mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-26 22:34:27 +02:00
8079792: GC directory structure cleanup
Reviewed-by: brutisso, stefank, david
This commit is contained in:
parent
042902811c
commit
4dc240f785
521 changed files with 2481 additions and 2573 deletions
786
hotspot/src/share/vm/gc/parallel/gcTaskManager.hpp
Normal file
786
hotspot/src/share/vm/gc/parallel/gcTaskManager.hpp
Normal file
|
@ -0,0 +1,786 @@
|
|||
/*
|
||||
* Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef SHARE_VM_GC_PARALLEL_GCTASKMANAGER_HPP
|
||||
#define SHARE_VM_GC_PARALLEL_GCTASKMANAGER_HPP
|
||||
|
||||
#include "runtime/mutex.hpp"
|
||||
#include "utilities/growableArray.hpp"
|
||||
|
||||
//
|
||||
// The GCTaskManager is a queue of GCTasks, and accessors
|
||||
// to allow the queue to be accessed from many threads.
|
||||
//
|
||||
|
||||
// Forward declarations of types defined in this file.
|
||||
class GCTask;
|
||||
class GCTaskQueue;
|
||||
class SynchronizedGCTaskQueue;
|
||||
class GCTaskManager;
|
||||
class NotifyDoneClosure;
|
||||
// Some useful subclasses of GCTask. You can also make up your own.
|
||||
class NoopGCTask;
|
||||
class BarrierGCTask;
|
||||
class ReleasingBarrierGCTask;
|
||||
class NotifyingBarrierGCTask;
|
||||
class WaitForBarrierGCTask;
|
||||
class IdleGCTask;
|
||||
// A free list of Monitor*'s.
|
||||
class MonitorSupply;
|
||||
|
||||
// Forward declarations of classes referenced in this file via pointer.
|
||||
class GCTaskThread;
|
||||
class Mutex;
|
||||
class Monitor;
|
||||
class ThreadClosure;
|
||||
|
||||
// The abstract base GCTask.
|
||||
class GCTask : public ResourceObj {
|
||||
public:
|
||||
// Known kinds of GCTasks, for predicates.
|
||||
class Kind : AllStatic {
|
||||
public:
|
||||
enum kind {
|
||||
unknown_task,
|
||||
ordinary_task,
|
||||
barrier_task,
|
||||
noop_task,
|
||||
idle_task
|
||||
};
|
||||
static const char* to_string(kind value);
|
||||
};
|
||||
private:
|
||||
// Instance state.
|
||||
const Kind::kind _kind; // For runtime type checking.
|
||||
const uint _affinity; // Which worker should run task.
|
||||
GCTask* _newer; // Tasks are on doubly-linked ...
|
||||
GCTask* _older; // ... lists.
|
||||
public:
|
||||
virtual char* name() { return (char *)"task"; }
|
||||
|
||||
// Abstract do_it method
|
||||
virtual void do_it(GCTaskManager* manager, uint which) = 0;
|
||||
// Accessors
|
||||
Kind::kind kind() const {
|
||||
return _kind;
|
||||
}
|
||||
uint affinity() const {
|
||||
return _affinity;
|
||||
}
|
||||
GCTask* newer() const {
|
||||
return _newer;
|
||||
}
|
||||
void set_newer(GCTask* n) {
|
||||
_newer = n;
|
||||
}
|
||||
GCTask* older() const {
|
||||
return _older;
|
||||
}
|
||||
void set_older(GCTask* p) {
|
||||
_older = p;
|
||||
}
|
||||
// Predicates.
|
||||
bool is_ordinary_task() const {
|
||||
return kind()==Kind::ordinary_task;
|
||||
}
|
||||
bool is_barrier_task() const {
|
||||
return kind()==Kind::barrier_task;
|
||||
}
|
||||
bool is_noop_task() const {
|
||||
return kind()==Kind::noop_task;
|
||||
}
|
||||
bool is_idle_task() const {
|
||||
return kind()==Kind::idle_task;
|
||||
}
|
||||
void print(const char* message) const PRODUCT_RETURN;
|
||||
protected:
|
||||
// Constructors: Only create subclasses.
|
||||
// An ordinary GCTask.
|
||||
GCTask();
|
||||
// A GCTask of a particular kind, usually barrier or noop.
|
||||
GCTask(Kind::kind kind);
|
||||
// An ordinary GCTask with an affinity.
|
||||
GCTask(uint affinity);
|
||||
// A GCTask of a particular kind, with and affinity.
|
||||
GCTask(Kind::kind kind, uint affinity);
|
||||
// We want a virtual destructor because virtual methods,
|
||||
// but since ResourceObj's don't have their destructors
|
||||
// called, we don't have one at all. Instead we have
|
||||
// this method, which gets called by subclasses to clean up.
|
||||
virtual void destruct();
|
||||
// Methods.
|
||||
void initialize();
|
||||
};
|
||||
|
||||
// A doubly-linked list of GCTasks.
|
||||
// The list is not synchronized, because sometimes we want to
|
||||
// build up a list and then make it available to other threads.
|
||||
// See also: SynchronizedGCTaskQueue.
|
||||
class GCTaskQueue : public ResourceObj {
|
||||
private:
|
||||
// Instance state.
|
||||
GCTask* _insert_end; // Tasks are enqueued at this end.
|
||||
GCTask* _remove_end; // Tasks are dequeued from this end.
|
||||
uint _length; // The current length of the queue.
|
||||
const bool _is_c_heap_obj; // Is this a CHeapObj?
|
||||
public:
|
||||
// Factory create and destroy methods.
|
||||
// Create as ResourceObj.
|
||||
static GCTaskQueue* create();
|
||||
// Create as CHeapObj.
|
||||
static GCTaskQueue* create_on_c_heap();
|
||||
// Destroyer.
|
||||
static void destroy(GCTaskQueue* that);
|
||||
// Accessors.
|
||||
// These just examine the state of the queue.
|
||||
bool is_empty() const {
|
||||
assert(((insert_end() == NULL && remove_end() == NULL) ||
|
||||
(insert_end() != NULL && remove_end() != NULL)),
|
||||
"insert_end and remove_end don't match");
|
||||
assert((insert_end() != NULL) || (_length == 0), "Not empty");
|
||||
return insert_end() == NULL;
|
||||
}
|
||||
uint length() const {
|
||||
return _length;
|
||||
}
|
||||
// Methods.
|
||||
// Enqueue one task.
|
||||
void enqueue(GCTask* task);
|
||||
// Enqueue a list of tasks. Empties the argument list.
|
||||
void enqueue(GCTaskQueue* list);
|
||||
// Dequeue one task.
|
||||
GCTask* dequeue();
|
||||
// Dequeue one task, preferring one with affinity.
|
||||
GCTask* dequeue(uint affinity);
|
||||
protected:
|
||||
// Constructor. Clients use factory, but there might be subclasses.
|
||||
GCTaskQueue(bool on_c_heap);
|
||||
// Destructor-like method.
|
||||
// Because ResourceMark doesn't call destructors.
|
||||
// This method cleans up like one.
|
||||
virtual void destruct();
|
||||
// Accessors.
|
||||
GCTask* insert_end() const {
|
||||
return _insert_end;
|
||||
}
|
||||
void set_insert_end(GCTask* value) {
|
||||
_insert_end = value;
|
||||
}
|
||||
GCTask* remove_end() const {
|
||||
return _remove_end;
|
||||
}
|
||||
void set_remove_end(GCTask* value) {
|
||||
_remove_end = value;
|
||||
}
|
||||
void increment_length() {
|
||||
_length += 1;
|
||||
}
|
||||
void decrement_length() {
|
||||
_length -= 1;
|
||||
}
|
||||
void set_length(uint value) {
|
||||
_length = value;
|
||||
}
|
||||
bool is_c_heap_obj() const {
|
||||
return _is_c_heap_obj;
|
||||
}
|
||||
// Methods.
|
||||
void initialize();
|
||||
GCTask* remove(); // Remove from remove end.
|
||||
GCTask* remove(GCTask* task); // Remove from the middle.
|
||||
void print(const char* message) const PRODUCT_RETURN;
|
||||
// Debug support
|
||||
void verify_length() const PRODUCT_RETURN;
|
||||
};
|
||||
|
||||
// A GCTaskQueue that can be synchronized.
|
||||
// This "has-a" GCTaskQueue and a mutex to do the exclusion.
|
||||
class SynchronizedGCTaskQueue : public CHeapObj<mtGC> {
|
||||
private:
|
||||
// Instance state.
|
||||
GCTaskQueue* _unsynchronized_queue; // Has-a unsynchronized queue.
|
||||
Monitor * _lock; // Lock to control access.
|
||||
public:
|
||||
// Factory create and destroy methods.
|
||||
static SynchronizedGCTaskQueue* create(GCTaskQueue* queue, Monitor * lock) {
|
||||
return new SynchronizedGCTaskQueue(queue, lock);
|
||||
}
|
||||
static void destroy(SynchronizedGCTaskQueue* that) {
|
||||
if (that != NULL) {
|
||||
delete that;
|
||||
}
|
||||
}
|
||||
// Accessors
|
||||
GCTaskQueue* unsynchronized_queue() const {
|
||||
return _unsynchronized_queue;
|
||||
}
|
||||
Monitor * lock() const {
|
||||
return _lock;
|
||||
}
|
||||
// GCTaskQueue wrapper methods.
|
||||
// These check that you hold the lock
|
||||
// and then call the method on the queue.
|
||||
bool is_empty() const {
|
||||
guarantee(own_lock(), "don't own the lock");
|
||||
return unsynchronized_queue()->is_empty();
|
||||
}
|
||||
void enqueue(GCTask* task) {
|
||||
guarantee(own_lock(), "don't own the lock");
|
||||
unsynchronized_queue()->enqueue(task);
|
||||
}
|
||||
void enqueue(GCTaskQueue* list) {
|
||||
guarantee(own_lock(), "don't own the lock");
|
||||
unsynchronized_queue()->enqueue(list);
|
||||
}
|
||||
GCTask* dequeue() {
|
||||
guarantee(own_lock(), "don't own the lock");
|
||||
return unsynchronized_queue()->dequeue();
|
||||
}
|
||||
GCTask* dequeue(uint affinity) {
|
||||
guarantee(own_lock(), "don't own the lock");
|
||||
return unsynchronized_queue()->dequeue(affinity);
|
||||
}
|
||||
uint length() const {
|
||||
guarantee(own_lock(), "don't own the lock");
|
||||
return unsynchronized_queue()->length();
|
||||
}
|
||||
// For guarantees.
|
||||
bool own_lock() const {
|
||||
return lock()->owned_by_self();
|
||||
}
|
||||
protected:
|
||||
// Constructor. Clients use factory, but there might be subclasses.
|
||||
SynchronizedGCTaskQueue(GCTaskQueue* queue, Monitor * lock);
|
||||
// Destructor. Not virtual because no virtuals.
|
||||
~SynchronizedGCTaskQueue();
|
||||
};
|
||||
|
||||
// This is an abstract base class for getting notifications
|
||||
// when a GCTaskManager is done.
|
||||
class NotifyDoneClosure : public CHeapObj<mtGC> {
|
||||
public:
|
||||
// The notification callback method.
|
||||
virtual void notify(GCTaskManager* manager) = 0;
|
||||
protected:
|
||||
// Constructor.
|
||||
NotifyDoneClosure() {
|
||||
// Nothing to do.
|
||||
}
|
||||
// Virtual destructor because virtual methods.
|
||||
virtual ~NotifyDoneClosure() {
|
||||
// Nothing to do.
|
||||
}
|
||||
};
|
||||
|
||||
// Dynamic number of GC threads
|
||||
//
|
||||
// GC threads wait in get_task() for work (i.e., a task) to perform.
|
||||
// When the number of GC threads was static, the number of tasks
|
||||
// created to do a job was equal to or greater than the maximum
|
||||
// number of GC threads (ParallelGCThreads). The job might be divided
|
||||
// into a number of tasks greater than the number of GC threads for
|
||||
// load balancing (i.e., over partitioning). The last task to be
|
||||
// executed by a GC thread in a job is a work stealing task. A
|
||||
// GC thread that gets a work stealing task continues to execute
|
||||
// that task until the job is done. In the static number of GC threads
|
||||
// case, tasks are added to a queue (FIFO). The work stealing tasks are
|
||||
// the last to be added. Once the tasks are added, the GC threads grab
|
||||
// a task and go. A single thread can do all the non-work stealing tasks
|
||||
// and then execute a work stealing and wait for all the other GC threads
|
||||
// to execute their work stealing task.
|
||||
// In the dynamic number of GC threads implementation, idle-tasks are
|
||||
// created to occupy the non-participating or "inactive" threads. An
|
||||
// idle-task makes the GC thread wait on a barrier that is part of the
|
||||
// GCTaskManager. The GC threads that have been "idled" in a IdleGCTask
|
||||
// are released once all the active GC threads have finished their work
|
||||
// stealing tasks. The GCTaskManager does not wait for all the "idled"
|
||||
// GC threads to resume execution. When those GC threads do resume
|
||||
// execution in the course of the thread scheduling, they call get_tasks()
|
||||
// as all the other GC threads do. Because all the "idled" threads are
|
||||
// not required to execute in order to finish a job, it is possible for
|
||||
// a GC thread to still be "idled" when the next job is started. Such
|
||||
// a thread stays "idled" for the next job. This can result in a new
|
||||
// job not having all the expected active workers. For example if on
|
||||
// job requests 4 active workers out of a total of 10 workers so the
|
||||
// remaining 6 are "idled", if the next job requests 6 active workers
|
||||
// but all 6 of the "idled" workers are still idle, then the next job
|
||||
// will only get 4 active workers.
|
||||
// The implementation for the parallel old compaction phase has an
|
||||
// added complication. In the static case parold partitions the chunks
|
||||
// ready to be filled into stacks, one for each GC thread. A GC thread
|
||||
// executing a draining task (drains the stack of ready chunks)
|
||||
// claims a stack according to it's id (the unique ordinal value assigned
|
||||
// to each GC thread). In the dynamic case not all GC threads will
|
||||
// actively participate so stacks with ready to fill chunks can only be
|
||||
// given to the active threads. An initial implementation chose stacks
|
||||
// number 1-n to get the ready chunks and required that GC threads
|
||||
// 1-n be the active workers. This was undesirable because it required
|
||||
// certain threads to participate. In the final implementation a
|
||||
// list of stacks equal in number to the active workers are filled
|
||||
// with ready chunks. GC threads that participate get a stack from
|
||||
// the task (DrainStacksCompactionTask), empty the stack, and then add it to a
|
||||
// recycling list at the end of the task. If the same GC thread gets
|
||||
// a second task, it gets a second stack to drain and returns it. The
|
||||
// stacks are added to a recycling list so that later stealing tasks
|
||||
// for this tasks can get a stack from the recycling list. Stealing tasks
|
||||
// use the stacks in its work in a way similar to the draining tasks.
|
||||
// A thread is not guaranteed to get anything but a stealing task and
|
||||
// a thread that only gets a stealing task has to get a stack. A failed
|
||||
// implementation tried to have the GC threads keep the stack they used
|
||||
// during a draining task for later use in the stealing task but that didn't
|
||||
// work because as noted a thread is not guaranteed to get a draining task.
|
||||
//
|
||||
// For PSScavenge and ParCompactionManager the GC threads are
|
||||
// held in the GCTaskThread** _thread array in GCTaskManager.
|
||||
|
||||
|
||||
class GCTaskManager : public CHeapObj<mtGC> {
|
||||
friend class ParCompactionManager;
|
||||
friend class PSParallelCompact;
|
||||
friend class PSScavenge;
|
||||
friend class PSRefProcTaskExecutor;
|
||||
friend class RefProcTaskExecutor;
|
||||
friend class GCTaskThread;
|
||||
friend class IdleGCTask;
|
||||
private:
|
||||
// Instance state.
|
||||
NotifyDoneClosure* _ndc; // Notify on completion.
|
||||
const uint _workers; // Number of workers.
|
||||
Monitor* _monitor; // Notification of changes.
|
||||
SynchronizedGCTaskQueue* _queue; // Queue of tasks.
|
||||
GCTaskThread** _thread; // Array of worker threads.
|
||||
uint _active_workers; // Number of active workers.
|
||||
uint _busy_workers; // Number of busy workers.
|
||||
uint _blocking_worker; // The worker that's blocking.
|
||||
bool* _resource_flag; // Array of flag per threads.
|
||||
uint _delivered_tasks; // Count of delivered tasks.
|
||||
uint _completed_tasks; // Count of completed tasks.
|
||||
uint _barriers; // Count of barrier tasks.
|
||||
uint _emptied_queue; // Times we emptied the queue.
|
||||
NoopGCTask* _noop_task; // The NoopGCTask instance.
|
||||
uint _noop_tasks; // Count of noop tasks.
|
||||
WaitForBarrierGCTask* _idle_inactive_task;// Task for inactive workers
|
||||
volatile uint _idle_workers; // Number of idled workers
|
||||
public:
|
||||
// Factory create and destroy methods.
|
||||
static GCTaskManager* create(uint workers) {
|
||||
return new GCTaskManager(workers);
|
||||
}
|
||||
static GCTaskManager* create(uint workers, NotifyDoneClosure* ndc) {
|
||||
return new GCTaskManager(workers, ndc);
|
||||
}
|
||||
static void destroy(GCTaskManager* that) {
|
||||
if (that != NULL) {
|
||||
delete that;
|
||||
}
|
||||
}
|
||||
// Accessors.
|
||||
uint busy_workers() const {
|
||||
return _busy_workers;
|
||||
}
|
||||
volatile uint idle_workers() const {
|
||||
return _idle_workers;
|
||||
}
|
||||
// Pun between Monitor* and Mutex*
|
||||
Monitor* monitor() const {
|
||||
return _monitor;
|
||||
}
|
||||
Monitor * lock() const {
|
||||
return _monitor;
|
||||
}
|
||||
WaitForBarrierGCTask* idle_inactive_task() {
|
||||
return _idle_inactive_task;
|
||||
}
|
||||
// Methods.
|
||||
// Add the argument task to be run.
|
||||
void add_task(GCTask* task);
|
||||
// Add a list of tasks. Removes task from the argument list.
|
||||
void add_list(GCTaskQueue* list);
|
||||
// Claim a task for argument worker.
|
||||
GCTask* get_task(uint which);
|
||||
// Note the completion of a task by the argument worker.
|
||||
void note_completion(uint which);
|
||||
// Is the queue blocked from handing out new tasks?
|
||||
bool is_blocked() const {
|
||||
return (blocking_worker() != sentinel_worker());
|
||||
}
|
||||
// Request that all workers release their resources.
|
||||
void release_all_resources();
|
||||
// Ask if a particular worker should release its resources.
|
||||
bool should_release_resources(uint which); // Predicate.
|
||||
// Note the release of resources by the argument worker.
|
||||
void note_release(uint which);
|
||||
// Create IdleGCTasks for inactive workers and start workers
|
||||
void task_idle_workers();
|
||||
// Release the workers in IdleGCTasks
|
||||
void release_idle_workers();
|
||||
// Constants.
|
||||
// A sentinel worker identifier.
|
||||
static uint sentinel_worker() {
|
||||
return (uint) -1; // Why isn't there a max_uint?
|
||||
}
|
||||
|
||||
// Execute the task queue and wait for the completion.
|
||||
void execute_and_wait(GCTaskQueue* list);
|
||||
|
||||
void print_task_time_stamps();
|
||||
void print_threads_on(outputStream* st);
|
||||
void threads_do(ThreadClosure* tc);
|
||||
|
||||
protected:
|
||||
// Constructors. Clients use factory, but there might be subclasses.
|
||||
// Create a GCTaskManager with the appropriate number of workers.
|
||||
GCTaskManager(uint workers);
|
||||
// Create a GCTaskManager that calls back when there's no more work.
|
||||
GCTaskManager(uint workers, NotifyDoneClosure* ndc);
|
||||
// Make virtual if necessary.
|
||||
~GCTaskManager();
|
||||
// Accessors.
|
||||
uint workers() const {
|
||||
return _workers;
|
||||
}
|
||||
void set_active_workers(uint v) {
|
||||
assert(v <= _workers, "Trying to set more workers active than there are");
|
||||
_active_workers = MIN2(v, _workers);
|
||||
assert(v != 0, "Trying to set active workers to 0");
|
||||
_active_workers = MAX2(1U, _active_workers);
|
||||
}
|
||||
// Sets the number of threads that will be used in a collection
|
||||
void set_active_gang();
|
||||
|
||||
NotifyDoneClosure* notify_done_closure() const {
|
||||
return _ndc;
|
||||
}
|
||||
SynchronizedGCTaskQueue* queue() const {
|
||||
return _queue;
|
||||
}
|
||||
NoopGCTask* noop_task() const {
|
||||
return _noop_task;
|
||||
}
|
||||
// Bounds-checking per-thread data accessors.
|
||||
GCTaskThread* thread(uint which);
|
||||
void set_thread(uint which, GCTaskThread* value);
|
||||
bool resource_flag(uint which);
|
||||
void set_resource_flag(uint which, bool value);
|
||||
// Modifier methods with some semantics.
|
||||
// Is any worker blocking handing out new tasks?
|
||||
uint blocking_worker() const {
|
||||
return _blocking_worker;
|
||||
}
|
||||
void set_blocking_worker(uint value) {
|
||||
_blocking_worker = value;
|
||||
}
|
||||
void set_unblocked() {
|
||||
set_blocking_worker(sentinel_worker());
|
||||
}
|
||||
// Count of busy workers.
|
||||
void reset_busy_workers() {
|
||||
_busy_workers = 0;
|
||||
}
|
||||
uint increment_busy_workers();
|
||||
uint decrement_busy_workers();
|
||||
// Count of tasks delivered to workers.
|
||||
uint delivered_tasks() const {
|
||||
return _delivered_tasks;
|
||||
}
|
||||
void increment_delivered_tasks() {
|
||||
_delivered_tasks += 1;
|
||||
}
|
||||
void reset_delivered_tasks() {
|
||||
_delivered_tasks = 0;
|
||||
}
|
||||
// Count of tasks completed by workers.
|
||||
uint completed_tasks() const {
|
||||
return _completed_tasks;
|
||||
}
|
||||
void increment_completed_tasks() {
|
||||
_completed_tasks += 1;
|
||||
}
|
||||
void reset_completed_tasks() {
|
||||
_completed_tasks = 0;
|
||||
}
|
||||
// Count of barrier tasks completed.
|
||||
uint barriers() const {
|
||||
return _barriers;
|
||||
}
|
||||
void increment_barriers() {
|
||||
_barriers += 1;
|
||||
}
|
||||
void reset_barriers() {
|
||||
_barriers = 0;
|
||||
}
|
||||
// Count of how many times the queue has emptied.
|
||||
uint emptied_queue() const {
|
||||
return _emptied_queue;
|
||||
}
|
||||
void increment_emptied_queue() {
|
||||
_emptied_queue += 1;
|
||||
}
|
||||
void reset_emptied_queue() {
|
||||
_emptied_queue = 0;
|
||||
}
|
||||
// Count of the number of noop tasks we've handed out,
|
||||
// e.g., to handle resource release requests.
|
||||
uint noop_tasks() const {
|
||||
return _noop_tasks;
|
||||
}
|
||||
void increment_noop_tasks() {
|
||||
_noop_tasks += 1;
|
||||
}
|
||||
void reset_noop_tasks() {
|
||||
_noop_tasks = 0;
|
||||
}
|
||||
void increment_idle_workers() {
|
||||
_idle_workers++;
|
||||
}
|
||||
void decrement_idle_workers() {
|
||||
_idle_workers--;
|
||||
}
|
||||
// Other methods.
|
||||
void initialize();
|
||||
|
||||
public:
|
||||
// Return true if all workers are currently active.
|
||||
bool all_workers_active() { return workers() == active_workers(); }
|
||||
uint active_workers() const {
|
||||
return _active_workers;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// Some exemplary GCTasks.
|
||||
//
|
||||
|
||||
// A noop task that does nothing,
|
||||
// except take us around the GCTaskThread loop.
|
||||
class NoopGCTask : public GCTask {
|
||||
private:
|
||||
const bool _is_c_heap_obj; // Is this a CHeapObj?
|
||||
public:
|
||||
// Factory create and destroy methods.
|
||||
static NoopGCTask* create();
|
||||
static NoopGCTask* create_on_c_heap();
|
||||
static void destroy(NoopGCTask* that);
|
||||
|
||||
virtual char* name() { return (char *)"noop task"; }
|
||||
// Methods from GCTask.
|
||||
void do_it(GCTaskManager* manager, uint which) {
|
||||
// Nothing to do.
|
||||
}
|
||||
protected:
|
||||
// Constructor.
|
||||
NoopGCTask(bool on_c_heap) :
|
||||
GCTask(GCTask::Kind::noop_task),
|
||||
_is_c_heap_obj(on_c_heap) {
|
||||
// Nothing to do.
|
||||
}
|
||||
// Destructor-like method.
|
||||
void destruct();
|
||||
// Accessors.
|
||||
bool is_c_heap_obj() const {
|
||||
return _is_c_heap_obj;
|
||||
}
|
||||
};
|
||||
|
||||
// A BarrierGCTask blocks other tasks from starting,
|
||||
// and waits until it is the only task running.
|
||||
class BarrierGCTask : public GCTask {
|
||||
public:
|
||||
// Factory create and destroy methods.
|
||||
static BarrierGCTask* create() {
|
||||
return new BarrierGCTask();
|
||||
}
|
||||
static void destroy(BarrierGCTask* that) {
|
||||
if (that != NULL) {
|
||||
that->destruct();
|
||||
delete that;
|
||||
}
|
||||
}
|
||||
// Methods from GCTask.
|
||||
void do_it(GCTaskManager* manager, uint which);
|
||||
protected:
|
||||
// Constructor. Clients use factory, but there might be subclasses.
|
||||
BarrierGCTask() :
|
||||
GCTask(GCTask::Kind::barrier_task) {
|
||||
// Nothing to do.
|
||||
}
|
||||
// Destructor-like method.
|
||||
void destruct();
|
||||
|
||||
virtual char* name() { return (char *)"barrier task"; }
|
||||
// Methods.
|
||||
// Wait for this to be the only task running.
|
||||
void do_it_internal(GCTaskManager* manager, uint which);
|
||||
};
|
||||
|
||||
// A ReleasingBarrierGCTask is a BarrierGCTask
|
||||
// that tells all the tasks to release their resource areas.
|
||||
class ReleasingBarrierGCTask : public BarrierGCTask {
|
||||
public:
|
||||
// Factory create and destroy methods.
|
||||
static ReleasingBarrierGCTask* create() {
|
||||
return new ReleasingBarrierGCTask();
|
||||
}
|
||||
static void destroy(ReleasingBarrierGCTask* that) {
|
||||
if (that != NULL) {
|
||||
that->destruct();
|
||||
delete that;
|
||||
}
|
||||
}
|
||||
// Methods from GCTask.
|
||||
void do_it(GCTaskManager* manager, uint which);
|
||||
protected:
|
||||
// Constructor. Clients use factory, but there might be subclasses.
|
||||
ReleasingBarrierGCTask() :
|
||||
BarrierGCTask() {
|
||||
// Nothing to do.
|
||||
}
|
||||
// Destructor-like method.
|
||||
void destruct();
|
||||
};
|
||||
|
||||
// A NotifyingBarrierGCTask is a BarrierGCTask
|
||||
// that calls a notification method when it is the only task running.
|
||||
class NotifyingBarrierGCTask : public BarrierGCTask {
|
||||
private:
|
||||
// Instance state.
|
||||
NotifyDoneClosure* _ndc; // The callback object.
|
||||
public:
|
||||
// Factory create and destroy methods.
|
||||
static NotifyingBarrierGCTask* create(NotifyDoneClosure* ndc) {
|
||||
return new NotifyingBarrierGCTask(ndc);
|
||||
}
|
||||
static void destroy(NotifyingBarrierGCTask* that) {
|
||||
if (that != NULL) {
|
||||
that->destruct();
|
||||
delete that;
|
||||
}
|
||||
}
|
||||
// Methods from GCTask.
|
||||
void do_it(GCTaskManager* manager, uint which);
|
||||
protected:
|
||||
// Constructor. Clients use factory, but there might be subclasses.
|
||||
NotifyingBarrierGCTask(NotifyDoneClosure* ndc) :
|
||||
BarrierGCTask(),
|
||||
_ndc(ndc) {
|
||||
assert(notify_done_closure() != NULL, "can't notify on NULL");
|
||||
}
|
||||
// Destructor-like method.
|
||||
void destruct();
|
||||
// Accessor.
|
||||
NotifyDoneClosure* notify_done_closure() const { return _ndc; }
|
||||
};
|
||||
|
||||
// A WaitForBarrierGCTask is a BarrierGCTask
|
||||
// with a method you can call to wait until
|
||||
// the BarrierGCTask is done.
|
||||
// This may cover many of the uses of NotifyingBarrierGCTasks.
|
||||
class WaitForBarrierGCTask : public BarrierGCTask {
|
||||
friend class GCTaskManager;
|
||||
friend class IdleGCTask;
|
||||
private:
|
||||
// Instance state.
|
||||
Monitor* _monitor; // Guard and notify changes.
|
||||
volatile bool _should_wait; // true=>wait, false=>proceed.
|
||||
const bool _is_c_heap_obj; // Was allocated on the heap.
|
||||
public:
|
||||
virtual char* name() { return (char *) "waitfor-barrier-task"; }
|
||||
|
||||
// Factory create and destroy methods.
|
||||
static WaitForBarrierGCTask* create();
|
||||
static WaitForBarrierGCTask* create_on_c_heap();
|
||||
static void destroy(WaitForBarrierGCTask* that);
|
||||
// Methods.
|
||||
void do_it(GCTaskManager* manager, uint which);
|
||||
void wait_for(bool reset);
|
||||
void set_should_wait(bool value) {
|
||||
_should_wait = value;
|
||||
}
|
||||
protected:
|
||||
// Constructor. Clients use factory, but there might be subclasses.
|
||||
WaitForBarrierGCTask(bool on_c_heap);
|
||||
// Destructor-like method.
|
||||
void destruct();
|
||||
// Accessors.
|
||||
Monitor* monitor() const {
|
||||
return _monitor;
|
||||
}
|
||||
bool should_wait() const {
|
||||
return _should_wait;
|
||||
}
|
||||
bool is_c_heap_obj() {
|
||||
return _is_c_heap_obj;
|
||||
}
|
||||
};
|
||||
|
||||
// Task that is used to idle a GC task when fewer than
|
||||
// the maximum workers are wanted.
|
||||
class IdleGCTask : public GCTask {
|
||||
const bool _is_c_heap_obj; // Was allocated on the heap.
|
||||
public:
|
||||
bool is_c_heap_obj() {
|
||||
return _is_c_heap_obj;
|
||||
}
|
||||
// Factory create and destroy methods.
|
||||
static IdleGCTask* create();
|
||||
static IdleGCTask* create_on_c_heap();
|
||||
static void destroy(IdleGCTask* that);
|
||||
|
||||
virtual char* name() { return (char *)"idle task"; }
|
||||
// Methods from GCTask.
|
||||
virtual void do_it(GCTaskManager* manager, uint which);
|
||||
protected:
|
||||
// Constructor.
|
||||
IdleGCTask(bool on_c_heap) :
|
||||
GCTask(GCTask::Kind::idle_task),
|
||||
_is_c_heap_obj(on_c_heap) {
|
||||
// Nothing to do.
|
||||
}
|
||||
// Destructor-like method.
|
||||
void destruct();
|
||||
};
|
||||
|
||||
class MonitorSupply : public AllStatic {
|
||||
private:
|
||||
// State.
|
||||
// Control multi-threaded access.
|
||||
static Mutex* _lock;
|
||||
// The list of available Monitor*'s.
|
||||
static GrowableArray<Monitor*>* _freelist;
|
||||
public:
|
||||
// Reserve a Monitor*.
|
||||
static Monitor* reserve();
|
||||
// Release a Monitor*.
|
||||
static void release(Monitor* instance);
|
||||
private:
|
||||
// Accessors.
|
||||
static Mutex* lock() {
|
||||
return _lock;
|
||||
}
|
||||
static GrowableArray<Monitor*>* freelist() {
|
||||
return _freelist;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // SHARE_VM_GC_PARALLEL_GCTASKMANAGER_HPP
|
Loading…
Add table
Add a link
Reference in a new issue