mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-27 06:45:07 +02:00
8302026: Port fdlibm inverse trig functions (asin, acos, atan) to Java
Reviewed-by: bpb
This commit is contained in:
parent
861e302011
commit
3ba156082b
6 changed files with 994 additions and 8 deletions
|
@ -60,7 +60,9 @@ package java.lang;
|
|||
class FdLibm {
|
||||
// Constants used by multiple algorithms
|
||||
private static final double INFINITY = Double.POSITIVE_INFINITY;
|
||||
private static final double TWO54 = 0x1.0p54; // 1.80143985094819840000e+16
|
||||
private static final double TWO54 = 0x1.0p54; // 1.80143985094819840000e+16
|
||||
private static final double HUGE = 1.0e+300;
|
||||
|
||||
|
||||
private FdLibm() {
|
||||
throw new UnsupportedOperationException("No FdLibm instances for you.");
|
||||
|
@ -102,6 +104,296 @@ class FdLibm {
|
|||
( ((long)high)) << 32 );
|
||||
}
|
||||
|
||||
/** Returns the arcsine of x.
|
||||
*
|
||||
* Method :
|
||||
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
|
||||
* we approximate asin(x) on [0,0.5] by
|
||||
* asin(x) = x + x*x^2*R(x^2)
|
||||
* where
|
||||
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
||||
* and its remez error is bounded by
|
||||
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
|
||||
*
|
||||
* For x in [0.5,1]
|
||||
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
|
||||
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
|
||||
* then for x>0.98
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
|
||||
* For x<=0.98, let pio4_hi = pio2_hi/2, then
|
||||
* f = hi part of s;
|
||||
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
|
||||
* and
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
|
||||
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
*/
|
||||
static class Asin {
|
||||
private Asin() {throw new UnsupportedOperationException();}
|
||||
|
||||
private static final double
|
||||
pio2_hi = 0x1.921fb54442d18p0, // 1.57079632679489655800e+00
|
||||
pio2_lo = 0x1.1a62633145c07p-54, // 6.12323399573676603587e-17
|
||||
pio4_hi = 0x1.921fb54442d18p-1, // 7.85398163397448278999e-01
|
||||
// coefficient for R(x^2)
|
||||
pS0 = 0x1.5555555555555p-3, // 1.66666666666666657415e-01
|
||||
pS1 = -0x1.4d61203eb6f7dp-2, // -3.25565818622400915405e-01
|
||||
pS2 = 0x1.9c1550e884455p-3, // 2.01212532134862925881e-01
|
||||
pS3 = -0x1.48228b5688f3bp-5, // -4.00555345006794114027e-02
|
||||
pS4 = 0x1.9efe07501b288p-11, // 7.91534994289814532176e-04
|
||||
pS5 = 0x1.23de10dfdf709p-15, // 3.47933107596021167570e-05
|
||||
qS1 = -0x1.33a271c8a2d4bp1, // -2.40339491173441421878e+00
|
||||
qS2 = 0x1.02ae59c598ac8p1, // 2.02094576023350569471e+00
|
||||
qS3 = -0x1.6066c1b8d0159p-1, // -6.88283971605453293030e-01
|
||||
qS4 = 0x1.3b8c5b12e9282p-4; // 7.70381505559019352791e-02
|
||||
|
||||
static double compute(double x) {
|
||||
double t = 0, w, p, q, c, r, s;
|
||||
int hx, ix;
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fff_ffff;
|
||||
if (ix >= 0x3ff0_0000) { // |x| >= 1
|
||||
if(((ix - 0x3ff0_0000) | __LO(x)) == 0) {
|
||||
// asin(1) = +-pi/2 with inexact
|
||||
return x*pio2_hi + x*pio2_lo;
|
||||
}
|
||||
return (x - x)/(x - x); // asin(|x| > 1) is NaN
|
||||
} else if (ix < 0x3fe0_0000) { // |x| < 0.5
|
||||
if (ix < 0x3e40_0000) { // if |x| < 2**-27
|
||||
if (HUGE + x > 1.0) {// return x with inexact if x != 0
|
||||
return x;
|
||||
}
|
||||
} else {
|
||||
t = x*x;
|
||||
}
|
||||
p = t*(pS0 + t*(pS1 + t*(pS2 + t*(pS3 + t*(pS4 + t*pS5)))));
|
||||
q = 1.0 + t*(qS1 + t*(qS2 + t*(qS3 + t*qS4)));
|
||||
w = p/q;
|
||||
return x + x*w;
|
||||
}
|
||||
// 1 > |x| >= 0.5
|
||||
w = 1.0 - Math.abs(x);
|
||||
t = w*0.5;
|
||||
p = t*(pS0 + t*(pS1 + t*(pS2 + t*(pS3 + t*(pS4 + t*pS5)))));
|
||||
q = 1.0 + t*(qS1 + t*(qS2 + t*(qS3 + t*qS4)));
|
||||
s = Math.sqrt(t);
|
||||
if (ix >= 0x3FEF_3333) { // if |x| > 0.975
|
||||
w = p/q;
|
||||
t = pio2_hi - (2.0*(s + s*w) - pio2_lo);
|
||||
} else {
|
||||
w = s;
|
||||
w = __LO(w, 0);
|
||||
c = (t - w*w)/(s + w);
|
||||
r = p/q;
|
||||
p = 2.0*s*r - (pio2_lo - 2.0*c);
|
||||
q = pio4_hi - 2.0*w;
|
||||
t = pio4_hi - (p - q);
|
||||
}
|
||||
return (hx > 0) ? t : -t;
|
||||
}
|
||||
}
|
||||
|
||||
/** Returns the arccosine of x.
|
||||
* Method :
|
||||
* acos(x) = pi/2 - asin(x)
|
||||
* acos(-x) = pi/2 + asin(x)
|
||||
* For |x| <= 0.5
|
||||
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
||||
* For x > 0.5
|
||||
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
||||
* = 2asin(sqrt((1-x)/2))
|
||||
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
||||
* = 2f + (2c + 2s*z*R(z))
|
||||
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
||||
* for f so that f+c ~ sqrt(z).
|
||||
* For x <- 0.5
|
||||
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
||||
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
* Function needed: sqrt
|
||||
*/
|
||||
static class Acos {
|
||||
private Acos() {throw new UnsupportedOperationException();}
|
||||
|
||||
private static final double
|
||||
pio2_hi = 0x1.921fb54442d18p0, // 1.57079632679489655800e+00
|
||||
pio2_lo = 0x1.1a62633145c07p-54, // 6.12323399573676603587e-17
|
||||
pS0 = 0x1.5555555555555p-3, // 1.66666666666666657415e-01
|
||||
pS1 = -0x1.4d61203eb6f7dp-2, // -3.25565818622400915405e-01
|
||||
pS2 = 0x1.9c1550e884455p-3, // 2.01212532134862925881e-01
|
||||
pS3 = -0x1.48228b5688f3bp-5, // -4.00555345006794114027e-02
|
||||
pS4 = 0x1.9efe07501b288p-11, // 7.91534994289814532176e-04
|
||||
pS5 = 0x1.23de10dfdf709p-15, // 3.47933107596021167570e-05
|
||||
qS1 = -0x1.33a271c8a2d4bp1, // -2.40339491173441421878e+00
|
||||
qS2 = 0x1.02ae59c598ac8p1, // 2.02094576023350569471e+00
|
||||
qS3 = -0x1.6066c1b8d0159p-1, // -6.88283971605453293030e-01
|
||||
qS4 = 0x1.3b8c5b12e9282p-4; // 7.70381505559019352791e-02
|
||||
|
||||
static double compute(double x) {
|
||||
double z, p, q, r, w, s, c, df;
|
||||
int hx, ix;
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fff_ffff;
|
||||
if (ix >= 0x3ff0_0000) { // |x| >= 1
|
||||
if (((ix - 0x3ff0_0000) | __LO(x)) == 0) { // |x| == 1
|
||||
if (hx > 0) {// acos(1) = 0
|
||||
return 0.0;
|
||||
}else { // acos(-1)= pi
|
||||
return Math.PI + 2.0*pio2_lo;
|
||||
}
|
||||
}
|
||||
return (x-x)/(x-x); // acos(|x| > 1) is NaN
|
||||
}
|
||||
if (ix < 0x3fe0_0000) { // |x| < 0.5
|
||||
if (ix <= 0x3c60_0000) { // if |x| < 2**-57
|
||||
return pio2_hi + pio2_lo;
|
||||
}
|
||||
z = x*x;
|
||||
p = z*(pS0 + z*(pS1 + z*(pS2 + z*(pS3 + z*(pS4 + z*pS5)))));
|
||||
q = 1.0 + z*(qS1 + z*(qS2 + z*(qS3 + z*qS4)));
|
||||
r = p/q;
|
||||
return pio2_hi - (x - (pio2_lo - x*r));
|
||||
} else if (hx < 0) { // x < -0.5
|
||||
z = (1.0 + x)*0.5;
|
||||
p = z*(pS0 + z*(pS1 + z*(pS2 + z*(pS3 + z*(pS4 + z*pS5)))));
|
||||
q = 1.0 + z*(qS1 + z*(qS2 + z*(qS3 + z*qS4)));
|
||||
s = Math.sqrt(z);
|
||||
r = p/q;
|
||||
w = r*s - pio2_lo;
|
||||
return Math.PI - 2.0*(s+w);
|
||||
} else { // x > 0.5
|
||||
z = (1.0 - x)*0.5;
|
||||
s = Math.sqrt(z);
|
||||
df = s;
|
||||
df = __LO(df, 0);
|
||||
c = (z - df*df)/(s + df);
|
||||
p = z*(pS0 + z*(pS1 + z*(pS2 + z*(pS3 + z*(pS4 + z*pS5)))));
|
||||
q = 1.0 + z*(qS1 + z*(qS2 + z*(qS3 + z*qS4)));
|
||||
r = p/q;
|
||||
w = r*s + c;
|
||||
return 2.0*(df + w);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns the arctangent of x.
|
||||
* Method
|
||||
* 1. Reduce x to positive by atan(x) = -atan(-x).
|
||||
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
|
||||
* is further reduced to one of the following intervals and the
|
||||
* arctangent of t is evaluated by the corresponding formula:
|
||||
*
|
||||
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
|
||||
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
|
||||
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
|
||||
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
|
||||
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
static class Atan {
|
||||
private Atan() {throw new UnsupportedOperationException();}
|
||||
|
||||
private static final double atanhi[] = {
|
||||
0x1.dac670561bb4fp-2, // atan(0.5)hi 4.63647609000806093515e-01
|
||||
0x1.921fb54442d18p-1, // atan(1.0)hi 7.85398163397448278999e-01
|
||||
0x1.f730bd281f69bp-1, // atan(1.5)hi 9.82793723247329054082e-01
|
||||
0x1.921fb54442d18p0, // atan(inf)hi 1.57079632679489655800e+00
|
||||
};
|
||||
|
||||
private static final double atanlo[] = {
|
||||
0x1.a2b7f222f65e2p-56, // atan(0.5)lo 2.26987774529616870924e-17
|
||||
0x1.1a62633145c07p-55, // atan(1.0)lo 3.06161699786838301793e-17
|
||||
0x1.007887af0cbbdp-56, // atan(1.5)lo 1.39033110312309984516e-17
|
||||
0x1.1a62633145c07p-54, // atan(inf)lo 6.12323399573676603587e-17
|
||||
};
|
||||
|
||||
private static final double aT[] = {
|
||||
0x1.555555555550dp-2, // 3.33333333333329318027e-01
|
||||
-0x1.999999998ebc4p-3, // -1.99999999998764832476e-01
|
||||
0x1.24924920083ffp-3, // 1.42857142725034663711e-01
|
||||
-0x1.c71c6fe231671p-4, // -1.11111104054623557880e-01
|
||||
0x1.745cdc54c206ep-4, // 9.09088713343650656196e-02
|
||||
-0x1.3b0f2af749a6dp-4, // -7.69187620504482999495e-02
|
||||
0x1.10d66a0d03d51p-4, // 6.66107313738753120669e-02
|
||||
-0x1.dde2d52defd9ap-5, // -5.83357013379057348645e-02
|
||||
0x1.97b4b24760debp-5, // 4.97687799461593236017e-02
|
||||
-0x1.2b4442c6a6c2fp-5, // -3.65315727442169155270e-02
|
||||
0x1.0ad3ae322da11p-6, // 1.62858201153657823623e-02
|
||||
};
|
||||
|
||||
static double compute(double x) {
|
||||
double w, s1, s2, z;
|
||||
int ix, hx, id;
|
||||
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fff_ffff;
|
||||
if (ix >= 0x4410_0000) { // if |x| >= 2^66
|
||||
if (ix > 0x7ff0_0000 ||
|
||||
(ix == 0x7ff0_0000 && (__LO(x) != 0))) {
|
||||
return x+x; // NaN
|
||||
}
|
||||
if (hx > 0) {
|
||||
return atanhi[3] + atanlo[3];
|
||||
} else {
|
||||
return -atanhi[3] - atanlo[3];
|
||||
}
|
||||
} if (ix < 0x3fdc_0000) { // |x| < 0.4375
|
||||
if (ix < 0x3e20_0000) { // |x| < 2^-29
|
||||
if (HUGE + x > 1.0) { // raise inexact
|
||||
return x;
|
||||
}
|
||||
}
|
||||
id = -1;
|
||||
} else {
|
||||
x = Math.abs(x);
|
||||
if (ix < 0x3ff3_0000) { // |x| < 1.1875
|
||||
if (ix < 0x3fe60000) { // 7/16 <= |x| < 11/16
|
||||
id = 0;
|
||||
x = (2.0*x - 1.0)/(2.0 + x);
|
||||
} else { // 11/16 <= |x| < 19/16
|
||||
id = 1;
|
||||
x = (x - 1.0)/(x + 1.0);
|
||||
}
|
||||
} else {
|
||||
if (ix < 0x4003_8000) { // |x| < 2.4375
|
||||
id = 2;
|
||||
x = (x - 1.5)/(1.0 + 1.5*x);
|
||||
} else { // 2.4375 <= |x| < 2^66
|
||||
id = 3;
|
||||
x = -1.0/x;
|
||||
}
|
||||
}
|
||||
}
|
||||
// end of argument reduction
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
// break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly
|
||||
s1 = z*(aT[0] + w*(aT[2] + w*(aT[4] + w*(aT[6] + w*(aT[8] + w*aT[10])))));
|
||||
s2 = w*(aT[1] + w*(aT[3] + w*(aT[5] + w*(aT[7] + w*aT[9]))));
|
||||
if (id < 0) {
|
||||
return x - x*(s1 + s2);
|
||||
} else {
|
||||
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
||||
return (hx < 0) ? -z: z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* cbrt(x)
|
||||
* Return cube root of x
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue