mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-23 12:34:32 +02:00
Merge
This commit is contained in:
commit
579c7ac5ab
11 changed files with 800 additions and 363 deletions
|
@ -350,9 +350,9 @@ else
|
|||
ifeq ($(DEBUG_CFLAGS/$(BUILDARCH)),)
|
||||
ifeq ($(USE_CLANG), true)
|
||||
# Clang doesn't understand -gstabs
|
||||
OPT_CFLAGS += -g
|
||||
DEBUG_CFLAGS += -g
|
||||
else
|
||||
OPT_CFLAGS += -gstabs
|
||||
DEBUG_CFLAGS += -gstabs
|
||||
endif
|
||||
endif
|
||||
|
||||
|
@ -365,9 +365,9 @@ else
|
|||
ifeq ($(FASTDEBUG_CFLAGS/$(BUILDARCH)),)
|
||||
ifeq ($(USE_CLANG), true)
|
||||
# Clang doesn't understand -gstabs
|
||||
OPT_CFLAGS += -g
|
||||
FASTDEBUG_CFLAGS += -g
|
||||
else
|
||||
OPT_CFLAGS += -gstabs
|
||||
FASTDEBUG_CFLAGS += -gstabs
|
||||
endif
|
||||
endif
|
||||
|
||||
|
|
|
@ -1161,12 +1161,6 @@ void MacroAssembler::align(int modulus) {
|
|||
while (offset() % modulus != 0) nop();
|
||||
}
|
||||
|
||||
|
||||
void MacroAssembler::safepoint() {
|
||||
relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
|
||||
}
|
||||
|
||||
|
||||
void RegistersForDebugging::print(outputStream* s) {
|
||||
FlagSetting fs(Debugging, true);
|
||||
int j;
|
||||
|
|
|
@ -193,36 +193,6 @@ address Relocation::pd_get_address_from_code() {
|
|||
return *(address*)addr();
|
||||
}
|
||||
|
||||
|
||||
int Relocation::pd_breakpoint_size() {
|
||||
// minimum breakpoint size, in short words
|
||||
return NativeIllegalInstruction::instruction_size / sizeof(short);
|
||||
}
|
||||
|
||||
void Relocation::pd_swap_in_breakpoint(address x, short* instrs, int instrlen) {
|
||||
Untested("pd_swap_in_breakpoint");
|
||||
// %%% probably do not need a general instrlen; just use the trap size
|
||||
if (instrs != NULL) {
|
||||
assert(instrlen * sizeof(short) == NativeIllegalInstruction::instruction_size, "enough instrlen in reloc. data");
|
||||
for (int i = 0; i < instrlen; i++) {
|
||||
instrs[i] = ((short*)x)[i];
|
||||
}
|
||||
}
|
||||
NativeIllegalInstruction::insert(x);
|
||||
}
|
||||
|
||||
|
||||
void Relocation::pd_swap_out_breakpoint(address x, short* instrs, int instrlen) {
|
||||
Untested("pd_swap_out_breakpoint");
|
||||
assert(instrlen * sizeof(short) == sizeof(int), "enough buf");
|
||||
union { int l; short s[1]; } u;
|
||||
for (int i = 0; i < instrlen; i++) {
|
||||
u.s[i] = instrs[i];
|
||||
}
|
||||
NativeInstruction* ni = nativeInstruction_at(x);
|
||||
ni->set_long_at(0, u.l);
|
||||
}
|
||||
|
||||
void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
|
||||
}
|
||||
|
||||
|
|
|
@ -177,30 +177,6 @@ address Relocation::pd_get_address_from_code() {
|
|||
return *pd_address_in_code();
|
||||
}
|
||||
|
||||
int Relocation::pd_breakpoint_size() {
|
||||
// minimum breakpoint size, in short words
|
||||
return NativeIllegalInstruction::instruction_size / sizeof(short);
|
||||
}
|
||||
|
||||
void Relocation::pd_swap_in_breakpoint(address x, short* instrs, int instrlen) {
|
||||
Untested("pd_swap_in_breakpoint");
|
||||
if (instrs != NULL) {
|
||||
assert(instrlen * sizeof(short) == NativeIllegalInstruction::instruction_size, "enough instrlen in reloc. data");
|
||||
for (int i = 0; i < instrlen; i++) {
|
||||
instrs[i] = ((short*)x)[i];
|
||||
}
|
||||
}
|
||||
NativeIllegalInstruction::insert(x);
|
||||
}
|
||||
|
||||
|
||||
void Relocation::pd_swap_out_breakpoint(address x, short* instrs, int instrlen) {
|
||||
Untested("pd_swap_out_breakpoint");
|
||||
assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
|
||||
NativeInstruction* ni = nativeInstruction_at(x);
|
||||
*(short*)ni->addr_at(0) = instrs[0];
|
||||
}
|
||||
|
||||
void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
|
||||
#ifdef _LP64
|
||||
if (!Assembler::is_polling_page_far()) {
|
||||
|
|
|
@ -52,22 +52,6 @@ address* Relocation::pd_address_in_code() {
|
|||
return (address *) addr();
|
||||
}
|
||||
|
||||
int Relocation::pd_breakpoint_size() {
|
||||
ShouldNotCallThis();
|
||||
}
|
||||
|
||||
void Relocation::pd_swap_in_breakpoint(address x,
|
||||
short* instrs,
|
||||
int instrlen) {
|
||||
ShouldNotCallThis();
|
||||
}
|
||||
|
||||
void Relocation::pd_swap_out_breakpoint(address x,
|
||||
short* instrs,
|
||||
int instrlen) {
|
||||
ShouldNotCallThis();
|
||||
}
|
||||
|
||||
void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src,
|
||||
CodeBuffer* dst) {
|
||||
ShouldNotCallThis();
|
||||
|
|
|
@ -1081,11 +1081,6 @@ void nmethod::fix_oop_relocations(address begin, address end, bool initialize_im
|
|||
metadata_Relocation* reloc = iter.metadata_reloc();
|
||||
reloc->fix_metadata_relocation();
|
||||
}
|
||||
|
||||
// There must not be any interfering patches or breakpoints.
|
||||
assert(!(iter.type() == relocInfo::breakpoint_type
|
||||
&& iter.breakpoint_reloc()->active()),
|
||||
"no active breakpoint");
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -338,31 +338,6 @@ void RelocIterator::set_limit(address limit) {
|
|||
_limit = limit;
|
||||
}
|
||||
|
||||
|
||||
void PatchingRelocIterator:: prepass() {
|
||||
// turn breakpoints off during patching
|
||||
_init_state = (*this); // save cursor
|
||||
while (next()) {
|
||||
if (type() == relocInfo::breakpoint_type) {
|
||||
breakpoint_reloc()->set_active(false);
|
||||
}
|
||||
}
|
||||
(RelocIterator&)(*this) = _init_state; // reset cursor for client
|
||||
}
|
||||
|
||||
|
||||
void PatchingRelocIterator:: postpass() {
|
||||
// turn breakpoints back on after patching
|
||||
(RelocIterator&)(*this) = _init_state; // reset cursor again
|
||||
while (next()) {
|
||||
if (type() == relocInfo::breakpoint_type) {
|
||||
breakpoint_Relocation* bpt = breakpoint_reloc();
|
||||
bpt->set_active(bpt->enabled());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// All the strange bit-encodings are in here.
|
||||
// The idea is to encode relocation data which are small integers
|
||||
// very efficiently (a single extra halfword). Larger chunks of
|
||||
|
@ -704,51 +679,6 @@ void section_word_Relocation::unpack_data() {
|
|||
_target = address_from_scaled_offset(offset, base);
|
||||
}
|
||||
|
||||
|
||||
void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
|
||||
short* p = (short*) dest->locs_end();
|
||||
address point = dest->locs_point();
|
||||
|
||||
*p++ = _bits;
|
||||
|
||||
assert(_target != NULL, "sanity");
|
||||
|
||||
if (internal()) normalize_address(_target, dest);
|
||||
|
||||
jint target_bits =
|
||||
(jint)( internal() ? scaled_offset (_target, point)
|
||||
: runtime_address_to_index(_target) );
|
||||
if (settable()) {
|
||||
// save space for set_target later
|
||||
p = add_jint(p, target_bits);
|
||||
} else {
|
||||
p = add_var_int(p, target_bits);
|
||||
}
|
||||
|
||||
for (int i = 0; i < instrlen(); i++) {
|
||||
// put placeholder words until bytes can be saved
|
||||
p = add_short(p, (short)0x7777);
|
||||
}
|
||||
|
||||
dest->set_locs_end((relocInfo*) p);
|
||||
}
|
||||
|
||||
|
||||
void breakpoint_Relocation::unpack_data() {
|
||||
_bits = live_bits();
|
||||
|
||||
int targetlen = datalen() - 1 - instrlen();
|
||||
jint target_bits = 0;
|
||||
if (targetlen == 0) target_bits = 0;
|
||||
else if (targetlen == 1) target_bits = *(data()+1);
|
||||
else if (targetlen == 2) target_bits = relocInfo::jint_from_data(data()+1);
|
||||
else { ShouldNotReachHere(); }
|
||||
|
||||
_target = internal() ? address_from_scaled_offset(target_bits, addr())
|
||||
: index_to_runtime_address (target_bits);
|
||||
}
|
||||
|
||||
|
||||
//// miscellaneous methods
|
||||
oop* oop_Relocation::oop_addr() {
|
||||
int n = _oop_index;
|
||||
|
@ -933,81 +863,6 @@ address internal_word_Relocation::target() {
|
|||
return target;
|
||||
}
|
||||
|
||||
|
||||
breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
|
||||
bool active = false;
|
||||
bool enabled = (kind == initialization);
|
||||
bool removable = (kind != safepoint);
|
||||
bool settable = (target == NULL);
|
||||
|
||||
int bits = kind;
|
||||
if (enabled) bits |= enabled_state;
|
||||
if (internal) bits |= internal_attr;
|
||||
if (removable) bits |= removable_attr;
|
||||
if (settable) bits |= settable_attr;
|
||||
|
||||
_bits = bits | high_bit;
|
||||
_target = target;
|
||||
|
||||
assert(this->kind() == kind, "kind encoded");
|
||||
assert(this->enabled() == enabled, "enabled encoded");
|
||||
assert(this->active() == active, "active encoded");
|
||||
assert(this->internal() == internal, "internal encoded");
|
||||
assert(this->removable() == removable, "removable encoded");
|
||||
assert(this->settable() == settable, "settable encoded");
|
||||
}
|
||||
|
||||
|
||||
address breakpoint_Relocation::target() const {
|
||||
return _target;
|
||||
}
|
||||
|
||||
|
||||
void breakpoint_Relocation::set_target(address x) {
|
||||
assert(settable(), "must be settable");
|
||||
jint target_bits =
|
||||
(jint)(internal() ? scaled_offset (x, addr())
|
||||
: runtime_address_to_index(x));
|
||||
short* p = &live_bits() + 1;
|
||||
p = add_jint(p, target_bits);
|
||||
assert(p == instrs(), "new target must fit");
|
||||
_target = x;
|
||||
}
|
||||
|
||||
|
||||
void breakpoint_Relocation::set_enabled(bool b) {
|
||||
if (enabled() == b) return;
|
||||
|
||||
if (b) {
|
||||
set_bits(bits() | enabled_state);
|
||||
} else {
|
||||
set_active(false); // remove the actual breakpoint insn, if any
|
||||
set_bits(bits() & ~enabled_state);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void breakpoint_Relocation::set_active(bool b) {
|
||||
assert(!b || enabled(), "cannot activate a disabled breakpoint");
|
||||
|
||||
if (active() == b) return;
|
||||
|
||||
// %%% should probably seize a lock here (might not be the right lock)
|
||||
//MutexLockerEx ml_patch(Patching_lock, true);
|
||||
//if (active() == b) return; // recheck state after locking
|
||||
|
||||
if (b) {
|
||||
set_bits(bits() | active_state);
|
||||
if (instrlen() == 0)
|
||||
fatal("breakpoints in original code must be undoable");
|
||||
pd_swap_in_breakpoint (addr(), instrs(), instrlen());
|
||||
} else {
|
||||
set_bits(bits() & ~active_state);
|
||||
pd_swap_out_breakpoint(addr(), instrs(), instrlen());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------------------
|
||||
// Non-product code
|
||||
|
||||
|
|
|
@ -49,9 +49,6 @@ class NativeMovConstReg;
|
|||
// RelocIterator
|
||||
// A StackObj which iterates over the relocations associated with
|
||||
// a range of code addresses. Can be used to operate a copy of code.
|
||||
// PatchingRelocIterator
|
||||
// Specialized subtype of RelocIterator which removes breakpoints
|
||||
// temporarily during iteration, then restores them.
|
||||
// BoundRelocation
|
||||
// An _internal_ type shared by packers and unpackers of relocations.
|
||||
// It pastes together a RelocationHolder with some pointers into
|
||||
|
@ -204,15 +201,6 @@ class NativeMovConstReg;
|
|||
// immediate field must not straddle a unit of memory coherence.
|
||||
// //%note reloc_3
|
||||
//
|
||||
// relocInfo::breakpoint_type -- a conditional breakpoint in the code
|
||||
// Value: none
|
||||
// Instruction types: any whatsoever
|
||||
// Data: [b [T]t i...]
|
||||
// The b is a bit-packed word representing the breakpoint's attributes.
|
||||
// The t is a target address which the breakpoint calls (when it is enabled).
|
||||
// The i... is a place to store one or two instruction words overwritten
|
||||
// by a trap, so that the breakpoint may be subsequently removed.
|
||||
//
|
||||
// relocInfo::static_stub_type -- an extra stub for each static_call_type
|
||||
// Value: none
|
||||
// Instruction types: a virtual call: { set_oop; jump; }
|
||||
|
@ -271,8 +259,8 @@ class relocInfo VALUE_OBJ_CLASS_SPEC {
|
|||
section_word_type = 9, // internal, but a cross-section reference
|
||||
poll_type = 10, // polling instruction for safepoints
|
||||
poll_return_type = 11, // polling instruction for safepoints at return
|
||||
breakpoint_type = 12, // an initialization barrier or safepoint
|
||||
metadata_type = 13, // metadata that used to be oops
|
||||
metadata_type = 12, // metadata that used to be oops
|
||||
yet_unused_type_1 = 13, // Still unused
|
||||
yet_unused_type_2 = 14, // Still unused
|
||||
data_prefix_tag = 15, // tag for a prefix (carries data arguments)
|
||||
type_mask = 15 // A mask which selects only the above values
|
||||
|
@ -312,7 +300,6 @@ class relocInfo VALUE_OBJ_CLASS_SPEC {
|
|||
visitor(internal_word) \
|
||||
visitor(poll) \
|
||||
visitor(poll_return) \
|
||||
visitor(breakpoint) \
|
||||
visitor(section_word) \
|
||||
|
||||
|
||||
|
@ -454,7 +441,7 @@ class relocInfo VALUE_OBJ_CLASS_SPEC {
|
|||
public:
|
||||
enum {
|
||||
// Conservatively large estimate of maximum length (in shorts)
|
||||
// of any relocation record (probably breakpoints are largest).
|
||||
// of any relocation record.
|
||||
// Extended format is length prefix, data words, and tag/offset suffix.
|
||||
length_limit = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
|
||||
have_format = format_width > 0
|
||||
|
@ -571,8 +558,6 @@ class RelocIterator : public StackObj {
|
|||
|
||||
void initialize(nmethod* nm, address begin, address limit);
|
||||
|
||||
friend class PatchingRelocIterator;
|
||||
// make an uninitialized one, for PatchingRelocIterator:
|
||||
RelocIterator() { initialize_misc(); }
|
||||
|
||||
public:
|
||||
|
@ -779,9 +764,6 @@ class Relocation VALUE_OBJ_CLASS_SPEC {
|
|||
void pd_verify_data_value (address x, intptr_t off) { pd_set_data_value(x, off, true); }
|
||||
address pd_call_destination (address orig_addr = NULL);
|
||||
void pd_set_call_destination (address x);
|
||||
void pd_swap_in_breakpoint (address x, short* instrs, int instrlen);
|
||||
void pd_swap_out_breakpoint (address x, short* instrs, int instrlen);
|
||||
static int pd_breakpoint_size ();
|
||||
|
||||
// this extracts the address of an address in the code stream instead of the reloc data
|
||||
address* pd_address_in_code ();
|
||||
|
@ -1302,87 +1284,6 @@ class poll_return_Relocation : public Relocation {
|
|||
void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
|
||||
};
|
||||
|
||||
|
||||
class breakpoint_Relocation : public Relocation {
|
||||
relocInfo::relocType type() { return relocInfo::breakpoint_type; }
|
||||
|
||||
enum {
|
||||
// attributes which affect the interpretation of the data:
|
||||
removable_attr = 0x0010, // buffer [i...] allows for undoing the trap
|
||||
internal_attr = 0x0020, // the target is an internal addr (local stub)
|
||||
settable_attr = 0x0040, // the target is settable
|
||||
|
||||
// states which can change over time:
|
||||
enabled_state = 0x0100, // breakpoint must be active in running code
|
||||
active_state = 0x0200, // breakpoint instruction actually in code
|
||||
|
||||
kind_mask = 0x000F, // mask for extracting kind
|
||||
high_bit = 0x4000 // extra bit which is always set
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
// kinds:
|
||||
initialization = 1,
|
||||
safepoint = 2
|
||||
};
|
||||
|
||||
// If target is NULL, 32 bits are reserved for a later set_target().
|
||||
static RelocationHolder spec(int kind, address target = NULL, bool internal_target = false) {
|
||||
RelocationHolder rh = newHolder();
|
||||
new(rh) breakpoint_Relocation(kind, target, internal_target);
|
||||
return rh;
|
||||
}
|
||||
|
||||
private:
|
||||
// We require every bits value to NOT to fit into relocInfo::datalen_width,
|
||||
// because we are going to actually store state in the reloc, and so
|
||||
// cannot allow it to be compressed (and hence copied by the iterator).
|
||||
|
||||
short _bits; // bit-encoded kind, attrs, & state
|
||||
address _target;
|
||||
|
||||
breakpoint_Relocation(int kind, address target, bool internal_target);
|
||||
|
||||
friend class RelocIterator;
|
||||
breakpoint_Relocation() { }
|
||||
|
||||
short bits() const { return _bits; }
|
||||
short& live_bits() const { return data()[0]; }
|
||||
short* instrs() const { return data() + datalen() - instrlen(); }
|
||||
int instrlen() const { return removable() ? pd_breakpoint_size() : 0; }
|
||||
|
||||
void set_bits(short x) {
|
||||
assert(live_bits() == _bits, "must be the only mutator of reloc info");
|
||||
live_bits() = _bits = x;
|
||||
}
|
||||
|
||||
public:
|
||||
address target() const;
|
||||
void set_target(address x);
|
||||
|
||||
int kind() const { return bits() & kind_mask; }
|
||||
bool enabled() const { return (bits() & enabled_state) != 0; }
|
||||
bool active() const { return (bits() & active_state) != 0; }
|
||||
bool internal() const { return (bits() & internal_attr) != 0; }
|
||||
bool removable() const { return (bits() & removable_attr) != 0; }
|
||||
bool settable() const { return (bits() & settable_attr) != 0; }
|
||||
|
||||
void set_enabled(bool b); // to activate, you must also say set_active
|
||||
void set_active(bool b); // actually inserts bpt (must be enabled 1st)
|
||||
|
||||
// data is packed as 16 bits, followed by the target (1 or 2 words), followed
|
||||
// if necessary by empty storage for saving away original instruction bytes.
|
||||
void pack_data_to(CodeSection* dest);
|
||||
void unpack_data();
|
||||
|
||||
// during certain operations, breakpoints must be out of the way:
|
||||
void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
|
||||
assert(!active(), "cannot perform relocation on enabled breakpoints");
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// We know all the xxx_Relocation classes, so now we can define these:
|
||||
#define EACH_CASE(name) \
|
||||
inline name##_Relocation* RelocIterator::name##_reloc() { \
|
||||
|
@ -1401,25 +1302,4 @@ inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
|
|||
initialize(nm, begin, limit);
|
||||
}
|
||||
|
||||
// if you are going to patch code, you should use this subclass of
|
||||
// RelocIterator
|
||||
class PatchingRelocIterator : public RelocIterator {
|
||||
private:
|
||||
RelocIterator _init_state;
|
||||
|
||||
void prepass(); // deactivates all breakpoints
|
||||
void postpass(); // reactivates all enabled breakpoints
|
||||
|
||||
// do not copy these puppies; it would have unpredictable side effects
|
||||
// these are private and have no bodies defined because they should not be called
|
||||
PatchingRelocIterator(const RelocIterator&);
|
||||
void operator=(const RelocIterator&);
|
||||
|
||||
public:
|
||||
PatchingRelocIterator(nmethod* nm, address begin = NULL, address limit = NULL)
|
||||
: RelocIterator(nm, begin, limit) { prepass(); }
|
||||
|
||||
~PatchingRelocIterator() { postpass(); }
|
||||
};
|
||||
|
||||
#endif // SHARE_VM_CODE_RELOCINFO_HPP
|
||||
|
|
|
@ -481,9 +481,9 @@ BytecodeInterpreter::run(interpreterState istate) {
|
|||
// So we have a second version of the assertion which handles the case where EnableInvokeDynamic was
|
||||
// switched off because of the wrong classes.
|
||||
if (EnableInvokeDynamic || FLAG_IS_CMDLINE(EnableInvokeDynamic)) {
|
||||
assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
|
||||
assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
|
||||
} else {
|
||||
const int extra_stack_entries = Method::extra_stack_entries_for_indy;
|
||||
const int extra_stack_entries = Method::extra_stack_entries_for_jsr292;
|
||||
assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + extra_stack_entries
|
||||
+ 1), "bad stack limit");
|
||||
}
|
||||
|
@ -2233,7 +2233,7 @@ run:
|
|||
}
|
||||
|
||||
Method* method = cache->f1_as_method();
|
||||
VERIFY_OOP(method);
|
||||
if (VerifyOops) method->verify();
|
||||
|
||||
if (cache->has_appendix()) {
|
||||
ConstantPool* constants = METHOD->constants();
|
||||
|
@ -2265,8 +2265,7 @@ run:
|
|||
}
|
||||
|
||||
Method* method = cache->f1_as_method();
|
||||
|
||||
VERIFY_OOP(method);
|
||||
if (VerifyOops) method->verify();
|
||||
|
||||
if (cache->has_appendix()) {
|
||||
ConstantPool* constants = METHOD->constants();
|
||||
|
|
|
@ -2943,12 +2943,20 @@ Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|||
Node* my_mem = in(MemBarNode::Precedent);
|
||||
// The MembarAquire may keep an unused LoadNode alive through the Precedent edge
|
||||
if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
|
||||
// if the Precedent is a decodeN and its input (a Load) is used at more than one place,
|
||||
// replace this Precedent (decodeN) with the Load instead.
|
||||
if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) {
|
||||
Node* load_node = my_mem->in(1);
|
||||
set_req(MemBarNode::Precedent, load_node);
|
||||
phase->is_IterGVN()->_worklist.push(my_mem);
|
||||
my_mem = load_node;
|
||||
} else {
|
||||
assert(my_mem->unique_out() == this, "sanity");
|
||||
phase->hash_delete(this);
|
||||
del_req(Precedent);
|
||||
phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
|
||||
my_mem = NULL;
|
||||
}
|
||||
}
|
||||
if (my_mem != NULL && my_mem->is_Mem()) {
|
||||
const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
|
||||
// Check for scalar replaced object reference.
|
||||
|
|
776
hotspot/test/compiler/8005956/PolynomialRoot.java
Normal file
776
hotspot/test/compiler/8005956/PolynomialRoot.java
Normal file
|
@ -0,0 +1,776 @@
|
|||
//package com.polytechnik.utils;
|
||||
/*
|
||||
* (C) Vladislav Malyshkin 2010
|
||||
* This file is under GPL version 3.
|
||||
*
|
||||
*/
|
||||
|
||||
/** Polynomial root.
|
||||
* @version $Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $
|
||||
* @author Vladislav Malyshkin mal@gromco.com
|
||||
*/
|
||||
|
||||
/**
|
||||
* @test
|
||||
* @bug 8005956
|
||||
* @summary C2: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG defined in this block
|
||||
*
|
||||
* @run main PolynomialRoot
|
||||
*/
|
||||
|
||||
public class PolynomialRoot {
|
||||
|
||||
|
||||
public static int findPolynomialRoots(final int n,
|
||||
final double [] p,
|
||||
final double [] re_root,
|
||||
final double [] im_root)
|
||||
{
|
||||
if(n==4)
|
||||
{
|
||||
return root4(p,re_root,im_root);
|
||||
}
|
||||
else if(n==3)
|
||||
{
|
||||
return root3(p,re_root,im_root);
|
||||
}
|
||||
else if(n==2)
|
||||
{
|
||||
return root2(p,re_root,im_root);
|
||||
}
|
||||
else if(n==1)
|
||||
{
|
||||
return root1(p,re_root,im_root);
|
||||
}
|
||||
else
|
||||
{
|
||||
throw new RuntimeException("n="+n+" is not supported yet");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
static final double SQRT3=Math.sqrt(3.0),SQRT2=Math.sqrt(2.0);
|
||||
|
||||
|
||||
private static final boolean PRINT_DEBUG=false;
|
||||
|
||||
public static int root4(final double [] p,final double [] re_root,final double [] im_root)
|
||||
{
|
||||
if(PRINT_DEBUG) System.err.println("=====================root4:p="+java.util.Arrays.toString(p));
|
||||
final double vs=p[4];
|
||||
if(PRINT_DEBUG) System.err.println("p[4]="+p[4]);
|
||||
if(!(Math.abs(vs)>EPS))
|
||||
{
|
||||
re_root[0]=re_root[1]=re_root[2]=re_root[3]=
|
||||
im_root[0]=im_root[1]=im_root[2]=im_root[3]=Double.NaN;
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* zsolve_quartic.c - finds the complex roots of
|
||||
* x^4 + a x^3 + b x^2 + c x + d = 0
|
||||
*/
|
||||
final double a=p[3]/vs,b=p[2]/vs,c=p[1]/vs,d=p[0]/vs;
|
||||
if(PRINT_DEBUG) System.err.println("input a="+a+" b="+b+" c="+c+" d="+d);
|
||||
|
||||
|
||||
final double r4 = 1.0 / 4.0;
|
||||
final double q2 = 1.0 / 2.0, q4 = 1.0 / 4.0, q8 = 1.0 / 8.0;
|
||||
final double q1 = 3.0 / 8.0, q3 = 3.0 / 16.0;
|
||||
final int mt;
|
||||
|
||||
/* Deal easily with the cases where the quartic is degenerate. The
|
||||
* ordering of solutions is done explicitly. */
|
||||
if (0 == b && 0 == c)
|
||||
{
|
||||
if (0 == d)
|
||||
{
|
||||
re_root[0]=-a;
|
||||
im_root[0]=im_root[1]=im_root[2]=im_root[3]=0;
|
||||
re_root[1]=re_root[2]=re_root[3]=0;
|
||||
return 4;
|
||||
}
|
||||
else if (0 == a)
|
||||
{
|
||||
if (d > 0)
|
||||
{
|
||||
final double sq4 = Math.sqrt(Math.sqrt(d));
|
||||
re_root[0]=sq4*SQRT2/2;
|
||||
im_root[0]=re_root[0];
|
||||
re_root[1]=-re_root[0];
|
||||
im_root[1]=re_root[0];
|
||||
re_root[2]=-re_root[0];
|
||||
im_root[2]=-re_root[0];
|
||||
re_root[3]=re_root[0];
|
||||
im_root[3]=-re_root[0];
|
||||
if(PRINT_DEBUG) System.err.println("Path a=0 d>0");
|
||||
}
|
||||
else
|
||||
{
|
||||
final double sq4 = Math.sqrt(Math.sqrt(-d));
|
||||
re_root[0]=sq4;
|
||||
im_root[0]=0;
|
||||
re_root[1]=0;
|
||||
im_root[1]=sq4;
|
||||
re_root[2]=0;
|
||||
im_root[2]=-sq4;
|
||||
re_root[3]=-sq4;
|
||||
im_root[3]=0;
|
||||
if(PRINT_DEBUG) System.err.println("Path a=0 d<0");
|
||||
}
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
|
||||
if (0.0 == c && 0.0 == d)
|
||||
{
|
||||
root2(new double []{p[2],p[3],p[4]},re_root,im_root);
|
||||
re_root[2]=im_root[2]=re_root[3]=im_root[3]=0;
|
||||
return 4;
|
||||
}
|
||||
|
||||
if(PRINT_DEBUG) System.err.println("G Path c="+c+" d="+d);
|
||||
final double [] u=new double[3];
|
||||
|
||||
if(PRINT_DEBUG) System.err.println("Generic Path");
|
||||
/* For non-degenerate solutions, proceed by constructing and
|
||||
* solving the resolvent cubic */
|
||||
final double aa = a * a;
|
||||
final double pp = b - q1 * aa;
|
||||
final double qq = c - q2 * a * (b - q4 * aa);
|
||||
final double rr = d - q4 * a * (c - q4 * a * (b - q3 * aa));
|
||||
final double rc = q2 * pp , rc3 = rc / 3;
|
||||
final double sc = q4 * (q4 * pp * pp - rr);
|
||||
final double tc = -(q8 * qq * q8 * qq);
|
||||
if(PRINT_DEBUG) System.err.println("aa="+aa+" pp="+pp+" qq="+qq+" rr="+rr+" rc="+rc+" sc="+sc+" tc="+tc);
|
||||
final boolean flag_realroots;
|
||||
|
||||
/* This code solves the resolvent cubic in a convenient fashion
|
||||
* for this implementation of the quartic. If there are three real
|
||||
* roots, then they are placed directly into u[]. If two are
|
||||
* complex, then the real root is put into u[0] and the real
|
||||
* and imaginary part of the complex roots are placed into
|
||||
* u[1] and u[2], respectively. */
|
||||
{
|
||||
final double qcub = (rc * rc - 3 * sc);
|
||||
final double rcub = (rc*(2 * rc * rc - 9 * sc) + 27 * tc);
|
||||
|
||||
final double Q = qcub / 9;
|
||||
final double R = rcub / 54;
|
||||
|
||||
final double Q3 = Q * Q * Q;
|
||||
final double R2 = R * R;
|
||||
|
||||
final double CR2 = 729 * rcub * rcub;
|
||||
final double CQ3 = 2916 * qcub * qcub * qcub;
|
||||
|
||||
if(PRINT_DEBUG) System.err.println("CR2="+CR2+" CQ3="+CQ3+" R="+R+" Q="+Q);
|
||||
|
||||
if (0 == R && 0 == Q)
|
||||
{
|
||||
flag_realroots=true;
|
||||
u[0] = -rc3;
|
||||
u[1] = -rc3;
|
||||
u[2] = -rc3;
|
||||
}
|
||||
else if (CR2 == CQ3)
|
||||
{
|
||||
flag_realroots=true;
|
||||
final double sqrtQ = Math.sqrt (Q);
|
||||
if (R > 0)
|
||||
{
|
||||
u[0] = -2 * sqrtQ - rc3;
|
||||
u[1] = sqrtQ - rc3;
|
||||
u[2] = sqrtQ - rc3;
|
||||
}
|
||||
else
|
||||
{
|
||||
u[0] = -sqrtQ - rc3;
|
||||
u[1] = -sqrtQ - rc3;
|
||||
u[2] = 2 * sqrtQ - rc3;
|
||||
}
|
||||
}
|
||||
else if (R2 < Q3)
|
||||
{
|
||||
flag_realroots=true;
|
||||
final double ratio = (R >= 0?1:-1) * Math.sqrt (R2 / Q3);
|
||||
final double theta = Math.acos (ratio);
|
||||
final double norm = -2 * Math.sqrt (Q);
|
||||
|
||||
u[0] = norm * Math.cos (theta / 3) - rc3;
|
||||
u[1] = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - rc3;
|
||||
u[2] = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - rc3;
|
||||
}
|
||||
else
|
||||
{
|
||||
flag_realroots=false;
|
||||
final double A = -(R >= 0?1:-1)*Math.pow(Math.abs(R)+Math.sqrt(R2-Q3),1.0/3.0);
|
||||
final double B = Q / A;
|
||||
|
||||
u[0] = A + B - rc3;
|
||||
u[1] = -0.5 * (A + B) - rc3;
|
||||
u[2] = -(SQRT3*0.5) * Math.abs (A - B);
|
||||
}
|
||||
if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+" u[1]="+u[1]+" u[2]="+u[2]+" qq="+qq+" disc="+((CR2 - CQ3) / 2125764.0));
|
||||
}
|
||||
/* End of solution to resolvent cubic */
|
||||
|
||||
/* Combine the square roots of the roots of the cubic
|
||||
* resolvent appropriately. Also, calculate 'mt' which
|
||||
* designates the nature of the roots:
|
||||
* mt=1 : 4 real roots
|
||||
* mt=2 : 0 real roots
|
||||
* mt=3 : 2 real roots
|
||||
*/
|
||||
|
||||
|
||||
final double w1_re,w1_im,w2_re,w2_im,w3_re,w3_im,mod_w1w2,mod_w1w2_squared;
|
||||
if (flag_realroots)
|
||||
{
|
||||
mod_w1w2=-1;
|
||||
mt = 2;
|
||||
int jmin=0;
|
||||
double vmin=Math.abs(u[jmin]);
|
||||
for(int j=1;j<3;j++)
|
||||
{
|
||||
final double vx=Math.abs(u[j]);
|
||||
if(vx<vmin)
|
||||
{
|
||||
vmin=vx;
|
||||
jmin=j;
|
||||
}
|
||||
}
|
||||
final double u1=u[(jmin+1)%3],u2=u[(jmin+2)%3];
|
||||
mod_w1w2_squared=Math.abs(u1*u2);
|
||||
if(u1>=0)
|
||||
{
|
||||
w1_re=Math.sqrt(u1);
|
||||
w1_im=0;
|
||||
}
|
||||
else
|
||||
{
|
||||
w1_re=0;
|
||||
w1_im=Math.sqrt(-u1);
|
||||
}
|
||||
if(u2>=0)
|
||||
{
|
||||
w2_re=Math.sqrt(u2);
|
||||
w2_im=0;
|
||||
}
|
||||
else
|
||||
{
|
||||
w2_re=0;
|
||||
w2_im=Math.sqrt(-u2);
|
||||
}
|
||||
if(PRINT_DEBUG) System.err.println("u1="+u1+" u2="+u2+" jmin="+jmin);
|
||||
}
|
||||
else
|
||||
{
|
||||
mt = 3;
|
||||
final double w_mod2_sq=u[1]*u[1]+u[2]*u[2],w_mod2=Math.sqrt(w_mod2_sq),w_mod=Math.sqrt(w_mod2);
|
||||
if(w_mod2_sq<=0)
|
||||
{
|
||||
w1_re=w1_im=0;
|
||||
}
|
||||
else
|
||||
{
|
||||
// calculate square root of a complex number (u[1],u[2])
|
||||
// the result is in the (w1_re,w1_im)
|
||||
final double absu1=Math.abs(u[1]),absu2=Math.abs(u[2]),w;
|
||||
if(absu1>=absu2)
|
||||
{
|
||||
final double t=absu2/absu1;
|
||||
w=Math.sqrt(absu1*0.5 * (1.0 + Math.sqrt(1.0 + t * t)));
|
||||
if(PRINT_DEBUG) System.err.println(" Path1 ");
|
||||
}
|
||||
else
|
||||
{
|
||||
final double t=absu1/absu2;
|
||||
w=Math.sqrt(absu2*0.5 * (t + Math.sqrt(1.0 + t * t)));
|
||||
if(PRINT_DEBUG) System.err.println(" Path1a ");
|
||||
}
|
||||
if(u[1]>=0)
|
||||
{
|
||||
w1_re=w;
|
||||
w1_im=u[2]/(2*w);
|
||||
if(PRINT_DEBUG) System.err.println(" Path2 ");
|
||||
}
|
||||
else
|
||||
{
|
||||
final double vi = (u[2] >= 0) ? w : -w;
|
||||
w1_re=u[2]/(2*vi);
|
||||
w1_im=vi;
|
||||
if(PRINT_DEBUG) System.err.println(" Path2a ");
|
||||
}
|
||||
}
|
||||
final double absu0=Math.abs(u[0]);
|
||||
if(w_mod2>=absu0)
|
||||
{
|
||||
mod_w1w2=w_mod2;
|
||||
mod_w1w2_squared=w_mod2_sq;
|
||||
w2_re=w1_re;
|
||||
w2_im=-w1_im;
|
||||
}
|
||||
else
|
||||
{
|
||||
mod_w1w2=-1;
|
||||
mod_w1w2_squared=w_mod2*absu0;
|
||||
if(u[0]>=0)
|
||||
{
|
||||
w2_re=Math.sqrt(absu0);
|
||||
w2_im=0;
|
||||
}
|
||||
else
|
||||
{
|
||||
w2_re=0;
|
||||
w2_im=Math.sqrt(absu0);
|
||||
}
|
||||
}
|
||||
if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+"u[1]="+u[1]+" u[2]="+u[2]+" absu0="+absu0+" w_mod="+w_mod+" w_mod2="+w_mod2);
|
||||
}
|
||||
|
||||
/* Solve the quadratic in order to obtain the roots
|
||||
* to the quartic */
|
||||
if(mod_w1w2>0)
|
||||
{
|
||||
// a shorcut to reduce rounding error
|
||||
w3_re=qq/(-8)/mod_w1w2;
|
||||
w3_im=0;
|
||||
}
|
||||
else if(mod_w1w2_squared>0)
|
||||
{
|
||||
// regular path
|
||||
final double mqq8n=qq/(-8)/mod_w1w2_squared;
|
||||
w3_re=mqq8n*(w1_re*w2_re-w1_im*w2_im);
|
||||
w3_im=-mqq8n*(w1_re*w2_im+w2_re*w1_im);
|
||||
}
|
||||
else
|
||||
{
|
||||
// typically occur when qq==0
|
||||
w3_re=w3_im=0;
|
||||
}
|
||||
|
||||
final double h = r4 * a;
|
||||
if(PRINT_DEBUG) System.err.println("w1_re="+w1_re+" w1_im="+w1_im+" w2_re="+w2_re+" w2_im="+w2_im+" w3_re="+w3_re+" w3_im="+w3_im+" h="+h);
|
||||
|
||||
re_root[0]=w1_re+w2_re+w3_re-h;
|
||||
im_root[0]=w1_im+w2_im+w3_im;
|
||||
re_root[1]=-(w1_re+w2_re)+w3_re-h;
|
||||
im_root[1]=-(w1_im+w2_im)+w3_im;
|
||||
re_root[2]=w2_re-w1_re-w3_re-h;
|
||||
im_root[2]=w2_im-w1_im-w3_im;
|
||||
re_root[3]=w1_re-w2_re-w3_re-h;
|
||||
im_root[3]=w1_im-w2_im-w3_im;
|
||||
|
||||
return 4;
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void setRandomP(final double [] p,final int n,java.util.Random r)
|
||||
{
|
||||
if(r.nextDouble()<0.1)
|
||||
{
|
||||
// integer coefficiens
|
||||
for(int j=0;j<p.length;j++)
|
||||
{
|
||||
if(j<=n)
|
||||
{
|
||||
p[j]=(r.nextInt(2)<=0?-1:1)*r.nextInt(10);
|
||||
}
|
||||
else
|
||||
{
|
||||
p[j]=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// real coefficiens
|
||||
for(int j=0;j<p.length;j++)
|
||||
{
|
||||
if(j<=n)
|
||||
{
|
||||
p[j]=-1+2*r.nextDouble();
|
||||
}
|
||||
else
|
||||
{
|
||||
p[j]=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(Math.abs(p[n])<1e-2)
|
||||
{
|
||||
p[n]=(r.nextInt(2)<=0?-1:1)*(0.1+r.nextDouble());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void checkValues(final double [] p,
|
||||
final int n,
|
||||
final double rex,
|
||||
final double imx,
|
||||
final double eps,
|
||||
final String txt)
|
||||
{
|
||||
double res=0,ims=0,sabs=0;
|
||||
final double xabs=Math.abs(rex)+Math.abs(imx);
|
||||
for(int k=n;k>=0;k--)
|
||||
{
|
||||
final double res1=(res*rex-ims*imx)+p[k];
|
||||
final double ims1=(ims*rex+res*imx);
|
||||
res=res1;
|
||||
ims=ims1;
|
||||
sabs+=xabs*sabs+p[k];
|
||||
}
|
||||
sabs=Math.abs(sabs);
|
||||
if(false && sabs>1/eps?
|
||||
(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))
|
||||
:
|
||||
(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps)))
|
||||
{
|
||||
throw new RuntimeException(
|
||||
getPolinomTXT(p)+"\n"+
|
||||
"\t x.r="+rex+" x.i="+imx+"\n"+
|
||||
"res/sabs="+(res/sabs)+" ims/sabs="+(ims/sabs)+
|
||||
" sabs="+sabs+
|
||||
"\nres="+res+" ims="+ims+" n="+n+" eps="+eps+" "+
|
||||
" sabs>1/eps="+(sabs>1/eps)+
|
||||
" f1="+(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))+
|
||||
" f2="+(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps))+
|
||||
" "+txt);
|
||||
}
|
||||
}
|
||||
|
||||
static String getPolinomTXT(final double [] p)
|
||||
{
|
||||
final StringBuilder buf=new StringBuilder();
|
||||
buf.append("order="+(p.length-1)+"\t");
|
||||
for(int k=0;k<p.length;k++)
|
||||
{
|
||||
buf.append("p["+k+"]="+p[k]+";");
|
||||
}
|
||||
return buf.toString();
|
||||
}
|
||||
|
||||
static String getRootsTXT(int nr,final double [] re,final double [] im)
|
||||
{
|
||||
final StringBuilder buf=new StringBuilder();
|
||||
for(int k=0;k<nr;k++)
|
||||
{
|
||||
buf.append("x."+k+"("+re[k]+","+im[k]+")\n");
|
||||
}
|
||||
return buf.toString();
|
||||
}
|
||||
|
||||
static void testRoots(final int n,
|
||||
final int n_tests,
|
||||
final java.util.Random rn,
|
||||
final double eps)
|
||||
{
|
||||
final double [] p=new double [n+1];
|
||||
final double [] rex=new double [n],imx=new double [n];
|
||||
for(int i=0;i<n_tests;i++)
|
||||
{
|
||||
for(int dg=n;dg-->-1;)
|
||||
{
|
||||
for(int dr=3;dr-->0;)
|
||||
{
|
||||
setRandomP(p,n,rn);
|
||||
for(int j=0;j<=dg;j++)
|
||||
{
|
||||
p[j]=0;
|
||||
}
|
||||
if(dr==0)
|
||||
{
|
||||
p[0]=-1+2.0*rn.nextDouble();
|
||||
}
|
||||
else if(dr==1)
|
||||
{
|
||||
p[0]=p[1]=0;
|
||||
}
|
||||
|
||||
findPolynomialRoots(n,p,rex,imx);
|
||||
|
||||
for(int j=0;j<n;j++)
|
||||
{
|
||||
//System.err.println("j="+j);
|
||||
checkValues(p,n,rex[j],imx[j],eps," t="+i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
System.err.println("testRoots(): n_tests="+n_tests+" OK, dim="+n);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
static final double EPS=0;
|
||||
|
||||
public static int root1(final double [] p,final double [] re_root,final double [] im_root)
|
||||
{
|
||||
if(!(Math.abs(p[1])>EPS))
|
||||
{
|
||||
re_root[0]=im_root[0]=Double.NaN;
|
||||
return -1;
|
||||
}
|
||||
re_root[0]=-p[0]/p[1];
|
||||
im_root[0]=0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
public static int root2(final double [] p,final double [] re_root,final double [] im_root)
|
||||
{
|
||||
if(!(Math.abs(p[2])>EPS))
|
||||
{
|
||||
re_root[0]=re_root[1]=im_root[0]=im_root[1]=Double.NaN;
|
||||
return -1;
|
||||
}
|
||||
final double b2=0.5*(p[1]/p[2]),c=p[0]/p[2],d=b2*b2-c;
|
||||
if(d>=0)
|
||||
{
|
||||
final double sq=Math.sqrt(d);
|
||||
if(b2<0)
|
||||
{
|
||||
re_root[1]=-b2+sq;
|
||||
re_root[0]=c/re_root[1];
|
||||
}
|
||||
else if(b2>0)
|
||||
{
|
||||
re_root[0]=-b2-sq;
|
||||
re_root[1]=c/re_root[0];
|
||||
}
|
||||
else
|
||||
{
|
||||
re_root[0]=-b2-sq;
|
||||
re_root[1]=-b2+sq;
|
||||
}
|
||||
im_root[0]=im_root[1]=0;
|
||||
}
|
||||
else
|
||||
{
|
||||
final double sq=Math.sqrt(-d);
|
||||
re_root[0]=re_root[1]=-b2;
|
||||
im_root[0]=sq;
|
||||
im_root[1]=-sq;
|
||||
}
|
||||
return 2;
|
||||
}
|
||||
|
||||
public static int root3(final double [] p,final double [] re_root,final double [] im_root)
|
||||
{
|
||||
final double vs=p[3];
|
||||
if(!(Math.abs(vs)>EPS))
|
||||
{
|
||||
re_root[0]=re_root[1]=re_root[2]=
|
||||
im_root[0]=im_root[1]=im_root[2]=Double.NaN;
|
||||
return -1;
|
||||
}
|
||||
final double a=p[2]/vs,b=p[1]/vs,c=p[0]/vs;
|
||||
/* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0
|
||||
*/
|
||||
final double q = (a * a - 3 * b);
|
||||
final double r = (a*(2 * a * a - 9 * b) + 27 * c);
|
||||
|
||||
final double Q = q / 9;
|
||||
final double R = r / 54;
|
||||
|
||||
final double Q3 = Q * Q * Q;
|
||||
final double R2 = R * R;
|
||||
|
||||
final double CR2 = 729 * r * r;
|
||||
final double CQ3 = 2916 * q * q * q;
|
||||
final double a3=a/3;
|
||||
|
||||
if (R == 0 && Q == 0)
|
||||
{
|
||||
re_root[0]=re_root[1]=re_root[2]=-a3;
|
||||
im_root[0]=im_root[1]=im_root[2]=0;
|
||||
return 3;
|
||||
}
|
||||
else if (CR2 == CQ3)
|
||||
{
|
||||
/* this test is actually R2 == Q3, written in a form suitable
|
||||
for exact computation with integers */
|
||||
|
||||
/* Due to finite precision some double roots may be missed, and
|
||||
will be considered to be a pair of complex roots z = x +/-
|
||||
epsilon i close to the real axis. */
|
||||
|
||||
final double sqrtQ = Math.sqrt (Q);
|
||||
|
||||
if (R > 0)
|
||||
{
|
||||
re_root[0] = -2 * sqrtQ - a3;
|
||||
re_root[1]=re_root[2]=sqrtQ - a3;
|
||||
im_root[0]=im_root[1]=im_root[2]=0;
|
||||
}
|
||||
else
|
||||
{
|
||||
re_root[0]=re_root[1] = -sqrtQ - a3;
|
||||
re_root[2]=2 * sqrtQ - a3;
|
||||
im_root[0]=im_root[1]=im_root[2]=0;
|
||||
}
|
||||
return 3;
|
||||
}
|
||||
else if (R2 < Q3)
|
||||
{
|
||||
final double sgnR = (R >= 0 ? 1 : -1);
|
||||
final double ratio = sgnR * Math.sqrt (R2 / Q3);
|
||||
final double theta = Math.acos (ratio);
|
||||
final double norm = -2 * Math.sqrt (Q);
|
||||
final double r0 = norm * Math.cos (theta/3) - a3;
|
||||
final double r1 = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - a3;
|
||||
final double r2 = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - a3;
|
||||
|
||||
re_root[0]=r0;
|
||||
re_root[1]=r1;
|
||||
re_root[2]=r2;
|
||||
im_root[0]=im_root[1]=im_root[2]=0;
|
||||
return 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
final double sgnR = (R >= 0 ? 1 : -1);
|
||||
final double A = -sgnR * Math.pow (Math.abs (R) + Math.sqrt (R2 - Q3), 1.0 / 3.0);
|
||||
final double B = Q / A;
|
||||
|
||||
re_root[0]=A + B - a3;
|
||||
im_root[0]=0;
|
||||
re_root[1]=-0.5 * (A + B) - a3;
|
||||
im_root[1]=-(SQRT3*0.5) * Math.abs(A - B);
|
||||
re_root[2]=re_root[1];
|
||||
im_root[2]=-im_root[1];
|
||||
return 3;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
static void root3a(final double [] p,final double [] re_root,final double [] im_root)
|
||||
{
|
||||
if(Math.abs(p[3])>EPS)
|
||||
{
|
||||
final double v=p[3],
|
||||
a=p[2]/v,b=p[1]/v,c=p[0]/v,
|
||||
a3=a/3,a3a=a3*a,
|
||||
pd3=(b-a3a)/3,
|
||||
qd2=a3*(a3a/3-0.5*b)+0.5*c,
|
||||
Q=pd3*pd3*pd3+qd2*qd2;
|
||||
if(Q<0)
|
||||
{
|
||||
// three real roots
|
||||
final double SQ=Math.sqrt(-Q);
|
||||
final double th=Math.atan2(SQ,-qd2);
|
||||
im_root[0]=im_root[1]=im_root[2]=0;
|
||||
final double f=2*Math.sqrt(-pd3);
|
||||
re_root[0]=f*Math.cos(th/3)-a3;
|
||||
re_root[1]=f*Math.cos((th+2*Math.PI)/3)-a3;
|
||||
re_root[2]=f*Math.cos((th+4*Math.PI)/3)-a3;
|
||||
//System.err.println("3r");
|
||||
}
|
||||
else
|
||||
{
|
||||
// one real & two complex roots
|
||||
final double SQ=Math.sqrt(Q);
|
||||
final double r1=-qd2+SQ,r2=-qd2-SQ;
|
||||
final double v1=Math.signum(r1)*Math.pow(Math.abs(r1),1.0/3),
|
||||
v2=Math.signum(r2)*Math.pow(Math.abs(r2),1.0/3),
|
||||
sv=v1+v2;
|
||||
// real root
|
||||
re_root[0]=sv-a3;
|
||||
im_root[0]=0;
|
||||
// complex roots
|
||||
re_root[1]=re_root[2]=-0.5*sv-a3;
|
||||
im_root[1]=(v1-v2)*(SQRT3*0.5);
|
||||
im_root[2]=-im_root[1];
|
||||
//System.err.println("1r2c");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
re_root[0]=re_root[1]=re_root[2]=im_root[0]=im_root[1]=im_root[2]=Double.NaN;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void printSpecialValues()
|
||||
{
|
||||
for(int st=0;st<6;st++)
|
||||
{
|
||||
//final double [] p=new double []{8,1,3,3.6,1};
|
||||
final double [] re_root=new double [4],im_root=new double [4];
|
||||
final double [] p;
|
||||
final int n;
|
||||
if(st<=3)
|
||||
{
|
||||
if(st<=0)
|
||||
{
|
||||
p=new double []{2,-4,6,-4,1};
|
||||
//p=new double []{-6,6,-6,8,-2};
|
||||
}
|
||||
else if(st==1)
|
||||
{
|
||||
p=new double []{0,-4,8,3,-9};
|
||||
}
|
||||
else if(st==2)
|
||||
{
|
||||
p=new double []{-1,0,2,0,-1};
|
||||
}
|
||||
else
|
||||
{
|
||||
p=new double []{-5,2,8,-2,-3};
|
||||
}
|
||||
root4(p,re_root,im_root);
|
||||
n=4;
|
||||
}
|
||||
else
|
||||
{
|
||||
p=new double []{0,2,0,1};
|
||||
if(st==4)
|
||||
{
|
||||
p[1]=-p[1];
|
||||
}
|
||||
root3(p,re_root,im_root);
|
||||
n=3;
|
||||
}
|
||||
System.err.println("======== n="+n);
|
||||
for(int i=0;i<=n;i++)
|
||||
{
|
||||
if(i<n)
|
||||
{
|
||||
System.err.println(String.valueOf(i)+"\t"+
|
||||
p[i]+"\t"+
|
||||
re_root[i]+"\t"+
|
||||
im_root[i]);
|
||||
}
|
||||
else
|
||||
{
|
||||
System.err.println(String.valueOf(i)+"\t"+p[i]+"\t");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
public static void main(final String [] args)
|
||||
{
|
||||
final long t0=System.currentTimeMillis();
|
||||
final double eps=1e-6;
|
||||
//checkRoots();
|
||||
final java.util.Random r=new java.util.Random(-1381923);
|
||||
printSpecialValues();
|
||||
|
||||
final int n_tests=10000000;
|
||||
//testRoots(2,n_tests,r,eps);
|
||||
//testRoots(3,n_tests,r,eps);
|
||||
testRoots(4,n_tests,r,eps);
|
||||
final long t1=System.currentTimeMillis();
|
||||
System.err.println("PolynomialRoot.main: "+n_tests+" tests OK done in "+(t1-t0)+" milliseconds. ver=$Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $");
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue