8133051: Concurrent refinement threads may be activated and deactivated at random

Establish min threshold step; earlier primary refinement thread activation.

Reviewed-by: tschatzl, drwhite, mgerdin, jmasa
This commit is contained in:
Kim Barrett 2016-04-18 14:52:31 -04:00
parent 633da50166
commit 3079c942b6
9 changed files with 302 additions and 117 deletions

View file

@ -29,42 +29,174 @@
#include "gc/g1/g1HotCardCache.hpp" #include "gc/g1/g1HotCardCache.hpp"
#include "gc/g1/g1Predictions.hpp" #include "gc/g1/g1Predictions.hpp"
#include "runtime/java.hpp" #include "runtime/java.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/pair.hpp"
#include <math.h>
ConcurrentG1Refine::ConcurrentG1Refine(G1CollectedHeap* g1h, const G1Predictions* predictor) : // Arbitrary but large limits, to simplify some of the zone calculations.
// The general idea is to allow expressions like
// MIN2(x OP y, max_XXX_zone)
// without needing to check for overflow in "x OP y", because the
// ranges for x and y have been restricted.
STATIC_ASSERT(sizeof(LP64_ONLY(jint) NOT_LP64(jshort)) <= (sizeof(size_t)/2));
const size_t max_yellow_zone = LP64_ONLY(max_jint) NOT_LP64(max_jshort);
const size_t max_green_zone = max_yellow_zone / 2;
const size_t max_red_zone = INT_MAX; // For dcqs.set_max_completed_queue.
STATIC_ASSERT(max_yellow_zone <= max_red_zone);
// Range check assertions for green zone values.
#define assert_zone_constraints_g(green) \
do { \
size_t azc_g_green = (green); \
assert(azc_g_green <= max_green_zone, \
"green exceeds max: " SIZE_FORMAT, azc_g_green); \
} while (0)
// Range check assertions for green and yellow zone values.
#define assert_zone_constraints_gy(green, yellow) \
do { \
size_t azc_gy_green = (green); \
size_t azc_gy_yellow = (yellow); \
assert_zone_constraints_g(azc_gy_green); \
assert(azc_gy_yellow <= max_yellow_zone, \
"yellow exceeds max: " SIZE_FORMAT, azc_gy_yellow); \
assert(azc_gy_green <= azc_gy_yellow, \
"green (" SIZE_FORMAT ") exceeds yellow (" SIZE_FORMAT ")", \
azc_gy_green, azc_gy_yellow); \
} while (0)
// Range check assertions for green, yellow, and red zone values.
#define assert_zone_constraints_gyr(green, yellow, red) \
do { \
size_t azc_gyr_green = (green); \
size_t azc_gyr_yellow = (yellow); \
size_t azc_gyr_red = (red); \
assert_zone_constraints_gy(azc_gyr_green, azc_gyr_yellow); \
assert(azc_gyr_red <= max_red_zone, \
"red exceeds max: " SIZE_FORMAT, azc_gyr_red); \
assert(azc_gyr_yellow <= azc_gyr_red, \
"yellow (" SIZE_FORMAT ") exceeds red (" SIZE_FORMAT ")", \
azc_gyr_yellow, azc_gyr_red); \
} while (0)
// Logging tag sequence for refinement control updates.
#define CTRL_TAGS gc, ergo, refine
// For logging zone values, ensuring consistency of level and tags.
#define LOG_ZONES(...) log_debug( CTRL_TAGS )(__VA_ARGS__)
// Package for pair of refinement thread activation and deactivation
// thresholds. The activation and deactivation levels are resp. the first
// and second values of the pair.
typedef Pair<size_t, size_t> Thresholds;
inline size_t activation_level(const Thresholds& t) { return t.first; }
inline size_t deactivation_level(const Thresholds& t) { return t.second; }
static Thresholds calc_thresholds(size_t green_zone,
size_t yellow_zone,
uint worker_i) {
double yellow_size = yellow_zone - green_zone;
double step = yellow_size / ConcurrentG1Refine::thread_num();
if (worker_i == 0) {
// Potentially activate worker 0 more aggressively, to keep
// available buffers near green_zone value. When yellow_size is
// large we don't want to allow a full step to accumulate before
// doing any processing, as that might lead to significantly more
// than green_zone buffers to be processed by update_rs.
step = MIN2(step, ParallelGCThreads / 2.0);
}
size_t activate_offset = static_cast<size_t>(ceil(step * (worker_i + 1)));
size_t deactivate_offset = static_cast<size_t>(floor(step * worker_i));
return Thresholds(green_zone + activate_offset,
green_zone + deactivate_offset);
}
ConcurrentG1Refine::ConcurrentG1Refine(G1CollectedHeap* g1h,
size_t green_zone,
size_t yellow_zone,
size_t red_zone,
size_t min_yellow_zone_size) :
_threads(NULL), _threads(NULL),
_sample_thread(NULL), _sample_thread(NULL),
_predictor_sigma(predictor->sigma()), _n_worker_threads(thread_num()),
_green_zone(green_zone),
_yellow_zone(yellow_zone),
_red_zone(red_zone),
_min_yellow_zone_size(min_yellow_zone_size),
_hot_card_cache(g1h) _hot_card_cache(g1h)
{ {
// Ergonomically select initial concurrent refinement parameters assert_zone_constraints_gyr(green_zone, yellow_zone, red_zone);
}
static size_t calc_min_yellow_zone_size() {
size_t step = G1ConcRefinementThresholdStep;
uint n_workers = ConcurrentG1Refine::thread_num();
if ((max_yellow_zone / step) < n_workers) {
return max_yellow_zone;
} else {
return step * n_workers;
}
}
static size_t calc_init_green_zone() {
size_t green = G1ConcRefinementGreenZone;
if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) { if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) {
FLAG_SET_DEFAULT(G1ConcRefinementGreenZone, ParallelGCThreads); green = ParallelGCThreads;
}
return MIN2(green, max_green_zone);
} }
set_green_zone(G1ConcRefinementGreenZone);
static size_t calc_init_yellow_zone(size_t green, size_t min_size) {
size_t config = G1ConcRefinementYellowZone;
size_t size = 0;
if (FLAG_IS_DEFAULT(G1ConcRefinementYellowZone)) { if (FLAG_IS_DEFAULT(G1ConcRefinementYellowZone)) {
FLAG_SET_DEFAULT(G1ConcRefinementYellowZone, green_zone() * 3); size = green * 2;
} else if (green < config) {
size = config - green;
} }
set_yellow_zone(MAX2(G1ConcRefinementYellowZone, green_zone())); size = MAX2(size, min_size);
size = MIN2(size, max_yellow_zone);
if (FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) { return MIN2(green + size, max_yellow_zone);
FLAG_SET_DEFAULT(G1ConcRefinementRedZone, yellow_zone() * 2);
}
set_red_zone(MAX2(G1ConcRefinementRedZone, yellow_zone()));
} }
ConcurrentG1Refine* ConcurrentG1Refine::create(G1CollectedHeap* g1h, CardTableEntryClosure* refine_closure, jint* ecode) { static size_t calc_init_red_zone(size_t green, size_t yellow) {
G1CollectorPolicy* policy = g1h->g1_policy(); size_t size = yellow - green;
ConcurrentG1Refine* cg1r = new ConcurrentG1Refine(g1h, &policy->predictor()); if (!FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) {
size_t config = G1ConcRefinementRedZone;
if (yellow < config) {
size = MAX2(size, config - yellow);
}
}
return MIN2(yellow + size, max_red_zone);
}
ConcurrentG1Refine* ConcurrentG1Refine::create(G1CollectedHeap* g1h,
CardTableEntryClosure* refine_closure,
jint* ecode) {
size_t min_yellow_zone_size = calc_min_yellow_zone_size();
size_t green_zone = calc_init_green_zone();
size_t yellow_zone = calc_init_yellow_zone(green_zone, min_yellow_zone_size);
size_t red_zone = calc_init_red_zone(green_zone, yellow_zone);
LOG_ZONES("Initial Refinement Zones: "
"green: " SIZE_FORMAT ", "
"yellow: " SIZE_FORMAT ", "
"red: " SIZE_FORMAT ", "
"min yellow size: " SIZE_FORMAT,
green_zone, yellow_zone, red_zone, min_yellow_zone_size);
ConcurrentG1Refine* cg1r = new ConcurrentG1Refine(g1h,
green_zone,
yellow_zone,
red_zone,
min_yellow_zone_size);
if (cg1r == NULL) { if (cg1r == NULL) {
*ecode = JNI_ENOMEM; *ecode = JNI_ENOMEM;
vm_shutdown_during_initialization("Could not create ConcurrentG1Refine"); vm_shutdown_during_initialization("Could not create ConcurrentG1Refine");
return NULL; return NULL;
} }
cg1r->_n_worker_threads = thread_num();
cg1r->reset_threshold_step();
cg1r->_threads = NEW_C_HEAP_ARRAY_RETURN_NULL(ConcurrentG1RefineThread*, cg1r->_n_worker_threads, mtGC); cg1r->_threads = NEW_C_HEAP_ARRAY_RETURN_NULL(ConcurrentG1RefineThread*, cg1r->_n_worker_threads, mtGC);
if (cg1r->_threads == NULL) { if (cg1r->_threads == NULL) {
@ -77,7 +209,15 @@ ConcurrentG1Refine* ConcurrentG1Refine::create(G1CollectedHeap* g1h, CardTableEn
ConcurrentG1RefineThread *next = NULL; ConcurrentG1RefineThread *next = NULL;
for (uint i = cg1r->_n_worker_threads - 1; i != UINT_MAX; i--) { for (uint i = cg1r->_n_worker_threads - 1; i != UINT_MAX; i--) {
ConcurrentG1RefineThread* t = new ConcurrentG1RefineThread(cg1r, next, refine_closure, worker_id_offset, i); Thresholds thresholds = calc_thresholds(green_zone, yellow_zone, i);
ConcurrentG1RefineThread* t =
new ConcurrentG1RefineThread(cg1r,
next,
refine_closure,
worker_id_offset,
i,
activation_level(thresholds),
deactivation_level(thresholds));
assert(t != NULL, "Conc refine should have been created"); assert(t != NULL, "Conc refine should have been created");
if (t->osthread() == NULL) { if (t->osthread() == NULL) {
*ecode = JNI_ENOMEM; *ecode = JNI_ENOMEM;
@ -101,14 +241,6 @@ ConcurrentG1Refine* ConcurrentG1Refine::create(G1CollectedHeap* g1h, CardTableEn
return cg1r; return cg1r;
} }
void ConcurrentG1Refine::reset_threshold_step() {
if (FLAG_IS_DEFAULT(G1ConcRefinementThresholdStep)) {
_thread_threshold_step = (yellow_zone() - green_zone()) / (worker_thread_num() + 1);
} else {
_thread_threshold_step = G1ConcRefinementThresholdStep;
}
}
void ConcurrentG1Refine::init(G1RegionToSpaceMapper* card_counts_storage) { void ConcurrentG1Refine::init(G1RegionToSpaceMapper* card_counts_storage) {
_hot_card_cache.initialize(card_counts_storage); _hot_card_cache.initialize(card_counts_storage);
} }
@ -120,10 +252,11 @@ void ConcurrentG1Refine::stop() {
_sample_thread->stop(); _sample_thread->stop();
} }
void ConcurrentG1Refine::reinitialize_threads() { void ConcurrentG1Refine::update_thread_thresholds() {
reset_threshold_step();
for (uint i = 0; i < _n_worker_threads; i++) { for (uint i = 0; i < _n_worker_threads; i++) {
_threads[i]->initialize(); Thresholds thresholds = calc_thresholds(_green_zone, _yellow_zone, i);
_threads[i]->update_thresholds(activation_level(thresholds),
deactivation_level(thresholds));
} }
} }
@ -142,7 +275,7 @@ void ConcurrentG1Refine::threads_do(ThreadClosure *tc) {
} }
void ConcurrentG1Refine::worker_threads_do(ThreadClosure * tc) { void ConcurrentG1Refine::worker_threads_do(ThreadClosure * tc) {
for (uint i = 0; i < worker_thread_num(); i++) { for (uint i = 0; i < _n_worker_threads; i++) {
tc->do_thread(_threads[i]); tc->do_thread(_threads[i]);
} }
} }
@ -160,34 +293,80 @@ void ConcurrentG1Refine::print_worker_threads_on(outputStream* st) const {
st->cr(); st->cr();
} }
static size_t calc_new_green_zone(size_t green,
double update_rs_time,
size_t update_rs_processed_buffers,
double goal_ms) {
// Adjust green zone based on whether we're meeting the time goal.
// Limit to max_green_zone.
const double inc_k = 1.1, dec_k = 0.9;
if (update_rs_time > goal_ms) {
if (green > 0) {
green = static_cast<size_t>(green * dec_k);
}
} else if (update_rs_time < goal_ms &&
update_rs_processed_buffers > green) {
green = static_cast<size_t>(MAX2(green * inc_k, green + 1.0));
green = MIN2(green, max_green_zone);
}
return green;
}
static size_t calc_new_yellow_zone(size_t green, size_t min_yellow_size) {
size_t size = green * 2;
size = MAX2(size, min_yellow_size);
return MIN2(green + size, max_yellow_zone);
}
static size_t calc_new_red_zone(size_t green, size_t yellow) {
return MIN2(yellow + (yellow - green), max_red_zone);
}
void ConcurrentG1Refine::update_zones(double update_rs_time,
size_t update_rs_processed_buffers,
double goal_ms) {
log_trace( CTRL_TAGS )("Updating Refinement Zones: "
"update_rs time: %.3fms, "
"update_rs buffers: " SIZE_FORMAT ", "
"update_rs goal time: %.3fms",
update_rs_time,
update_rs_processed_buffers,
goal_ms);
_green_zone = calc_new_green_zone(_green_zone,
update_rs_time,
update_rs_processed_buffers,
goal_ms);
_yellow_zone = calc_new_yellow_zone(_green_zone, _min_yellow_zone_size);
_red_zone = calc_new_red_zone(_green_zone, _yellow_zone);
assert_zone_constraints_gyr(_green_zone, _yellow_zone, _red_zone);
LOG_ZONES("Updated Refinement Zones: "
"green: " SIZE_FORMAT ", "
"yellow: " SIZE_FORMAT ", "
"red: " SIZE_FORMAT,
_green_zone, _yellow_zone, _red_zone);
}
void ConcurrentG1Refine::adjust(double update_rs_time, void ConcurrentG1Refine::adjust(double update_rs_time,
double update_rs_processed_buffers, size_t update_rs_processed_buffers,
double goal_ms) { double goal_ms) {
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
if (G1UseAdaptiveConcRefinement) { if (G1UseAdaptiveConcRefinement) {
const int k_gy = 3, k_gr = 6; update_zones(update_rs_time, update_rs_processed_buffers, goal_ms);
const double inc_k = 1.1, dec_k = 0.9; update_thread_thresholds();
size_t g = green_zone();
if (update_rs_time > goal_ms) {
g = (size_t)(g * dec_k); // Can become 0, that's OK. That would mean a mutator-only processing.
} else {
if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
g = (size_t)MAX2(g * inc_k, g + 1.0);
}
}
// Change the refinement threads params
set_green_zone(g);
set_yellow_zone(g * k_gy);
set_red_zone(g * k_gr);
reinitialize_threads();
size_t processing_threshold_delta = MAX2<size_t>(green_zone() * _predictor_sigma, 1);
size_t processing_threshold = MIN2(green_zone() + processing_threshold_delta,
yellow_zone());
// Change the barrier params // Change the barrier params
dcqs.set_process_completed_threshold((int)processing_threshold); if (_n_worker_threads == 0) {
// Disable dcqs notification when there are no threads to notify.
dcqs.set_process_completed_threshold(INT_MAX);
} else {
// Worker 0 is the primary; wakeup is via dcqs notification.
STATIC_ASSERT(max_yellow_zone <= INT_MAX);
size_t activate = _threads[0]->activation_threshold();
dcqs.set_process_completed_threshold((int)activate);
}
dcqs.set_max_completed_queue((int)red_zone()); dcqs.set_max_completed_queue((int)red_zone());
} }

View file

@ -65,18 +65,24 @@ class ConcurrentG1Refine: public CHeapObj<mtGC> {
size_t _green_zone; size_t _green_zone;
size_t _yellow_zone; size_t _yellow_zone;
size_t _red_zone; size_t _red_zone;
size_t _min_yellow_zone_size;
size_t _thread_threshold_step;
double _predictor_sigma;
// We delay the refinement of 'hot' cards using the hot card cache. // We delay the refinement of 'hot' cards using the hot card cache.
G1HotCardCache _hot_card_cache; G1HotCardCache _hot_card_cache;
// Reset the threshold step value based of the current zone boundaries. ConcurrentG1Refine(G1CollectedHeap* g1h,
void reset_threshold_step(); size_t green_zone,
size_t yellow_zone,
size_t red_zone,
size_t min_yellow_zone_size);
ConcurrentG1Refine(G1CollectedHeap* g1h, const G1Predictions* predictions); // Update green/yellow/red zone values based on how well goals are being met.
void update_zones(double update_rs_time,
size_t update_rs_processed_buffers,
double goal_ms);
// Update thread thresholds to account for updated zone values.
void update_thread_thresholds();
public: public:
~ConcurrentG1Refine(); ~ConcurrentG1Refine();
@ -88,9 +94,7 @@ class ConcurrentG1Refine: public CHeapObj<mtGC> {
void init(G1RegionToSpaceMapper* card_counts_storage); void init(G1RegionToSpaceMapper* card_counts_storage);
void stop(); void stop();
void adjust(double update_rs_time, double update_rs_processed_buffers, double goal_ms); void adjust(double update_rs_time, size_t update_rs_processed_buffers, double goal_ms);
void reinitialize_threads();
// Iterate over all concurrent refinement threads // Iterate over all concurrent refinement threads
void threads_do(ThreadClosure *tc); void threads_do(ThreadClosure *tc);
@ -105,18 +109,10 @@ class ConcurrentG1Refine: public CHeapObj<mtGC> {
void print_worker_threads_on(outputStream* st) const; void print_worker_threads_on(outputStream* st) const;
void set_green_zone(size_t x) { _green_zone = x; }
void set_yellow_zone(size_t x) { _yellow_zone = x; }
void set_red_zone(size_t x) { _red_zone = x; }
size_t green_zone() const { return _green_zone; } size_t green_zone() const { return _green_zone; }
size_t yellow_zone() const { return _yellow_zone; } size_t yellow_zone() const { return _yellow_zone; }
size_t red_zone() const { return _red_zone; } size_t red_zone() const { return _red_zone; }
uint worker_thread_num() const { return _n_worker_threads; }
size_t thread_threshold_step() const { return _thread_threshold_step; }
G1HotCardCache* hot_card_cache() { return &_hot_card_cache; } G1HotCardCache* hot_card_cache() { return &_hot_card_cache; }
static bool hot_card_cache_enabled() { return G1HotCardCache::default_use_cache(); } static bool hot_card_cache_enabled() { return G1HotCardCache::default_use_cache(); }

View file

@ -36,7 +36,8 @@
ConcurrentG1RefineThread:: ConcurrentG1RefineThread::
ConcurrentG1RefineThread(ConcurrentG1Refine* cg1r, ConcurrentG1RefineThread *next, ConcurrentG1RefineThread(ConcurrentG1Refine* cg1r, ConcurrentG1RefineThread *next,
CardTableEntryClosure* refine_closure, CardTableEntryClosure* refine_closure,
uint worker_id_offset, uint worker_id) : uint worker_id_offset, uint worker_id,
size_t activate, size_t deactivate) :
ConcurrentGCThread(), ConcurrentGCThread(),
_refine_closure(refine_closure), _refine_closure(refine_closure),
_worker_id_offset(worker_id_offset), _worker_id_offset(worker_id_offset),
@ -45,7 +46,9 @@ ConcurrentG1RefineThread(ConcurrentG1Refine* cg1r, ConcurrentG1RefineThread *nex
_next(next), _next(next),
_monitor(NULL), _monitor(NULL),
_cg1r(cg1r), _cg1r(cg1r),
_vtime_accum(0.0) _vtime_accum(0.0),
_activation_threshold(activate),
_deactivation_threshold(deactivate)
{ {
// Each thread has its own monitor. The i-th thread is responsible for signaling // Each thread has its own monitor. The i-th thread is responsible for signaling
@ -58,21 +61,17 @@ ConcurrentG1RefineThread(ConcurrentG1Refine* cg1r, ConcurrentG1RefineThread *nex
} else { } else {
_monitor = DirtyCardQ_CBL_mon; _monitor = DirtyCardQ_CBL_mon;
} }
initialize();
// set name // set name
set_name("G1 Refine#%d", worker_id); set_name("G1 Refine#%d", worker_id);
create_and_start(); create_and_start();
} }
void ConcurrentG1RefineThread::initialize() { void ConcurrentG1RefineThread::update_thresholds(size_t activate,
// Current thread activation threshold size_t deactivate) {
_threshold = MIN2(cg1r()->thread_threshold_step() * (_worker_id + 1) + cg1r()->green_zone(), assert(deactivate < activate, "precondition");
cg1r()->yellow_zone()); _activation_threshold = activate;
// A thread deactivates once the number of buffer reached a deactivation threshold _deactivation_threshold = deactivate;
_deactivation_threshold =
MAX2(_threshold - MIN2(_threshold, cg1r()->thread_threshold_step()),
cg1r()->green_zone());
} }
void ConcurrentG1RefineThread::wait_for_completed_buffers() { void ConcurrentG1RefineThread::wait_for_completed_buffers() {
@ -118,9 +117,10 @@ void ConcurrentG1RefineThread::run_service() {
break; break;
} }
size_t buffers_processed = 0;
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
log_debug(gc, refine)("Activated %d, on threshold: " SIZE_FORMAT ", current: " SIZE_FORMAT, log_debug(gc, refine)("Activated %d, on threshold: " SIZE_FORMAT ", current: " SIZE_FORMAT,
_worker_id, _threshold, dcqs.completed_buffers_num()); _worker_id, _activation_threshold, dcqs.completed_buffers_num());
{ {
SuspendibleThreadSetJoiner sts_join; SuspendibleThreadSetJoiner sts_join;
@ -139,7 +139,9 @@ void ConcurrentG1RefineThread::run_service() {
} }
// Check if we need to activate the next thread. // Check if we need to activate the next thread.
if (_next != NULL && !_next->is_active() && curr_buffer_num > _next->_threshold) { if ((_next != NULL) &&
!_next->is_active() &&
(curr_buffer_num > _next->_activation_threshold)) {
_next->activate(); _next->activate();
} }
@ -150,14 +152,16 @@ void ConcurrentG1RefineThread::run_service() {
false /* during_pause */)) { false /* during_pause */)) {
break; // Deactivate, number of buffers fell below threshold. break; // Deactivate, number of buffers fell below threshold.
} }
++buffers_processed;
} }
} }
deactivate(); deactivate();
log_debug(gc, refine)("Deactivated %d, off threshold: " SIZE_FORMAT log_debug(gc, refine)("Deactivated %d, off threshold: " SIZE_FORMAT
", current: " SIZE_FORMAT, ", current: " SIZE_FORMAT ", processed: " SIZE_FORMAT,
_worker_id, _deactivation_threshold, _worker_id, _deactivation_threshold,
dcqs.completed_buffers_num()); dcqs.completed_buffers_num(),
buffers_processed);
if (os::supports_vtime()) { if (os::supports_vtime()) {
_vtime_accum = (os::elapsedVTime() - _vtime_start); _vtime_accum = (os::elapsedVTime() - _vtime_start);

View file

@ -53,10 +53,8 @@ class ConcurrentG1RefineThread: public ConcurrentGCThread {
// The closure applied to completed log buffers. // The closure applied to completed log buffers.
CardTableEntryClosure* _refine_closure; CardTableEntryClosure* _refine_closure;
size_t _thread_threshold_step; // This thread's activation/deactivation thresholds
// This thread activation threshold size_t _activation_threshold;
size_t _threshold;
// This thread deactivation threshold
size_t _deactivation_threshold; size_t _deactivation_threshold;
void wait_for_completed_buffers(); void wait_for_completed_buffers();
@ -75,9 +73,11 @@ public:
// Constructor // Constructor
ConcurrentG1RefineThread(ConcurrentG1Refine* cg1r, ConcurrentG1RefineThread* next, ConcurrentG1RefineThread(ConcurrentG1Refine* cg1r, ConcurrentG1RefineThread* next,
CardTableEntryClosure* refine_closure, CardTableEntryClosure* refine_closure,
uint worker_id_offset, uint worker_id); uint worker_id_offset, uint worker_id,
size_t activate, size_t deactivate);
void initialize(); void update_thresholds(size_t activate, size_t deactivate);
size_t activation_threshold() const { return _activation_threshold; }
// Total virtual time so far. // Total virtual time so far.
double vtime_accum() { return _vtime_accum; } double vtime_accum() { return _vtime_accum; }

View file

@ -112,8 +112,7 @@
product(size_t, G1ConcRefinementRedZone, 0, \ product(size_t, G1ConcRefinementRedZone, 0, \
"Maximum number of enqueued update buffers before mutator " \ "Maximum number of enqueued update buffers before mutator " \
"threads start processing new ones instead of enqueueing them. " \ "threads start processing new ones instead of enqueueing them. " \
"Will be selected ergonomically by default. Zero will disable " \ "Will be selected ergonomically by default.") \
"concurrent processing.") \
range(0, max_intx) \ range(0, max_intx) \
\ \
product(size_t, G1ConcRefinementGreenZone, 0, \ product(size_t, G1ConcRefinementGreenZone, 0, \
@ -127,11 +126,12 @@
"specified number of milliseconds to do miscellaneous work.") \ "specified number of milliseconds to do miscellaneous work.") \
range(0, max_jint) \ range(0, max_jint) \
\ \
product(size_t, G1ConcRefinementThresholdStep, 0, \ product(size_t, G1ConcRefinementThresholdStep, 2, \
"Each time the rset update queue increases by this amount " \ "Each time the rset update queue increases by this amount " \
"activate the next refinement thread if available. " \ "activate the next refinement thread if available. " \
"Will be selected ergonomically by default.") \ "The actual step size will be selected ergonomically by " \
range(0, SIZE_MAX) \ "default, with this value used to determine a lower bound.") \
range(1, SIZE_MAX) \
\ \
product(intx, G1RSetUpdatingPauseTimePercent, 10, \ product(intx, G1RSetUpdatingPauseTimePercent, 10, \
"A target percentage of time that is allowed to be spend on " \ "A target percentage of time that is allowed to be spend on " \
@ -201,9 +201,9 @@
range(0, 32*M) \ range(0, 32*M) \
constraint(G1HeapRegionSizeConstraintFunc,AfterMemoryInit) \ constraint(G1HeapRegionSizeConstraintFunc,AfterMemoryInit) \
\ \
product(uintx, G1ConcRefinementThreads, 0, \ product(uint, G1ConcRefinementThreads, 0, \
"If non-0 is the number of parallel rem set update threads, " \ "The number of parallel rem set update threads. " \
"otherwise the value is determined ergonomically.") \ "Will be set ergonomically by default.") \
range(0, (max_jint-1)/wordSize) \ range(0, (max_jint-1)/wordSize) \
\ \
develop(bool, G1VerifyCTCleanup, false, \ develop(bool, G1VerifyCTCleanup, false, \

View file

@ -55,6 +55,7 @@ DEBUG_ONLY(size_t Test_log_prefix_prefixer(char* buf, size_t len);)
LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, ergo, cset)) \ LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, ergo, cset)) \
LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, ergo, heap)) \ LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, ergo, heap)) \
LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, ergo, ihop)) \ LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, ergo, ihop)) \
LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, ergo, refine)) \
LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, heap)) \ LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, heap)) \
LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, heap, region)) \ LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, heap, region)) \
LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, freelist)) \ LOG_PREFIX(GCId::print_prefix, LOG_TAGS(gc, freelist)) \

View file

@ -2095,8 +2095,8 @@ void Arguments::set_g1_gc_flags() {
} }
#if INCLUDE_ALL_GCS #if INCLUDE_ALL_GCS
if (G1ConcRefinementThreads == 0) { if (FLAG_IS_DEFAULT(G1ConcRefinementThreads)) {
FLAG_SET_DEFAULT(G1ConcRefinementThreads, ParallelGCThreads); FLAG_SET_ERGO(uint, G1ConcRefinementThreads, ParallelGCThreads);
} }
#endif #endif

View file

@ -199,9 +199,6 @@ const size_t M = K*K;
const size_t G = M*K; const size_t G = M*K;
const size_t HWperKB = K / sizeof(HeapWord); const size_t HWperKB = K / sizeof(HeapWord);
const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
// Constants for converting from a base unit to milli-base units. For // Constants for converting from a base unit to milli-base units. For
// example from seconds to milliseconds and microseconds // example from seconds to milliseconds and microseconds
@ -381,6 +378,14 @@ typedef jshort s2;
typedef jint s4; typedef jint s4;
typedef jlong s8; typedef jlong s8;
const jbyte min_jbyte = -(1 << 7); // smallest jbyte
const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte
const jshort min_jshort = -(1 << 15); // smallest jshort
const jshort max_jshort = (1 << 15) - 1; // largest jshort
const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
//---------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------
// JVM spec restrictions // JVM spec restrictions

View file

@ -38,7 +38,7 @@ import java.util.regex.*;
public class TestG1ConcRefinementThreads { public class TestG1ConcRefinementThreads {
static final int AUTO_SELECT_THREADS_COUNT = 0; static final int AUTO_SELECT_THREADS_COUNT = -1;
static final int PASSED_THREADS_COUNT = 11; static final int PASSED_THREADS_COUNT = 11;
public static void main(String args[]) throws Exception { public static void main(String args[]) throws Exception {
@ -49,8 +49,8 @@ public class TestG1ConcRefinementThreads {
// zero setting case // zero setting case
runG1ConcRefinementThreadsTest( runG1ConcRefinementThreadsTest(
new String[]{"-XX:G1ConcRefinementThreads=0"}, // automatically selected new String[]{"-XX:G1ConcRefinementThreads=0"},
AUTO_SELECT_THREADS_COUNT /* set to zero */); 0);
// non-zero sestting case // non-zero sestting case
runG1ConcRefinementThreadsTest( runG1ConcRefinementThreadsTest(
@ -77,7 +77,7 @@ public class TestG1ConcRefinementThreads {
private static void checkG1ConcRefinementThreadsConsistency(String output, int expectedValue) { private static void checkG1ConcRefinementThreadsConsistency(String output, int expectedValue) {
int actualValue = getIntValue("G1ConcRefinementThreads", output); int actualValue = getIntValue("G1ConcRefinementThreads", output);
if (expectedValue == 0) { if (expectedValue == AUTO_SELECT_THREADS_COUNT) {
// If expectedValue is automatically selected, set it same as ParallelGCThreads. // If expectedValue is automatically selected, set it same as ParallelGCThreads.
expectedValue = getIntValue("ParallelGCThreads", output); expectedValue = getIntValue("ParallelGCThreads", output);
} }