mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-21 03:24:38 +02:00
8187443: Forest Consolidation: Move files to unified layout
Reviewed-by: darcy, ihse
This commit is contained in:
parent
270fe13182
commit
3789983e89
56923 changed files with 3 additions and 15727 deletions
|
@ -0,0 +1,180 @@
|
|||
/*
|
||||
* Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package sun.security.rsa;
|
||||
|
||||
import java.math.BigInteger;
|
||||
|
||||
import java.security.*;
|
||||
import java.security.spec.AlgorithmParameterSpec;
|
||||
import java.security.spec.RSAKeyGenParameterSpec;
|
||||
|
||||
import sun.security.jca.JCAUtil;
|
||||
|
||||
/**
|
||||
* RSA keypair generation. Standard algorithm, minimum key length 512 bit.
|
||||
* We generate two random primes until we find two where phi is relative
|
||||
* prime to the public exponent. Default exponent is 65537. It has only bit 0
|
||||
* and bit 4 set, which makes it particularly efficient.
|
||||
*
|
||||
* @since 1.5
|
||||
* @author Andreas Sterbenz
|
||||
*/
|
||||
public final class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
|
||||
|
||||
// public exponent to use
|
||||
private BigInteger publicExponent;
|
||||
|
||||
// size of the key to generate, >= RSAKeyFactory.MIN_MODLEN
|
||||
private int keySize;
|
||||
|
||||
// PRNG to use
|
||||
private SecureRandom random;
|
||||
|
||||
public RSAKeyPairGenerator() {
|
||||
// initialize to default in case the app does not call initialize()
|
||||
initialize(2048, null);
|
||||
}
|
||||
|
||||
// initialize the generator. See JCA doc
|
||||
public void initialize(int keySize, SecureRandom random) {
|
||||
|
||||
// do not allow unreasonably small or large key sizes,
|
||||
// probably user error
|
||||
try {
|
||||
RSAKeyFactory.checkKeyLengths(keySize, RSAKeyGenParameterSpec.F4,
|
||||
512, 64 * 1024);
|
||||
} catch (InvalidKeyException e) {
|
||||
throw new InvalidParameterException(e.getMessage());
|
||||
}
|
||||
|
||||
this.keySize = keySize;
|
||||
this.random = random;
|
||||
this.publicExponent = RSAKeyGenParameterSpec.F4;
|
||||
}
|
||||
|
||||
// second initialize method. See JCA doc.
|
||||
public void initialize(AlgorithmParameterSpec params, SecureRandom random)
|
||||
throws InvalidAlgorithmParameterException {
|
||||
|
||||
if (params instanceof RSAKeyGenParameterSpec == false) {
|
||||
throw new InvalidAlgorithmParameterException
|
||||
("Params must be instance of RSAKeyGenParameterSpec");
|
||||
}
|
||||
|
||||
RSAKeyGenParameterSpec rsaSpec = (RSAKeyGenParameterSpec)params;
|
||||
int tmpKeySize = rsaSpec.getKeysize();
|
||||
BigInteger tmpPublicExponent = rsaSpec.getPublicExponent();
|
||||
|
||||
if (tmpPublicExponent == null) {
|
||||
tmpPublicExponent = RSAKeyGenParameterSpec.F4;
|
||||
} else {
|
||||
if (tmpPublicExponent.compareTo(RSAKeyGenParameterSpec.F0) < 0) {
|
||||
throw new InvalidAlgorithmParameterException
|
||||
("Public exponent must be 3 or larger");
|
||||
}
|
||||
if (tmpPublicExponent.bitLength() > tmpKeySize) {
|
||||
throw new InvalidAlgorithmParameterException
|
||||
("Public exponent must be smaller than key size");
|
||||
}
|
||||
}
|
||||
|
||||
// do not allow unreasonably large key sizes, probably user error
|
||||
try {
|
||||
RSAKeyFactory.checkKeyLengths(tmpKeySize, tmpPublicExponent,
|
||||
512, 64 * 1024);
|
||||
} catch (InvalidKeyException e) {
|
||||
throw new InvalidAlgorithmParameterException(
|
||||
"Invalid key sizes", e);
|
||||
}
|
||||
|
||||
this.keySize = tmpKeySize;
|
||||
this.publicExponent = tmpPublicExponent;
|
||||
this.random = random;
|
||||
}
|
||||
|
||||
// generate the keypair. See JCA doc
|
||||
public KeyPair generateKeyPair() {
|
||||
// accommodate odd key sizes in case anybody wants to use them
|
||||
int lp = (keySize + 1) >> 1;
|
||||
int lq = keySize - lp;
|
||||
if (random == null) {
|
||||
random = JCAUtil.getSecureRandom();
|
||||
}
|
||||
BigInteger e = publicExponent;
|
||||
while (true) {
|
||||
// generate two random primes of size lp/lq
|
||||
BigInteger p = BigInteger.probablePrime(lp, random);
|
||||
BigInteger q, n;
|
||||
do {
|
||||
q = BigInteger.probablePrime(lq, random);
|
||||
// convention is for p > q
|
||||
if (p.compareTo(q) < 0) {
|
||||
BigInteger tmp = p;
|
||||
p = q;
|
||||
q = tmp;
|
||||
}
|
||||
// modulus n = p * q
|
||||
n = p.multiply(q);
|
||||
// even with correctly sized p and q, there is a chance that
|
||||
// n will be one bit short. re-generate the smaller prime if so
|
||||
} while (n.bitLength() < keySize);
|
||||
|
||||
// phi = (p - 1) * (q - 1) must be relative prime to e
|
||||
// otherwise RSA just won't work ;-)
|
||||
BigInteger p1 = p.subtract(BigInteger.ONE);
|
||||
BigInteger q1 = q.subtract(BigInteger.ONE);
|
||||
BigInteger phi = p1.multiply(q1);
|
||||
// generate new p and q until they work. typically
|
||||
// the first try will succeed when using F4
|
||||
if (e.gcd(phi).equals(BigInteger.ONE) == false) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// private exponent d is the inverse of e mod phi
|
||||
BigInteger d = e.modInverse(phi);
|
||||
|
||||
// 1st prime exponent pe = d mod (p - 1)
|
||||
BigInteger pe = d.mod(p1);
|
||||
// 2nd prime exponent qe = d mod (q - 1)
|
||||
BigInteger qe = d.mod(q1);
|
||||
|
||||
// crt coefficient coeff is the inverse of q mod p
|
||||
BigInteger coeff = q.modInverse(p);
|
||||
|
||||
try {
|
||||
PublicKey publicKey = new RSAPublicKeyImpl(n, e);
|
||||
PrivateKey privateKey =
|
||||
new RSAPrivateCrtKeyImpl(n, e, d, p, q, pe, qe, coeff);
|
||||
return new KeyPair(publicKey, privateKey);
|
||||
} catch (InvalidKeyException exc) {
|
||||
// invalid key exception only thrown for keys < 512 bit,
|
||||
// will not happen here
|
||||
throw new RuntimeException(exc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue