mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-28 07:14:30 +02:00
8187443: Forest Consolidation: Move files to unified layout
Reviewed-by: darcy, ihse
This commit is contained in:
parent
270fe13182
commit
3789983e89
56923 changed files with 3 additions and 15727 deletions
647
src/java.base/share/classes/java/util/stream/IntPipeline.java
Normal file
647
src/java.base/share/classes/java/util/stream/IntPipeline.java
Normal file
|
@ -0,0 +1,647 @@
|
|||
/*
|
||||
* Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
package java.util.stream;
|
||||
|
||||
import java.util.IntSummaryStatistics;
|
||||
import java.util.Objects;
|
||||
import java.util.OptionalDouble;
|
||||
import java.util.OptionalInt;
|
||||
import java.util.PrimitiveIterator;
|
||||
import java.util.Spliterator;
|
||||
import java.util.Spliterators;
|
||||
import java.util.function.BiConsumer;
|
||||
import java.util.function.BinaryOperator;
|
||||
import java.util.function.IntBinaryOperator;
|
||||
import java.util.function.IntConsumer;
|
||||
import java.util.function.IntFunction;
|
||||
import java.util.function.IntPredicate;
|
||||
import java.util.function.IntToDoubleFunction;
|
||||
import java.util.function.IntToLongFunction;
|
||||
import java.util.function.IntUnaryOperator;
|
||||
import java.util.function.ObjIntConsumer;
|
||||
import java.util.function.Supplier;
|
||||
|
||||
/**
|
||||
* Abstract base class for an intermediate pipeline stage or pipeline source
|
||||
* stage implementing whose elements are of type {@code int}.
|
||||
*
|
||||
* @param <E_IN> type of elements in the upstream source
|
||||
* @since 1.8
|
||||
*/
|
||||
abstract class IntPipeline<E_IN>
|
||||
extends AbstractPipeline<E_IN, Integer, IntStream>
|
||||
implements IntStream {
|
||||
|
||||
/**
|
||||
* Constructor for the head of a stream pipeline.
|
||||
*
|
||||
* @param source {@code Supplier<Spliterator>} describing the stream source
|
||||
* @param sourceFlags The source flags for the stream source, described in
|
||||
* {@link StreamOpFlag}
|
||||
* @param parallel {@code true} if the pipeline is parallel
|
||||
*/
|
||||
IntPipeline(Supplier<? extends Spliterator<Integer>> source,
|
||||
int sourceFlags, boolean parallel) {
|
||||
super(source, sourceFlags, parallel);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor for the head of a stream pipeline.
|
||||
*
|
||||
* @param source {@code Spliterator} describing the stream source
|
||||
* @param sourceFlags The source flags for the stream source, described in
|
||||
* {@link StreamOpFlag}
|
||||
* @param parallel {@code true} if the pipeline is parallel
|
||||
*/
|
||||
IntPipeline(Spliterator<Integer> source,
|
||||
int sourceFlags, boolean parallel) {
|
||||
super(source, sourceFlags, parallel);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor for appending an intermediate operation onto an existing
|
||||
* pipeline.
|
||||
*
|
||||
* @param upstream the upstream element source
|
||||
* @param opFlags the operation flags for the new operation
|
||||
*/
|
||||
IntPipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags) {
|
||||
super(upstream, opFlags);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adapt a {@code Sink<Integer> to an {@code IntConsumer}, ideally simply
|
||||
* by casting.
|
||||
*/
|
||||
private static IntConsumer adapt(Sink<Integer> sink) {
|
||||
if (sink instanceof IntConsumer) {
|
||||
return (IntConsumer) sink;
|
||||
}
|
||||
else {
|
||||
if (Tripwire.ENABLED)
|
||||
Tripwire.trip(AbstractPipeline.class,
|
||||
"using IntStream.adapt(Sink<Integer> s)");
|
||||
return sink::accept;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Adapt a {@code Spliterator<Integer>} to a {@code Spliterator.OfInt}.
|
||||
*
|
||||
* @implNote
|
||||
* The implementation attempts to cast to a Spliterator.OfInt, and throws an
|
||||
* exception if this cast is not possible.
|
||||
*/
|
||||
private static Spliterator.OfInt adapt(Spliterator<Integer> s) {
|
||||
if (s instanceof Spliterator.OfInt) {
|
||||
return (Spliterator.OfInt) s;
|
||||
}
|
||||
else {
|
||||
if (Tripwire.ENABLED)
|
||||
Tripwire.trip(AbstractPipeline.class,
|
||||
"using IntStream.adapt(Spliterator<Integer> s)");
|
||||
throw new UnsupportedOperationException("IntStream.adapt(Spliterator<Integer> s)");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Shape-specific methods
|
||||
|
||||
@Override
|
||||
final StreamShape getOutputShape() {
|
||||
return StreamShape.INT_VALUE;
|
||||
}
|
||||
|
||||
@Override
|
||||
final <P_IN> Node<Integer> evaluateToNode(PipelineHelper<Integer> helper,
|
||||
Spliterator<P_IN> spliterator,
|
||||
boolean flattenTree,
|
||||
IntFunction<Integer[]> generator) {
|
||||
return Nodes.collectInt(helper, spliterator, flattenTree);
|
||||
}
|
||||
|
||||
@Override
|
||||
final <P_IN> Spliterator<Integer> wrap(PipelineHelper<Integer> ph,
|
||||
Supplier<Spliterator<P_IN>> supplier,
|
||||
boolean isParallel) {
|
||||
return new StreamSpliterators.IntWrappingSpliterator<>(ph, supplier, isParallel);
|
||||
}
|
||||
|
||||
@Override
|
||||
@SuppressWarnings("unchecked")
|
||||
final Spliterator.OfInt lazySpliterator(Supplier<? extends Spliterator<Integer>> supplier) {
|
||||
return new StreamSpliterators.DelegatingSpliterator.OfInt((Supplier<Spliterator.OfInt>) supplier);
|
||||
}
|
||||
|
||||
@Override
|
||||
final boolean forEachWithCancel(Spliterator<Integer> spliterator, Sink<Integer> sink) {
|
||||
Spliterator.OfInt spl = adapt(spliterator);
|
||||
IntConsumer adaptedSink = adapt(sink);
|
||||
boolean cancelled;
|
||||
do { } while (!(cancelled = sink.cancellationRequested()) && spl.tryAdvance(adaptedSink));
|
||||
return cancelled;
|
||||
}
|
||||
|
||||
@Override
|
||||
final Node.Builder<Integer> makeNodeBuilder(long exactSizeIfKnown,
|
||||
IntFunction<Integer[]> generator) {
|
||||
return Nodes.intBuilder(exactSizeIfKnown);
|
||||
}
|
||||
|
||||
private <U> Stream<U> mapToObj(IntFunction<? extends U> mapper, int opFlags) {
|
||||
return new ReferencePipeline.StatelessOp<Integer, U>(this, StreamShape.INT_VALUE, opFlags) {
|
||||
@Override
|
||||
Sink<Integer> opWrapSink(int flags, Sink<U> sink) {
|
||||
return new Sink.ChainedInt<U>(sink) {
|
||||
@Override
|
||||
public void accept(int t) {
|
||||
downstream.accept(mapper.apply(t));
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// IntStream
|
||||
|
||||
@Override
|
||||
public final PrimitiveIterator.OfInt iterator() {
|
||||
return Spliterators.iterator(spliterator());
|
||||
}
|
||||
|
||||
@Override
|
||||
public final Spliterator.OfInt spliterator() {
|
||||
return adapt(super.spliterator());
|
||||
}
|
||||
|
||||
// Stateless intermediate ops from IntStream
|
||||
|
||||
@Override
|
||||
public final LongStream asLongStream() {
|
||||
return new LongPipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE, 0) {
|
||||
@Override
|
||||
Sink<Integer> opWrapSink(int flags, Sink<Long> sink) {
|
||||
return new Sink.ChainedInt<Long>(sink) {
|
||||
@Override
|
||||
public void accept(int t) {
|
||||
downstream.accept((long) t);
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public final DoubleStream asDoubleStream() {
|
||||
return new DoublePipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE, 0) {
|
||||
@Override
|
||||
Sink<Integer> opWrapSink(int flags, Sink<Double> sink) {
|
||||
return new Sink.ChainedInt<Double>(sink) {
|
||||
@Override
|
||||
public void accept(int t) {
|
||||
downstream.accept((double) t);
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public final Stream<Integer> boxed() {
|
||||
return mapToObj(Integer::valueOf, 0);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final IntStream map(IntUnaryOperator mapper) {
|
||||
Objects.requireNonNull(mapper);
|
||||
return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
|
||||
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
|
||||
@Override
|
||||
Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
|
||||
return new Sink.ChainedInt<Integer>(sink) {
|
||||
@Override
|
||||
public void accept(int t) {
|
||||
downstream.accept(mapper.applyAsInt(t));
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public final <U> Stream<U> mapToObj(IntFunction<? extends U> mapper) {
|
||||
Objects.requireNonNull(mapper);
|
||||
return mapToObj(mapper, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final LongStream mapToLong(IntToLongFunction mapper) {
|
||||
Objects.requireNonNull(mapper);
|
||||
return new LongPipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE,
|
||||
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
|
||||
@Override
|
||||
Sink<Integer> opWrapSink(int flags, Sink<Long> sink) {
|
||||
return new Sink.ChainedInt<Long>(sink) {
|
||||
@Override
|
||||
public void accept(int t) {
|
||||
downstream.accept(mapper.applyAsLong(t));
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public final DoubleStream mapToDouble(IntToDoubleFunction mapper) {
|
||||
Objects.requireNonNull(mapper);
|
||||
return new DoublePipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE,
|
||||
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
|
||||
@Override
|
||||
Sink<Integer> opWrapSink(int flags, Sink<Double> sink) {
|
||||
return new Sink.ChainedInt<Double>(sink) {
|
||||
@Override
|
||||
public void accept(int t) {
|
||||
downstream.accept(mapper.applyAsDouble(t));
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public final IntStream flatMap(IntFunction<? extends IntStream> mapper) {
|
||||
Objects.requireNonNull(mapper);
|
||||
return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
|
||||
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
|
||||
@Override
|
||||
Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
|
||||
return new Sink.ChainedInt<Integer>(sink) {
|
||||
@Override
|
||||
public void begin(long size) {
|
||||
downstream.begin(-1);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void accept(int t) {
|
||||
try (IntStream result = mapper.apply(t)) {
|
||||
// We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
|
||||
if (result != null)
|
||||
result.sequential().forEach(i -> downstream.accept(i));
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public IntStream unordered() {
|
||||
if (!isOrdered())
|
||||
return this;
|
||||
return new StatelessOp<Integer>(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_ORDERED) {
|
||||
@Override
|
||||
Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
|
||||
return sink;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public final IntStream filter(IntPredicate predicate) {
|
||||
Objects.requireNonNull(predicate);
|
||||
return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
|
||||
StreamOpFlag.NOT_SIZED) {
|
||||
@Override
|
||||
Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
|
||||
return new Sink.ChainedInt<Integer>(sink) {
|
||||
@Override
|
||||
public void begin(long size) {
|
||||
downstream.begin(-1);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void accept(int t) {
|
||||
if (predicate.test(t))
|
||||
downstream.accept(t);
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public final IntStream peek(IntConsumer action) {
|
||||
Objects.requireNonNull(action);
|
||||
return new StatelessOp<Integer>(this, StreamShape.INT_VALUE,
|
||||
0) {
|
||||
@Override
|
||||
Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) {
|
||||
return new Sink.ChainedInt<Integer>(sink) {
|
||||
@Override
|
||||
public void accept(int t) {
|
||||
action.accept(t);
|
||||
downstream.accept(t);
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// Stateful intermediate ops from IntStream
|
||||
|
||||
@Override
|
||||
public final IntStream limit(long maxSize) {
|
||||
if (maxSize < 0)
|
||||
throw new IllegalArgumentException(Long.toString(maxSize));
|
||||
return SliceOps.makeInt(this, 0, maxSize);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final IntStream skip(long n) {
|
||||
if (n < 0)
|
||||
throw new IllegalArgumentException(Long.toString(n));
|
||||
if (n == 0)
|
||||
return this;
|
||||
else
|
||||
return SliceOps.makeInt(this, n, -1);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final IntStream takeWhile(IntPredicate predicate) {
|
||||
return WhileOps.makeTakeWhileInt(this, predicate);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final IntStream dropWhile(IntPredicate predicate) {
|
||||
return WhileOps.makeDropWhileInt(this, predicate);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final IntStream sorted() {
|
||||
return SortedOps.makeInt(this);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final IntStream distinct() {
|
||||
// While functional and quick to implement, this approach is not very efficient.
|
||||
// An efficient version requires an int-specific map/set implementation.
|
||||
return boxed().distinct().mapToInt(i -> i);
|
||||
}
|
||||
|
||||
// Terminal ops from IntStream
|
||||
|
||||
@Override
|
||||
public void forEach(IntConsumer action) {
|
||||
evaluate(ForEachOps.makeInt(action, false));
|
||||
}
|
||||
|
||||
@Override
|
||||
public void forEachOrdered(IntConsumer action) {
|
||||
evaluate(ForEachOps.makeInt(action, true));
|
||||
}
|
||||
|
||||
@Override
|
||||
public final int sum() {
|
||||
return reduce(0, Integer::sum);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final OptionalInt min() {
|
||||
return reduce(Math::min);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final OptionalInt max() {
|
||||
return reduce(Math::max);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final long count() {
|
||||
return evaluate(ReduceOps.makeIntCounting());
|
||||
}
|
||||
|
||||
@Override
|
||||
public final OptionalDouble average() {
|
||||
long[] avg = collect(() -> new long[2],
|
||||
(ll, i) -> {
|
||||
ll[0]++;
|
||||
ll[1] += i;
|
||||
},
|
||||
(ll, rr) -> {
|
||||
ll[0] += rr[0];
|
||||
ll[1] += rr[1];
|
||||
});
|
||||
return avg[0] > 0
|
||||
? OptionalDouble.of((double) avg[1] / avg[0])
|
||||
: OptionalDouble.empty();
|
||||
}
|
||||
|
||||
@Override
|
||||
public final IntSummaryStatistics summaryStatistics() {
|
||||
return collect(IntSummaryStatistics::new, IntSummaryStatistics::accept,
|
||||
IntSummaryStatistics::combine);
|
||||
}
|
||||
|
||||
@Override
|
||||
public final int reduce(int identity, IntBinaryOperator op) {
|
||||
return evaluate(ReduceOps.makeInt(identity, op));
|
||||
}
|
||||
|
||||
@Override
|
||||
public final OptionalInt reduce(IntBinaryOperator op) {
|
||||
return evaluate(ReduceOps.makeInt(op));
|
||||
}
|
||||
|
||||
@Override
|
||||
public final <R> R collect(Supplier<R> supplier,
|
||||
ObjIntConsumer<R> accumulator,
|
||||
BiConsumer<R, R> combiner) {
|
||||
Objects.requireNonNull(combiner);
|
||||
BinaryOperator<R> operator = (left, right) -> {
|
||||
combiner.accept(left, right);
|
||||
return left;
|
||||
};
|
||||
return evaluate(ReduceOps.makeInt(supplier, accumulator, operator));
|
||||
}
|
||||
|
||||
@Override
|
||||
public final boolean anyMatch(IntPredicate predicate) {
|
||||
return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ANY));
|
||||
}
|
||||
|
||||
@Override
|
||||
public final boolean allMatch(IntPredicate predicate) {
|
||||
return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ALL));
|
||||
}
|
||||
|
||||
@Override
|
||||
public final boolean noneMatch(IntPredicate predicate) {
|
||||
return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.NONE));
|
||||
}
|
||||
|
||||
@Override
|
||||
public final OptionalInt findFirst() {
|
||||
return evaluate(FindOps.makeInt(true));
|
||||
}
|
||||
|
||||
@Override
|
||||
public final OptionalInt findAny() {
|
||||
return evaluate(FindOps.makeInt(false));
|
||||
}
|
||||
|
||||
@Override
|
||||
public final int[] toArray() {
|
||||
return Nodes.flattenInt((Node.OfInt) evaluateToArrayNode(Integer[]::new))
|
||||
.asPrimitiveArray();
|
||||
}
|
||||
|
||||
//
|
||||
|
||||
/**
|
||||
* Source stage of an IntStream.
|
||||
*
|
||||
* @param <E_IN> type of elements in the upstream source
|
||||
* @since 1.8
|
||||
*/
|
||||
static class Head<E_IN> extends IntPipeline<E_IN> {
|
||||
/**
|
||||
* Constructor for the source stage of an IntStream.
|
||||
*
|
||||
* @param source {@code Supplier<Spliterator>} describing the stream
|
||||
* source
|
||||
* @param sourceFlags the source flags for the stream source, described
|
||||
* in {@link StreamOpFlag}
|
||||
* @param parallel {@code true} if the pipeline is parallel
|
||||
*/
|
||||
Head(Supplier<? extends Spliterator<Integer>> source,
|
||||
int sourceFlags, boolean parallel) {
|
||||
super(source, sourceFlags, parallel);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor for the source stage of an IntStream.
|
||||
*
|
||||
* @param source {@code Spliterator} describing the stream source
|
||||
* @param sourceFlags the source flags for the stream source, described
|
||||
* in {@link StreamOpFlag}
|
||||
* @param parallel {@code true} if the pipeline is parallel
|
||||
*/
|
||||
Head(Spliterator<Integer> source,
|
||||
int sourceFlags, boolean parallel) {
|
||||
super(source, sourceFlags, parallel);
|
||||
}
|
||||
|
||||
@Override
|
||||
final boolean opIsStateful() {
|
||||
throw new UnsupportedOperationException();
|
||||
}
|
||||
|
||||
@Override
|
||||
final Sink<E_IN> opWrapSink(int flags, Sink<Integer> sink) {
|
||||
throw new UnsupportedOperationException();
|
||||
}
|
||||
|
||||
// Optimized sequential terminal operations for the head of the pipeline
|
||||
|
||||
@Override
|
||||
public void forEach(IntConsumer action) {
|
||||
if (!isParallel()) {
|
||||
adapt(sourceStageSpliterator()).forEachRemaining(action);
|
||||
}
|
||||
else {
|
||||
super.forEach(action);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public void forEachOrdered(IntConsumer action) {
|
||||
if (!isParallel()) {
|
||||
adapt(sourceStageSpliterator()).forEachRemaining(action);
|
||||
}
|
||||
else {
|
||||
super.forEachOrdered(action);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Base class for a stateless intermediate stage of an IntStream
|
||||
*
|
||||
* @param <E_IN> type of elements in the upstream source
|
||||
* @since 1.8
|
||||
*/
|
||||
abstract static class StatelessOp<E_IN> extends IntPipeline<E_IN> {
|
||||
/**
|
||||
* Construct a new IntStream by appending a stateless intermediate
|
||||
* operation to an existing stream.
|
||||
* @param upstream The upstream pipeline stage
|
||||
* @param inputShape The stream shape for the upstream pipeline stage
|
||||
* @param opFlags Operation flags for the new stage
|
||||
*/
|
||||
StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
|
||||
StreamShape inputShape,
|
||||
int opFlags) {
|
||||
super(upstream, opFlags);
|
||||
assert upstream.getOutputShape() == inputShape;
|
||||
}
|
||||
|
||||
@Override
|
||||
final boolean opIsStateful() {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Base class for a stateful intermediate stage of an IntStream.
|
||||
*
|
||||
* @param <E_IN> type of elements in the upstream source
|
||||
* @since 1.8
|
||||
*/
|
||||
abstract static class StatefulOp<E_IN> extends IntPipeline<E_IN> {
|
||||
/**
|
||||
* Construct a new IntStream by appending a stateful intermediate
|
||||
* operation to an existing stream.
|
||||
* @param upstream The upstream pipeline stage
|
||||
* @param inputShape The stream shape for the upstream pipeline stage
|
||||
* @param opFlags Operation flags for the new stage
|
||||
*/
|
||||
StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
|
||||
StreamShape inputShape,
|
||||
int opFlags) {
|
||||
super(upstream, opFlags);
|
||||
assert upstream.getOutputShape() == inputShape;
|
||||
}
|
||||
|
||||
@Override
|
||||
final boolean opIsStateful() {
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
abstract <P_IN> Node<Integer> opEvaluateParallel(PipelineHelper<Integer> helper,
|
||||
Spliterator<P_IN> spliterator,
|
||||
IntFunction<Integer[]> generator);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue