8224167: Refactor PtrQueue completed buffer processing

Add handle_completed_buffer and refactor.

Reviewed-by: tschatzl, shade
This commit is contained in:
Kim Barrett 2019-05-21 19:19:44 -04:00
parent 2e09b8459b
commit 54d0b2a8d6
8 changed files with 131 additions and 117 deletions

View file

@ -66,8 +66,21 @@ G1DirtyCardQueue::~G1DirtyCardQueue() {
flush(); flush();
} }
void G1DirtyCardQueue::handle_completed_buffer() {
assert(_buf != NULL, "precondition");
BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
G1DirtyCardQueueSet* dcqs = dirty_card_qset();
if (dcqs->process_or_enqueue_completed_buffer(node)) {
reset(); // Buffer fully processed, reset index.
} else {
allocate_buffer(); // Buffer enqueued, get a new one.
}
}
G1DirtyCardQueueSet::G1DirtyCardQueueSet(bool notify_when_complete) : G1DirtyCardQueueSet::G1DirtyCardQueueSet(bool notify_when_complete) :
PtrQueueSet(notify_when_complete), PtrQueueSet(notify_when_complete),
_max_completed_buffers(MaxCompletedBuffersUnlimited),
_completed_buffers_padding(0),
_free_ids(NULL), _free_ids(NULL),
_processed_buffers_mut(0), _processed_buffers_mut(0),
_processed_buffers_rs_thread(0), _processed_buffers_rs_thread(0),
@ -136,6 +149,24 @@ bool G1DirtyCardQueueSet::apply_closure_to_buffer(G1CardTableEntryClosure* cl,
} while (0) } while (0)
#endif // ASSERT #endif // ASSERT
bool G1DirtyCardQueueSet::process_or_enqueue_completed_buffer(BufferNode* node) {
if (Thread::current()->is_Java_thread()) {
// If the number of buffers exceeds the limit, make this Java
// thread do the processing itself. We don't lock to access
// buffer count or padding; it is fine to be imprecise here. The
// add of padding could overflow, which is treated as unlimited.
size_t max_buffers = max_completed_buffers();
size_t limit = max_buffers + completed_buffers_padding();
if ((completed_buffers_num() > limit) && (limit >= max_buffers)) {
if (mut_process_buffer(node)) {
return true;
}
}
}
enqueue_completed_buffer(node);
return false;
}
bool G1DirtyCardQueueSet::mut_process_buffer(BufferNode* node) { bool G1DirtyCardQueueSet::mut_process_buffer(BufferNode* node) {
guarantee(_free_ids != NULL, "must be"); guarantee(_free_ids != NULL, "must be");

View file

@ -47,6 +47,9 @@ public:
// A ptrQueue whose elements are "oops", pointers to object heads. // A ptrQueue whose elements are "oops", pointers to object heads.
class G1DirtyCardQueue: public PtrQueue { class G1DirtyCardQueue: public PtrQueue {
protected:
virtual void handle_completed_buffer();
public: public:
G1DirtyCardQueue(G1DirtyCardQueueSet* qset); G1DirtyCardQueue(G1DirtyCardQueueSet* qset);
@ -57,6 +60,8 @@ public:
// Process queue entries and release resources. // Process queue entries and release resources.
void flush() { flush_impl(); } void flush() { flush_impl(); }
inline G1DirtyCardQueueSet* dirty_card_qset() const;
// Compiler support. // Compiler support.
static ByteSize byte_offset_of_index() { static ByteSize byte_offset_of_index() {
return PtrQueue::byte_offset_of_index<G1DirtyCardQueue>(); return PtrQueue::byte_offset_of_index<G1DirtyCardQueue>();
@ -102,6 +107,12 @@ class G1DirtyCardQueueSet: public PtrQueueSet {
bool mut_process_buffer(BufferNode* node); bool mut_process_buffer(BufferNode* node);
// If the queue contains more buffers than configured here, the
// mutator must start doing some of the concurrent refinement work,
size_t _max_completed_buffers;
size_t _completed_buffers_padding;
static const size_t MaxCompletedBuffersUnlimited = ~size_t(0);
G1FreeIdSet* _free_ids; G1FreeIdSet* _free_ids;
// The number of completed buffers processed by mutator and rs thread, // The number of completed buffers processed by mutator and rs thread,
@ -126,6 +137,11 @@ public:
static void handle_zero_index_for_thread(Thread* t); static void handle_zero_index_for_thread(Thread* t);
// Either process the entire buffer and return true, or enqueue the
// buffer and return false. If the buffer is completely processed,
// it can be reused in place.
bool process_or_enqueue_completed_buffer(BufferNode* node);
// Apply G1RefineCardConcurrentlyClosure to completed buffers until there are stop_at // Apply G1RefineCardConcurrentlyClosure to completed buffers until there are stop_at
// completed buffers remaining. // completed buffers remaining.
bool refine_completed_buffer_concurrently(uint worker_i, size_t stop_at); bool refine_completed_buffer_concurrently(uint worker_i, size_t stop_at);
@ -147,6 +163,20 @@ public:
// If any threads have partial logs, add them to the global list of logs. // If any threads have partial logs, add them to the global list of logs.
void concatenate_logs(); void concatenate_logs();
void set_max_completed_buffers(size_t m) {
_max_completed_buffers = m;
}
size_t max_completed_buffers() const {
return _max_completed_buffers;
}
void set_completed_buffers_padding(size_t padding) {
_completed_buffers_padding = padding;
}
size_t completed_buffers_padding() const {
return _completed_buffers_padding;
}
jint processed_buffers_mut() { jint processed_buffers_mut() {
return _processed_buffers_mut; return _processed_buffers_mut;
} }
@ -156,4 +186,8 @@ public:
}; };
inline G1DirtyCardQueueSet* G1DirtyCardQueue::dirty_card_qset() const {
return static_cast<G1DirtyCardQueueSet*>(qset());
}
#endif // SHARE_GC_G1_G1DIRTYCARDQUEUE_HPP #endif // SHARE_GC_G1_G1DIRTYCARDQUEUE_HPP

View file

@ -62,7 +62,6 @@ void PtrQueue::flush_impl() {
} }
} }
void PtrQueue::enqueue_known_active(void* ptr) { void PtrQueue::enqueue_known_active(void* ptr) {
while (_index == 0) { while (_index == 0) {
handle_zero_index(); handle_zero_index();
@ -75,6 +74,35 @@ void PtrQueue::enqueue_known_active(void* ptr) {
_buf[index()] = ptr; _buf[index()] = ptr;
} }
void PtrQueue::handle_zero_index() {
assert(index() == 0, "precondition");
if (_buf != NULL) {
handle_completed_buffer();
} else {
// Bootstrapping kludge; lazily initialize capacity. The initial
// thread's queues are constructed before the second phase of the
// two-phase initialization of the associated qsets. As a result,
// we can't initialize _capacity_in_bytes in the queue constructor.
if (_capacity_in_bytes == 0) {
_capacity_in_bytes = index_to_byte_index(qset()->buffer_size());
}
allocate_buffer();
}
}
void PtrQueue::allocate_buffer() {
_buf = qset()->allocate_buffer();
reset();
}
void PtrQueue::enqueue_completed_buffer() {
assert(_buf != NULL, "precondition");
BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
qset()->enqueue_completed_buffer(node);
allocate_buffer();
}
BufferNode* BufferNode::allocate(size_t size) { BufferNode* BufferNode::allocate(size_t size) {
size_t byte_size = size * sizeof(void*); size_t byte_size = size * sizeof(void*);
void* data = NEW_C_HEAP_ARRAY(char, buffer_offset() + byte_size, mtGC); void* data = NEW_C_HEAP_ARRAY(char, buffer_offset() + byte_size, mtGC);
@ -231,8 +259,6 @@ PtrQueueSet::PtrQueueSet(bool notify_when_complete) :
_process_completed_buffers_threshold(ProcessCompletedBuffersThresholdNever), _process_completed_buffers_threshold(ProcessCompletedBuffersThresholdNever),
_process_completed_buffers(false), _process_completed_buffers(false),
_notify_when_complete(notify_when_complete), _notify_when_complete(notify_when_complete),
_max_completed_buffers(MaxCompletedBuffersUnlimited),
_completed_buffers_padding(0),
_all_active(false) _all_active(false)
{} {}
@ -258,52 +284,6 @@ void PtrQueueSet::deallocate_buffer(BufferNode* node) {
_allocator->release(node); _allocator->release(node);
} }
void PtrQueue::handle_zero_index() {
assert(index() == 0, "precondition");
// This thread records the full buffer and allocates a new one (while
// holding the lock if there is one).
if (_buf != NULL) {
if (!should_enqueue_buffer()) {
assert(index() > 0, "the buffer can only be re-used if it's not full");
return;
}
BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
if (qset()->process_or_enqueue_completed_buffer(node)) {
// Recycle the buffer. No allocation.
assert(_buf == BufferNode::make_buffer_from_node(node), "invariant");
assert(capacity() == qset()->buffer_size(), "invariant");
reset();
return;
}
}
// Set capacity in case this is the first allocation.
set_capacity(qset()->buffer_size());
// Allocate a new buffer.
_buf = qset()->allocate_buffer();
reset();
}
bool PtrQueueSet::process_or_enqueue_completed_buffer(BufferNode* node) {
if (Thread::current()->is_Java_thread()) {
// If the number of buffers exceeds the limit, make this Java
// thread do the processing itself. We don't lock to access
// buffer count or padding; it is fine to be imprecise here. The
// add of padding could overflow, which is treated as unlimited.
size_t limit = _max_completed_buffers + _completed_buffers_padding;
if ((_n_completed_buffers > limit) && (limit >= _max_completed_buffers)) {
if (mut_process_buffer(node)) {
// Successfully processed; return true to allow buffer reuse.
return true;
}
}
}
// The buffer will be enqueued. The caller will have to get a new one.
enqueue_completed_buffer(node);
return false;
}
void PtrQueueSet::enqueue_completed_buffer(BufferNode* cbn) { void PtrQueueSet::enqueue_completed_buffer(BufferNode* cbn) {
MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag); MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
cbn->set_next(NULL); cbn->set_next(NULL);

View file

@ -71,14 +71,6 @@ class PtrQueue {
return _capacity_in_bytes; return _capacity_in_bytes;
} }
void set_capacity(size_t entries) {
size_t byte_capacity = index_to_byte_index(entries);
assert(_capacity_in_bytes == 0 || _capacity_in_bytes == byte_capacity,
"changing capacity " SIZE_FORMAT " -> " SIZE_FORMAT,
_capacity_in_bytes, byte_capacity);
_capacity_in_bytes = byte_capacity;
}
static size_t byte_index_to_index(size_t ind) { static size_t byte_index_to_index(size_t ind) {
assert(is_aligned(ind, _element_size), "precondition"); assert(is_aligned(ind, _element_size), "precondition");
return ind / _element_size; return ind / _element_size;
@ -106,11 +98,20 @@ protected:
return byte_index_to_index(capacity_in_bytes()); return byte_index_to_index(capacity_in_bytes());
} }
PtrQueueSet* qset() { return _qset; } PtrQueueSet* qset() const { return _qset; }
// Process queue entries and release resources. // Process queue entries and release resources.
void flush_impl(); void flush_impl();
// Process (some of) the buffer and leave it in place for further use,
// or enqueue the buffer and allocate a new one.
virtual void handle_completed_buffer() = 0;
void allocate_buffer();
// Enqueue the current buffer in the qset and allocate a new buffer.
void enqueue_completed_buffer();
// Initialize this queue to contain a null buffer, and be part of the // Initialize this queue to contain a null buffer, and be part of the
// given PtrQueueSet. // given PtrQueueSet.
PtrQueue(PtrQueueSet* qset, bool active = false); PtrQueue(PtrQueueSet* qset, bool active = false);
@ -137,14 +138,6 @@ public:
else enqueue_known_active(ptr); else enqueue_known_active(ptr);
} }
// This method is called when we're doing the zero index handling
// and gives a chance to the queues to do any pre-enqueueing
// processing they might want to do on the buffer. It should return
// true if the buffer should be enqueued, or false if enough
// entries were cleared from it so that it can be re-used. It should
// not return false if the buffer is still full (otherwise we can
// get into an infinite loop).
virtual bool should_enqueue_buffer() { return true; }
void handle_zero_index(); void handle_zero_index();
void enqueue_known_active(void* ptr); void enqueue_known_active(void* ptr);
@ -306,7 +299,7 @@ class PtrQueueSet {
Monitor* _cbl_mon; // Protects the fields below. Monitor* _cbl_mon; // Protects the fields below.
BufferNode* _completed_buffers_head; BufferNode* _completed_buffers_head;
BufferNode* _completed_buffers_tail; BufferNode* _completed_buffers_tail;
size_t _n_completed_buffers; volatile size_t _n_completed_buffers;
size_t _process_completed_buffers_threshold; size_t _process_completed_buffers_threshold;
volatile bool _process_completed_buffers; volatile bool _process_completed_buffers;
@ -314,24 +307,11 @@ class PtrQueueSet {
// If true, notify_all on _cbl_mon when the threshold is reached. // If true, notify_all on _cbl_mon when the threshold is reached.
bool _notify_when_complete; bool _notify_when_complete;
// Maximum number of elements allowed on completed queue: after that,
// enqueuer does the work itself.
size_t _max_completed_buffers;
size_t _completed_buffers_padding;
void assert_completed_buffers_list_len_correct_locked() NOT_DEBUG_RETURN; void assert_completed_buffers_list_len_correct_locked() NOT_DEBUG_RETURN;
protected: protected:
bool _all_active; bool _all_active;
// A mutator thread does the the work of processing a buffer.
// Returns "true" iff the work is complete (and the buffer may be
// deallocated).
virtual bool mut_process_buffer(BufferNode* node) {
ShouldNotReachHere();
return false;
}
// Create an empty ptr queue set. // Create an empty ptr queue set.
PtrQueueSet(bool notify_when_complete = false); PtrQueueSet(bool notify_when_complete = false);
~PtrQueueSet(); ~PtrQueueSet();
@ -365,9 +345,6 @@ public:
// return a completed buffer from the list. Otherwise, return NULL. // return a completed buffer from the list. Otherwise, return NULL.
BufferNode* get_completed_buffer(size_t stop_at = 0); BufferNode* get_completed_buffer(size_t stop_at = 0);
// To be invoked by the mutator.
bool process_or_enqueue_completed_buffer(BufferNode* node);
bool process_completed_buffers() { return _process_completed_buffers; } bool process_completed_buffers() { return _process_completed_buffers; }
void set_process_completed_buffers(bool x) { _process_completed_buffers = x; } void set_process_completed_buffers(bool x) { _process_completed_buffers = x; }
@ -392,21 +369,6 @@ public:
void merge_bufferlists(PtrQueueSet* src); void merge_bufferlists(PtrQueueSet* src);
void set_max_completed_buffers(size_t m) {
_max_completed_buffers = m;
}
size_t max_completed_buffers() const {
return _max_completed_buffers;
}
static const size_t MaxCompletedBuffersUnlimited = ~size_t(0);
void set_completed_buffers_padding(size_t padding) {
_completed_buffers_padding = padding;
}
size_t completed_buffers_padding() const {
return _completed_buffers_padding;
}
// Notify the consumer if the number of buffers crossed the threshold // Notify the consumer if the number of buffers crossed the threshold
void notify_if_necessary(); void notify_if_necessary();
}; };

View file

@ -56,7 +56,7 @@ void SATBMarkQueue::flush() {
// retains a small enough collection in the buffer, we can continue to // retains a small enough collection in the buffer, we can continue to
// use the buffer as-is, instead of enqueueing and replacing it. // use the buffer as-is, instead of enqueueing and replacing it.
bool SATBMarkQueue::should_enqueue_buffer() { void SATBMarkQueue::handle_completed_buffer() {
// This method should only be called if there is a non-NULL buffer // This method should only be called if there is a non-NULL buffer
// that is full. // that is full.
assert(index() == 0, "pre-condition"); assert(index() == 0, "pre-condition");
@ -64,15 +64,18 @@ bool SATBMarkQueue::should_enqueue_buffer() {
filter(); filter();
SATBMarkQueueSet* satb_qset = static_cast<SATBMarkQueueSet*>(qset()); size_t threshold = satb_qset()->buffer_enqueue_threshold();
size_t threshold = satb_qset->buffer_enqueue_threshold();
// Ensure we'll enqueue completely full buffers. // Ensure we'll enqueue completely full buffers.
assert(threshold > 0, "enqueue threshold = 0"); assert(threshold > 0, "enqueue threshold = 0");
// Ensure we won't enqueue empty buffers. // Ensure we won't enqueue empty buffers.
assert(threshold <= capacity(), assert(threshold <= capacity(),
"enqueue threshold " SIZE_FORMAT " exceeds capacity " SIZE_FORMAT, "enqueue threshold " SIZE_FORMAT " exceeds capacity " SIZE_FORMAT,
threshold, capacity()); threshold, capacity());
return index() < threshold;
if (index() < threshold) {
// Buffer is sufficiently full; enqueue and allocate a new one.
enqueue_completed_buffer();
} // Else continue to accumulate in buffer.
} }
void SATBMarkQueue::apply_closure_and_empty(SATBBufferClosure* cl) { void SATBMarkQueue::apply_closure_and_empty(SATBBufferClosure* cl) {

View file

@ -54,20 +54,21 @@ private:
template<typename Filter> template<typename Filter>
inline void apply_filter(Filter filter_out); inline void apply_filter(Filter filter_out);
protected:
virtual void handle_completed_buffer();
public: public:
SATBMarkQueue(SATBMarkQueueSet* qset); SATBMarkQueue(SATBMarkQueueSet* qset);
// Process queue entries and free resources. // Process queue entries and free resources.
void flush(); void flush();
inline SATBMarkQueueSet* satb_qset() const;
// Apply cl to the active part of the buffer. // Apply cl to the active part of the buffer.
// Prerequisite: Must be at a safepoint. // Prerequisite: Must be at a safepoint.
void apply_closure_and_empty(SATBBufferClosure* cl); void apply_closure_and_empty(SATBBufferClosure* cl);
// Overrides PtrQueue::should_enqueue_buffer(). See the method's
// definition for more information.
virtual bool should_enqueue_buffer();
#ifndef PRODUCT #ifndef PRODUCT
// Helpful for debugging // Helpful for debugging
void print(const char* name); void print(const char* name);
@ -140,8 +141,12 @@ public:
void abandon_partial_marking(); void abandon_partial_marking();
}; };
inline SATBMarkQueueSet* SATBMarkQueue::satb_qset() const {
return static_cast<SATBMarkQueueSet*>(qset());
}
inline void SATBMarkQueue::filter() { inline void SATBMarkQueue::filter() {
static_cast<SATBMarkQueueSet*>(qset())->filter(this); satb_qset()->filter(this);
} }
// Removes entries from the buffer that are no longer needed, as // Removes entries from the buffer that are no longer needed, as

View file

@ -70,19 +70,17 @@ void ShenandoahSATBMarkQueueSet::filter(SATBMarkQueue* queue) {
} }
} }
bool ShenandoahSATBMarkQueue::should_enqueue_buffer() { void ShenandoahSATBMarkQueue::handle_completed_buffer() {
bool should_enqueue = SATBMarkQueue::should_enqueue_buffer(); SATBMarkQueue::handle_completed_buffer();
size_t cap = capacity(); if (!is_empty()) {
Thread* t = Thread::current(); Thread* t = Thread::current();
if (ShenandoahThreadLocalData::is_force_satb_flush(t)) { if (ShenandoahThreadLocalData::is_force_satb_flush(t)) {
if (!should_enqueue && cap != index()) {
// Non-empty buffer is compacted, and we decided not to enqueue it. // Non-empty buffer is compacted, and we decided not to enqueue it.
// We still want to know about leftover work in that buffer eventually. // We still want to know about leftover work in that buffer eventually.
// This avoid dealing with these leftovers during the final-mark, after // This avoid dealing with these leftovers during the final-mark, after
// the buffers are drained completely. See JDK-8205353 for more discussion. // the buffers are drained completely. See JDK-8205353 for more discussion.
should_enqueue = true;
}
ShenandoahThreadLocalData::set_force_satb_flush(t, false); ShenandoahThreadLocalData::set_force_satb_flush(t, false);
enqueue_completed_buffer();
}
} }
return should_enqueue;
} }

View file

@ -30,9 +30,10 @@
#include "runtime/thread.hpp" #include "runtime/thread.hpp"
class ShenandoahSATBMarkQueue: public SATBMarkQueue { class ShenandoahSATBMarkQueue: public SATBMarkQueue {
protected:
virtual void handle_completed_buffer();
public: public:
ShenandoahSATBMarkQueue(SATBMarkQueueSet* qset) : SATBMarkQueue(qset) {} ShenandoahSATBMarkQueue(SATBMarkQueueSet* qset) : SATBMarkQueue(qset) {}
virtual bool should_enqueue_buffer();
}; };
class ShenandoahSATBMarkQueueSet : public SATBMarkQueueSet { class ShenandoahSATBMarkQueueSet : public SATBMarkQueueSet {