude,TestShortBoxing.foo -XX:CompileCommand=exclude,TestShortBoxing.foob TestShortBoxing
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:-EliminateAutoBox
* -XX:CompileCommand=exclude,TestShortBoxing.dummy -XX:CompileCommand=exclude,TestShortBoxing.foo -XX:CompileCommand=exclude,TestShortBoxing.foob TestShortBoxing
*
*/
public class TestShortBoxing {
static final Short ibc = new Short((short)1);
//===============================================
// Non-inlined methods to test deoptimization info
static void dummy() { }
static short foo(short i) { return i; }
static Short foob(short i) { return Short.valueOf(i); }
static short simple(short i) {
Short ib = new Short(i);
return ib;
}
static short simpleb(short i) {
Short ib = Short.valueOf(i);
return ib;
}
static short simplec() {
Short ib = ibc;
return ib;
}
static short simplef(short i) {
Short ib = foob(i);
return ib;
}
static short simplep(Short ib) {
return ib;
}
static short simple2(short i) {
Short ib1 = new Short(i);
Short ib2 = new Short((short)(i+1));
return (short)(ib1 + ib2);
}
static short simpleb2(short i) {
Short ib1 = Short.valueOf(i);
Short ib2 = Short.valueOf((short)(i+1));
return (short)(ib1 + ib2);
}
static short simplem2(short i) {
Short ib1 = new Short(i);
Short ib2 = Short.valueOf((short)(i+1));
return (short)(ib1 + ib2);
}
static short simplep2(short i, Short ib1) {
Short ib2 = Short.valueOf((short)(i+1));
return (short)(ib1 + ib2);
}
static short simplec2(short i) {
Short ib1 = ibc;
Short ib2 = Short.valueOf((short)(i+1));
return (short)(ib1 + ib2);
}
//===============================================
static short test(short i) {
Short ib = new Short(i);
if ((i&1) == 0)
ib = (short)(i+1);
return ib;
}
static short testb(short i) {
Short ib = i;
if ((i&1) == 0)
ib = (short)(i+1);
return ib;
}
static short testm(short i) {
Short ib = i;
if ((i&1) == 0)
ib = new Short((short)(i+1));
return ib;
}
static short testp(short i, Short ib) {
if ((i&1) == 0)
ib = new Short((short)(i+1));
return ib;
}
static short testc(short i) {
Short ib = ibc;
if ((i&1) == 0)
ib = new Short((short)(i+1));
return ib;
}
static short test2(short i) {
Short ib1 = new Short(i);
Short ib2 = new Short((short)(i+1));
if ((i&1) == 0) {
ib1 = new Short((short)(i+1));
ib2 = new Short((short)(i+2));
}
return (short)(ib1+ib2);
}
static short testb2(short i) {
Short ib1 = i;
Short ib2 = (short)(i+1);
if ((i&1) == 0) {
ib1 = (short)(i+1);
ib2 = (short)(i+2);
}
return (short)(ib1 + ib2);
}
static short testm2(short i) {
Short ib1 = new Short(i);
Short ib2 = (short)(i+1);
if ((i&1) == 0) {
ib1 = new Short((short)(i+1));
ib2 = (short)(i+2);
}
return (short)(ib1 + ib2);
}
static short testp2(short i, Short ib1) {
Short ib2 = (short)(i+1);
if ((i&1) == 0) {
ib1 = new Short((short)(i+1));
ib2 = (short)(i+2);
}
return (short)(ib1 + ib2);
}
static short testc2(short i) {
Short ib1 = ibc;
Short ib2 = (short)(i+1);
if ((i&1) == 0) {
ib1 = (short)(ibc+1);
ib2 = (short)(i+2);
}
return (short)(ib1 + ib2);
}
//===============================================
static short sum(short[] a) {
short result = 1;
for (Short i : a)
result += i;
return result;
}
static short sumb(short[] a) {
Short result = 1;
for (Short i : a)
result = (short)(result + i);
return result;
}
static short sumc(short[] a) {
Short result = ibc;
for (Short i : a)
result = (short)(result + i);
return result;
}
static short sumf(short[] a) {
Short result = foob((short)1);
for (Short i : a)
result = (short)(result + i);
return result;
}
static short sump(short[] a, Short result) {
for (Short i : a)
result = (short)(result + i);
return result;
}
static short sum2(short[] a) {
short result1 = 1;
short result2 = 1;
for (Short i : a) {
result1 += i;
result2 += i + 1;
}
return (short)(result1 + result2);
}
static short sumb2(short[] a) {
Short result1 = 1;
Short result2 = 1;
for (Short i : a) {
result1 = (short)(result1 + i);
result2 = (short)(result2 + i + 1);
}
return (short)(result1 + result2);
}
static short summ2(short[] a) {
Short result1 = 1;
Short result2 = new Short((short)1);
for (Short i : a) {
result1 = (short)(result1 + i);
result2 = (short)(result2 + new Short((short)(i + 1)));
}
return (short)(result1 + result2);
}
static short sump2(short[] a, Short result2) {
Short result1 = 1;
for (Short i : a) {
result1 = (short)(result1 + i);
result2 = (short)(result2 + i + 1);
}
return (short)(result1 + result2);
}
static short sumc2(short[] a) {
Short result1 = 1;
Short result2 = ibc;
for (Short i : a) {
result1 = (short)(result1 + i);
result2 = (short)(result2 + i + ibc);
}
return (short)(result1 + result2);
}
//===============================================
static short remi_sum() {
Short j = new Short((short)1);
for (int i = 0; i< 1000; i++) {
j = new Short((short)(j + 1));
}
return j;
}
static short remi_sumb() {
Short j = Short.valueOf((short)1);
for (int i = 0; i< 1000; i++) {
j = (short)(j + 1);
}
return j;
}
static short remi_sumf() {
Short j = foob((short)1);
for (int i = 0; i< 1000; i++) {
j = (short)(j + 1);
}
return j;
}
static short remi_sump(Short j) {
for (int i = 0; i< 1000; i++) {
j = new Short((short)(j + 1));
}
return j;
}
static short remi_sumc() {
Short j = ibc;
for (int i = 0; i< 1000; i++) {
j = (short)(j + ibc);
}
return j;
}
static short remi_sum2() {
Short j1 = new Short((short)1);
Short j2 = new Short((short)1);
for (int i = 0; i< 1000; i++) {
j1 = new Short((short)(j1 + 1));
j2 = new Short((short)(j2 + 2));
}
return (short)(j1 + j2);
}
static short remi_sumb2() {
Short j1 = Short.valueOf((short)1);
Short j2 = Short.valueOf((short)1);
for (int i = 0; i< 1000; i++) {
j1 = (short)(j1 + 1);
j2 = (short)(j2 + 2);
}
return (short)(j1 + j2);
}
static short remi_summ2() {
Short j1 = new Short((short)1);
Short j2 = Short.valueOf((short)1);
for (int i = 0; i< 1000; i++) {
j1 = new Short((short)(j1 + 1));
j2 = (short)(j2 + 2);
}
return (short)(j1 + j2);
}
static short remi_sump2(Short j1) {
Short j2 = Short.valueOf((short)1);
for (int i = 0; i< 1000; i++) {
j1 = new Short((short)(j1 + 1));
j2 = (short)(j2 + 2);
}
return (short)(j1 + j2);
}
static short remi_sumc2() {
Short j1 = ibc;
Short j2 = Short.valueOf((short)1);
for (int i = 0; i< 1000; i++) {
j1 = (short)(j1 + ibc);
j2 = (short)(j2 + 2);
}
return (short)(j1 + j2);
}
//===============================================
// Safepointa and debug info for deoptimization
static short simple_deop(short i) {
Short ib = new Short(foo(i));
dummy();
return ib;
}
static short simpleb_deop(short i) {
Short ib = Short.valueOf(foo(i));
dummy();
return ib;
}
static short simplef_deop(short i) {
Short ib = foob(i);
dummy();
return ib;
}
static short simplep_deop(Short ib) {
dummy();
return ib;
}
static short simplec_deop(short i) {
Short ib = ibc;
dummy();
return ib;
}
static short test_deop(short i) {
Short ib = new Short(foo(i));
if ((i&1) == 0)
ib = foo((short)(i+1));
dummy();
return ib;
}
static short testb_deop(short i) {
Short ib = foo(i);
if ((i&1) == 0)
ib = foo((short)(i+1));
dummy();
return ib;
}
static short testf_deop(short i) {
Short ib = foob(i);
if ((i&1) == 0)
ib = foo((short)(i+1));
dummy();
return ib;
}
static short testp_deop(short i, Short ib) {
if ((i&1) == 0)
ib = foo((short)(i+1));
dummy();
return ib;
}
static short testc_deop(short i) {
Short ib = ibc;
if ((i&1) == 0)
ib = foo((short)(i+1));
dummy();
return ib;
}
static short sum_deop(short[] a) {
short result = 1;
for (Short i : a)
result += foo(i);
dummy();
return result;
}
static short sumb_deop(short[] a) {
Short result = 1;
for (Short i : a)
result = (short)(result + foo(i));
dummy();
return result;
}
static short sumf_deop(short[] a) {
Short result = 1;
for (Short i : a)
result = (short)(result + foob(i));
dummy();
return result;
}
static short sump_deop(short[] a, Short result) {
for (Short i : a)
result = (short)(result + foob(i));
dummy();
return result;
}
static short sumc_deop(short[] a) {
Short result = ibc;
for (Short i : a)
result = (short)(result + foo(i));
dummy();
return result;
}
static short remi_sum_deop() {
Short j = new Short(foo((short)1));
for (int i = 0; i< 1000; i++) {
j = new Short(foo((short)(j + 1)));
}
dummy();
return j;
}
static short remi_sumb_deop() {
Short j = Short.valueOf(foo((short)1));
for (int i = 0; i< 1000; i++) {
j = foo((short)(j + 1));
}
dummy();
return j;
}
static short remi_sumf_deop() {
Short j = foob((short)1);
for (int i = 0; i< 1000; i++) {
j = foo((short)(j + 1));
}
dummy();
return j;
}
static short remi_sump_deop(Short j) {
for (int i = 0; i< 1000; i++) {
j = foo((short)(j + 1));
}
dummy();
return j;
}
static short remi_sumc_deop() {
Short j = ibc;
for (int i = 0; i< 1000; i++) {
j = foo((short)(j + 1));
}
dummy();
return j;
}
//===============================================
// Conditional increment
static short remi_sum_cond() {
Short j = new Short((short)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = new Short((short)(j + 1));
}
}
return j;
}
static short remi_sumb_cond() {
Short j = Short.valueOf((short)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = (short)(j + 1);
}
}
return j;
}
static short remi_sumf_cond() {
Short j = foob((short)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = (short)(j + 1);
}
}
return j;
}
static short remi_sump_cond(Short j) {
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = (short)(j + 1);
}
}
return j;
}
static short remi_sumc_cond() {
Short j = ibc;
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j = (short)(j + ibc);
}
}
return j;
}
static short remi_sum2_cond() {
Short j1 = new Short((short)1);
Short j2 = new Short((short)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Short((short)(j1 + 1));
} else {
j2 = new Short((short)(j2 + 2));
}
}
return (short)(j1 + j2);
}
static short remi_sumb2_cond() {
Short j1 = Short.valueOf((short)1);
Short j2 = Short.valueOf((short)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = (short)(j1 + 1);
} else {
j2 = (short)(j2 + 2);
}
}
return (short)(j1 + j2);
}
static short remi_summ2_cond() {
Short j1 = new Short((short)1);
Short j2 = Short.valueOf((short)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Short((short)(j1 + 1));
} else {
j2 = (short)(j2 + 2);
}
}
return (short)(j1 + j2);
}
static short remi_sump2_cond(Short j1) {
Short j2 = Short.valueOf((short)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = new Short((short)(j1 + 1));
} else {
j2 = (short)(j2 + 2);
}
}
return (short)(j1 + j2);
}
static short remi_sumc2_cond() {
Short j1 = ibc;
Short j2 = Short.valueOf((short)1);
for (int i = 0; i< 1000; i++) {
if ((i&1) == 0) {
j1 = (short)(j1 + ibc);
} else {
j2 = (short)(j2 + 2);
}
}
return (short)(j1 + j2);
}
public static void main(String[] args) {
final int ntests = 70;
String[] test_name = new String[] {
"simple", "simpleb", "simplec", "simplef", "simplep",
"simple2", "simpleb2", "simplec2", "simplem2", "simplep2",
"simple_deop", "simpleb_deop", "simplec_deop", "simplef_deop", "simplep_deop",
"test", "testb", "testc", "testm", "testp",
"test2", "testb2", "testc2", "testm2", "testp2",
"test_deop", "testb_deop", "testc_deop", "testf_deop", "testp_deop",
"sum", "sumb", "sumc", "sumf", "sump",
"sum2", "sumb2", "sumc2", "summ2", "sump2",
"sum_deop", "sumb_deop", "sumc_deop", "sumf_deop", "sump_deop",
"remi_sum", "remi_sumb", "remi_sumc", "remi_sumf", "remi_sump",
"remi_sum2", "remi_sumb2", "remi_sumc2", "remi_summ2", "remi_sump2",
"remi_sum_deop", "remi_sumb_deop", "remi_sumc_deop", "remi_sumf_deop", "remi_sump_deop",
"remi_sum_cond", "remi_sumb_cond", "remi_sumc_cond", "remi_sumf_cond", "remi_sump_cond",
"remi_sum2_cond", "remi_sumb2_cond", "remi_sumc2_cond", "remi_summ2_cond", "remi_sump2_cond"
};
final int[] val = new int[] {
71994000, 71994000, 12000, 71994000, 71994000,
144000000, 144000000, 72018000, 144000000, 144000000,
71994000, 71994000, 12000, 71994000, 71994000,
72000000, 72000000, 36006000, 72000000, 72000000,
144012000, 144012000, 72030000, 144012000, 144012000,
72000000, 72000000, 36006000, 72000000, 72000000,
-24787, -24787, -24787, -24787, -24787,
16962, 16962, 16962, 16962, 16962,
-24787, -24787, -24787, -24787, -24787,
1001, 1001, 1001, 1001, 1001,
3002, 3002, 3002, 3002, 3002,
1001, 1001, 1001, 1001, 1001,
501, 501, 501, 501, 501,
1502, 1502, 1502, 1502, 1502
};
int[] res = new int[ntests];
for (int i = 0; i < ntests; i++) {
res[i] = 0;
}
for (int i = 0; i < 12000; i++) {
res[0] += simple((short)i);
res[1] += simpleb((short)i);
res[2] += simplec();
res[3] += simplef((short)i);
res[4] += simplep((short)i);
res[5] += simple2((short)i);
res[6] += simpleb2((short)i);
res[7] += simplec2((short)i);
res[8] += simplem2((short)i);
res[9] += simplep2((short)i, (short)i);
res[10] += simple_deop((short)i);
res[11] += simpleb_deop((short)i);
res[12] += simplec_deop((short)i);
res[13] += simplef_deop((short)i);
res[14] += simplep_deop((short)i);
res[15] += test((short)i);
res[16] += testb((short)i);
res[17] += testc((short)i);
res[18] += testm((short)i);
res[19] += testp((short)i, (short)i);
res[20] += test2((short)i);
res[21] += testb2((short)i);
res[22] += testc2((short)i);
res[23] += testm2((short)i);
res[24] += testp2((short)i, (short)i);
res[25] += test_deop((short)i);
res[26] += testb_deop((short)i);
res[27] += testc_deop((short)i);
res[28] += testf_deop((short)i);
res[29] += testp_deop((short)i, (short)i);
}
short[] ia = new short[1000];
for (int i = 0; i < 1000; i++) {
ia[i] = (short)i;
}
for (int i = 0; i < 100; i++) {
res[30] = sum(ia);
res[31] = sumb(ia);
res[32] = sumc(ia);
res[33] = sumf(ia);
res[34] = sump(ia, (short)1);
res[35] = sum2(ia);
res[36] = sumb2(ia);
res[37] = sumc2(ia);
res[38] = summ2(ia);
res[39] = sump2(ia, (short)1);
res[40] = sum_deop(ia);
res[41] = sumb_deop(ia);
res[42] = sumc_deop(ia);
res[43] = sumf_deop(ia);
res[44] = sump_deop(ia, (short)1);
res[45] = remi_sum();
res[46] = remi_sumb();
res[47] = remi_sumc();
res[48] = remi_sumf();
res[49] = remi_sump((short)1);
res[50] = remi_sum2();
res[51] = remi_sumb2();
res[52] = remi_sumc2();
res[53] = remi_summ2();
res[54] = remi_sump2((short)1);
res[55] = remi_sum_deop();
res[56] = remi_sumb_deop();
res[57] = remi_sumc_deop();
res[58] = remi_sumf_deop();
res[59] = remi_sump_deop((short)1);
res[60] = remi_sum_cond();
res[61] = remi_sumb_cond();
res[62] = remi_sumc_cond();
res[63] = remi_sumf_cond();
res[64] = remi_sump_cond((short)1);
res[65] = remi_sum2_cond();
res[66] = remi_sumb2_cond();
res[67] = remi_sumc2_cond();
res[68] = remi_summ2_cond();
res[69] = remi_sump2_cond((short)1);
}
int failed = 0;
for (int i = 0; i < ntests; i++) {
if (res[i] != val[i]) {
System.err.println(test_name[i] + ": " + res[i] + " != " + val[i]);
failed++;
}
}
if (failed > 0) {
System.err.println("Failed " + failed + " tests.");
throw new InternalError();
} else {
System.out.println("Passed.");
}
}
}

View file

@ -25,7 +25,7 @@
* @test * @test
* @bug 8009761 * @bug 8009761
* @summary Deoptimization on sparc doesn't set Llast_SP correctly in the interpreter frames it creates * @summary Deoptimization on sparc doesn't set Llast_SP correctly in the interpreter frames it creates
* @run main/othervm -Xmixed -XX:-UseOnStackReplacement -XX:-BackgroundCompilation Test8009761 * @run main/othervm -XX:CompileCommand=exclude,Test8009761::m2 -XX:-UseOnStackReplacement -XX:-BackgroundCompilation -Xss256K Test8009761
* *
*/ */
@ -249,7 +249,7 @@ public class Test8009761 {
System.out.println("Failed: init recursive calls: " + c1 + ". After deopt " + count); System.out.println("Failed: init recursive calls: " + c1 + ". After deopt " + count);
System.exit(97); System.exit(97);
} else { } else {
System.out.println("PASSED"); System.out.println("PASSED " + c1);
} }
} }
} }