mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-28 07:14:30 +02:00
8187443: Forest Consolidation: Move files to unified layout
Reviewed-by: darcy, ihse
This commit is contained in:
parent
270fe13182
commit
3789983e89
56923 changed files with 3 additions and 15727 deletions
823
src/java.base/share/classes/java/text/DigitList.java
Normal file
823
src/java.base/share/classes/java/text/DigitList.java
Normal file
|
@ -0,0 +1,823 @@
|
|||
/*
|
||||
* Copyright (c) 1996, 2014, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
/*
|
||||
* (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
|
||||
* (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
|
||||
*
|
||||
* The original version of this source code and documentation is copyrighted
|
||||
* and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
|
||||
* materials are provided under terms of a License Agreement between Taligent
|
||||
* and Sun. This technology is protected by multiple US and International
|
||||
* patents. This notice and attribution to Taligent may not be removed.
|
||||
* Taligent is a registered trademark of Taligent, Inc.
|
||||
*
|
||||
*/
|
||||
|
||||
package java.text;
|
||||
|
||||
import java.math.BigDecimal;
|
||||
import java.math.BigInteger;
|
||||
import java.math.RoundingMode;
|
||||
import jdk.internal.math.FloatingDecimal;
|
||||
|
||||
/**
|
||||
* Digit List. Private to DecimalFormat.
|
||||
* Handles the transcoding
|
||||
* between numeric values and strings of characters. Only handles
|
||||
* non-negative numbers. The division of labor between DigitList and
|
||||
* DecimalFormat is that DigitList handles the radix 10 representation
|
||||
* issues; DecimalFormat handles the locale-specific issues such as
|
||||
* positive/negative, grouping, decimal point, currency, and so on.
|
||||
*
|
||||
* A DigitList is really a representation of a floating point value.
|
||||
* It may be an integer value; we assume that a double has sufficient
|
||||
* precision to represent all digits of a long.
|
||||
*
|
||||
* The DigitList representation consists of a string of characters,
|
||||
* which are the digits radix 10, from '0' to '9'. It also has a radix
|
||||
* 10 exponent associated with it. The value represented by a DigitList
|
||||
* object can be computed by mulitplying the fraction f, where 0 <= f < 1,
|
||||
* derived by placing all the digits of the list to the right of the
|
||||
* decimal point, by 10^exponent.
|
||||
*
|
||||
* @see Locale
|
||||
* @see Format
|
||||
* @see NumberFormat
|
||||
* @see DecimalFormat
|
||||
* @see ChoiceFormat
|
||||
* @see MessageFormat
|
||||
* @author Mark Davis, Alan Liu
|
||||
*/
|
||||
final class DigitList implements Cloneable {
|
||||
/**
|
||||
* The maximum number of significant digits in an IEEE 754 double, that
|
||||
* is, in a Java double. This must not be increased, or garbage digits
|
||||
* will be generated, and should not be decreased, or accuracy will be lost.
|
||||
*/
|
||||
public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
|
||||
|
||||
/**
|
||||
* These data members are intentionally public and can be set directly.
|
||||
*
|
||||
* The value represented is given by placing the decimal point before
|
||||
* digits[decimalAt]. If decimalAt is < 0, then leading zeros between
|
||||
* the decimal point and the first nonzero digit are implied. If decimalAt
|
||||
* is > count, then trailing zeros between the digits[count-1] and the
|
||||
* decimal point are implied.
|
||||
*
|
||||
* Equivalently, the represented value is given by f * 10^decimalAt. Here
|
||||
* f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
|
||||
* the right of the decimal.
|
||||
*
|
||||
* DigitList is normalized, so if it is non-zero, figits[0] is non-zero. We
|
||||
* don't allow denormalized numbers because our exponent is effectively of
|
||||
* unlimited magnitude. The count value contains the number of significant
|
||||
* digits present in digits[].
|
||||
*
|
||||
* Zero is represented by any DigitList with count == 0 or with each digits[i]
|
||||
* for all i <= count == '0'.
|
||||
*/
|
||||
public int decimalAt = 0;
|
||||
public int count = 0;
|
||||
public char[] digits = new char[MAX_COUNT];
|
||||
|
||||
private char[] data;
|
||||
private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
|
||||
private boolean isNegative = false;
|
||||
|
||||
/**
|
||||
* Return true if the represented number is zero.
|
||||
*/
|
||||
boolean isZero() {
|
||||
for (int i=0; i < count; ++i) {
|
||||
if (digits[i] != '0') {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the rounding mode
|
||||
*/
|
||||
void setRoundingMode(RoundingMode r) {
|
||||
roundingMode = r;
|
||||
}
|
||||
|
||||
/**
|
||||
* Clears out the digits.
|
||||
* Use before appending them.
|
||||
* Typically, you set a series of digits with append, then at the point
|
||||
* you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
|
||||
* then go on appending digits.
|
||||
*/
|
||||
public void clear () {
|
||||
decimalAt = 0;
|
||||
count = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Appends a digit to the list, extending the list when necessary.
|
||||
*/
|
||||
public void append(char digit) {
|
||||
if (count == digits.length) {
|
||||
char[] data = new char[count + 100];
|
||||
System.arraycopy(digits, 0, data, 0, count);
|
||||
digits = data;
|
||||
}
|
||||
digits[count++] = digit;
|
||||
}
|
||||
|
||||
/**
|
||||
* Utility routine to get the value of the digit list
|
||||
* If (count == 0) this throws a NumberFormatException, which
|
||||
* mimics Long.parseLong().
|
||||
*/
|
||||
public final double getDouble() {
|
||||
if (count == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
StringBuffer temp = getStringBuffer();
|
||||
temp.append('.');
|
||||
temp.append(digits, 0, count);
|
||||
temp.append('E');
|
||||
temp.append(decimalAt);
|
||||
return Double.parseDouble(temp.toString());
|
||||
}
|
||||
|
||||
/**
|
||||
* Utility routine to get the value of the digit list.
|
||||
* If (count == 0) this returns 0, unlike Long.parseLong().
|
||||
*/
|
||||
public final long getLong() {
|
||||
// for now, simple implementation; later, do proper IEEE native stuff
|
||||
|
||||
if (count == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// We have to check for this, because this is the one NEGATIVE value
|
||||
// we represent. If we tried to just pass the digits off to parseLong,
|
||||
// we'd get a parse failure.
|
||||
if (isLongMIN_VALUE()) {
|
||||
return Long.MIN_VALUE;
|
||||
}
|
||||
|
||||
StringBuffer temp = getStringBuffer();
|
||||
temp.append(digits, 0, count);
|
||||
for (int i = count; i < decimalAt; ++i) {
|
||||
temp.append('0');
|
||||
}
|
||||
return Long.parseLong(temp.toString());
|
||||
}
|
||||
|
||||
public final BigDecimal getBigDecimal() {
|
||||
if (count == 0) {
|
||||
if (decimalAt == 0) {
|
||||
return BigDecimal.ZERO;
|
||||
} else {
|
||||
return new BigDecimal("0E" + decimalAt);
|
||||
}
|
||||
}
|
||||
|
||||
if (decimalAt == count) {
|
||||
return new BigDecimal(digits, 0, count);
|
||||
} else {
|
||||
return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if the number represented by this object can fit into
|
||||
* a long.
|
||||
* @param isPositive true if this number should be regarded as positive
|
||||
* @param ignoreNegativeZero true if -0 should be regarded as identical to
|
||||
* +0; otherwise they are considered distinct
|
||||
* @return true if this number fits into a Java long
|
||||
*/
|
||||
boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
|
||||
// Figure out if the result will fit in a long. We have to
|
||||
// first look for nonzero digits after the decimal point;
|
||||
// then check the size. If the digit count is 18 or less, then
|
||||
// the value can definitely be represented as a long. If it is 19
|
||||
// then it may be too large.
|
||||
|
||||
// Trim trailing zeros. This does not change the represented value.
|
||||
while (count > 0 && digits[count - 1] == '0') {
|
||||
--count;
|
||||
}
|
||||
|
||||
if (count == 0) {
|
||||
// Positive zero fits into a long, but negative zero can only
|
||||
// be represented as a double. - bug 4162852
|
||||
return isPositive || ignoreNegativeZero;
|
||||
}
|
||||
|
||||
if (decimalAt < count || decimalAt > MAX_COUNT) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (decimalAt < MAX_COUNT) return true;
|
||||
|
||||
// At this point we have decimalAt == count, and count == MAX_COUNT.
|
||||
// The number will overflow if it is larger than 9223372036854775807
|
||||
// or smaller than -9223372036854775808.
|
||||
for (int i=0; i<count; ++i) {
|
||||
char dig = digits[i], max = LONG_MIN_REP[i];
|
||||
if (dig > max) return false;
|
||||
if (dig < max) return true;
|
||||
}
|
||||
|
||||
// At this point the first count digits match. If decimalAt is less
|
||||
// than count, then the remaining digits are zero, and we return true.
|
||||
if (count < decimalAt) return true;
|
||||
|
||||
// Now we have a representation of Long.MIN_VALUE, without the leading
|
||||
// negative sign. If this represents a positive value, then it does
|
||||
// not fit; otherwise it fits.
|
||||
return !isPositive;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the digit list to a representation of the given double value.
|
||||
* This method supports fixed-point notation.
|
||||
* @param isNegative Boolean value indicating whether the number is negative.
|
||||
* @param source Value to be converted; must not be Inf, -Inf, Nan,
|
||||
* or a value <= 0.
|
||||
* @param maximumFractionDigits The most fractional digits which should
|
||||
* be converted.
|
||||
*/
|
||||
final void set(boolean isNegative, double source, int maximumFractionDigits) {
|
||||
set(isNegative, source, maximumFractionDigits, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the digit list to a representation of the given double value.
|
||||
* This method supports both fixed-point and exponential notation.
|
||||
* @param isNegative Boolean value indicating whether the number is negative.
|
||||
* @param source Value to be converted; must not be Inf, -Inf, Nan,
|
||||
* or a value <= 0.
|
||||
* @param maximumDigits The most fractional or total digits which should
|
||||
* be converted.
|
||||
* @param fixedPoint If true, then maximumDigits is the maximum
|
||||
* fractional digits to be converted. If false, total digits.
|
||||
*/
|
||||
final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {
|
||||
|
||||
FloatingDecimal.BinaryToASCIIConverter fdConverter = FloatingDecimal.getBinaryToASCIIConverter(source);
|
||||
boolean hasBeenRoundedUp = fdConverter.digitsRoundedUp();
|
||||
boolean valueExactAsDecimal = fdConverter.decimalDigitsExact();
|
||||
assert !fdConverter.isExceptional();
|
||||
String digitsString = fdConverter.toJavaFormatString();
|
||||
|
||||
set(isNegative, digitsString,
|
||||
hasBeenRoundedUp, valueExactAsDecimal,
|
||||
maximumDigits, fixedPoint);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a representation of the form DDDDD, DDDDD.DDDDD, or
|
||||
* DDDDDE+/-DDDDD.
|
||||
* @param roundedUp whether or not rounding up has already happened.
|
||||
* @param valueExactAsDecimal whether or not collected digits provide
|
||||
* an exact decimal representation of the value.
|
||||
*/
|
||||
private void set(boolean isNegative, String s,
|
||||
boolean roundedUp, boolean valueExactAsDecimal,
|
||||
int maximumDigits, boolean fixedPoint) {
|
||||
|
||||
this.isNegative = isNegative;
|
||||
int len = s.length();
|
||||
char[] source = getDataChars(len);
|
||||
s.getChars(0, len, source, 0);
|
||||
|
||||
decimalAt = -1;
|
||||
count = 0;
|
||||
int exponent = 0;
|
||||
// Number of zeros between decimal point and first non-zero digit after
|
||||
// decimal point, for numbers < 1.
|
||||
int leadingZerosAfterDecimal = 0;
|
||||
boolean nonZeroDigitSeen = false;
|
||||
|
||||
for (int i = 0; i < len; ) {
|
||||
char c = source[i++];
|
||||
if (c == '.') {
|
||||
decimalAt = count;
|
||||
} else if (c == 'e' || c == 'E') {
|
||||
exponent = parseInt(source, i, len);
|
||||
break;
|
||||
} else {
|
||||
if (!nonZeroDigitSeen) {
|
||||
nonZeroDigitSeen = (c != '0');
|
||||
if (!nonZeroDigitSeen && decimalAt != -1)
|
||||
++leadingZerosAfterDecimal;
|
||||
}
|
||||
if (nonZeroDigitSeen) {
|
||||
digits[count++] = c;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (decimalAt == -1) {
|
||||
decimalAt = count;
|
||||
}
|
||||
if (nonZeroDigitSeen) {
|
||||
decimalAt += exponent - leadingZerosAfterDecimal;
|
||||
}
|
||||
|
||||
if (fixedPoint) {
|
||||
// The negative of the exponent represents the number of leading
|
||||
// zeros between the decimal and the first non-zero digit, for
|
||||
// a value < 0.1 (e.g., for 0.00123, -decimalAt == 2). If this
|
||||
// is more than the maximum fraction digits, then we have an underflow
|
||||
// for the printed representation.
|
||||
if (-decimalAt > maximumDigits) {
|
||||
// Handle an underflow to zero when we round something like
|
||||
// 0.0009 to 2 fractional digits.
|
||||
count = 0;
|
||||
return;
|
||||
} else if (-decimalAt == maximumDigits) {
|
||||
// If we round 0.0009 to 3 fractional digits, then we have to
|
||||
// create a new one digit in the least significant location.
|
||||
if (shouldRoundUp(0, roundedUp, valueExactAsDecimal)) {
|
||||
count = 1;
|
||||
++decimalAt;
|
||||
digits[0] = '1';
|
||||
} else {
|
||||
count = 0;
|
||||
}
|
||||
return;
|
||||
}
|
||||
// else fall through
|
||||
}
|
||||
|
||||
// Eliminate trailing zeros.
|
||||
while (count > 1 && digits[count - 1] == '0') {
|
||||
--count;
|
||||
}
|
||||
|
||||
// Eliminate digits beyond maximum digits to be displayed.
|
||||
// Round up if appropriate.
|
||||
round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits,
|
||||
roundedUp, valueExactAsDecimal);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Round the representation to the given number of digits.
|
||||
* @param maximumDigits The maximum number of digits to be shown.
|
||||
* @param alreadyRounded whether or not rounding up has already happened.
|
||||
* @param valueExactAsDecimal whether or not collected digits provide
|
||||
* an exact decimal representation of the value.
|
||||
*
|
||||
* Upon return, count will be less than or equal to maximumDigits.
|
||||
*/
|
||||
private final void round(int maximumDigits,
|
||||
boolean alreadyRounded,
|
||||
boolean valueExactAsDecimal) {
|
||||
// Eliminate digits beyond maximum digits to be displayed.
|
||||
// Round up if appropriate.
|
||||
if (maximumDigits >= 0 && maximumDigits < count) {
|
||||
if (shouldRoundUp(maximumDigits, alreadyRounded, valueExactAsDecimal)) {
|
||||
// Rounding up involved incrementing digits from LSD to MSD.
|
||||
// In most cases this is simple, but in a worst case situation
|
||||
// (9999..99) we have to adjust the decimalAt value.
|
||||
for (;;) {
|
||||
--maximumDigits;
|
||||
if (maximumDigits < 0) {
|
||||
// We have all 9's, so we increment to a single digit
|
||||
// of one and adjust the exponent.
|
||||
digits[0] = '1';
|
||||
++decimalAt;
|
||||
maximumDigits = 0; // Adjust the count
|
||||
break;
|
||||
}
|
||||
|
||||
++digits[maximumDigits];
|
||||
if (digits[maximumDigits] <= '9') break;
|
||||
// digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
|
||||
}
|
||||
++maximumDigits; // Increment for use as count
|
||||
}
|
||||
count = maximumDigits;
|
||||
|
||||
// Eliminate trailing zeros.
|
||||
while (count > 1 && digits[count-1] == '0') {
|
||||
--count;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Return true if truncating the representation to the given number
|
||||
* of digits will result in an increment to the last digit. This
|
||||
* method implements the rounding modes defined in the
|
||||
* java.math.RoundingMode class.
|
||||
* [bnf]
|
||||
* @param maximumDigits the number of digits to keep, from 0 to
|
||||
* <code>count-1</code>. If 0, then all digits are rounded away, and
|
||||
* this method returns true if a one should be generated (e.g., formatting
|
||||
* 0.09 with "#.#").
|
||||
* @param alreadyRounded whether or not rounding up has already happened.
|
||||
* @param valueExactAsDecimal whether or not collected digits provide
|
||||
* an exact decimal representation of the value.
|
||||
* @exception ArithmeticException if rounding is needed with rounding
|
||||
* mode being set to RoundingMode.UNNECESSARY
|
||||
* @return true if digit <code>maximumDigits-1</code> should be
|
||||
* incremented
|
||||
*/
|
||||
private boolean shouldRoundUp(int maximumDigits,
|
||||
boolean alreadyRounded,
|
||||
boolean valueExactAsDecimal) {
|
||||
if (maximumDigits < count) {
|
||||
/*
|
||||
* To avoid erroneous double-rounding or truncation when converting
|
||||
* a binary double value to text, information about the exactness
|
||||
* of the conversion result in FloatingDecimal, as well as any
|
||||
* rounding done, is needed in this class.
|
||||
*
|
||||
* - For the HALF_DOWN, HALF_EVEN, HALF_UP rounding rules below:
|
||||
* In the case of formating float or double, We must take into
|
||||
* account what FloatingDecimal has done in the binary to decimal
|
||||
* conversion.
|
||||
*
|
||||
* Considering the tie cases, FloatingDecimal may round up the
|
||||
* value (returning decimal digits equal to tie when it is below),
|
||||
* or "truncate" the value to the tie while value is above it,
|
||||
* or provide the exact decimal digits when the binary value can be
|
||||
* converted exactly to its decimal representation given formating
|
||||
* rules of FloatingDecimal ( we have thus an exact decimal
|
||||
* representation of the binary value).
|
||||
*
|
||||
* - If the double binary value was converted exactly as a decimal
|
||||
* value, then DigitList code must apply the expected rounding
|
||||
* rule.
|
||||
*
|
||||
* - If FloatingDecimal already rounded up the decimal value,
|
||||
* DigitList should neither round up the value again in any of
|
||||
* the three rounding modes above.
|
||||
*
|
||||
* - If FloatingDecimal has truncated the decimal value to
|
||||
* an ending '5' digit, DigitList should round up the value in
|
||||
* all of the three rounding modes above.
|
||||
*
|
||||
*
|
||||
* This has to be considered only if digit at maximumDigits index
|
||||
* is exactly the last one in the set of digits, otherwise there are
|
||||
* remaining digits after that position and we don't have to consider
|
||||
* what FloatingDecimal did.
|
||||
*
|
||||
* - Other rounding modes are not impacted by these tie cases.
|
||||
*
|
||||
* - For other numbers that are always converted to exact digits
|
||||
* (like BigInteger, Long, ...), the passed alreadyRounded boolean
|
||||
* have to be set to false, and valueExactAsDecimal has to be set to
|
||||
* true in the upper DigitList call stack, providing the right state
|
||||
* for those situations..
|
||||
*/
|
||||
|
||||
switch(roundingMode) {
|
||||
case UP:
|
||||
for (int i=maximumDigits; i<count; ++i) {
|
||||
if (digits[i] != '0') {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case DOWN:
|
||||
break;
|
||||
case CEILING:
|
||||
for (int i=maximumDigits; i<count; ++i) {
|
||||
if (digits[i] != '0') {
|
||||
return !isNegative;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case FLOOR:
|
||||
for (int i=maximumDigits; i<count; ++i) {
|
||||
if (digits[i] != '0') {
|
||||
return isNegative;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case HALF_UP:
|
||||
case HALF_DOWN:
|
||||
if (digits[maximumDigits] > '5') {
|
||||
// Value is above tie ==> must round up
|
||||
return true;
|
||||
} else if (digits[maximumDigits] == '5') {
|
||||
// Digit at rounding position is a '5'. Tie cases.
|
||||
if (maximumDigits != (count - 1)) {
|
||||
// There are remaining digits. Above tie => must round up
|
||||
return true;
|
||||
} else {
|
||||
// Digit at rounding position is the last one !
|
||||
if (valueExactAsDecimal) {
|
||||
// Exact binary representation. On the tie.
|
||||
// Apply rounding given by roundingMode.
|
||||
return roundingMode == RoundingMode.HALF_UP;
|
||||
} else {
|
||||
// Not an exact binary representation.
|
||||
// Digit sequence either rounded up or truncated.
|
||||
// Round up only if it was truncated.
|
||||
return !alreadyRounded;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Digit at rounding position is < '5' ==> no round up.
|
||||
// Just let do the default, which is no round up (thus break).
|
||||
break;
|
||||
case HALF_EVEN:
|
||||
// Implement IEEE half-even rounding
|
||||
if (digits[maximumDigits] > '5') {
|
||||
return true;
|
||||
} else if (digits[maximumDigits] == '5' ) {
|
||||
if (maximumDigits == (count - 1)) {
|
||||
// the rounding position is exactly the last index :
|
||||
if (alreadyRounded)
|
||||
// If FloatingDecimal rounded up (value was below tie),
|
||||
// then we should not round up again.
|
||||
return false;
|
||||
|
||||
if (!valueExactAsDecimal)
|
||||
// Otherwise if the digits don't represent exact value,
|
||||
// value was above tie and FloatingDecimal truncated
|
||||
// digits to tie. We must round up.
|
||||
return true;
|
||||
else {
|
||||
// This is an exact tie value, and FloatingDecimal
|
||||
// provided all of the exact digits. We thus apply
|
||||
// HALF_EVEN rounding rule.
|
||||
return ((maximumDigits > 0) &&
|
||||
(digits[maximumDigits-1] % 2 != 0));
|
||||
}
|
||||
} else {
|
||||
// Rounds up if it gives a non null digit after '5'
|
||||
for (int i=maximumDigits+1; i<count; ++i) {
|
||||
if (digits[i] != '0')
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case UNNECESSARY:
|
||||
for (int i=maximumDigits; i<count; ++i) {
|
||||
if (digits[i] != '0') {
|
||||
throw new ArithmeticException(
|
||||
"Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
assert false;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Utility routine to set the value of the digit list from a long
|
||||
*/
|
||||
final void set(boolean isNegative, long source) {
|
||||
set(isNegative, source, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the digit list to a representation of the given long value.
|
||||
* @param isNegative Boolean value indicating whether the number is negative.
|
||||
* @param source Value to be converted; must be >= 0 or ==
|
||||
* Long.MIN_VALUE.
|
||||
* @param maximumDigits The most digits which should be converted.
|
||||
* If maximumDigits is lower than the number of significant digits
|
||||
* in source, the representation will be rounded. Ignored if <= 0.
|
||||
*/
|
||||
final void set(boolean isNegative, long source, int maximumDigits) {
|
||||
this.isNegative = isNegative;
|
||||
|
||||
// This method does not expect a negative number. However,
|
||||
// "source" can be a Long.MIN_VALUE (-9223372036854775808),
|
||||
// if the number being formatted is a Long.MIN_VALUE. In that
|
||||
// case, it will be formatted as -Long.MIN_VALUE, a number
|
||||
// which is outside the legal range of a long, but which can
|
||||
// be represented by DigitList.
|
||||
if (source <= 0) {
|
||||
if (source == Long.MIN_VALUE) {
|
||||
decimalAt = count = MAX_COUNT;
|
||||
System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
|
||||
} else {
|
||||
decimalAt = count = 0; // Values <= 0 format as zero
|
||||
}
|
||||
} else {
|
||||
// Rewritten to improve performance. I used to call
|
||||
// Long.toString(), which was about 4x slower than this code.
|
||||
int left = MAX_COUNT;
|
||||
int right;
|
||||
while (source > 0) {
|
||||
digits[--left] = (char)('0' + (source % 10));
|
||||
source /= 10;
|
||||
}
|
||||
decimalAt = MAX_COUNT - left;
|
||||
// Don't copy trailing zeros. We are guaranteed that there is at
|
||||
// least one non-zero digit, so we don't have to check lower bounds.
|
||||
for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
|
||||
;
|
||||
count = right - left + 1;
|
||||
System.arraycopy(digits, left, digits, 0, count);
|
||||
}
|
||||
if (maximumDigits > 0) round(maximumDigits, false, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the digit list to a representation of the given BigDecimal value.
|
||||
* This method supports both fixed-point and exponential notation.
|
||||
* @param isNegative Boolean value indicating whether the number is negative.
|
||||
* @param source Value to be converted; must not be a value <= 0.
|
||||
* @param maximumDigits The most fractional or total digits which should
|
||||
* be converted.
|
||||
* @param fixedPoint If true, then maximumDigits is the maximum
|
||||
* fractional digits to be converted. If false, total digits.
|
||||
*/
|
||||
final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
|
||||
String s = source.toString();
|
||||
extendDigits(s.length());
|
||||
|
||||
set(isNegative, s,
|
||||
false, true,
|
||||
maximumDigits, fixedPoint);
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the digit list to a representation of the given BigInteger value.
|
||||
* @param isNegative Boolean value indicating whether the number is negative.
|
||||
* @param source Value to be converted; must be >= 0.
|
||||
* @param maximumDigits The most digits which should be converted.
|
||||
* If maximumDigits is lower than the number of significant digits
|
||||
* in source, the representation will be rounded. Ignored if <= 0.
|
||||
*/
|
||||
final void set(boolean isNegative, BigInteger source, int maximumDigits) {
|
||||
this.isNegative = isNegative;
|
||||
String s = source.toString();
|
||||
int len = s.length();
|
||||
extendDigits(len);
|
||||
s.getChars(0, len, digits, 0);
|
||||
|
||||
decimalAt = len;
|
||||
int right;
|
||||
for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
|
||||
;
|
||||
count = right + 1;
|
||||
|
||||
if (maximumDigits > 0) {
|
||||
round(maximumDigits, false, true);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* equality test between two digit lists.
|
||||
*/
|
||||
public boolean equals(Object obj) {
|
||||
if (this == obj) // quick check
|
||||
return true;
|
||||
if (!(obj instanceof DigitList)) // (1) same object?
|
||||
return false;
|
||||
DigitList other = (DigitList) obj;
|
||||
if (count != other.count ||
|
||||
decimalAt != other.decimalAt)
|
||||
return false;
|
||||
for (int i = 0; i < count; i++)
|
||||
if (digits[i] != other.digits[i])
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates the hash code for the digit list.
|
||||
*/
|
||||
public int hashCode() {
|
||||
int hashcode = decimalAt;
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
hashcode = hashcode * 37 + digits[i];
|
||||
}
|
||||
|
||||
return hashcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a copy of this object.
|
||||
* @return a clone of this instance.
|
||||
*/
|
||||
public Object clone() {
|
||||
try {
|
||||
DigitList other = (DigitList) super.clone();
|
||||
char[] newDigits = new char[digits.length];
|
||||
System.arraycopy(digits, 0, newDigits, 0, digits.length);
|
||||
other.digits = newDigits;
|
||||
other.tempBuffer = null;
|
||||
return other;
|
||||
} catch (CloneNotSupportedException e) {
|
||||
throw new InternalError(e);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true if this DigitList represents Long.MIN_VALUE;
|
||||
* false, otherwise. This is required so that getLong() works.
|
||||
*/
|
||||
private boolean isLongMIN_VALUE() {
|
||||
if (decimalAt != count || count != MAX_COUNT) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = 0; i < count; ++i) {
|
||||
if (digits[i] != LONG_MIN_REP[i]) return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
private static final int parseInt(char[] str, int offset, int strLen) {
|
||||
char c;
|
||||
boolean positive = true;
|
||||
if ((c = str[offset]) == '-') {
|
||||
positive = false;
|
||||
offset++;
|
||||
} else if (c == '+') {
|
||||
offset++;
|
||||
}
|
||||
|
||||
int value = 0;
|
||||
while (offset < strLen) {
|
||||
c = str[offset++];
|
||||
if (c >= '0' && c <= '9') {
|
||||
value = value * 10 + (c - '0');
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return positive ? value : -value;
|
||||
}
|
||||
|
||||
// The digit part of -9223372036854775808L
|
||||
private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();
|
||||
|
||||
public String toString() {
|
||||
if (isZero()) {
|
||||
return "0";
|
||||
}
|
||||
StringBuffer buf = getStringBuffer();
|
||||
buf.append("0.");
|
||||
buf.append(digits, 0, count);
|
||||
buf.append("x10^");
|
||||
buf.append(decimalAt);
|
||||
return buf.toString();
|
||||
}
|
||||
|
||||
private StringBuffer tempBuffer;
|
||||
|
||||
private StringBuffer getStringBuffer() {
|
||||
if (tempBuffer == null) {
|
||||
tempBuffer = new StringBuffer(MAX_COUNT);
|
||||
} else {
|
||||
tempBuffer.setLength(0);
|
||||
}
|
||||
return tempBuffer;
|
||||
}
|
||||
|
||||
private void extendDigits(int len) {
|
||||
if (len > digits.length) {
|
||||
digits = new char[len];
|
||||
}
|
||||
}
|
||||
|
||||
private final char[] getDataChars(int length) {
|
||||
if (data == null || data.length < length) {
|
||||
data = new char[length];
|
||||
}
|
||||
return data;
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue