4511638: Double.toString(double) sometimes produces incorrect results

Reviewed-by: aturbanov, darcy, bpb
This commit is contained in:
Raffaello Giulietti 2022-06-01 21:53:54 +00:00 committed by Joe Darcy
parent 2f19144249
commit 72bcf2aa03
18 changed files with 4075 additions and 120 deletions

View file

@ -25,8 +25,10 @@
package java.lang; package java.lang;
import jdk.internal.math.FloatingDecimal; import jdk.internal.math.DoubleToDecimal;
import jdk.internal.math.FloatToDecimal;
import java.io.IOException;
import java.util.Arrays; import java.util.Arrays;
import java.util.Spliterator; import java.util.Spliterator;
import java.util.stream.IntStream; import java.util.stream.IntStream;
@ -875,8 +877,13 @@ abstract sealed class AbstractStringBuilder implements Appendable, CharSequence
* @return a reference to this object. * @return a reference to this object.
*/ */
public AbstractStringBuilder append(float f) { public AbstractStringBuilder append(float f) {
FloatingDecimal.appendTo(f,this); try {
FloatToDecimal.appendTo(f, this);
} catch (IOException e) {
throw new AssertionError(e);
}
return this; return this;
} }
/** /**
@ -892,7 +899,11 @@ abstract sealed class AbstractStringBuilder implements Appendable, CharSequence
* @return a reference to this object. * @return a reference to this object.
*/ */
public AbstractStringBuilder append(double d) { public AbstractStringBuilder append(double d) {
FloatingDecimal.appendTo(d,this); try {
DoubleToDecimal.appendTo(d, this);
} catch (IOException e) {
throw new AssertionError(e);
}
return this; return this;
} }

View file

@ -32,6 +32,7 @@ import java.util.Optional;
import jdk.internal.math.FloatingDecimal; import jdk.internal.math.FloatingDecimal;
import jdk.internal.math.DoubleConsts; import jdk.internal.math.DoubleConsts;
import jdk.internal.math.DoubleToDecimal;
import jdk.internal.vm.annotation.IntrinsicCandidate; import jdk.internal.vm.annotation.IntrinsicCandidate;
/** /**
@ -280,39 +281,109 @@ public final class Double extends Number
* {@code "-0.0"} and positive zero produces the result * {@code "-0.0"} and positive zero produces the result
* {@code "0.0"}. * {@code "0.0"}.
* *
* <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less * <li> Otherwise <i>m</i> is positive and finite.
* than 10<sup>7</sup>, then it is represented as the integer part of * It is converted to a string in two stages:
* <i>m</i>, in decimal form with no leading zeroes, followed by * <ul>
* '{@code .}' ({@code '\u005Cu002E'}), followed by one or * <li> <em>Selection of a decimal</em>:
* more decimal digits representing the fractional part of <i>m</i>. * A well-defined decimal <i>d</i><sub><i>m</i></sub>
* is selected to represent <i>m</i>.
* This decimal is (almost always) the <em>shortest</em> one that
* rounds to <i>m</i> according to the round to nearest
* rounding policy of IEEE 754 floating-point arithmetic.
* <li> <em>Formatting as a string</em>:
* The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string,
* either in plain or in computerized scientific notation,
* depending on its value.
* </ul>
* </ul>
* </ul>
* *
* <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or * <p>A <em>decimal</em> is a number of the form
* equal to 10<sup>7</sup>, then it is represented in so-called * <i>s</i>&times;10<sup><i>i</i></sup>
* "computerized scientific notation." Let <i>n</i> be the unique * for some (unique) integers <i>s</i> &gt; 0 and <i>i</i> such that
* integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <} * <i>s</i> is not a multiple of 10.
* 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the * These integers are the <em>significand</em> and
* mathematically exact quotient of <i>m</i> and * the <em>exponent</em>, respectively, of the decimal.
* 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The * The <em>length</em> of the decimal is the (unique)
* magnitude is then represented as the integer part of <i>a</i>, * positive integer <i>n</i> meeting
* as a single decimal digit, followed by '{@code .}' * 10<sup><i>n</i>-1</sup> &le; <i>s</i> &lt; 10<sup><i>n</i></sup>.
* ({@code '\u005Cu002E'}), followed by decimal digits *
* representing the fractional part of <i>a</i>, followed by the * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i>
* letter '{@code E}' ({@code '\u005Cu0045'}), followed * is defined as follows:
* by a representation of <i>n</i> as a decimal integer, as * <ul>
* produced by the method {@link Integer#toString(int)}. * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i>
* according to the usual <em>round to nearest</em> rounding policy of
* IEEE 754 floating-point arithmetic.
* <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>.
* <li>When <i>p</i> &ge; 2, let <i>T</i> be the set of all decimals
* in <i>R</i> with length <i>p</i>.
* Otherwise, let <i>T</i> be the set of all decimals
* in <i>R</i> with length 1 or 2.
* <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i>
* that is closest to <i>m</i>.
* Or if there are two such decimals in <i>T</i>,
* select the one with the even significand.
* </ul>
*
* <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub>
* is then formatted.
* Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and
* length of <i>d</i><sub><i>m</i></sub>, respectively.
* Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let
* <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>
* be the usual decimal expansion of <i>s</i>.
* Note that <i>s</i><sub>1</sub> &ne; 0
* and <i>s</i><sub><i>n</i></sub> &ne; 0.
* Below, the decimal point {@code '.'} is {@code '\u005Cu002E'}
* and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}.
* <ul>
* <li>Case -3 &le; <i>e</i> &lt; 0:
* <i>d</i><sub><i>m</i></sub> is formatted as
* <code>0.0</code>&hellip;<code>0</code><!--
* --><i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>,
* where there are exactly -(<i>n</i> + <i>i</i>) zeroes between
* the decimal point and <i>s</i><sub>1</sub>.
* For example, 123 &times; 10<sup>-4</sup> is formatted as
* {@code 0.0123}.
* <li>Case 0 &le; <i>e</i> &lt; 7:
* <ul>
* <li>Subcase <i>i</i> &ge; 0:
* <i>d</i><sub><i>m</i></sub> is formatted as
* <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub><!--
* --><code>0</code>&hellip;<code>0.0</code>,
* where there are exactly <i>i</i> zeroes
* between <i>s</i><sub><i>n</i></sub> and the decimal point.
* For example, 123 &times; 10<sup>2</sup> is formatted as
* {@code 12300.0}.
* <li>Subcase <i>i</i> &lt; 0:
* <i>d</i><sub><i>m</i></sub> is formatted as
* <i>s</i><sub>1</sub>&hellip;<!--
* --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!--
* --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>&hellip;<!--
* --><i>s</i><sub><i>n</i></sub>,
* where there are exactly -<i>i</i> digits to the right of
* the decimal point.
* For example, 123 &times; 10<sup>-1</sup> is formatted as
* {@code 12.3}.
* </ul>
* <li>Case <i>e</i> &lt; -3 or <i>e</i> &ge; 7:
* computerized scientific notation is used to format
* <i>d</i><sub><i>m</i></sub>.
* Here <i>e</i> is formatted as by {@link Integer#toString(int)}.
* <ul>
* <li>Subcase <i>n</i> = 1:
* <i>d</i><sub><i>m</i></sub> is formatted as
* <i>s</i><sub>1</sub><code>.0E</code><i>e</i>.
* For example, 1 &times; 10<sup>23</sup> is formatted as
* {@code 1.0E23}.
* <li>Subcase <i>n</i> &gt; 1:
* <i>d</i><sub><i>m</i></sub> is formatted as
* <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!--
* -->&hellip;<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>.
* For example, 123 &times; 10<sup>-21</sup> is formatted as
* {@code 1.23E-19}.
* </ul> * </ul>
* </ul> * </ul>
* How many digits must be printed for the fractional part of
* <i>m</i> or <i>a</i>? There must be at least one digit to represent
* the fractional part, and beyond that as many, but only as many, more
* digits as are needed to uniquely distinguish the argument value from
* adjacent values of type {@code double}. That is, suppose that
* <i>x</i> is the exact mathematical value represented by the decimal
* representation produced by this method for a finite nonzero argument
* <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
* to <i>x</i>; or if two {@code double} values are equally close
* to <i>x</i>, then <i>d</i> must be one of them and the least
* significant bit of the significand of <i>d</i> must be {@code 0}.
* *
* <p>To create localized string representations of a floating-point * <p>To create localized string representations of a floating-point
* value, use subclasses of {@link java.text.NumberFormat}. * value, use subclasses of {@link java.text.NumberFormat}.
@ -321,7 +392,7 @@ public final class Double extends Number
* @return a string representation of the argument. * @return a string representation of the argument.
*/ */
public static String toString(double d) { public static String toString(double d) {
return FloatingDecimal.toJavaFormatString(d); return DoubleToDecimal.toString(d);
} }
/** /**

View file

@ -31,6 +31,7 @@ import java.lang.constant.ConstantDesc;
import java.util.Optional; import java.util.Optional;
import jdk.internal.math.FloatingDecimal; import jdk.internal.math.FloatingDecimal;
import jdk.internal.math.FloatToDecimal;
import jdk.internal.vm.annotation.IntrinsicCandidate; import jdk.internal.vm.annotation.IntrinsicCandidate;
/** /**
@ -189,53 +190,119 @@ public final class Float extends Number
* {@code "0.0"}; thus, negative zero produces the result * {@code "0.0"}; thus, negative zero produces the result
* {@code "-0.0"} and positive zero produces the result * {@code "-0.0"} and positive zero produces the result
* {@code "0.0"}. * {@code "0.0"}.
* <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
* less than 10<sup>7</sup>, then it is represented as the
* integer part of <i>m</i>, in decimal form with no leading
* zeroes, followed by '{@code .}'
* ({@code '\u005Cu002E'}), followed by one or more
* decimal digits representing the fractional part of
* <i>m</i>.
* <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
* equal to 10<sup>7</sup>, then it is represented in
* so-called "computerized scientific notation." Let <i>n</i>
* be the unique integer such that 10<sup><i>n</i> </sup>&le;
* <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
* be the mathematically exact quotient of <i>m</i> and
* 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
* The magnitude is then represented as the integer part of
* <i>a</i>, as a single decimal digit, followed by
* '{@code .}' ({@code '\u005Cu002E'}), followed by
* decimal digits representing the fractional part of
* <i>a</i>, followed by the letter '{@code E}'
* ({@code '\u005Cu0045'}), followed by a representation
* of <i>n</i> as a decimal integer, as produced by the
* method {@link java.lang.Integer#toString(int)}.
* *
* <li> Otherwise <i>m</i> is positive and finite.
* It is converted to a string in two stages:
* <ul>
* <li> <em>Selection of a decimal</em>:
* A well-defined decimal <i>d</i><sub><i>m</i></sub>
* is selected to represent <i>m</i>.
* This decimal is (almost always) the <em>shortest</em> one that
* rounds to <i>m</i> according to the round to nearest
* rounding policy of IEEE 754 floating-point arithmetic.
* <li> <em>Formatting as a string</em>:
* The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string,
* either in plain or in computerized scientific notation,
* depending on its value.
* </ul>
* </ul>
* </ul>
*
* <p>A <em>decimal</em> is a number of the form
* <i>s</i>&times;10<sup><i>i</i></sup>
* for some (unique) integers <i>s</i> &gt; 0 and <i>i</i> such that
* <i>s</i> is not a multiple of 10.
* These integers are the <em>significand</em> and
* the <em>exponent</em>, respectively, of the decimal.
* The <em>length</em> of the decimal is the (unique)
* positive integer <i>n</i> meeting
* 10<sup><i>n</i>-1</sup> &le; <i>s</i> &lt; 10<sup><i>n</i></sup>.
*
* <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i>
* is defined as follows:
* <ul>
* <li>Let <i>R</i> be the set of all decimals that round to <i>m</i>
* according to the usual <em>round to nearest</em> rounding policy of
* IEEE 754 floating-point arithmetic.
* <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>.
* <li>When <i>p</i> &ge; 2, let <i>T</i> be the set of all decimals
* in <i>R</i> with length <i>p</i>.
* Otherwise, let <i>T</i> be the set of all decimals
* in <i>R</i> with length 1 or 2.
* <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i>
* that is closest to <i>m</i>.
* Or if there are two such decimals in <i>T</i>,
* select the one with the even significand.
* </ul>
*
* <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub>
* is then formatted.
* Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and
* length of <i>d</i><sub><i>m</i></sub>, respectively.
* Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let
* <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>
* be the usual decimal expansion of <i>s</i>.
* Note that <i>s</i><sub>1</sub> &ne; 0
* and <i>s</i><sub><i>n</i></sub> &ne; 0.
* Below, the decimal point {@code '.'} is {@code '\u005Cu002E'}
* and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}.
* <ul>
* <li>Case -3 &le; <i>e</i> &lt; 0:
* <i>d</i><sub><i>m</i></sub> is formatted as
* <code>0.0</code>&hellip;<code>0</code><!--
* --><i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>,
* where there are exactly -(<i>n</i> + <i>i</i>) zeroes between
* the decimal point and <i>s</i><sub>1</sub>.
* For example, 123 &times; 10<sup>-4</sup> is formatted as
* {@code 0.0123}.
* <li>Case 0 &le; <i>e</i> &lt; 7:
* <ul>
* <li>Subcase <i>i</i> &ge; 0:
* <i>d</i><sub><i>m</i></sub> is formatted as
* <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub><!--
* --><code>0</code>&hellip;<code>0.0</code>,
* where there are exactly <i>i</i> zeroes
* between <i>s</i><sub><i>n</i></sub> and the decimal point.
* For example, 123 &times; 10<sup>2</sup> is formatted as
* {@code 12300.0}.
* <li>Subcase <i>i</i> &lt; 0:
* <i>d</i><sub><i>m</i></sub> is formatted as
* <i>s</i><sub>1</sub>&hellip;<!--
* --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!--
* --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>&hellip;<!--
* --><i>s</i><sub><i>n</i></sub>,
* where there are exactly -<i>i</i> digits to the right of
* the decimal point.
* For example, 123 &times; 10<sup>-1</sup> is formatted as
* {@code 12.3}.
* </ul>
* <li>Case <i>e</i> &lt; -3 or <i>e</i> &ge; 7:
* computerized scientific notation is used to format
* <i>d</i><sub><i>m</i></sub>.
* Here <i>e</i> is formatted as by {@link Integer#toString(int)}.
* <ul>
* <li>Subcase <i>n</i> = 1:
* <i>d</i><sub><i>m</i></sub> is formatted as
* <i>s</i><sub>1</sub><code>.0E</code><i>e</i>.
* For example, 1 &times; 10<sup>23</sup> is formatted as
* {@code 1.0E23}.
* <li>Subcase <i>n</i> &gt; 1:
* <i>d</i><sub><i>m</i></sub> is formatted as
* <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!--
* -->&hellip;<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>.
* For example, 123 &times; 10<sup>-21</sup> is formatted as
* {@code 1.23E-19}.
* </ul> * </ul>
* </ul> * </ul>
* How many digits must be printed for the fractional part of
* <i>m</i> or <i>a</i>? There must be at least one digit
* to represent the fractional part, and beyond that as many, but
* only as many, more digits as are needed to uniquely distinguish
* the argument value from adjacent values of type
* {@code float}. That is, suppose that <i>x</i> is the
* exact mathematical value represented by the decimal
* representation produced by this method for a finite nonzero
* argument <i>f</i>. Then <i>f</i> must be the {@code float}
* value nearest to <i>x</i>; or, if two {@code float} values are
* equally close to <i>x</i>, then <i>f</i> must be one of
* them and the least significant bit of the significand of
* <i>f</i> must be {@code 0}.
* *
* <p>To create localized string representations of a floating-point * <p>To create localized string representations of a floating-point
* value, use subclasses of {@link java.text.NumberFormat}. * value, use subclasses of {@link java.text.NumberFormat}.
* *
* @param f the float to be converted. * @param f the {@code float} to be converted.
* @return a string representation of the argument. * @return a string representation of the argument.
*/ */
public static String toString(float f) { public static String toString(float f) {
return FloatingDecimal.toJavaFormatString(f); return FloatToDecimal.toString(f);
} }
/** /**

View file

@ -0,0 +1,529 @@
/*
* Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.math;
import java.io.IOException;
import static java.lang.Double.*;
import static java.lang.Long.*;
import static java.lang.Math.multiplyHigh;
import static jdk.internal.math.MathUtils.*;
/**
* This class exposes a method to render a {@code double} as a string.
*/
final public class DoubleToDecimal {
/*
* For full details about this code see the following references:
*
* [1] Giulietti, "The Schubfach way to render doubles",
* https://drive.google.com/file/d/1gp5xv4CAa78SVgCeWfGqqI4FfYYYuNFb
*
* [2] IEEE Computer Society, "IEEE Standard for Floating-Point Arithmetic"
*
* [3] Bouvier & Zimmermann, "Division-Free Binary-to-Decimal Conversion"
*
* Divisions are avoided altogether for the benefit of those architectures
* that do not provide specific machine instructions or where they are slow.
* This is discussed in section 10 of [1].
*/
/* The precision in bits */
static final int P = PRECISION;
/* Exponent width in bits */
private static final int W = (Double.SIZE - 1) - (P - 1);
/* Minimum value of the exponent: -(2^(W-1)) - P + 3 */
static final int Q_MIN = (-1 << (W - 1)) - P + 3;
/* Maximum value of the exponent: 2^(W-1) - P */
static final int Q_MAX = (1 << (W - 1)) - P;
/* 10^(E_MIN - 1) <= MIN_VALUE < 10^E_MIN */
static final int E_MIN = -323;
/* 10^(E_MAX - 1) <= MAX_VALUE < 10^E_MAX */
static final int E_MAX = 309;
/* Threshold to detect tiny values, as in section 8.2.1 of [1] */
static final long C_TINY = 3;
/* The minimum and maximum k, as in section 8 of [1] */
static final int K_MIN = -324;
static final int K_MAX = 292;
/* H is as in section 8.1 of [1] */
static final int H = 17;
/* Minimum value of the significand of a normal value: 2^(P-1) */
private static final long C_MIN = 1L << (P - 1);
/* Mask to extract the biased exponent */
private static final int BQ_MASK = (1 << W) - 1;
/* Mask to extract the fraction bits */
private static final long T_MASK = (1L << (P - 1)) - 1;
/* Used in rop() */
private static final long MASK_63 = (1L << 63) - 1;
/* Used for left-to-tight digit extraction */
private static final int MASK_28 = (1 << 28) - 1;
private static final int NON_SPECIAL = 0;
private static final int PLUS_ZERO = 1;
private static final int MINUS_ZERO = 2;
private static final int PLUS_INF = 3;
private static final int MINUS_INF = 4;
private static final int NAN = 5;
/*
* Room for the longer of the forms
* -ddddd.dddddddddddd H + 2 characters
* -0.00ddddddddddddddddd H + 5 characters
* -d.ddddddddddddddddE-eee H + 7 characters
* where there are H digits d
*/
public static final int MAX_CHARS = H + 7;
private final byte[] bytes = new byte[MAX_CHARS];
/* Index into bytes of rightmost valid character */
private int index;
private DoubleToDecimal() {
}
/**
* Returns a string representation of the {@code double}
* argument. All characters mentioned below are ASCII characters.
*
* @param v the {@code double} to be converted.
* @return a string representation of the argument.
* @see Double#toString(double)
*/
public static String toString(double v) {
return new DoubleToDecimal().toDecimalString(v);
}
/**
* Appends the rendering of the {@code v} to {@code app}.
*
* <p>The outcome is the same as if {@code v} were first
* {@link #toString(double) rendered} and the resulting string were then
* {@link Appendable#append(CharSequence) appended} to {@code app}.
*
* @param v the {@code double} whose rendering is appended.
* @param app the {@link Appendable} to append to.
* @throws IOException If an I/O error occurs
*/
public static Appendable appendTo(double v, Appendable app)
throws IOException {
return new DoubleToDecimal().appendDecimalTo(v, app);
}
private String toDecimalString(double v) {
return switch (toDecimal(v)) {
case NON_SPECIAL -> charsToString();
case PLUS_ZERO -> "0.0";
case MINUS_ZERO -> "-0.0";
case PLUS_INF -> "Infinity";
case MINUS_INF -> "-Infinity";
default -> "NaN";
};
}
private Appendable appendDecimalTo(double v, Appendable app)
throws IOException {
switch (toDecimal(v)) {
case NON_SPECIAL:
char[] chars = new char[index + 1];
for (int i = 0; i < chars.length; ++i) {
chars[i] = (char) bytes[i];
}
if (app instanceof StringBuilder builder) {
return builder.append(chars);
}
if (app instanceof StringBuffer buffer) {
return buffer.append(chars);
}
for (char c : chars) {
app.append(c);
}
return app;
case PLUS_ZERO: return app.append("0.0");
case MINUS_ZERO: return app.append("-0.0");
case PLUS_INF: return app.append("Infinity");
case MINUS_INF: return app.append("-Infinity");
default: return app.append("NaN");
}
}
/*
* Returns
* PLUS_ZERO iff v is 0.0
* MINUS_ZERO iff v is -0.0
* PLUS_INF iff v is POSITIVE_INFINITY
* MINUS_INF iff v is NEGATIVE_INFINITY
* NAN iff v is NaN
*/
private int toDecimal(double v) {
/*
* For full details see references [2] and [1].
*
* For finite v != 0, determine integers c and q such that
* |v| = c 2^q and
* Q_MIN <= q <= Q_MAX and
* either 2^(P-1) <= c < 2^P (normal)
* or 0 < c < 2^(P-1) and q = Q_MIN (subnormal)
*/
long bits = doubleToRawLongBits(v);
long t = bits & T_MASK;
int bq = (int) (bits >>> P - 1) & BQ_MASK;
if (bq < BQ_MASK) {
index = -1;
if (bits < 0) {
append('-');
}
if (bq != 0) {
/* normal value. Here mq = -q */
int mq = -Q_MIN + 1 - bq;
long c = C_MIN | t;
/* The fast path discussed in section 8.3 of [1] */
if (0 < mq & mq < P) {
long f = c >> mq;
if (f << mq == c) {
return toChars(f, 0);
}
}
return toDecimal(-mq, c, 0);
}
if (t != 0) {
/* subnormal value */
return t < C_TINY
? toDecimal(Q_MIN, 10 * t, -1)
: toDecimal(Q_MIN, t, 0);
}
return bits == 0 ? PLUS_ZERO : MINUS_ZERO;
}
if (t != 0) {
return NAN;
}
return bits > 0 ? PLUS_INF : MINUS_INF;
}
private int toDecimal(int q, long c, int dk) {
/*
* The skeleton corresponds to figure 7 of [1].
* The efficient computations are those summarized in figure 9.
*
* Here's a correspondence between Java names and names in [1],
* expressed as approximate LaTeX source code and informally.
* Other names are identical.
* cb: \bar{c} "c-bar"
* cbr: \bar{c}_r "c-bar-r"
* cbl: \bar{c}_l "c-bar-l"
*
* vb: \bar{v} "v-bar"
* vbr: \bar{v}_r "v-bar-r"
* vbl: \bar{v}_l "v-bar-l"
*
* rop: r_o' "r-o-prime"
*/
int out = (int) c & 0x1;
long cb = c << 2;
long cbr = cb + 2;
long cbl;
int k;
/*
* flog10pow2(e) = floor(log_10(2^e))
* flog10threeQuartersPow2(e) = floor(log_10(3/4 2^e))
* flog2pow10(e) = floor(log_2(10^e))
*/
if (c != C_MIN | q == Q_MIN) {
/* regular spacing */
cbl = cb - 2;
k = flog10pow2(q);
} else {
/* irregular spacing */
cbl = cb - 1;
k = flog10threeQuartersPow2(q);
}
int h = q + flog2pow10(-k) + 2;
/* g1 and g0 are as in section 9.8.3 of [1], so g = g1 2^63 + g0 */
long g1 = g1(k);
long g0 = g0(k);
long vb = rop(g1, g0, cb << h);
long vbl = rop(g1, g0, cbl << h);
long vbr = rop(g1, g0, cbr << h);
long s = vb >> 2;
if (s >= 100) {
/*
* For n = 17, m = 1 the table in section 10 of [1] shows
* s' = floor(s / 10) = floor(s 115_292_150_460_684_698 / 2^60)
* = floor(s 115_292_150_460_684_698 2^4 / 2^64)
*
* sp10 = 10 s'
* tp10 = 10 t'
* upin iff u' = sp10 10^k in Rv
* wpin iff w' = tp10 10^k in Rv
* See section 9.3 of [1].
*/
long sp10 = 10 * multiplyHigh(s, 115_292_150_460_684_698L << 4);
long tp10 = sp10 + 10;
boolean upin = vbl + out <= sp10 << 2;
boolean wpin = (tp10 << 2) + out <= vbr;
if (upin != wpin) {
return toChars(upin ? sp10 : tp10, k);
}
}
/*
* 10 <= s < 100 or s >= 100 and u', w' not in Rv
* uin iff u = s 10^k in Rv
* win iff w = t 10^k in Rv
* See section 9.3 of [1].
*/
long t = s + 1;
boolean uin = vbl + out <= s << 2;
boolean win = (t << 2) + out <= vbr;
if (uin != win) {
/* Exactly one of u or w lies in Rv */
return toChars(uin ? s : t, k + dk);
}
/*
* Both u and w lie in Rv: determine the one closest to v.
* See section 9.3 of [1].
*/
long cmp = vb - (s + t << 1);
return toChars(cmp < 0 || cmp == 0 && (s & 0x1) == 0 ? s : t, k + dk);
}
/*
* Computes rop(cp g 2^(-127)), where g = g1 2^63 + g0
* See section 9.9 and figure 8 of [1].
*/
private static long rop(long g1, long g0, long cp) {
long x1 = multiplyHigh(g0, cp);
long y0 = g1 * cp;
long y1 = multiplyHigh(g1, cp);
long z = (y0 >>> 1) + x1;
long vbp = y1 + (z >>> 63);
return vbp | (z & MASK_63) + MASK_63 >>> 63;
}
/*
* Formats the decimal f 10^e.
*/
private int toChars(long f, int e) {
/*
* For details not discussed here see section 10 of [1].
*
* Determine len such that
* 10^(len-1) <= f < 10^len
*/
int len = flog10pow2(Long.SIZE - numberOfLeadingZeros(f));
if (f >= pow10(len)) {
len += 1;
}
/*
* Let fp and ep be the original f and e, respectively.
* Transform f and e to ensure
* 10^(H-1) <= f < 10^H
* fp 10^ep = f 10^(e-H) = 0.f 10^e
*/
f *= pow10(H - len);
e += len;
/*
* The toChars?() methods perform left-to-right digits extraction
* using ints, provided that the arguments are limited to 8 digits.
* Therefore, split the H = 17 digits of f into:
* h = the most significant digit of f
* m = the next 8 most significant digits of f
* l = the last 8, least significant digits of f
*
* For n = 17, m = 8 the table in section 10 of [1] shows
* floor(f / 10^8) = floor(193_428_131_138_340_668 f / 2^84) =
* floor(floor(193_428_131_138_340_668 f / 2^64) / 2^20)
* and for n = 9, m = 8
* floor(hm / 10^8) = floor(1_441_151_881 hm / 2^57)
*/
long hm = multiplyHigh(f, 193_428_131_138_340_668L) >>> 20;
int l = (int) (f - 100_000_000L * hm);
int h = (int) (hm * 1_441_151_881L >>> 57);
int m = (int) (hm - 100_000_000 * h);
if (0 < e && e <= 7) {
return toChars1(h, m, l, e);
}
if (-3 < e && e <= 0) {
return toChars2(h, m, l, e);
}
return toChars3(h, m, l, e);
}
private int toChars1(int h, int m, int l, int e) {
/*
* 0 < e <= 7: plain format without leading zeroes.
* Left-to-right digits extraction:
* algorithm 1 in [3], with b = 10, k = 8, n = 28.
*/
appendDigit(h);
int y = y(m);
int t;
int i = 1;
for (; i < e; ++i) {
t = 10 * y;
appendDigit(t >>> 28);
y = t & MASK_28;
}
append('.');
for (; i <= 8; ++i) {
t = 10 * y;
appendDigit(t >>> 28);
y = t & MASK_28;
}
lowDigits(l);
return NON_SPECIAL;
}
private int toChars2(int h, int m, int l, int e) {
/* -3 < e <= 0: plain format with leading zeroes */
appendDigit(0);
append('.');
for (; e < 0; ++e) {
appendDigit(0);
}
appendDigit(h);
append8Digits(m);
lowDigits(l);
return NON_SPECIAL;
}
private int toChars3(int h, int m, int l, int e) {
/* -3 >= e | e > 7: computerized scientific notation */
appendDigit(h);
append('.');
append8Digits(m);
lowDigits(l);
exponent(e - 1);
return NON_SPECIAL;
}
private void lowDigits(int l) {
if (l != 0) {
append8Digits(l);
}
removeTrailingZeroes();
}
private void append8Digits(int m) {
/*
* Left-to-right digits extraction:
* algorithm 1 in [3], with b = 10, k = 8, n = 28.
*/
int y = y(m);
for (int i = 0; i < 8; ++i) {
int t = 10 * y;
appendDigit(t >>> 28);
y = t & MASK_28;
}
}
private void removeTrailingZeroes() {
while (bytes[index] == '0') {
--index;
}
/* ... but do not remove the one directly to the right of '.' */
if (bytes[index] == '.') {
++index;
}
}
private int y(int a) {
/*
* Algorithm 1 in [3] needs computation of
* floor((a + 1) 2^n / b^k) - 1
* with a < 10^8, b = 10, k = 8, n = 28.
* Noting that
* (a + 1) 2^n <= 10^8 2^28 < 10^17
* For n = 17, m = 8 the table in section 10 of [1] leads to:
*/
return (int) (multiplyHigh(
(long) (a + 1) << 28,
193_428_131_138_340_668L) >>> 20) - 1;
}
private void exponent(int e) {
append('E');
if (e < 0) {
append('-');
e = -e;
}
if (e < 10) {
appendDigit(e);
return;
}
int d;
if (e >= 100) {
/*
* For n = 3, m = 2 the table in section 10 of [1] shows
* floor(e / 100) = floor(1_311 e / 2^17)
*/
d = e * 1_311 >>> 17;
appendDigit(d);
e -= 100 * d;
}
/*
* For n = 2, m = 1 the table in section 10 of [1] shows
* floor(e / 10) = floor(103 e / 2^10)
*/
d = e * 103 >>> 10;
appendDigit(d);
appendDigit(e - 10 * d);
}
private void append(int c) {
bytes[++index] = (byte) c;
}
private void appendDigit(int d) {
bytes[++index] = (byte) ('0' + d);
}
/* Using the deprecated constructor enhances performance */
@SuppressWarnings("deprecation")
private String charsToString() {
return new String(bytes, 0, 0, index + 1);
}
}

View file

@ -0,0 +1,502 @@
/*
* Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.math;
import java.io.IOException;
import static java.lang.Float.*;
import static java.lang.Integer.*;
import static java.lang.Math.multiplyHigh;
import static jdk.internal.math.MathUtils.*;
/**
* This class exposes a method to render a {@code float} as a string.
*/
final public class FloatToDecimal {
/*
* For full details about this code see the following references:
*
* [1] Giulietti, "The Schubfach way to render doubles",
* https://drive.google.com/file/d/1gp5xv4CAa78SVgCeWfGqqI4FfYYYuNFb
*
* [2] IEEE Computer Society, "IEEE Standard for Floating-Point Arithmetic"
*
* [3] Bouvier & Zimmermann, "Division-Free Binary-to-Decimal Conversion"
*
* Divisions are avoided altogether for the benefit of those architectures
* that do not provide specific machine instructions or where they are slow.
* This is discussed in section 10 of [1].
*/
/* The precision in bits */
static final int P = PRECISION;
/* Exponent width in bits */
private static final int W = (Float.SIZE - 1) - (P - 1);
/* Minimum value of the exponent: -(2^(W-1)) - P + 3 */
static final int Q_MIN = (-1 << (W - 1)) - P + 3;
/* Maximum value of the exponent: 2^(W-1) - P */
static final int Q_MAX = (1 << (W - 1)) - P;
/* 10^(E_MIN - 1) <= MIN_VALUE < 10^E_MIN */
static final int E_MIN = -44;
/* 10^(E_MAX - 1) <= MAX_VALUE < 10^E_MAX */
static final int E_MAX = 39;
/* Threshold to detect tiny values, as in section 8.2.1 of [1] */
static final int C_TINY = 8;
/* The minimum and maximum k, as in section 8 of [1] */
static final int K_MIN = -45;
static final int K_MAX = 31;
/* H is as in section 8.1 of [1] */
static final int H = 9;
/* Minimum value of the significand of a normal value: 2^(P-1) */
private static final int C_MIN = 1 << (P - 1);
/* Mask to extract the biased exponent */
private static final int BQ_MASK = (1 << W) - 1;
/* Mask to extract the fraction bits */
private static final int T_MASK = (1 << (P - 1)) - 1;
/* Used in rop() */
private static final long MASK_32 = (1L << 32) - 1;
/* Used for left-to-tight digit extraction */
private static final int MASK_28 = (1 << 28) - 1;
private static final int NON_SPECIAL = 0;
private static final int PLUS_ZERO = 1;
private static final int MINUS_ZERO = 2;
private static final int PLUS_INF = 3;
private static final int MINUS_INF = 4;
private static final int NAN = 5;
/*
* Room for the longer of the forms
* -ddddd.dddd H + 2 characters
* -0.00ddddddddd H + 5 characters
* -d.ddddddddE-ee H + 6 characters
* where there are H digits d
*/
public static final int MAX_CHARS = H + 6;
private final byte[] bytes = new byte[MAX_CHARS];
/* Index into bytes of rightmost valid character */
private int index;
private FloatToDecimal() {
}
/**
* Returns a string representation of the {@code float}
* argument. All characters mentioned below are ASCII characters.
*
* @param v the {@code float} to be converted.
* @return a string representation of the argument.
* @see Float#toString(float)
*/
public static String toString(float v) {
return new FloatToDecimal().toDecimalString(v);
}
/**
* Appends the rendering of the {@code v} to {@code app}.
*
* <p>The outcome is the same as if {@code v} were first
* {@link #toString(float) rendered} and the resulting string were then
* {@link Appendable#append(CharSequence) appended} to {@code app}.
*
* @param v the {@code float} whose rendering is appended.
* @param app the {@link Appendable} to append to.
* @throws IOException If an I/O error occurs
*/
public static Appendable appendTo(float v, Appendable app)
throws IOException {
return new FloatToDecimal().appendDecimalTo(v, app);
}
private String toDecimalString(float v) {
return switch (toDecimal(v)) {
case NON_SPECIAL -> charsToString();
case PLUS_ZERO -> "0.0";
case MINUS_ZERO -> "-0.0";
case PLUS_INF -> "Infinity";
case MINUS_INF -> "-Infinity";
default -> "NaN";
};
}
private Appendable appendDecimalTo(float v, Appendable app)
throws IOException {
switch (toDecimal(v)) {
case NON_SPECIAL:
char[] chars = new char[index + 1];
for (int i = 0; i < chars.length; ++i) {
chars[i] = (char) bytes[i];
}
if (app instanceof StringBuilder builder) {
return builder.append(chars);
}
if (app instanceof StringBuffer buffer) {
return buffer.append(chars);
}
for (char c : chars) {
app.append(c);
}
return app;
case PLUS_ZERO: return app.append("0.0");
case MINUS_ZERO: return app.append("-0.0");
case PLUS_INF: return app.append("Infinity");
case MINUS_INF: return app.append("-Infinity");
default: return app.append("NaN");
}
}
/*
* Returns
* PLUS_ZERO iff v is 0.0
* MINUS_ZERO iff v is -0.0
* PLUS_INF iff v is POSITIVE_INFINITY
* MINUS_INF iff v is NEGATIVE_INFINITY
* NAN iff v is NaN
*/
private int toDecimal(float v) {
/*
* For full details see references [2] and [1].
*
* For finite v != 0, determine integers c and q such that
* |v| = c 2^q and
* Q_MIN <= q <= Q_MAX and
* either 2^(P-1) <= c < 2^P (normal)
* or 0 < c < 2^(P-1) and q = Q_MIN (subnormal)
*/
int bits = floatToRawIntBits(v);
int t = bits & T_MASK;
int bq = (bits >>> P - 1) & BQ_MASK;
if (bq < BQ_MASK) {
index = -1;
if (bits < 0) {
append('-');
}
if (bq != 0) {
/* normal value. Here mq = -q */
int mq = -Q_MIN + 1 - bq;
int c = C_MIN | t;
/* The fast path discussed in section 8.3 of [1] */
if (0 < mq & mq < P) {
int f = c >> mq;
if (f << mq == c) {
return toChars(f, 0);
}
}
return toDecimal(-mq, c, 0);
}
if (t != 0) {
/* subnormal value */
return t < C_TINY
? toDecimal(Q_MIN, 10 * t, -1)
: toDecimal(Q_MIN, t, 0);
}
return bits == 0 ? PLUS_ZERO : MINUS_ZERO;
}
if (t != 0) {
return NAN;
}
return bits > 0 ? PLUS_INF : MINUS_INF;
}
private int toDecimal(int q, int c, int dk) {
/*
* The skeleton corresponds to figure 7 of [1].
* The efficient computations are those summarized in figure 9.
* Also check the appendix.
*
* Here's a correspondence between Java names and names in [1],
* expressed as approximate LaTeX source code and informally.
* Other names are identical.
* cb: \bar{c} "c-bar"
* cbr: \bar{c}_r "c-bar-r"
* cbl: \bar{c}_l "c-bar-l"
*
* vb: \bar{v} "v-bar"
* vbr: \bar{v}_r "v-bar-r"
* vbl: \bar{v}_l "v-bar-l"
*
* rop: r_o' "r-o-prime"
*/
int out = c & 0x1;
long cb = c << 2;
long cbr = cb + 2;
long cbl;
int k;
/*
* flog10pow2(e) = floor(log_10(2^e))
* flog10threeQuartersPow2(e) = floor(log_10(3/4 2^e))
* flog2pow10(e) = floor(log_2(10^e))
*/
if (c != C_MIN | q == Q_MIN) {
/* regular spacing */
cbl = cb - 2;
k = flog10pow2(q);
} else {
/* irregular spacing */
cbl = cb - 1;
k = flog10threeQuartersPow2(q);
}
int h = q + flog2pow10(-k) + 33;
/* g is as in the appendix */
long g = g1(k) + 1;
int vb = rop(g, cb << h);
int vbl = rop(g, cbl << h);
int vbr = rop(g, cbr << h);
int s = vb >> 2;
if (s >= 100) {
/*
* For n = 9, m = 1 the table in section 10 of [1] shows
* s' = floor(s / 10) = floor(s 1_717_986_919 / 2^34)
*
* sp10 = 10 s'
* tp10 = 10 t'
* upin iff u' = sp10 10^k in Rv
* wpin iff w' = tp10 10^k in Rv
* See section 9.3 of [1].
*/
int sp10 = 10 * (int) (s * 1_717_986_919L >>> 34);
int tp10 = sp10 + 10;
boolean upin = vbl + out <= sp10 << 2;
boolean wpin = (tp10 << 2) + out <= vbr;
if (upin != wpin) {
return toChars(upin ? sp10 : tp10, k);
}
}
/*
* 10 <= s < 100 or s >= 100 and u', w' not in Rv
* uin iff u = s 10^k in Rv
* win iff w = t 10^k in Rv
* See section 9.3 of [1].
*/
int t = s + 1;
boolean uin = vbl + out <= s << 2;
boolean win = (t << 2) + out <= vbr;
if (uin != win) {
/* Exactly one of u or w lies in Rv */
return toChars(uin ? s : t, k + dk);
}
/*
* Both u and w lie in Rv: determine the one closest to v.
* See section 9.3 of [1].
*/
int cmp = vb - (s + t << 1);
return toChars(cmp < 0 || cmp == 0 && (s & 0x1) == 0 ? s : t, k + dk);
}
/*
* Computes rop(cp g 2^(-95))
* See appendix and figure 11 of [1].
*/
private static int rop(long g, long cp) {
long x1 = multiplyHigh(g, cp);
long vbp = x1 >>> 31;
return (int) (vbp | (x1 & MASK_32) + MASK_32 >>> 32);
}
/*
* Formats the decimal f 10^e.
*/
private int toChars(int f, int e) {
/*
* For details not discussed here see section 10 of [1].
*
* Determine len such that
* 10^(len-1) <= f < 10^len
*/
int len = flog10pow2(Integer.SIZE - numberOfLeadingZeros(f));
if (f >= pow10(len)) {
len += 1;
}
/*
* Let fp and ep be the original f and e, respectively.
* Transform f and e to ensure
* 10^(H-1) <= f < 10^H
* fp 10^ep = f 10^(e-H) = 0.f 10^e
*/
f *= pow10(H - len);
e += len;
/*
* The toChars?() methods perform left-to-right digits extraction
* using ints, provided that the arguments are limited to 8 digits.
* Therefore, split the H = 9 digits of f into:
* h = the most significant digit of f
* l = the last 8, least significant digits of f
*
* For n = 9, m = 8 the table in section 10 of [1] shows
* floor(f / 10^8) = floor(1_441_151_881 f / 2^57)
*/
int h = (int) (f * 1_441_151_881L >>> 57);
int l = f - 100_000_000 * h;
if (0 < e && e <= 7) {
return toChars1(h, l, e);
}
if (-3 < e && e <= 0) {
return toChars2(h, l, e);
}
return toChars3(h, l, e);
}
private int toChars1(int h, int l, int e) {
/*
* 0 < e <= 7: plain format without leading zeroes.
* Left-to-right digits extraction:
* algorithm 1 in [3], with b = 10, k = 8, n = 28.
*/
appendDigit(h);
int y = y(l);
int t;
int i = 1;
for (; i < e; ++i) {
t = 10 * y;
appendDigit(t >>> 28);
y = t & MASK_28;
}
append('.');
for (; i <= 8; ++i) {
t = 10 * y;
appendDigit(t >>> 28);
y = t & MASK_28;
}
removeTrailingZeroes();
return NON_SPECIAL;
}
private int toChars2(int h, int l, int e) {
/* -3 < e <= 0: plain format with leading zeroes */
appendDigit(0);
append('.');
for (; e < 0; ++e) {
appendDigit(0);
}
appendDigit(h);
append8Digits(l);
removeTrailingZeroes();
return NON_SPECIAL;
}
private int toChars3(int h, int l, int e) {
/* -3 >= e | e > 7: computerized scientific notation */
appendDigit(h);
append('.');
append8Digits(l);
removeTrailingZeroes();
exponent(e - 1);
return NON_SPECIAL;
}
private void append8Digits(int m) {
/*
* Left-to-right digits extraction:
* algorithm 1 in [3], with b = 10, k = 8, n = 28.
*/
int y = y(m);
for (int i = 0; i < 8; ++i) {
int t = 10 * y;
appendDigit(t >>> 28);
y = t & MASK_28;
}
}
private void removeTrailingZeroes() {
while (bytes[index] == '0') {
--index;
}
/* ... but do not remove the one directly to the right of '.' */
if (bytes[index] == '.') {
++index;
}
}
private int y(int a) {
/*
* Algorithm 1 in [3] needs computation of
* floor((a + 1) 2^n / b^k) - 1
* with a < 10^8, b = 10, k = 8, n = 28.
* Noting that
* (a + 1) 2^n <= 10^8 2^28 < 10^17
* For n = 17, m = 8 the table in section 10 of [1] leads to:
*/
return (int) (multiplyHigh(
(long) (a + 1) << 28,
193_428_131_138_340_668L) >>> 20) - 1;
}
private void exponent(int e) {
append('E');
if (e < 0) {
append('-');
e = -e;
}
if (e < 10) {
appendDigit(e);
return;
}
/*
* For n = 2, m = 1 the table in section 10 of [1] shows
* floor(e / 10) = floor(103 e / 2^10)
*/
int d = e * 103 >>> 10;
appendDigit(d);
appendDigit(e - 10 * d);
}
private void append(int c) {
bytes[++index] = (byte) c;
}
private void appendDigit(int d) {
bytes[++index] = (byte) ('0' + d);
}
/* Using the deprecated constructor enhances performance */
@SuppressWarnings("deprecation")
private String charsToString() {
return new String(bytes, 0, 0, index + 1);
}
}

View file

@ -0,0 +1,813 @@
/*
* Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.math;
/**
* This class exposes package private utilities for other classes.
* Thus, all methods are assumed to be invoked with correct arguments,
* so these are not checked at all.
*/
final class MathUtils {
/*
* For full details about this code see the following reference:
*
* Giulietti, "The Schubfach way to render doubles",
* https://drive.google.com/file/d/1gp5xv4CAa78SVgCeWfGqqI4FfYYYuNFb
*/
/*
* The boundaries for k in g0(int) and g1(int).
* K_MIN must be DoubleToDecimal.K_MIN or less.
* K_MAX must be DoubleToDecimal.K_MAX or more.
*/
static final int K_MIN = -324;
static final int K_MAX = 292;
/* Must be DoubleToDecimal.H or more */
static final int H = 17;
/* C_10 = floor(log10(2) * 2^Q_10), A_10 = floor(log10(3/4) * 2^Q_10) */
private static final int Q_10 = 41;
private static final long C_10 = 661_971_961_083L;
private static final long A_10 = -274_743_187_321L;
/* C_2 = floor(log2(10) * 2^Q_2) */
private static final int Q_2 = 38;
private static final long C_2 = 913_124_641_741L;
private MathUtils() {
throw new RuntimeException("not supposed to be instantiated.");
}
/* The first powers of 10. The last entry must be 10^(DoubleToDecimal.H) */
private static final long[] pow10 = {
1L,
10L,
100L,
1_000L,
10_000L,
100_000L,
1_000_000L,
10_000_000L,
100_000_000L,
1_000_000_000L,
10_000_000_000L,
100_000_000_000L,
1_000_000_000_000L,
10_000_000_000_000L,
100_000_000_000_000L,
1_000_000_000_000_000L,
10_000_000_000_000_000L,
100_000_000_000_000_000L,
};
/**
* Returns 10<sup>{@code e}</sup>.
*
* @param e The exponent which must meet
* 0 &le; {@code e} &le; {@link #H}.
* @return 10<sup>{@code e}</sup>.
*/
static long pow10(int e) {
return pow10[e];
}
/**
* Returns the unique integer <i>k</i> such that
* 10<sup><i>k</i></sup> &le; 2<sup>{@code e}</sup>
* &lt; 10<sup><i>k</i>+1</sup>.
* <p>
* The result is correct when |{@code e}| &le; 6_432_162.
* Otherwise the result is undefined.
*
* @param e The exponent of 2, which should meet
* |{@code e}| &le; 6_432_162 for safe results.
* @return &lfloor;log<sub>10</sub>2<sup>{@code e}</sup>&rfloor;.
*/
static int flog10pow2(int e) {
return (int) (e * C_10 >> Q_10);
}
/**
* Returns the unique integer <i>k</i> such that
* 10<sup><i>k</i></sup> &le; 3/4 &middot; 2<sup>{@code e}</sup>
* &lt; 10<sup><i>k</i>+1</sup>.
* <p>
* The result is correct when
* -3_606_689 &le; {@code e} &le; 3_150_619.
* Otherwise the result is undefined.
*
* @param e The exponent of 2, which should meet
* -3_606_689 &le; {@code e} &le; 3_150_619 for safe results.
* @return &lfloor;log<sub>10</sub>(3/4 &middot;
* 2<sup>{@code e}</sup>)&rfloor;.
*/
static int flog10threeQuartersPow2(int e) {
return (int) (e * C_10 + A_10 >> Q_10);
}
/**
* Returns the unique integer <i>k</i> such that
* 2<sup><i>k</i></sup> &le; 10<sup>{@code e}</sup>
* &lt; 2<sup><i>k</i>+1</sup>.
* <p>
* The result is correct when |{@code e}| &le; 1_838_394.
* Otherwise the result is undefined.
*
* @param e The exponent of 10, which should meet
* |{@code e}| &le; 1_838_394 for safe results.
* @return &lfloor;log<sub>2</sub>10<sup>{@code e}</sup>&rfloor;.
*/
static int flog2pow10(int e) {
return (int) (e * C_2 >> Q_2);
}
/**
* Let 10<sup>-{@code k}</sup> = <i>&beta;</i> 2<sup><i>r</i></sup>,
* for the unique pair of integer <i>r</i> and real <i>&beta;</i> meeting
* 2<sup>125</sup> &le; <i>&beta;</i> &lt; 2<sup>126</sup>.
* Further, let <i>g</i> = &lfloor;<i>&beta;</i>&rfloor; + 1.
* Split <i>g</i> into the higher 63 bits <i>g</i><sub>1</sub> and
* the lower 63 bits <i>g</i><sub>0</sub>. Thus,
* <i>g</i><sub>1</sub> =
* &lfloor;<i>g</i> 2<sup>-63</sup>&rfloor;
* and
* <i>g</i><sub>0</sub> =
* <i>g</i> - <i>g</i><sub>1</sub> 2<sup>63</sup>.
* <p>
* This method returns <i>g</i><sub>1</sub> while
* {@link #g0(int)} returns <i>g</i><sub>0</sub>.
* <p>
* If needed, the exponent <i>r</i> can be computed as
* <i>r</i> = {@code flog2pow10(-k)} - 125 (see {@link #flog2pow10(int)}).
*
* @param k The exponent of 10, which must meet
* {@link #K_MIN} &le; {@code e} &le; {@link #K_MAX}.
* @return <i>g</i><sub>1</sub> as described above.
*/
static long g1(int k) {
return g[k - K_MIN << 1];
}
/**
* Returns <i>g</i><sub>0</sub> as described in
* {@link #g1(int)}.
*
* @param k The exponent of 10, which must meet
* {@link #K_MIN} &le; {@code e} &le; {@link #K_MAX}.
* @return <i>g</i><sub>0</sub> as described in
* {@link #g1(int)}.
*/
static long g0(int k) {
return g[k - K_MIN << 1 | 1];
}
/*
* The precomputed values for g1(int) and g0(int).
* The first entry must be for an exponent of K_MIN or less.
* The last entry must be for an exponent of K_MAX or more.
*/
private static final long[] g = {
0x4F0C_EDC9_5A71_8DD4L, 0x5B01_E8B0_9AA0_D1B5L, // -324
0x7E7B_160E_F71C_1621L, 0x119C_A780_F767_B5EEL, // -323
0x652F_44D8_C5B0_11B4L, 0x0E16_EC67_2C52_F7F2L, // -322
0x50F2_9D7A_37C0_0E29L, 0x5812_56B8_F042_5FF5L, // -321
0x40C2_1794_F966_71BAL, 0x79A8_4560_C035_1991L, // -320
0x679C_F287_F570_B5F7L, 0x75DA_089A_CD21_C281L, // -319
0x52E3_F539_9126_F7F9L, 0x44AE_6D48_A41B_0201L, // -318
0x424F_F761_40EB_F994L, 0x36F1_F106_E9AF_34CDL, // -317
0x6A19_8BCE_CE46_5C20L, 0x57E9_81A4_A918_547BL, // -316
0x54E1_3CA5_71D1_E34DL, 0x2CBA_CE1D_5413_76C9L, // -315
0x43E7_63B7_8E41_82A4L, 0x23C8_A4E4_4342_C56EL, // -314
0x6CA5_6C58_E39C_043AL, 0x060D_D4A0_6B9E_08B0L, // -313
0x56EA_BD13_E949_9CFBL, 0x1E71_76E6_BC7E_6D59L, // -312
0x4588_9743_2107_B0C8L, 0x7EC1_2BEB_C9FE_BDE1L, // -311
0x6F40_F205_01A5_E7A7L, 0x7E01_DFDF_A997_9635L, // -310
0x5900_C19D_9AEB_1FB9L, 0x4B34_B319_5479_44F7L, // -309
0x4733_CE17_AF22_7FC7L, 0x55C3_C27A_A9FA_9D93L, // -308
0x71EC_7CF2_B1D0_CC72L, 0x5606_03F7_765D_C8EAL, // -307
0x5B23_9728_8E40_A38EL, 0x7804_CFF9_2B7E_3A55L, // -306
0x48E9_45BA_0B66_E93FL, 0x1337_0CC7_55FE_9511L, // -305
0x74A8_6F90_123E_41FEL, 0x51F1_AE0B_BCCA_881BL, // -304
0x5D53_8C73_41CB_67FEL, 0x74C1_5809_63D5_39AFL, // -303
0x4AA9_3D29_016F_8665L, 0x43CD_E007_8310_FAF3L, // -302
0x7775_2EA8_024C_0A3CL, 0x0616_333F_381B_2B1EL, // -301
0x5F90_F220_01D6_6E96L, 0x3811_C298_F9AF_55B1L, // -300
0x4C73_F4E6_67DE_BEDEL, 0x600E_3547_2E25_DE28L, // -299
0x7A53_2170_A631_3164L, 0x3349_EED8_49D6_303FL, // -298
0x61DC_1AC0_84F4_2783L, 0x42A1_8BE0_3B11_C033L, // -297
0x4E49_AF00_6A5C_EC69L, 0x1BB4_6FE6_95A7_CCF5L, // -296
0x7D42_B19A_43C7_E0A8L, 0x2C53_E63D_BC3F_AE55L, // -295
0x6435_5AE1_CFD3_1A20L, 0x2376_51CA_FCFF_BEAAL, // -294
0x502A_AF1B_0CA8_E1B3L, 0x35F8_416F_30CC_9888L, // -293
0x4022_25AF_3D53_E7C2L, 0x5E60_3458_F3D6_E06DL, // -292
0x669D_0918_621F_D937L, 0x4A33_86F4_B957_CD7BL, // -291
0x5217_3A79_E819_7A92L, 0x6E8F_9F2A_2DDF_D796L, // -290
0x41AC_2EC7_ECE1_2EDBL, 0x720C_7F54_F17F_DFABL, // -289
0x6913_7E0C_AE35_17C6L, 0x1CE0_CBBB_1BFF_CC45L, // -288
0x540F_980A_24F7_4638L, 0x171A_3C95_AFFF_D69EL, // -287
0x433F_ACD4_EA5F_6B60L, 0x127B_63AA_F333_1218L, // -286
0x6B99_1487_DD65_7899L, 0x6A5F_05DE_51EB_5026L, // -285
0x5614_106C_B11D_FA14L, 0x5518_D17E_A7EF_7352L, // -284
0x44DC_D9F0_8DB1_94DDL, 0x2A7A_4132_1FF2_C2A8L, // -283
0x6E2E_2980_E2B5_BAFBL, 0x5D90_6850_331E_043FL, // -282
0x5824_EE00_B55E_2F2FL, 0x6473_86A6_8F4B_3699L, // -281
0x4683_F19A_2AB1_BF59L, 0x36C2_D21E_D908_F87BL, // -280
0x70D3_1C29_DDE9_3228L, 0x579E_1CFE_280E_5A5DL, // -279
0x5A42_7CEE_4B20_F4EDL, 0x2C7E_7D98_200B_7B7EL, // -278
0x4835_30BE_A280_C3F1L, 0x09FE_CAE0_19A2_C932L, // -277
0x7388_4DFD_D0CE_064EL, 0x4331_4499_C29E_0EB6L, // -276
0x5C6D_0B31_73D8_050BL, 0x4F5A_9D47_CEE4_D891L, // -275
0x49F0_D5C1_2979_9DA2L, 0x72AE_E439_7250_AD41L, // -274
0x764E_22CE_A8C2_95D1L, 0x377E_39F5_83B4_4868L, // -273
0x5EA4_E8A5_53CE_DE41L, 0x12CB_6191_3629_D387L, // -272
0x4BB7_2084_430B_E500L, 0x756F_8140_F821_7605L, // -271
0x7925_00D3_9E79_6E67L, 0x6F18_CECE_59CF_233CL, // -270
0x60EA_670F_B1FA_BEB9L, 0x3F47_0BD8_47D8_E8FDL, // -269
0x4D88_5272_F4C8_9894L, 0x329F_3CAD_0647_20CAL, // -268
0x7C0D_50B7_EE0D_C0EDL, 0x3765_2DE1_A3A5_0143L, // -267
0x633D_DA2C_BE71_6724L, 0x2C50_F181_4FB7_3436L, // -266
0x4F64_AE8A_31F4_5283L, 0x3D0D_8E01_0C92_902BL, // -265
0x7F07_7DA9_E986_EA6BL, 0x7B48_E334_E0EA_8045L, // -264
0x659F_97BB_2138_BB89L, 0x4907_1C2A_4D88_669DL, // -263
0x514C_7962_80FA_2FA1L, 0x20D2_7CEE_A46D_1EE4L, // -262
0x4109_FAB5_33FB_594DL, 0x670E_CA58_838A_7F1DL, // -261
0x680F_F788_532B_C216L, 0x0B4A_DD5A_6C10_CB62L, // -260
0x533F_F939_DC23_01ABL, 0x22A2_4AAE_BCDA_3C4EL, // -259
0x4299_942E_49B5_9AEFL, 0x354E_A225_63E1_C9D8L, // -258
0x6A8F_537D_42BC_2B18L, 0x554A_9D08_9FCF_A95AL, // -257
0x553F_75FD_CEFC_EF46L, 0x776E_E406_E63F_BAAEL, // -256
0x4432_C4CB_0BFD_8C38L, 0x5F8B_E99F_1E99_6225L, // -255
0x6D1E_07AB_4662_79F4L, 0x3279_75CB_6428_9D08L, // -254
0x574B_3955_D1E8_6190L, 0x2861_2B09_1CED_4A6DL, // -253
0x45D5_C777_DB20_4E0DL, 0x06B4_226D_B0BD_D524L, // -252
0x6FBC_7259_5E9A_167BL, 0x2453_6A49_1AC9_5506L, // -251
0x5963_8EAD_E548_11FCL, 0x1D0F_883A_7BD4_4405L, // -250
0x4782_D88B_1DD3_4196L, 0x4A72_D361_FCA9_D004L, // -249
0x726A_F411_C952_028AL, 0x43EA_EBCF_FAA9_4CD3L, // -248
0x5B88_C341_6DDB_353BL, 0x4FEF_230C_C887_70A9L, // -247
0x493A_35CD_F17C_2A96L, 0x0CBF_4F3D_6D39_26EEL, // -246
0x7529_EFAF_E8C6_AA89L, 0x6132_1862_485B_717CL, // -245
0x5DBB_2626_53D2_2207L, 0x675B_46B5_06AF_8DFDL, // -244
0x4AFC_1E85_0FDB_4E6CL, 0x52AF_6BC4_0559_3E64L, // -243
0x77F9_CA6E_7FC5_4A47L, 0x377F_12D3_3BC1_FD6DL, // -242
0x5FFB_0858_6637_6E9FL, 0x45FF_4242_9634_CABDL, // -241
0x4CC8_D379_EB5F_8BB2L, 0x6B32_9B68_782A_3BCBL, // -240
0x7ADA_EBF6_4565_AC51L, 0x2B84_2BDA_59DD_2C77L, // -239
0x6248_BCC5_0451_56A7L, 0x3C69_BCAE_AE4A_89F9L, // -238
0x4EA0_9704_0374_4552L, 0x6387_CA25_583B_A194L, // -237
0x7DCD_BE6C_D253_A21EL, 0x05A6_103B_C05F_68EDL, // -236
0x64A4_9857_0EA9_4E7EL, 0x37B8_0CFC_99E5_ED8AL, // -235
0x5083_AD12_7221_0B98L, 0x2C93_3D96_E184_BE08L, // -234
0x4069_5741_F4E7_3C79L, 0x7075_CADF_1AD0_9807L, // -233
0x670E_F203_2171_FA5CL, 0x4D89_4498_2AE7_59A4L, // -232
0x5272_5B35_B45B_2EB0L, 0x3E07_6A13_5585_E150L, // -231
0x41F5_15C4_9048_F226L, 0x64D2_BB42_AAD1_810DL, // -230
0x6988_22D4_1A0E_503EL, 0x07B7_9204_4482_6815L, // -229
0x546C_E8A9_AE71_D9CBL, 0x1FC6_0E69_D068_5344L, // -228
0x438A_53BA_F1F4_AE3CL, 0x196B_3EBB_0D20_429DL, // -227
0x6C10_85F7_E987_7D2DL, 0x0F11_FDF8_1500_6A94L, // -226
0x5673_9E5F_EE05_FDBDL, 0x58DB_3193_4400_5543L, // -225
0x4529_4B7F_F19E_6497L, 0x60AF_5ADC_3666_AA9CL, // -224
0x6EA8_78CC_B5CA_3A8CL, 0x344B_C493_8A3D_DDC7L, // -223
0x5886_C70A_2B08_2ED6L, 0x5D09_6A0F_A1CB_17D2L, // -222
0x46D2_38D4_EF39_BF12L, 0x173A_BB3F_B4A2_7975L, // -221
0x7150_5AEE_4B8F_981DL, 0x0B91_2B99_2103_F588L, // -220
0x5AA6_AF25_093F_ACE4L, 0x0940_EFAD_B403_2AD3L, // -219
0x4885_58EA_6DCC_8A50L, 0x0767_2624_9002_88A9L, // -218
0x7408_8E43_E2E0_DD4CL, 0x723E_A36D_B337_410EL, // -217
0x5CD3_A503_1BE7_1770L, 0x5B65_4F8A_F5C5_CDA5L, // -216
0x4A42_EA68_E31F_45F3L, 0x62B7_72D5_916B_0AEBL, // -215
0x76D1_770E_3832_0986L, 0x0458_B7BC_1BDE_77DDL, // -214
0x5F0D_F8D8_2CF4_D46BL, 0x1D13_C630_164B_9318L, // -213
0x4C0B_2D79_BD90_A9EFL, 0x30DC_9E8C_DEA2_DC13L, // -212
0x79AB_7BF5_FC1A_A97FL, 0x0160_FDAE_3104_9351L, // -211
0x6155_FCC4_C9AE_EDFFL, 0x1AB3_FE24_F403_A90EL, // -210
0x4DDE_63D0_A158_BE65L, 0x6229_981D_9002_EDA5L, // -209
0x7C97_061A_9BC1_30A2L, 0x69DC_2695_B337_E2A1L, // -208
0x63AC_04E2_1634_26E8L, 0x54B0_1EDE_28F9_821BL, // -207
0x4FBC_D0B4_DE90_1F20L, 0x43C0_18B1_BA61_34E2L, // -206
0x7F94_8121_6419_CB67L, 0x1F99_C11C_5D68_549DL, // -205
0x6610_674D_E9AE_3C52L, 0x4C7B_00E3_7DED_107EL, // -204
0x51A6_B90B_2158_3042L, 0x09FC_00B5_FE57_4065L, // -203
0x4152_2DA2_8113_59CEL, 0x3B30_0091_9845_CD1DL, // -202
0x6883_7C37_34EB_C2E3L, 0x784C_CDB5_C06F_AE95L, // -201
0x539C_635F_5D89_68B6L, 0x2D0A_3E2B_0059_5877L, // -200
0x42E3_82B2_B13A_BA2BL, 0x3DA1_CB55_99E1_1393L, // -199
0x6B05_9DEA_B52A_C378L, 0x629C_7888_F634_EC1EL, // -198
0x559E_17EE_F755_692DL, 0x3549_FA07_2B5D_89B1L, // -197
0x447E_798B_F911_20F1L, 0x1107_FB38_EF7E_07C1L, // -196
0x6D97_28DF_F4E8_34B5L, 0x01A6_5EC1_7F30_0C68L, // -195
0x57AC_20B3_2A53_5D5DL, 0x4E1E_B234_65C0_09EDL, // -194
0x4623_4D5C_21DC_4AB1L, 0x24E5_5B5D_1E33_3B24L, // -193
0x7038_7BC6_9C93_AAB5L, 0x216E_F894_FD1E_C506L, // -192
0x59C6_C96B_B076_222AL, 0x4DF2_6077_30E5_6A6CL, // -191
0x47D2_3ABC_8D2B_4E88L, 0x3E5B_805F_5A51_21F0L, // -190
0x72E9_F794_1512_1740L, 0x63C5_9A32_2A1B_697FL, // -189
0x5BEE_5FA9_AA74_DF67L, 0x0304_7B5B_54E2_BACCL, // -188
0x498B_7FBA_EEC3_E5ECL, 0x0269_FC49_10B5_623DL, // -187
0x75AB_FF91_7E06_3CACL, 0x6A43_2D41_B455_69FBL, // -186
0x5E23_32DA_CB38_308AL, 0x21CF_5767_C377_87FCL, // -185
0x4B4F_5BE2_3C2C_F3A1L, 0x67D9_12B9_692C_6CCAL, // -184
0x787E_F969_F9E1_85CFL, 0x595B_5128_A847_1476L, // -183
0x6065_9454_C7E7_9E3FL, 0x6115_DA86_ED05_A9F8L, // -182
0x4D1E_1043_D31F_B1CCL, 0x4DAB_1538_BD9E_2193L, // -181
0x7B63_4D39_51CC_4FADL, 0x62AB_5527_95C9_CF52L, // -180
0x62B5_D761_0E3D_0C8BL, 0x0222_AA86_116E_3F75L, // -179
0x4EF7_DF80_D830_D6D5L, 0x4E82_2204_DABE_992AL, // -178
0x7E59_659A_F381_57BCL, 0x1736_9CD4_9130_F510L, // -177
0x6514_5148_C2CD_DFC9L, 0x5F5E_E3DD_40F3_F740L, // -176
0x50DD_0DD3_CF0B_196EL, 0x1918_B64A_9A5C_C5CDL, // -175
0x40B0_D7DC_A5A2_7ABEL, 0x4746_F83B_AEB0_9E3EL, // -174
0x6781_5961_0903_F797L, 0x253E_59F9_1780_FD2FL, // -173
0x52CD_E11A_6D9C_C612L, 0x50FE_AE60_DF9A_6426L, // -172
0x423E_4DAE_BE17_04DBL, 0x5A65_584D_7FAE_B685L, // -171
0x69FD_4917_968B_3AF9L, 0x10A2_26E2_65E4_573BL, // -170
0x54CA_A0DF_ABA2_9594L, 0x0D4E_8581_EB1D_1295L, // -169
0x43D5_4D7F_BC82_1143L, 0x243E_D134_BC17_4211L, // -168
0x6C88_7BFF_9403_4ED2L, 0x06CA_E854_6025_3682L, // -167
0x56D3_9666_1002_A574L, 0x6BD5_86A9_E684_2B9BL, // -166
0x4576_11EB_4002_1DF7L, 0x0977_9EEE_5203_5616L, // -165
0x6F23_4FDE_CCD0_2FF1L, 0x5BF2_97E3_B66B_BCEFL, // -164
0x58E9_0CB2_3D73_598EL, 0x165B_ACB6_2B89_63F3L, // -163
0x4720_D6F4_FDF5_E13EL, 0x4516_23C4_EFA1_1CC2L, // -162
0x71CE_24BB_2FEF_CECAL, 0x3B56_9FA1_7F68_2E03L, // -161
0x5B0B_5095_BFF3_0BD5L, 0x15DE_E61A_CC53_5803L, // -160
0x48D5_DA11_665C_0977L, 0x2B18_B815_7042_ACCFL, // -159
0x7489_5CE8_A3C6_758BL, 0x5E8D_F355_806A_AE18L, // -158
0x5D3A_B0BA_1C9E_C46FL, 0x653E_5C44_66BB_BE7AL, // -157
0x4A95_5A2E_7D4B_D059L, 0x3765_169D_1EFC_9861L, // -156
0x7755_5D17_2EDF_B3C2L, 0x256E_8A94_FE60_F3CFL, // -155
0x5F77_7DAC_257F_C301L, 0x6ABE_D543_FEB3_F63FL, // -154
0x4C5F_97BC_EACC_9C01L, 0x3BCB_DDCF_FEF6_5E99L, // -153
0x7A32_8C61_77AD_C668L, 0x5FAC_9619_97F0_975BL, // -152
0x61C2_09E7_92F1_6B86L, 0x7FBD_44E1_465A_12AFL, // -151
0x4E34_D4B9_425A_BC6BL, 0x7FCA_9D81_0514_DBBFL, // -150
0x7D21_545B_9D5D_FA46L, 0x32DD_C8CE_6E87_C5FFL, // -149
0x641A_A9E2_E44B_2E9EL, 0x5BE4_A0A5_2539_6B32L, // -148
0x5015_54B5_836F_587EL, 0x7CB6_E6EA_842D_EF5CL, // -147
0x4011_1091_35F2_AD32L, 0x3092_5255_368B_25E3L, // -146
0x6681_B41B_8984_4850L, 0x4DB6_EA21_F0DE_A304L, // -145
0x5201_5CE2_D469_D373L, 0x57C5_881B_2718_826AL, // -144
0x419A_B0B5_76BB_0F8FL, 0x5FD1_39AF_527A_01EFL, // -143
0x68F7_8122_5791_B27FL, 0x4C81_F5E5_50C3_364AL, // -142
0x53F9_341B_7941_5B99L, 0x239B_2B1D_DA35_C508L, // -141
0x432D_C349_2DCD_E2E1L, 0x02E2_88E4_AE91_6A6DL, // -140
0x6B7C_6BA8_4949_6B01L, 0x516A_74A1_174F_10AEL, // -139
0x55FD_22ED_076D_EF34L, 0x4121_F6E7_45D8_DA25L, // -138
0x44CA_8257_3924_BF5DL, 0x1A81_9252_9E47_14EBL, // -137
0x6E10_D08B_8EA1_322EL, 0x5D9C_1D50_FD3E_87DDL, // -136
0x580D_73A2_D880_F4F2L, 0x17B0_1773_FDCB_9FE4L, // -135
0x4671_294F_139A_5D8EL, 0x4626_7929_97D6_1984L, // -134
0x70B5_0EE4_EC2A_2F4AL, 0x3D0A_5B75_BFBC_F59FL, // -133
0x5A2A_7250_BCEE_8C3BL, 0x4A6E_AF91_6630_C47FL, // -132
0x4821_F50D_63F2_09C9L, 0x21F2_260D_EB5A_36CCL, // -131
0x7369_8815_6CB6_760EL, 0x6983_7016_455D_247AL, // -130
0x5C54_6CDD_F091_F80BL, 0x6E02_C011_D117_5062L, // -129
0x49DD_23E4_C074_C66FL, 0x719B_CCDB_0DAC_404EL, // -128
0x762E_9FD4_6721_3D7FL, 0x68F9_47C4_E2AD_33B0L, // -127
0x5E8B_B310_5280_FDFFL, 0x6D94_396A_4EF0_F627L, // -126
0x4BA2_F5A6_A867_3199L, 0x3E10_2DEE_A58D_91B9L, // -125
0x7904_BC3D_DA3E_B5C2L, 0x3019_E317_6F48_E927L, // -124
0x60D0_9697_E1CB_C49BL, 0x4014_B5AC_5907_20ECL, // -123
0x4D73_ABAC_B4A3_03AFL, 0x4CDD_5E23_7A6C_1A57L, // -122
0x7BEC_45E1_2104_D2B2L, 0x47C8_969F_2A46_908AL, // -121
0x6323_6B1A_80D0_A88EL, 0x6CA0_787F_5505_406FL, // -120
0x4F4F_88E2_00A6_ED3FL, 0x0A19_F9FF_7737_66BFL, // -119
0x7EE5_A7D0_010B_1531L, 0x5CF6_5CCB_F1F2_3DFEL, // -118
0x6584_8640_00D5_AA8EL, 0x172B_7D6F_F4C1_CB32L, // -117
0x5136_D1CC_CD77_BBA4L, 0x78EF_978C_C3CE_3C28L, // -116
0x40F8_A7D7_0AC6_2FB7L, 0x13F2_DFA3_CFD8_3020L, // -115
0x67F4_3FBE_77A3_7F8BL, 0x3984_9906_1959_E699L, // -114
0x5329_CC98_5FB5_FFA2L, 0x6136_E0D1_ADE1_8548L, // -113
0x4287_D6E0_4C91_994FL, 0x00F8_B3DA_F181_376DL, // -112
0x6A72_F166_E0E8_F54BL, 0x1B27_862B_1C01_F247L, // -111
0x5528_C11F_1A53_F76FL, 0x2F52_D1BC_1667_F506L, // -110
0x4420_9A7F_4843_2C59L, 0x0C42_4163_451F_F738L, // -109
0x6D00_F732_0D38_46F4L, 0x7A03_9BD2_0833_2526L, // -108
0x5733_F8F4_D760_38C3L, 0x7B36_1641_A028_EA85L, // -107
0x45C3_2D90_AC4C_FA36L, 0x2F5E_7834_8020_BB9EL, // -106
0x6F9E_AF4D_E07B_29F0L, 0x4BCA_59ED_99CD_F8FCL, // -105
0x594B_BF71_8062_87F3L, 0x563B_7B24_7B0B_2D96L, // -104
0x476F_CC5A_CD1B_9FF6L, 0x11C9_2F50_626F_57ACL, // -103
0x724C_7A2A_E1C5_CCBDL, 0x02DB_7EE7_03E5_5912L, // -102
0x5B70_61BB_E7D1_7097L, 0x1BE2_CBEC_031D_E0DCL, // -101
0x4926_B496_530D_F3ACL, 0x164F_0989_9C17_E716L, // -100
0x750A_BA8A_1E7C_B913L, 0x3D4B_4275_C68C_A4F0L, // -99
0x5DA2_2ED4_E530_940FL, 0x4AA2_9B91_6BA3_B726L, // -98
0x4AE8_2577_1DC0_7672L, 0x6EE8_7C74_561C_9285L, // -97
0x77D9_D58B_62CD_8A51L, 0x3173_FA53_BCFA_8408L, // -96
0x5FE1_77A2_B571_3B74L, 0x278F_FB76_30C8_69A0L, // -95
0x4CB4_5FB5_5DF4_2F90L, 0x1FA6_62C4_F3D3_87B3L, // -94
0x7ABA_32BB_C986_B280L, 0x32A3_D13B_1FB8_D91FL, // -93
0x622E_8EFC_A138_8ECDL, 0x0EE9_742F_4C93_E0E6L, // -92
0x4E8B_A596_E760_723DL, 0x58BA_C359_0A0F_E71EL, // -91
0x7DAC_3C24_A567_1D2FL, 0x412A_D228_1019_71C9L, // -90
0x6489_C9B6_EAB8_E426L, 0x00EF_0E86_7347_8E3BL, // -89
0x506E_3AF8_BBC7_1CEBL, 0x1A58_D86B_8F6C_71C9L, // -88
0x4058_2F2D_6305_B0BCL, 0x1513_E056_0C56_C16EL, // -87
0x66F3_7EAF_04D5_E793L, 0x3B53_0089_AD57_9BE2L, // -86
0x525C_6558_D0AB_1FA9L, 0x15DC_006E_2446_164FL, // -85
0x41E3_8447_0D55_B2EDL, 0x5E49_99F1_B69E_783FL, // -84
0x696C_06D8_1555_EB15L, 0x7D42_8FE9_2430_C065L, // -83
0x5456_6BE0_1111_88DEL, 0x3102_0CBA_835A_3384L, // -82
0x4378_564C_DA74_6D7EL, 0x5A68_0A2E_CF7B_5C69L, // -81
0x6BF3_BD47_C3ED_7BFDL, 0x770C_DD17_B25E_FA42L, // -80
0x565C_976C_9CBD_FCCBL, 0x1270_B0DF_C1E5_9502L, // -79
0x4516_DF8A_16FE_63D5L, 0x5B8D_5A4C_9B1E_10CEL, // -78
0x6E8A_FF43_57FD_6C89L, 0x127B_C3AD_C4FC_E7B0L, // -77
0x586F_329C_4664_56D4L, 0x0EC9_6957_D0CA_52F3L, // -76
0x46BF_5BB0_3850_4576L, 0x3F07_8779_73D5_0F29L, // -75
0x7132_2C4D_26E6_D58AL, 0x31A5_A58F_1FBB_4B75L, // -74
0x5A8E_89D7_5252_446EL, 0x5AEA_EAD8_E62F_6F91L, // -73
0x4872_07DF_750E_9D25L, 0x2F22_557A_51BF_8C74L, // -72
0x73E9_A632_54E4_2EA2L, 0x1836_EF2A_1C65_AD86L, // -71
0x5CBA_EB5B_771C_F21BL, 0x2CF8_BF54_E384_8AD2L, // -70
0x4A2F_22AF_927D_8E7CL, 0x23FA_32AA_4F9D_3BDBL, // -69
0x76B1_D118_EA62_7D93L, 0x5329_EAAA_18FB_92F8L, // -68
0x5EF4_A747_21E8_6476L, 0x0F54_BBBB_472F_A8C6L, // -67
0x4BF6_EC38_E7ED_1D2BL, 0x25DD_62FC_38F2_ED6CL, // -66
0x798B_138E_3FE1_C845L, 0x22FB_D193_8E51_7BDFL, // -65
0x613C_0FA4_FFE7_D36AL, 0x4F2F_DADC_71DA_C97FL, // -64
0x4DC9_A61D_9986_42BBL, 0x58F3_157D_27E2_3ACCL, // -63
0x7C75_D695_C270_6AC5L, 0x74B8_2261_D969_F7ADL, // -62
0x6391_7877_CEC0_556BL, 0x1093_4EB4_ADEE_5FBEL, // -61
0x4FA7_9393_0BCD_1122L, 0x4075_D890_8B25_1965L, // -60
0x7F72_85B8_12E1_B504L, 0x00BC_8DB4_11D4_F56EL, // -59
0x65F5_37C6_7581_5D9CL, 0x66FD_3E29_A7DD_9125L, // -58
0x5190_F96B_9134_4AE3L, 0x6BFD_CB54_864A_DA84L, // -57
0x4140_C789_40F6_A24FL, 0x6FFE_3C43_9EA2_486AL, // -56
0x6867_A5A8_67F1_03B2L, 0x7FFD_2D38_FDD0_73DCL, // -55
0x5386_1E20_5327_3628L, 0x6664_242D_97D9_F64AL, // -54
0x42D1_B1B3_75B8_F820L, 0x51E9_B68A_DFE1_91D5L, // -53
0x6AE9_1C52_55F4_C034L, 0x1CA9_2411_6635_B621L, // -52
0x5587_49DB_77F7_0029L, 0x63BA_8341_1E91_5E81L, // -51
0x446C_3B15_F992_6687L, 0x6962_029A_7EDA_B201L, // -50
0x6D79_F823_28EA_3DA6L, 0x0F03_375D_97C4_5001L, // -49
0x5794_C682_8721_CAEBL, 0x259C_2C4A_DFD0_4001L, // -48
0x4610_9ECE_D281_6F22L, 0x5149_BD08_B30D_0001L, // -47
0x701A_97B1_50CF_1837L, 0x3542_C80D_EB48_0001L, // -46
0x59AE_DFC1_0D72_79C5L, 0x7768_A00B_22A0_0001L, // -45
0x47BF_1967_3DF5_2E37L, 0x7920_8008_E880_0001L, // -44
0x72CB_5BD8_6321_E38CL, 0x5B67_3341_7400_0001L, // -43
0x5BD5_E313_8281_82D6L, 0x7C52_8F67_9000_0001L, // -42
0x4977_E8DC_6867_9BDFL, 0x16A8_72B9_4000_0001L, // -41
0x758C_A7C7_0D72_92FEL, 0x5773_EAC2_0000_0001L, // -40
0x5E0A_1FD2_7128_7598L, 0x45F6_5568_0000_0001L, // -39
0x4B3B_4CA8_5A86_C47AL, 0x04C5_1120_0000_0001L, // -38
0x785E_E10D_5DA4_6D90L, 0x07A1_B500_0000_0001L, // -37
0x604B_E73D_E483_8AD9L, 0x52E7_C400_0000_0001L, // -36
0x4D09_85CB_1D36_08AEL, 0x0F1F_D000_0000_0001L, // -35
0x7B42_6FAB_61F0_0DE3L, 0x31CC_8000_0000_0001L, // -34
0x629B_8C89_1B26_7182L, 0x5B0A_0000_0000_0001L, // -33
0x4EE2_D6D4_15B8_5ACEL, 0x7C08_0000_0000_0001L, // -32
0x7E37_BE20_22C0_914BL, 0x1340_0000_0000_0001L, // -31
0x64F9_64E6_8233_A76FL, 0x2900_0000_0000_0001L, // -30
0x50C7_83EB_9B5C_85F2L, 0x5400_0000_0000_0001L, // -29
0x409F_9CBC_7C4A_04C2L, 0x1000_0000_0000_0001L, // -28
0x6765_C793_FA10_079DL, 0x0000_0000_0000_0001L, // -27
0x52B7_D2DC_C80C_D2E4L, 0x0000_0000_0000_0001L, // -26
0x422C_A8B0_A00A_4250L, 0x0000_0000_0000_0001L, // -25
0x69E1_0DE7_6676_D080L, 0x0000_0000_0000_0001L, // -24
0x54B4_0B1F_852B_DA00L, 0x0000_0000_0000_0001L, // -23
0x43C3_3C19_3756_4800L, 0x0000_0000_0000_0001L, // -22
0x6C6B_935B_8BBD_4000L, 0x0000_0000_0000_0001L, // -21
0x56BC_75E2_D631_0000L, 0x0000_0000_0000_0001L, // -20
0x4563_9182_44F4_0000L, 0x0000_0000_0000_0001L, // -19
0x6F05_B59D_3B20_0000L, 0x0000_0000_0000_0001L, // -18
0x58D1_5E17_6280_0000L, 0x0000_0000_0000_0001L, // -17
0x470D_E4DF_8200_0000L, 0x0000_0000_0000_0001L, // -16
0x71AF_D498_D000_0000L, 0x0000_0000_0000_0001L, // -15
0x5AF3_107A_4000_0000L, 0x0000_0000_0000_0001L, // -14
0x48C2_7395_0000_0000L, 0x0000_0000_0000_0001L, // -13
0x746A_5288_0000_0000L, 0x0000_0000_0000_0001L, // -12
0x5D21_DBA0_0000_0000L, 0x0000_0000_0000_0001L, // -11
0x4A81_7C80_0000_0000L, 0x0000_0000_0000_0001L, // -10
0x7735_9400_0000_0000L, 0x0000_0000_0000_0001L, // -9
0x5F5E_1000_0000_0000L, 0x0000_0000_0000_0001L, // -8
0x4C4B_4000_0000_0000L, 0x0000_0000_0000_0001L, // -7
0x7A12_0000_0000_0000L, 0x0000_0000_0000_0001L, // -6
0x61A8_0000_0000_0000L, 0x0000_0000_0000_0001L, // -5
0x4E20_0000_0000_0000L, 0x0000_0000_0000_0001L, // -4
0x7D00_0000_0000_0000L, 0x0000_0000_0000_0001L, // -3
0x6400_0000_0000_0000L, 0x0000_0000_0000_0001L, // -2
0x5000_0000_0000_0000L, 0x0000_0000_0000_0001L, // -1
0x4000_0000_0000_0000L, 0x0000_0000_0000_0001L, // 0
0x6666_6666_6666_6666L, 0x3333_3333_3333_3334L, // 1
0x51EB_851E_B851_EB85L, 0x0F5C_28F5_C28F_5C29L, // 2
0x4189_374B_C6A7_EF9DL, 0x5916_872B_020C_49BBL, // 3
0x68DB_8BAC_710C_B295L, 0x74F0_D844_D013_A92BL, // 4
0x53E2_D623_8DA3_C211L, 0x43F3_E037_0CDC_8755L, // 5
0x431B_DE82_D7B6_34DAL, 0x698F_E692_70B0_6C44L, // 6
0x6B5F_CA6A_F2BD_215EL, 0x0F4C_A41D_811A_46D4L, // 7
0x55E6_3B88_C230_E77EL, 0x3F70_834A_CDAE_9F10L, // 8
0x44B8_2FA0_9B5A_52CBL, 0x4C5A_02A2_3E25_4C0DL, // 9
0x6DF3_7F67_5EF6_EADFL, 0x2D5C_D103_96A2_1347L, // 10
0x57F5_FF85_E592_557FL, 0x3DE3_DA69_454E_75D3L, // 11
0x465E_6604_B7A8_4465L, 0x7E4F_E1ED_D10B_9175L, // 12
0x7097_09A1_25DA_0709L, 0x4A19_697C_81AC_1BEFL, // 13
0x5A12_6E1A_84AE_6C07L, 0x54E1_2130_67BC_E326L, // 14
0x480E_BE7B_9D58_566CL, 0x43E7_4DC0_52FD_8285L, // 15
0x734A_CA5F_6226_F0ADL, 0x530B_AF9A_1E62_6A6DL, // 16
0x5C3B_D519_1B52_5A24L, 0x426F_BFAE_7EB5_21F1L, // 17
0x49C9_7747_490E_AE83L, 0x4EBF_CC8B_9890_E7F4L, // 18
0x760F_253E_DB4A_B0D2L, 0x4ACC_7A78_F41B_0CBAL, // 19
0x5E72_8432_4908_8D75L, 0x223D_2EC7_29AF_3D62L, // 20
0x4B8E_D028_3A6D_3DF7L, 0x34FD_BF05_BAF2_9781L, // 21
0x78E4_8040_5D7B_9658L, 0x54C9_31A2_C4B7_58CFL, // 22
0x60B6_CD00_4AC9_4513L, 0x5D6D_C14F_03C5_E0A5L, // 23
0x4D5F_0A66_A23A_9DA9L, 0x3124_9AA5_9C9E_4D51L, // 24
0x7BCB_43D7_69F7_62A8L, 0x4EA0_F76F_60FD_4882L, // 25
0x6309_0312_BB2C_4EEDL, 0x254D_92BF_80CA_A068L, // 26
0x4F3A_68DB_C8F0_3F24L, 0x1DD7_A899_33D5_4D20L, // 27
0x7EC3_DAF9_4180_6506L, 0x62F2_A75B_8622_1500L, // 28
0x6569_7BFA_9ACD_1D9FL, 0x025B_B916_04E8_10CDL, // 29
0x5121_2FFB_AF0A_7E18L, 0x6849_60DE_6A53_40A4L, // 30
0x40E7_5996_25A1_FE7AL, 0x203A_B3E5_21DC_33B6L, // 31
0x67D8_8F56_A29C_CA5DL, 0x19F7_863B_6960_52BDL, // 32
0x5313_A5DE_E87D_6EB0L, 0x7B2C_6B62_BAB3_7564L, // 33
0x4276_1E4B_ED31_255AL, 0x2F56_BC4E_FBC2_C450L, // 34
0x6A56_96DF_E1E8_3BC3L, 0x6557_93B1_92D1_3A1AL, // 35
0x5512_124C_B4B9_C969L, 0x3779_42F4_7574_2E7BL, // 36
0x440E_750A_2A2E_3ABAL, 0x5F94_3590_5DF6_8B96L, // 37
0x6CE3_EE76_A9E3_912AL, 0x65B9_EF4D_6324_1289L, // 38
0x571C_BEC5_54B6_0DBBL, 0x6AFB_25D7_8283_4207L, // 39
0x45B0_989D_DD5E_7163L, 0x08C8_EB12_CECF_6806L, // 40
0x6F80_F42F_C897_1BD1L, 0x5ADB_11B7_B14B_D9A3L, // 41
0x5933_F68C_A078_E30EL, 0x157C_0E2C_8DD6_47B5L, // 42
0x475C_C53D_4D2D_8271L, 0x5DFC_D823_A4AB_6C91L, // 43
0x722E_0862_1515_9D82L, 0x632E_269F_6DDF_141BL, // 44
0x5B58_06B4_DDAA_E468L, 0x4F58_1EE5_F17F_4349L, // 45
0x4913_3890_B155_8386L, 0x72AC_E584_C132_9C3BL, // 46
0x74EB_8DB4_4EEF_38D7L, 0x6AAE_3C07_9B84_2D2AL, // 47
0x5D89_3E29_D8BF_60ACL, 0x5558_3006_1603_5755L, // 48
0x4AD4_31BB_13CC_4D56L, 0x7779_C004_DE69_12ABL, // 49
0x77B9_E92B_52E0_7BBEL, 0x258F_99A1_63DB_5111L, // 50
0x5FC7_EDBC_424D_2FCBL, 0x37A6_1481_1CAF_740DL, // 51
0x4C9F_F163_683D_BFD5L, 0x7951_AA00_E3BF_900BL, // 52
0x7A99_8238_A6C9_32EFL, 0x754F_7667_D2CC_19ABL, // 53
0x6214_682D_523A_8F26L, 0x2AA5_F853_0F09_AE22L, // 54
0x4E76_B9BD_DB62_0C1EL, 0x5551_9375_A5A1_581BL, // 55
0x7D8A_C2C9_5F03_4697L, 0x3BB5_B8BC_3C35_59C5L, // 56
0x646F_023A_B269_0545L, 0x7C91_6096_9691_149EL, // 57
0x5058_CE95_5B87_376BL, 0x16DA_B3AB_ABA7_43B2L, // 58
0x4047_0BAA_AF9F_5F88L, 0x78AE_F622_EFB9_02F5L, // 59
0x66D8_12AA_B298_98DBL, 0x0DE4_BD04_B2C1_9E54L, // 60
0x5246_7555_5BAD_4715L, 0x57EA_30D0_8F01_4B76L, // 61
0x41D1_F777_7C8A_9F44L, 0x4654_F3DA_0C01_092CL, // 62
0x694F_F258_C744_3207L, 0x23BB_1FC3_4668_0EACL, // 63
0x543F_F513_D29C_F4D2L, 0x4FC8_E635_D1EC_D88AL, // 64
0x4366_5DA9_754A_5D75L, 0x263A_51C4_A7F0_AD3BL, // 65
0x6BD6_FC42_5543_C8BBL, 0x56C3_B607_731A_AEC4L, // 66
0x5645_969B_7769_6D62L, 0x789C_919F_8F48_8BD0L, // 67
0x4504_787C_5F87_8AB5L, 0x46E3_A7B2_D906_D640L, // 68
0x6E6D_8D93_CC0C_1122L, 0x3E39_0C51_5B3E_239AL, // 69
0x5857_A476_3CD6_741BL, 0x4B60_D6A7_7C31_B615L, // 70
0x46AC_8391_CA45_29AFL, 0x55E7_121F_968E_2B44L, // 71
0x7114_05B6_106E_A919L, 0x0971_B698_F0E3_786DL, // 72
0x5A76_6AF8_0D25_5414L, 0x078E_2BAD_8D82_C6BDL, // 73
0x485E_BBF9_A41D_DCDCL, 0x6C71_BC8A_D79B_D231L, // 74
0x73CA_C65C_39C9_6161L, 0x2D82_C744_8C2C_8382L, // 75
0x5CA2_3849_C7D4_4DE7L, 0x3E02_3903_A356_CF9BL, // 76
0x4A1B_603B_0643_7185L, 0x7E68_2D9C_82AB_D949L, // 77
0x7692_3391_A39F_1C09L, 0x4A40_48FA_6AAC_8EDBL, // 78
0x5EDB_5C74_82E5_B007L, 0x5500_3A61_EEF0_7249L, // 79
0x4BE2_B05D_3584_8CD2L, 0x7733_61E7_F259_F507L, // 80
0x796A_B3C8_55A0_E151L, 0x3EB8_9CA6_508F_EE71L, // 81
0x6122_296D_114D_810DL, 0x7EFA_16EB_73A6_585BL, // 82
0x4DB4_EDF0_DAA4_673EL, 0x3261_ABEF_8FB8_46AFL, // 83
0x7C54_AFE7_C43A_3ECAL, 0x1D69_1318_E5F3_A44BL, // 84
0x6376_F31F_D02E_98A1L, 0x6454_0F47_1E5C_836FL, // 85
0x4F92_5C19_7358_7A1BL, 0x0376_729F_4B7D_35F3L, // 86
0x7F50_935B_EBC0_C35EL, 0x38BD_8432_1261_EFEBL, // 87
0x65DA_0F7C_BC9A_35E5L, 0x13CA_D028_0EB4_BFEFL, // 88
0x517B_3F96_FD48_2B1DL, 0x5CA2_4020_0BC3_CCBFL, // 89
0x412F_6612_6439_BC17L, 0x63B5_0019_A303_0A33L, // 90
0x684B_D683_D38F_9359L, 0x1F88_0029_04D1_A9EAL, // 91
0x536F_DECF_DC72_DC47L, 0x32D3_3354_03DA_EE55L, // 92
0x42BF_E573_16C2_49D2L, 0x5BDC_2910_0315_8B77L, // 93
0x6ACC_A251_BE03_A951L, 0x12F9_DB4C_D1BC_1258L, // 94
0x5570_81DA_FE69_5440L, 0x7594_AF70_A7C9_A847L, // 95
0x445A_017B_FEBA_A9CDL, 0x4476_F2C0_863A_ED06L, // 96
0x6D5C_CF2C_CAC4_42E2L, 0x3A57_EACD_A391_7B3CL, // 97
0x577D_728A_3BD0_3581L, 0x7B79_88A4_82DA_C8FDL, // 98
0x45FD_F53B_630C_F79BL, 0x15FA_D3B6_CF15_6D97L, // 99
0x6FFC_BB92_3814_BF5EL, 0x565E_1F8A_E4EF_15BEL, // 100
0x5996_FC74_F9AA_32B2L, 0x11E4_E608_B725_AAFFL, // 101
0x47AB_FD2A_6154_F55BL, 0x27EA_51A0_9284_88CCL, // 102
0x72AC_C843_CEEE_555EL, 0x7310_829A_8407_4146L, // 103
0x5BBD_6D03_0BF1_DDE5L, 0x4273_9BAE_D005_CDD2L, // 104
0x4964_5735_A327_E4B7L, 0x4EC2_E2F2_4004_A4A8L, // 105
0x756D_5855_D1D9_6DF2L, 0x4AD1_6B1D_333A_A10CL, // 106
0x5DF1_1377_DB14_57F5L, 0x2241_227D_C295_4DA3L, // 107
0x4B27_42C6_48DD_132AL, 0x4E9A_81FE_3544_3E1CL, // 108
0x783E_D13D_4161_B844L, 0x175D_9CC9_EED3_9694L, // 109
0x6032_40FD_CDE7_C69CL, 0x7917_B0A1_8BDC_7876L, // 110
0x4CF5_00CB_0B1F_D217L, 0x1412_F3B4_6FE3_9392L, // 111
0x7B21_9ADE_7832_E9BEL, 0x5351_85ED_7FD2_85B6L, // 112
0x6281_48B1_F9C2_5498L, 0x42A7_9E57_9975_37C5L, // 113
0x4ECD_D3C1_949B_76E0L, 0x3552_E512_E12A_9304L, // 114
0x7E16_1F9C_20F8_BE33L, 0x6EEB_081E_3510_EB39L, // 115
0x64DE_7FB0_1A60_9829L, 0x3F22_6CE4_F740_BC2EL, // 116
0x50B1_FFC0_151A_1354L, 0x3281_F0B7_2C33_C9BEL, // 117
0x408E_6633_4414_DC43L, 0x4201_8D5F_568F_D498L, // 118
0x674A_3D1E_D354_939FL, 0x1CCF_4898_8A7F_BA8DL, // 119
0x52A1_CA7F_0F76_DC7FL, 0x30A5_D3AD_3B99_620BL, // 120
0x421B_0865_A5F8_B065L, 0x73B7_DC8A_9614_4E6FL, // 121
0x69C4_DA3C_3CC1_1A3CL, 0x52BF_C744_2353_B0B1L, // 122
0x549D_7B63_63CD_AE96L, 0x7566_3903_4F76_26F4L, // 123
0x43B1_2F82_B63E_2545L, 0x4451_C735_D92B_525DL, // 124
0x6C4E_B26A_BD30_3BA2L, 0x3A1C_71EF_C1DE_EA2EL, // 125
0x56A5_5B88_9759_C94EL, 0x61B0_5B26_34B2_54F2L, // 126
0x4551_1606_DF7B_0772L, 0x1AF3_7C1E_908E_AA5BL, // 127
0x6EE8_233E_325E_7250L, 0x2B1F_2CFD_B417_76F8L, // 128
0x58B9_B5CB_5B7E_C1D9L, 0x6F4C_23FE_29AC_5F2DL, // 129
0x46FA_F7D5_E2CB_CE47L, 0x72A3_4FFE_87BD_18F1L, // 130
0x7191_8C89_6ADF_B073L, 0x0438_7FFD_A5FB_5B1BL, // 131
0x5ADA_D6D4_557F_C05CL, 0x0360_6664_84C9_15AFL, // 132
0x48AF_1243_7799_66B0L, 0x02B3_851D_3707_448CL, // 133
0x744B_506B_F28F_0AB3L, 0x1DEC_082E_BE72_0746L, // 134
0x5D09_0D23_2872_6EF5L, 0x64BC_D358_985B_3905L, // 135
0x4A6D_A41C_205B_8BF7L, 0x6A30_A913_AD15_C738L, // 136
0x7715_D360_33C5_ACBFL, 0x5D1A_A81F_7B56_0B8CL, // 137
0x5F44_A919_C304_8A32L, 0x7DAE_ECE5_FC44_D609L, // 138
0x4C36_EDAE_359D_3B5BL, 0x7E25_8A51_969D_7808L, // 139
0x79F1_7C49_EF61_F893L, 0x16A2_76E8_F0FB_F33FL, // 140
0x618D_FD07_F2B4_C6DCL, 0x121B_9253_F3FC_C299L, // 141
0x4E0B_30D3_2890_9F16L, 0x41AF_A843_2997_0214L, // 142
0x7CDE_B485_0DB4_31BDL, 0x4F7F_739E_A8F1_9CEDL, // 143
0x63E5_5D37_3E29_C164L, 0x3F99_294B_BA5A_E3F1L, // 144
0x4FEA_B0F8_FE87_CDE9L, 0x7FAD_BAA2_FB7B_E98DL, // 145
0x7FDD_E7F4_CA72_E30FL, 0x7F7C_5DD1_925F_DC15L, // 146
0x664B_1FF7_085B_E8D9L, 0x4C63_7E41_41E6_49ABL, // 147
0x51D5_B32C_06AF_ED7AL, 0x704F_9834_34B8_3AEFL, // 148
0x4177_C289_9EF3_2462L, 0x26A6_135C_F6F9_C8BFL, // 149
0x68BF_9DA8_FE51_D3D0L, 0x3DD6_8561_8B29_4132L, // 150
0x53CC_7E20_CB74_A973L, 0x4B12_044E_08ED_CDC2L, // 151
0x4309_FE80_A2C3_BAC2L, 0x6F41_9D0B_3A57_D7CEL, // 152
0x6B43_30CD_D139_2AD1L, 0x3202_94DE_C3BF_BFB0L, // 153
0x55CF_5A3E_40FA_88A7L, 0x419B_AA4B_CFCC_995AL, // 154
0x44A5_E1CB_672E_D3B9L, 0x1AE2_EEA3_0CA3_ADE1L, // 155
0x6DD6_3612_3EB1_52C1L, 0x77D1_7DD1_ADD2_AFCFL, // 156
0x57DE_91A8_3227_7567L, 0x7974_64A7_BE42_263FL, // 157
0x464B_A7B9_C1B9_2AB9L, 0x4790_5086_31CE_84FFL, // 158
0x7079_0C5C_6928_445CL, 0x0C1A_1A70_4FB0_D4CCL, // 159
0x59FA_7049_EDB9_D049L, 0x567B_4859_D95A_43D6L, // 160
0x47FB_8D07_F161_736EL, 0x11FC_39E1_7AAE_9CABL, // 161
0x732C_14D9_8235_857DL, 0x032D_2968_C44A_9445L, // 162
0x5C23_43E1_34F7_9DFDL, 0x4F57_5453_D03B_A9D1L, // 163
0x49B5_CFE7_5D92_E4CAL, 0x72AC_4376_402F_BB0EL, // 164
0x75EF_B30B_C8EB_07ABL, 0x0446_D256_CD19_2B49L, // 165
0x5E59_5C09_6D88_D2EFL, 0x1D05_7512_3DAD_BC3AL, // 166
0x4B7A_B007_8AD3_DBF2L, 0x4A6A_C40E_97BE_302FL, // 167
0x78C4_4CD8_DE1F_C650L, 0x7711_39B0_F2C9_E6B1L, // 168
0x609D_0A47_1819_6B73L, 0x78DA_948D_8F07_EBC1L, // 169
0x4D4A_6E9F_467A_BC5CL, 0x60AE_DD3E_0C06_5634L, // 170
0x7BAA_4A98_70C4_6094L, 0x344A_FB96_79A3_BD20L, // 171
0x62EE_A213_8D69_E6DDL, 0x103B_FC78_614F_CA80L, // 172
0x4F25_4E76_0ABB_1F17L, 0x2696_6393_810C_A200L, // 173
0x7EA2_1723_445E_9825L, 0x2423_D285_9B47_6999L, // 174
0x654E_78E9_037E_E01DL, 0x69B6_4204_7C39_2148L, // 175
0x510B_93ED_9C65_8017L, 0x6E2B_6803_9694_1AA0L, // 176
0x40D6_0FF1_49EA_CCDFL, 0x71BC_5336_1210_154DL, // 177
0x67BC_E64E_DCAA_E166L, 0x1C60_8523_5019_BBAEL, // 178
0x52FD_850B_E3BB_E784L, 0x7D1A_041C_4014_9625L, // 179
0x4264_6A6F_E963_1F9DL, 0x4A7B_367D_0010_781DL, // 180
0x6A3A_43E6_4238_3295L, 0x5D91_F0C8_001A_59C8L, // 181
0x54FB_6985_01C6_8EDEL, 0x17A7_F3D3_3348_47D4L, // 182
0x43FC_546A_67D2_0BE4L, 0x7953_2975_C2A0_3976L, // 183
0x6CC6_ED77_0C83_463BL, 0x0EEB_7589_3766_C256L, // 184
0x5705_8AC5_A39C_382FL, 0x2589_2AD4_2C52_3512L, // 185
0x459E_089E_1C7C_F9BFL, 0x37A0_EF10_2374_F742L, // 186
0x6F63_40FC_FA61_8F98L, 0x5901_7E80_38BB_2536L, // 187
0x591C_33FD_951A_D946L, 0x7A67_9866_93C8_EA91L, // 188
0x4749_C331_4415_7A9FL, 0x151F_AD1E_DCA0_BBA8L, // 189
0x720F_9EB5_39BB_F765L, 0x0832_AE97_C767_92A5L, // 190
0x5B3F_B22A_9496_5F84L, 0x068E_F213_05EC_7551L, // 191
0x48FF_C1BB_AA11_E603L, 0x1ED8_C1A8_D189_F774L, // 192
0x74CC_692C_434F_D66BL, 0x4AF4_690E_1C0F_F253L, // 193
0x5D70_5423_690C_AB89L, 0x225D_20D8_1673_2843L, // 194
0x4AC0_434F_873D_5607L, 0x3517_4D79_AB8F_5369L, // 195
0x779A_054C_0B95_5672L, 0x21BE_E25C_45B2_1F0EL, // 196
0x5FAE_6AA3_3C77_785BL, 0x3498_B516_9E28_18D8L, // 197
0x4C8B_8882_96C5_F9E2L, 0x5D46_F745_4B53_4713L, // 198
0x7A78_DA6A_8AD6_5C9DL, 0x7BA4_BED5_4552_0B52L, // 199
0x61FA_4855_3BDE_B07EL, 0x2FB6_FF11_0441_A2A8L, // 200
0x4E61_D377_6318_8D31L, 0x72F8_CC0D_9D01_4EEDL, // 201
0x7D69_5258_9E8D_AEB6L, 0x1E5A_E015_C802_17E1L, // 202
0x6454_41E0_7ED7_BEF8L, 0x1848_B344_A001_ACB4L, // 203
0x5043_67E6_CBDF_CBF9L, 0x603A_2903_B334_8A2AL, // 204
0x4035_ECB8_A319_6FFBL, 0x002E_8736_28F6_D4EEL, // 205
0x66BC_ADF4_3828_B32BL, 0x19E4_0B89_DB24_87E3L, // 206
0x5230_8B29_C686_F5BCL, 0x14B6_6FA1_7C1D_3983L, // 207
0x41C0_6F54_9ED2_5E30L, 0x1091_F2E7_967D_C79CL, // 208
0x6933_E554_3150_96B3L, 0x341C_B7D8_F0C9_3F5FL, // 209
0x5429_8443_5AA6_DEF5L, 0x767D_5FE0_C0A0_FF80L, // 210
0x4354_69CF_7BB8_B25EL, 0x2B97_7FE7_0080_CC66L, // 211
0x6BBA_42E5_92C1_1D63L, 0x5F58_CCA4_CD9A_E0A3L, // 212
0x562E_9BEA_DBCD_B11CL, 0x4C47_0A1D_7148_B3B6L, // 213
0x44F2_1655_7CA4_8DB0L, 0x3D05_A1B1_276D_5C92L, // 214
0x6E50_23BB_FAA0_E2B3L, 0x7B3C_35E8_3F15_60E9L, // 215
0x5840_1C96_621A_4EF6L, 0x2F63_5E53_65AA_B3EDL, // 216
0x4699_B078_4E7B_725EL, 0x591C_4B75_EAEE_F658L, // 217
0x70F5_E726_E3F8_B6FDL, 0x74FA_1256_44B1_8A26L, // 218
0x5A5E_5285_832D_5F31L, 0x43FB_41DE_9D5A_D4EBL, // 219
0x484B_7537_9C24_4C27L, 0x4FFC_34B2_177B_DD89L, // 220
0x73AB_EEBF_603A_1372L, 0x4CC6_BAB6_8BF9_6274L, // 221
0x5C89_8BCC_4CFB_42C2L, 0x0A38_955E_D661_1B90L, // 222
0x4A07_A309_D72F_689BL, 0x21C6_DDE5_784D_AFA7L, // 223
0x7672_9E76_2518_A75EL, 0x693E_2FD5_8D49_190BL, // 224
0x5EC2_185E_8413_B918L, 0x5431_BFDE_0AA0_E0D5L, // 225
0x4BCE_79E5_3676_2DADL, 0x29C1_664B_3BB3_E711L, // 226
0x794A_5CA1_F0BD_15E2L, 0x0F9B_D6DE_C5EC_A4E8L, // 227
0x6108_4A1B_26FD_AB1BL, 0x2616_457F_04BD_50BAL, // 228
0x4DA0_3B48_EBFE_227CL, 0x1E78_3798_D097_73C8L, // 229
0x7C33_920E_4663_6A60L, 0x30C0_58F4_80F2_52D9L, // 230
0x635C_74D8_384F_884DL, 0x0D66_AD90_6728_4247L, // 231
0x4F7D_2A46_9372_D370L, 0x711E_F140_5286_9B6CL, // 232
0x7F2E_AA0A_8584_8581L, 0x34FE_4ECD_50D7_5F14L, // 233
0x65BE_EE6E_D136_D134L, 0x2A65_0BD7_73DF_7F43L, // 234
0x5165_8B8B_DA92_40F6L, 0x551D_A312_C319_329CL, // 235
0x411E_093C_AEDB_672BL, 0x5DB1_4F42_35AD_C217L, // 236
0x6830_0EC7_7E2B_D845L, 0x7C4E_E536_BC49_368AL, // 237
0x5359_A56C_64EF_E037L, 0x7D0B_EA92_303A_9208L, // 238
0x42AE_1DF0_50BF_E693L, 0x173C_BBA8_2695_41A0L, // 239
0x6AB0_2FE6_E799_70EBL, 0x3EC7_92A6_A422_029AL, // 240
0x5559_BFEB_EC7A_C0BCL, 0x3239_421E_E9B4_CEE1L, // 241
0x4447_CCBC_BD2F_0096L, 0x5B61_01B2_5490_A581L, // 242
0x6D3F_ADFA_C84B_3424L, 0x2BCE_691D_541A_A268L, // 243
0x5766_24C8_A03C_29B6L, 0x563E_BA7D_DCE2_1B87L, // 244
0x45EB_50A0_8030_215EL, 0x7832_2ECB_171B_4939L, // 245
0x6FDE_E767_3380_3564L, 0x59E9_E478_24F8_7527L, // 246
0x597F_1F85_C2CC_F783L, 0x6187_E9F9_B72D_2A86L, // 247
0x4798_E604_9BD7_2C69L, 0x346C_BB2E_2C24_2205L, // 248
0x728E_3CD4_2C8B_7A42L, 0x20AD_F849_E039_D007L, // 249
0x5BA4_FD76_8A09_2E9BL, 0x33BE_603B_19C7_D99FL, // 250
0x4950_CAC5_3B3A_8BAFL, 0x42FE_B362_7B06_47B3L, // 251
0x754E_113B_91F7_45E5L, 0x5197_856A_5E70_72B8L, // 252
0x5DD8_0DC9_4192_9E51L, 0x27AC_6ABB_7EC0_5BC6L, // 253
0x4B13_3E3A_9ADB_B1DAL, 0x52F0_5562_CBCD_1638L, // 254
0x781E_C9F7_5E2C_4FC4L, 0x1E4D_556A_DFAE_89F3L, // 255
0x6018_A192_B1BD_0C9CL, 0x7EA4_4455_7FBE_D4C3L, // 256
0x4CE0_8142_27CA_707DL, 0x4BB6_9D11_32FF_109CL, // 257
0x7B00_CED0_3FAA_4D95L, 0x5F8A_94E8_5198_1A93L, // 258
0x6267_0BD9_CC88_3E11L, 0x32D5_43ED_0E13_4875L, // 259
0x4EB8_D647_D6D3_64DAL, 0x5BDD_CFF0_D80F_6D2BL, // 260
0x7DF4_8A0C_8AEB_D491L, 0x12FC_7FE7_C018_AEABL, // 261
0x64C3_A1A3_A256_43A7L, 0x28C9_FFEC_99AD_5889L, // 262
0x509C_814F_B511_CFB9L, 0x0707_FFF0_7AF1_13A1L, // 263
0x407D_343F_C40E_3FC7L, 0x1F39_998D_2F27_42E7L, // 264
0x672E_B9FF_A016_CC71L, 0x7EC2_8F48_4B72_04A4L, // 265
0x528B_C7FF_B345_705BL, 0x189B_A5D3_6F8E_6A1DL, // 266
0x4209_6CCC_8F6A_C048L, 0x7A16_1E42_BFA5_21B1L, // 267
0x69A8_AE14_18AA_CD41L, 0x4356_96D1_32A1_CF81L, // 268
0x5486_F1A9_AD55_7101L, 0x1C45_4574_2881_72CEL, // 269
0x439F_27BA_F111_2734L, 0x169D_D129_BA01_28A5L, // 270
0x6C31_D92B_1B4E_A520L, 0x242F_B50F_9001_DAA1L, // 271
0x568E_4755_AF72_1DB3L, 0x368C_90D9_4001_7BB4L, // 272
0x453E_9F77_BF8E_7E29L, 0x120A_0D7A_999A_C95DL, // 273
0x6ECA_98BF_98E3_FD0EL, 0x5010_1590_F5C4_7561L, // 274
0x58A2_13CC_7A4F_FDA5L, 0x2673_4473_F7D0_5DE8L, // 275
0x46E8_0FD6_C83F_FE1DL, 0x6B8F_69F6_5FD9_E4B9L, // 276
0x7173_4C8A_D9FF_FCFCL, 0x45B2_4323_CC8F_D45CL, // 277
0x5AC2_A3A2_47FF_FD96L, 0x6AF5_0283_0A0C_A9E3L, // 278
0x489B_B61B_6CCC_CADFL, 0x08C4_0202_6E70_87E9L, // 279
0x742C_5692_47AE_1164L, 0x746C_D003_E3E7_3FDBL, // 280
0x5CF0_4541_D2F1_A783L, 0x76BD_7336_4FEC_3315L, // 281
0x4A59_D101_758E_1F9CL, 0x5EFD_F5C5_0CBC_F5ABL, // 282
0x76F6_1B35_88E3_65C7L, 0x4B2F_EFA1_ADFB_22ABL, // 283
0x5F2B_48F7_A0B5_EB06L, 0x08F3_261A_F195_B555L, // 284
0x4C22_A0C6_1A2B_226BL, 0x20C2_84E2_5ADE_2AABL, // 285
0x79D1_013C_F6AB_6A45L, 0x1AD0_D49D_5E30_4444L, // 286
0x6174_00FD_9222_BB6AL, 0x48A7_107D_E4F3_69D0L, // 287
0x4DF6_6731_41B5_62BBL, 0x53B8_D9FE_50C2_BB0DL, // 288
0x7CBD_71E8_6922_3792L, 0x52C1_5CCA_1AD1_2B48L, // 289
0x63CA_C186_BA81_C60EL, 0x7567_7D6E_7BDA_8906L, // 290
0x4FD5_679E_FB9B_04D8L, 0x5DEC_6458_6315_3A6CL, // 291
0x7FBB_D8FE_5F5E_6E27L, 0x497A_3A27_04EE_C3DFL, // 292
};
}

View file

@ -4354,39 +4354,39 @@ NaN + NaN = NaN, with float exprs operands
NaN - NaN = NaN, with float exprs operands NaN - NaN = NaN, with float exprs operands
NaN * NaN = NaN, with float exprs operands NaN * NaN = NaN, with float exprs operands
NaN / NaN = NaN, with float exprs operands NaN / NaN = NaN, with float exprs operands
4.9E-324 + 4.9E-324 = 1.0E-323, with double param operands 4.9E-324 + 4.9E-324 = 9.9E-324, with double param operands
4.9E-324 - 4.9E-324 = 0.0, with double param operands 4.9E-324 - 4.9E-324 = 0.0, with double param operands
4.9E-324 * 4.9E-324 = 0.0, with double param operands 4.9E-324 * 4.9E-324 = 0.0, with double param operands
4.9E-324 / 4.9E-324 = 1.0, with double param operands 4.9E-324 / 4.9E-324 = 1.0, with double param operands
4.9E-324 + 4.9E-324 = 1.0E-323, with double local operands 4.9E-324 + 4.9E-324 = 9.9E-324, with double local operands
4.9E-324 - 4.9E-324 = 0.0, with double local operands 4.9E-324 - 4.9E-324 = 0.0, with double local operands
4.9E-324 * 4.9E-324 = 0.0, with double local operands 4.9E-324 * 4.9E-324 = 0.0, with double local operands
4.9E-324 / 4.9E-324 = 1.0, with double local operands 4.9E-324 / 4.9E-324 = 1.0, with double local operands
4.9E-324 + 4.9E-324 = 1.0E-323, with double static operands 4.9E-324 + 4.9E-324 = 9.9E-324, with double static operands
4.9E-324 - 4.9E-324 = 0.0, with double static operands 4.9E-324 - 4.9E-324 = 0.0, with double static operands
4.9E-324 * 4.9E-324 = 0.0, with double static operands 4.9E-324 * 4.9E-324 = 0.0, with double static operands
4.9E-324 / 4.9E-324 = 1.0, with double static operands 4.9E-324 / 4.9E-324 = 1.0, with double static operands
4.9E-324 + 4.9E-324 = 1.0E-323, with double field operands 4.9E-324 + 4.9E-324 = 9.9E-324, with double field operands
4.9E-324 - 4.9E-324 = 0.0, with double field operands 4.9E-324 - 4.9E-324 = 0.0, with double field operands
4.9E-324 * 4.9E-324 = 0.0, with double field operands 4.9E-324 * 4.9E-324 = 0.0, with double field operands
4.9E-324 / 4.9E-324 = 1.0, with double field operands 4.9E-324 / 4.9E-324 = 1.0, with double field operands
4.9E-324 + 4.9E-324 = 1.0E-323, with double a[i] operands 4.9E-324 + 4.9E-324 = 9.9E-324, with double a[i] operands
4.9E-324 - 4.9E-324 = 0.0, with double a[i] operands 4.9E-324 - 4.9E-324 = 0.0, with double a[i] operands
4.9E-324 * 4.9E-324 = 0.0, with double a[i] operands 4.9E-324 * 4.9E-324 = 0.0, with double a[i] operands
4.9E-324 / 4.9E-324 = 1.0, with double a[i] operands 4.9E-324 / 4.9E-324 = 1.0, with double a[i] operands
4.9E-324 + 4.9E-324 = 1.0E-323, with double f(x) operands 4.9E-324 + 4.9E-324 = 9.9E-324, with double f(x) operands
4.9E-324 - 4.9E-324 = 0.0, with double f(x) operands 4.9E-324 - 4.9E-324 = 0.0, with double f(x) operands
4.9E-324 * 4.9E-324 = 0.0, with double f(x) operands 4.9E-324 * 4.9E-324 = 0.0, with double f(x) operands
4.9E-324 / 4.9E-324 = 1.0, with double f(x) operands 4.9E-324 / 4.9E-324 = 1.0, with double f(x) operands
4.9E-324 + 4.9E-324 = 1.0E-323, with double lExpr operands 4.9E-324 + 4.9E-324 = 9.9E-324, with double lExpr operands
4.9E-324 - 4.9E-324 = 0.0, with double lExpr operands 4.9E-324 - 4.9E-324 = 0.0, with double lExpr operands
4.9E-324 * 4.9E-324 = 0.0, with double lExpr operands 4.9E-324 * 4.9E-324 = 0.0, with double lExpr operands
4.9E-324 / 4.9E-324 = 1.0, with double lExpr operands 4.9E-324 / 4.9E-324 = 1.0, with double lExpr operands
4.9E-324 + 4.9E-324 = 1.0E-323, with double rExpr operands 4.9E-324 + 4.9E-324 = 9.9E-324, with double rExpr operands
4.9E-324 - 4.9E-324 = 0.0, with double rExpr operands 4.9E-324 - 4.9E-324 = 0.0, with double rExpr operands
4.9E-324 * 4.9E-324 = 0.0, with double rExpr operands 4.9E-324 * 4.9E-324 = 0.0, with double rExpr operands
4.9E-324 / 4.9E-324 = 1.0, with double rExpr operands 4.9E-324 / 4.9E-324 = 1.0, with double rExpr operands
4.9E-324 + 4.9E-324 = 1.0E-323, with double exprs operands 4.9E-324 + 4.9E-324 = 9.9E-324, with double exprs operands
4.9E-324 - 4.9E-324 = 0.0, with double exprs operands 4.9E-324 - 4.9E-324 = 0.0, with double exprs operands
4.9E-324 * 4.9E-324 = 0.0, with double exprs operands 4.9E-324 * 4.9E-324 = 0.0, with double exprs operands
4.9E-324 / 4.9E-324 = 1.0, with double exprs operands 4.9E-324 / 4.9E-324 = 1.0, with double exprs operands
@ -4427,39 +4427,39 @@ NaN / NaN = NaN, with float exprs operands
4.9E-324 * 1.7976931348623157E308 = 8.881784197001251E-16, with double exprs operands 4.9E-324 * 1.7976931348623157E308 = 8.881784197001251E-16, with double exprs operands
4.9E-324 / 1.7976931348623157E308 = 0.0, with double exprs operands 4.9E-324 / 1.7976931348623157E308 = 0.0, with double exprs operands
4.9E-324 + -4.9E-324 = 0.0, with double param operands 4.9E-324 + -4.9E-324 = 0.0, with double param operands
4.9E-324 - -4.9E-324 = 1.0E-323, with double param operands 4.9E-324 - -4.9E-324 = 9.9E-324, with double param operands
4.9E-324 * -4.9E-324 = -0.0, with double param operands 4.9E-324 * -4.9E-324 = -0.0, with double param operands
4.9E-324 / -4.9E-324 = -1.0, with double param operands 4.9E-324 / -4.9E-324 = -1.0, with double param operands
4.9E-324 + -4.9E-324 = 0.0, with double local operands 4.9E-324 + -4.9E-324 = 0.0, with double local operands
4.9E-324 - -4.9E-324 = 1.0E-323, with double local operands 4.9E-324 - -4.9E-324 = 9.9E-324, with double local operands
4.9E-324 * -4.9E-324 = -0.0, with double local operands 4.9E-324 * -4.9E-324 = -0.0, with double local operands
4.9E-324 / -4.9E-324 = -1.0, with double local operands 4.9E-324 / -4.9E-324 = -1.0, with double local operands
4.9E-324 + -4.9E-324 = 0.0, with double static operands 4.9E-324 + -4.9E-324 = 0.0, with double static operands
4.9E-324 - -4.9E-324 = 1.0E-323, with double static operands 4.9E-324 - -4.9E-324 = 9.9E-324, with double static operands
4.9E-324 * -4.9E-324 = -0.0, with double static operands 4.9E-324 * -4.9E-324 = -0.0, with double static operands
4.9E-324 / -4.9E-324 = -1.0, with double static operands 4.9E-324 / -4.9E-324 = -1.0, with double static operands
4.9E-324 + -4.9E-324 = 0.0, with double field operands 4.9E-324 + -4.9E-324 = 0.0, with double field operands
4.9E-324 - -4.9E-324 = 1.0E-323, with double field operands 4.9E-324 - -4.9E-324 = 9.9E-324, with double field operands
4.9E-324 * -4.9E-324 = -0.0, with double field operands 4.9E-324 * -4.9E-324 = -0.0, with double field operands
4.9E-324 / -4.9E-324 = -1.0, with double field operands 4.9E-324 / -4.9E-324 = -1.0, with double field operands
4.9E-324 + -4.9E-324 = 0.0, with double a[i] operands 4.9E-324 + -4.9E-324 = 0.0, with double a[i] operands
4.9E-324 - -4.9E-324 = 1.0E-323, with double a[i] operands 4.9E-324 - -4.9E-324 = 9.9E-324, with double a[i] operands
4.9E-324 * -4.9E-324 = -0.0, with double a[i] operands 4.9E-324 * -4.9E-324 = -0.0, with double a[i] operands
4.9E-324 / -4.9E-324 = -1.0, with double a[i] operands 4.9E-324 / -4.9E-324 = -1.0, with double a[i] operands
4.9E-324 + -4.9E-324 = 0.0, with double f(x) operands 4.9E-324 + -4.9E-324 = 0.0, with double f(x) operands
4.9E-324 - -4.9E-324 = 1.0E-323, with double f(x) operands 4.9E-324 - -4.9E-324 = 9.9E-324, with double f(x) operands
4.9E-324 * -4.9E-324 = -0.0, with double f(x) operands 4.9E-324 * -4.9E-324 = -0.0, with double f(x) operands
4.9E-324 / -4.9E-324 = -1.0, with double f(x) operands 4.9E-324 / -4.9E-324 = -1.0, with double f(x) operands
4.9E-324 + -4.9E-324 = 0.0, with double lExpr operands 4.9E-324 + -4.9E-324 = 0.0, with double lExpr operands
4.9E-324 - -4.9E-324 = 1.0E-323, with double lExpr operands 4.9E-324 - -4.9E-324 = 9.9E-324, with double lExpr operands
4.9E-324 * -4.9E-324 = -0.0, with double lExpr operands 4.9E-324 * -4.9E-324 = -0.0, with double lExpr operands
4.9E-324 / -4.9E-324 = -1.0, with double lExpr operands 4.9E-324 / -4.9E-324 = -1.0, with double lExpr operands
4.9E-324 + -4.9E-324 = 0.0, with double rExpr operands 4.9E-324 + -4.9E-324 = 0.0, with double rExpr operands
4.9E-324 - -4.9E-324 = 1.0E-323, with double rExpr operands 4.9E-324 - -4.9E-324 = 9.9E-324, with double rExpr operands
4.9E-324 * -4.9E-324 = -0.0, with double rExpr operands 4.9E-324 * -4.9E-324 = -0.0, with double rExpr operands
4.9E-324 / -4.9E-324 = -1.0, with double rExpr operands 4.9E-324 / -4.9E-324 = -1.0, with double rExpr operands
4.9E-324 + -4.9E-324 = 0.0, with double exprs operands 4.9E-324 + -4.9E-324 = 0.0, with double exprs operands
4.9E-324 - -4.9E-324 = 1.0E-323, with double exprs operands 4.9E-324 - -4.9E-324 = 9.9E-324, with double exprs operands
4.9E-324 * -4.9E-324 = -0.0, with double exprs operands 4.9E-324 * -4.9E-324 = -0.0, with double exprs operands
4.9E-324 / -4.9E-324 = -1.0, with double exprs operands 4.9E-324 / -4.9E-324 = -1.0, with double exprs operands
4.9E-324 + -1.7976931348623157E308 = -1.7976931348623157E308, with double param operands 4.9E-324 + -1.7976931348623157E308 = -1.7976931348623157E308, with double param operands
@ -5147,39 +5147,39 @@ NaN / NaN = NaN, with float exprs operands
1.7976931348623157E308 * NaN = NaN, with double exprs operands 1.7976931348623157E308 * NaN = NaN, with double exprs operands
1.7976931348623157E308 / NaN = NaN, with double exprs operands 1.7976931348623157E308 / NaN = NaN, with double exprs operands
-4.9E-324 + 4.9E-324 = 0.0, with double param operands -4.9E-324 + 4.9E-324 = 0.0, with double param operands
-4.9E-324 - 4.9E-324 = -1.0E-323, with double param operands -4.9E-324 - 4.9E-324 = -9.9E-324, with double param operands
-4.9E-324 * 4.9E-324 = -0.0, with double param operands -4.9E-324 * 4.9E-324 = -0.0, with double param operands
-4.9E-324 / 4.9E-324 = -1.0, with double param operands -4.9E-324 / 4.9E-324 = -1.0, with double param operands
-4.9E-324 + 4.9E-324 = 0.0, with double local operands -4.9E-324 + 4.9E-324 = 0.0, with double local operands
-4.9E-324 - 4.9E-324 = -1.0E-323, with double local operands -4.9E-324 - 4.9E-324 = -9.9E-324, with double local operands
-4.9E-324 * 4.9E-324 = -0.0, with double local operands -4.9E-324 * 4.9E-324 = -0.0, with double local operands
-4.9E-324 / 4.9E-324 = -1.0, with double local operands -4.9E-324 / 4.9E-324 = -1.0, with double local operands
-4.9E-324 + 4.9E-324 = 0.0, with double static operands -4.9E-324 + 4.9E-324 = 0.0, with double static operands
-4.9E-324 - 4.9E-324 = -1.0E-323, with double static operands -4.9E-324 - 4.9E-324 = -9.9E-324, with double static operands
-4.9E-324 * 4.9E-324 = -0.0, with double static operands -4.9E-324 * 4.9E-324 = -0.0, with double static operands
-4.9E-324 / 4.9E-324 = -1.0, with double static operands -4.9E-324 / 4.9E-324 = -1.0, with double static operands
-4.9E-324 + 4.9E-324 = 0.0, with double field operands -4.9E-324 + 4.9E-324 = 0.0, with double field operands
-4.9E-324 - 4.9E-324 = -1.0E-323, with double field operands -4.9E-324 - 4.9E-324 = -9.9E-324, with double field operands
-4.9E-324 * 4.9E-324 = -0.0, with double field operands -4.9E-324 * 4.9E-324 = -0.0, with double field operands
-4.9E-324 / 4.9E-324 = -1.0, with double field operands -4.9E-324 / 4.9E-324 = -1.0, with double field operands
-4.9E-324 + 4.9E-324 = 0.0, with double a[i] operands -4.9E-324 + 4.9E-324 = 0.0, with double a[i] operands
-4.9E-324 - 4.9E-324 = -1.0E-323, with double a[i] operands -4.9E-324 - 4.9E-324 = -9.9E-324, with double a[i] operands
-4.9E-324 * 4.9E-324 = -0.0, with double a[i] operands -4.9E-324 * 4.9E-324 = -0.0, with double a[i] operands
-4.9E-324 / 4.9E-324 = -1.0, with double a[i] operands -4.9E-324 / 4.9E-324 = -1.0, with double a[i] operands
-4.9E-324 + 4.9E-324 = 0.0, with double f(x) operands -4.9E-324 + 4.9E-324 = 0.0, with double f(x) operands
-4.9E-324 - 4.9E-324 = -1.0E-323, with double f(x) operands -4.9E-324 - 4.9E-324 = -9.9E-324, with double f(x) operands
-4.9E-324 * 4.9E-324 = -0.0, with double f(x) operands -4.9E-324 * 4.9E-324 = -0.0, with double f(x) operands
-4.9E-324 / 4.9E-324 = -1.0, with double f(x) operands -4.9E-324 / 4.9E-324 = -1.0, with double f(x) operands
-4.9E-324 + 4.9E-324 = 0.0, with double lExpr operands -4.9E-324 + 4.9E-324 = 0.0, with double lExpr operands
-4.9E-324 - 4.9E-324 = -1.0E-323, with double lExpr operands -4.9E-324 - 4.9E-324 = -9.9E-324, with double lExpr operands
-4.9E-324 * 4.9E-324 = -0.0, with double lExpr operands -4.9E-324 * 4.9E-324 = -0.0, with double lExpr operands
-4.9E-324 / 4.9E-324 = -1.0, with double lExpr operands -4.9E-324 / 4.9E-324 = -1.0, with double lExpr operands
-4.9E-324 + 4.9E-324 = 0.0, with double rExpr operands -4.9E-324 + 4.9E-324 = 0.0, with double rExpr operands
-4.9E-324 - 4.9E-324 = -1.0E-323, with double rExpr operands -4.9E-324 - 4.9E-324 = -9.9E-324, with double rExpr operands
-4.9E-324 * 4.9E-324 = -0.0, with double rExpr operands -4.9E-324 * 4.9E-324 = -0.0, with double rExpr operands
-4.9E-324 / 4.9E-324 = -1.0, with double rExpr operands -4.9E-324 / 4.9E-324 = -1.0, with double rExpr operands
-4.9E-324 + 4.9E-324 = 0.0, with double exprs operands -4.9E-324 + 4.9E-324 = 0.0, with double exprs operands
-4.9E-324 - 4.9E-324 = -1.0E-323, with double exprs operands -4.9E-324 - 4.9E-324 = -9.9E-324, with double exprs operands
-4.9E-324 * 4.9E-324 = -0.0, with double exprs operands -4.9E-324 * 4.9E-324 = -0.0, with double exprs operands
-4.9E-324 / 4.9E-324 = -1.0, with double exprs operands -4.9E-324 / 4.9E-324 = -1.0, with double exprs operands
-4.9E-324 + 1.7976931348623157E308 = 1.7976931348623157E308, with double param operands -4.9E-324 + 1.7976931348623157E308 = 1.7976931348623157E308, with double param operands
@ -5218,39 +5218,39 @@ NaN / NaN = NaN, with float exprs operands
-4.9E-324 - 1.7976931348623157E308 = -1.7976931348623157E308, with double exprs operands -4.9E-324 - 1.7976931348623157E308 = -1.7976931348623157E308, with double exprs operands
-4.9E-324 * 1.7976931348623157E308 = -8.881784197001251E-16, with double exprs operands -4.9E-324 * 1.7976931348623157E308 = -8.881784197001251E-16, with double exprs operands
-4.9E-324 / 1.7976931348623157E308 = -0.0, with double exprs operands -4.9E-324 / 1.7976931348623157E308 = -0.0, with double exprs operands
-4.9E-324 + -4.9E-324 = -1.0E-323, with double param operands -4.9E-324 + -4.9E-324 = -9.9E-324, with double param operands
-4.9E-324 - -4.9E-324 = 0.0, with double param operands -4.9E-324 - -4.9E-324 = 0.0, with double param operands
-4.9E-324 * -4.9E-324 = 0.0, with double param operands -4.9E-324 * -4.9E-324 = 0.0, with double param operands
-4.9E-324 / -4.9E-324 = 1.0, with double param operands -4.9E-324 / -4.9E-324 = 1.0, with double param operands
-4.9E-324 + -4.9E-324 = -1.0E-323, with double local operands -4.9E-324 + -4.9E-324 = -9.9E-324, with double local operands
-4.9E-324 - -4.9E-324 = 0.0, with double local operands -4.9E-324 - -4.9E-324 = 0.0, with double local operands
-4.9E-324 * -4.9E-324 = 0.0, with double local operands -4.9E-324 * -4.9E-324 = 0.0, with double local operands
-4.9E-324 / -4.9E-324 = 1.0, with double local operands -4.9E-324 / -4.9E-324 = 1.0, with double local operands
-4.9E-324 + -4.9E-324 = -1.0E-323, with double static operands -4.9E-324 + -4.9E-324 = -9.9E-324, with double static operands
-4.9E-324 - -4.9E-324 = 0.0, with double static operands -4.9E-324 - -4.9E-324 = 0.0, with double static operands
-4.9E-324 * -4.9E-324 = 0.0, with double static operands -4.9E-324 * -4.9E-324 = 0.0, with double static operands
-4.9E-324 / -4.9E-324 = 1.0, with double static operands -4.9E-324 / -4.9E-324 = 1.0, with double static operands
-4.9E-324 + -4.9E-324 = -1.0E-323, with double field operands -4.9E-324 + -4.9E-324 = -9.9E-324, with double field operands
-4.9E-324 - -4.9E-324 = 0.0, with double field operands -4.9E-324 - -4.9E-324 = 0.0, with double field operands
-4.9E-324 * -4.9E-324 = 0.0, with double field operands -4.9E-324 * -4.9E-324 = 0.0, with double field operands
-4.9E-324 / -4.9E-324 = 1.0, with double field operands -4.9E-324 / -4.9E-324 = 1.0, with double field operands
-4.9E-324 + -4.9E-324 = -1.0E-323, with double a[i] operands -4.9E-324 + -4.9E-324 = -9.9E-324, with double a[i] operands
-4.9E-324 - -4.9E-324 = 0.0, with double a[i] operands -4.9E-324 - -4.9E-324 = 0.0, with double a[i] operands
-4.9E-324 * -4.9E-324 = 0.0, with double a[i] operands -4.9E-324 * -4.9E-324 = 0.0, with double a[i] operands
-4.9E-324 / -4.9E-324 = 1.0, with double a[i] operands -4.9E-324 / -4.9E-324 = 1.0, with double a[i] operands
-4.9E-324 + -4.9E-324 = -1.0E-323, with double f(x) operands -4.9E-324 + -4.9E-324 = -9.9E-324, with double f(x) operands
-4.9E-324 - -4.9E-324 = 0.0, with double f(x) operands -4.9E-324 - -4.9E-324 = 0.0, with double f(x) operands
-4.9E-324 * -4.9E-324 = 0.0, with double f(x) operands -4.9E-324 * -4.9E-324 = 0.0, with double f(x) operands
-4.9E-324 / -4.9E-324 = 1.0, with double f(x) operands -4.9E-324 / -4.9E-324 = 1.0, with double f(x) operands
-4.9E-324 + -4.9E-324 = -1.0E-323, with double lExpr operands -4.9E-324 + -4.9E-324 = -9.9E-324, with double lExpr operands
-4.9E-324 - -4.9E-324 = 0.0, with double lExpr operands -4.9E-324 - -4.9E-324 = 0.0, with double lExpr operands
-4.9E-324 * -4.9E-324 = 0.0, with double lExpr operands -4.9E-324 * -4.9E-324 = 0.0, with double lExpr operands
-4.9E-324 / -4.9E-324 = 1.0, with double lExpr operands -4.9E-324 / -4.9E-324 = 1.0, with double lExpr operands
-4.9E-324 + -4.9E-324 = -1.0E-323, with double rExpr operands -4.9E-324 + -4.9E-324 = -9.9E-324, with double rExpr operands
-4.9E-324 - -4.9E-324 = 0.0, with double rExpr operands -4.9E-324 - -4.9E-324 = 0.0, with double rExpr operands
-4.9E-324 * -4.9E-324 = 0.0, with double rExpr operands -4.9E-324 * -4.9E-324 = 0.0, with double rExpr operands
-4.9E-324 / -4.9E-324 = 1.0, with double rExpr operands -4.9E-324 / -4.9E-324 = 1.0, with double rExpr operands
-4.9E-324 + -4.9E-324 = -1.0E-323, with double exprs operands -4.9E-324 + -4.9E-324 = -9.9E-324, with double exprs operands
-4.9E-324 - -4.9E-324 = 0.0, with double exprs operands -4.9E-324 - -4.9E-324 = 0.0, with double exprs operands
-4.9E-324 * -4.9E-324 = 0.0, with double exprs operands -4.9E-324 * -4.9E-324 = 0.0, with double exprs operands
-4.9E-324 / -4.9E-324 = 1.0, with double exprs operands -4.9E-324 / -4.9E-324 = 1.0, with double exprs operands

View file

@ -1,4 +1,4 @@
Int: 479001600 Int: 479001600
Long: 479001600 Long: 479001600
Float: 2.43290202E18 Float: 2.432902E18
Double: 2.43290200817664E18 Double: 2.43290200817664E18

View file

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2015, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -114,8 +114,8 @@ public class ImplicitStringConcatBoundaries {
test("foo-2147483648", "foo" + INT_MIN_1); test("foo-2147483648", "foo" + INT_MIN_1);
test("foo-2147483648", "foo" + INT_MIN_2); test("foo-2147483648", "foo" + INT_MIN_2);
test("foo1.17549435E-38", "foo" + FLOAT_MIN_NORM_1); test("foo1.1754944E-38", "foo" + FLOAT_MIN_NORM_1);
test("foo1.17549435E-38", "foo" + FLOAT_MIN_NORM_2); test("foo1.1754944E-38", "foo" + FLOAT_MIN_NORM_2);
test("foo-126.0", "foo" + FLOAT_MIN_EXP_1); test("foo-126.0", "foo" + FLOAT_MIN_EXP_1);
test("foo-126.0", "foo" + FLOAT_MIN_EXP_2); test("foo-126.0", "foo" + FLOAT_MIN_EXP_2);
test("foo1.4E-45", "foo" + FLOAT_MIN_1); test("foo1.4E-45", "foo" + FLOAT_MIN_1);

View file

@ -0,0 +1,56 @@
/*
* Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import jdk.internal.math.DoubleToDecimalChecker;
import jdk.test.lib.RandomFactory;
/*
* @test
* @bug 4511638
* @key randomness
*
* @modules java.base/jdk.internal.math
* @library /test/lib
* @library java.base
* @build jdk.test.lib.RandomFactory
* @build java.base/jdk.internal.math.*
* @run main DoubleToDecimalTest 100_000
*/
public class DoubleToDecimalTest {
private static final int RANDOM_COUNT = 100_000;
public static void main(String[] args) {
if (args.length == 0) {
DoubleToDecimalChecker.test(RANDOM_COUNT, RandomFactory.getRandom());
} else {
try {
int count = Integer.parseInt(args[0].replace("_", ""));
DoubleToDecimalChecker.test(count, RandomFactory.getRandom());
} catch (NumberFormatException ignored) {
DoubleToDecimalChecker.test(RANDOM_COUNT, RandomFactory.getRandom());
}
}
}
}

View file

@ -0,0 +1,59 @@
/*
* Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import jdk.internal.math.FloatToDecimalChecker;
import jdk.test.lib.RandomFactory;
/*
* @test
* @key randomness
*
* @modules java.base/jdk.internal.math
* @library /test/lib
* @library java.base
* @build jdk.test.lib.RandomFactory
* @build java.base/jdk.internal.math.*
* @run main FloatToDecimalTest 100_000
*/
public class FloatToDecimalTest {
private static final int RANDOM_COUNT = 100_000;
public static void main(String[] args) {
if (args.length == 0) {
FloatToDecimalChecker.test(RANDOM_COUNT, RandomFactory.getRandom());
} else if (args[0].equals("all")) {
FloatToDecimalChecker.testAll();
} else if (args[0].equals("positive")) {
FloatToDecimalChecker.testPositive();
} else {
try {
int count = Integer.parseInt(args[0].replace("_", ""));
FloatToDecimalChecker.test(count, RandomFactory.getRandom());
} catch (NumberFormatException ignored) {
FloatToDecimalChecker.test(RANDOM_COUNT, RandomFactory.getRandom());
}
}
}
}

View file

@ -0,0 +1,42 @@
/*
* Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import jdk.internal.math.MathUtilsChecker;
/*
* @test
*
* @modules java.base/jdk.internal.math
* @library java.base
* @build java.base/jdk.internal.math.*
* @run main MathUtilsTest
*/
public class MathUtilsTest {
public static void main(String[] args) {
MathUtilsChecker.test();
}
}

View file

@ -0,0 +1,49 @@
/*
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.math;
class BasicChecker {
private static int errors;
static boolean addError(String reason) {
++errors;
System.err.println(reason);
return true;
}
static boolean addOnFail(boolean expected, String reason) {
if (expected) {
return false;
}
return addError(reason);
}
static void throwOnErrors(String testClassName) {
if (errors > 0) {
throw new RuntimeException(errors + " errors found in " + testClassName);
}
}
}

View file

@ -0,0 +1,473 @@
/*
* Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.math;
import java.math.BigDecimal;
import java.util.Random;
import static java.lang.Double.*;
import static java.lang.Long.numberOfTrailingZeros;
import static java.lang.StrictMath.scalb;
import static jdk.internal.math.MathUtils.flog10pow2;
public class DoubleToDecimalChecker extends ToDecimalChecker {
private static final int P =
numberOfTrailingZeros(doubleToRawLongBits(3)) + 2;
private static final int W = (SIZE - 1) - (P - 1);
private static final int Q_MIN = (-1 << (W - 1)) - P + 3;
private static final int Q_MAX = (1 << (W - 1)) - P;
private static final long C_MIN = 1L << (P - 1);
private static final long C_MAX = (1L << P) - 1;
private static final int K_MIN = flog10pow2(Q_MIN);
private static final int K_MAX = flog10pow2(Q_MAX);
private static final int H = flog10pow2(P) + 2;
private static final double MIN_VALUE = scalb(1.0, Q_MIN);
private static final double MIN_NORMAL = scalb((double) C_MIN, Q_MIN);
private static final double MAX_VALUE = scalb((double) C_MAX, Q_MAX);
private static final int E_MIN = e(MIN_VALUE);
private static final int E_MAX = e(MAX_VALUE);
private static final long C_TINY = cTiny(Q_MIN, K_MIN);
private static final int Z = 1_024;
private final double v;
private DoubleToDecimalChecker(double v) {
super(DoubleToDecimal.toString(v));
// super(Double.toString(v));
this.v = v;
}
@Override
int h() {
return H;
}
@Override
int maxStringLength() {
return H + 7;
}
@Override
BigDecimal toBigDecimal() {
return new BigDecimal(v);
}
@Override
boolean recovers(BigDecimal bd) {
return bd.doubleValue() == v;
}
@Override
boolean recovers(String s) {
return parseDouble(s) == v;
}
@Override
String hexString() {
return toHexString(v) + "D";
}
@Override
int minExp() {
return E_MIN;
}
@Override
int maxExp() {
return E_MAX;
}
@Override
boolean isNegativeInfinity() {
return v == NEGATIVE_INFINITY;
}
@Override
boolean isPositiveInfinity() {
return v == POSITIVE_INFINITY;
}
@Override
boolean isMinusZero() {
return doubleToRawLongBits(v) == 0x8000_0000_0000_0000L;
}
@Override
boolean isPlusZero() {
return doubleToRawLongBits(v) == 0x0000_0000_0000_0000L;
}
@Override
boolean isNaN() {
return Double.isNaN(v);
}
/*
* Convert v to String and check whether it meets the specification.
*/
private static void testDec(double v) {
new DoubleToDecimalChecker(v).check();
}
/*
* Test around v, up to z values below and above v.
* Don't care when v is at the extremes,
* as any value returned by longBitsToDouble() is valid.
*/
private static void testAround(double v, int z) {
long bits = doubleToRawLongBits(v);
for (int i = -z; i <= z; ++i) {
testDec(longBitsToDouble(bits + i));
}
}
private static void testExtremeValues() {
testDec(NEGATIVE_INFINITY);
testAround(-MAX_VALUE, Z);
testAround(-MIN_NORMAL, Z);
testAround(-MIN_VALUE, Z);
testDec(-0.0);
testDec(0.0);
testAround(MIN_VALUE, Z);
testAround(MIN_NORMAL, Z);
testAround(MAX_VALUE, Z);
testDec(POSITIVE_INFINITY);
testDec(NaN);
/*
* Quiet NaNs have the most significant bit of the mantissa as 1,
* while signaling NaNs have it as 0.
* Exercise 4 combinations of quiet/signaling NaNs and
* "positive/negative" NaNs
*/
testDec(longBitsToDouble(0x7FF8_0000_0000_0001L));
testDec(longBitsToDouble(0x7FF0_0000_0000_0001L));
testDec(longBitsToDouble(0xFFF8_0000_0000_0001L));
testDec(longBitsToDouble(0xFFF0_0000_0000_0001L));
/*
* All values treated specially by Schubfach
*/
for (int c = 1; c < C_TINY; ++c) {
testDec(c * MIN_VALUE);
}
}
/*
* Some values close to powers of 10 are incorrectly rendered by older JDKs.
* The rendering is either too long or it is not the closest decimal.
*/
private static void testPowersOf10() {
for (int e = E_MIN; e <= E_MAX; ++e) {
testAround(parseDouble("1e" + e), Z);
}
}
/*
* Many values close to powers of 2 are incorrectly rendered by older JDKs.
* The rendering is either too long or it is not the closest decimal.
*/
private static void testPowersOf2() {
for (double v = MIN_VALUE; v <= MAX_VALUE; v *= 2) {
testAround(v, Z);
}
}
/*
* There are tons of doubles that are rendered incorrectly by older JDKs.
* While the renderings correctly round back to the original value,
* they are longer than needed or are not the closest decimal to the double.
* Here are just a very few examples.
*/
private static final String[] Anomalies = {
/* Older JDKs render these with 18 digits! */
"2.82879384806159E17", "1.387364135037754E18",
"1.45800632428665E17",
/* Older JDKs render these longer than needed */
"1.6E-322", "6.3E-322",
"7.3879E20", "2.0E23", "7.0E22", "9.2E22",
"9.5E21", "3.1E22", "5.63E21", "8.41E21",
/* Older JDKs do not render these as the closest */
"9.9E-324", "9.9E-323",
"1.9400994884341945E25", "3.6131332396758635E25",
"2.5138990223946153E25",
};
private static void testSomeAnomalies() {
for (String dec : Anomalies) {
testDec(parseDouble(dec));
}
}
/*
* Values are from
* Paxson V, "A Program for Testing IEEE Decimal-Binary Conversion"
* tables 3 and 4
*/
private static final double[] PaxsonSignificands = {
8_511_030_020_275_656L,
5_201_988_407_066_741L,
6_406_892_948_269_899L,
8_431_154_198_732_492L,
6_475_049_196_144_587L,
8_274_307_542_972_842L,
5_381_065_484_265_332L,
6_761_728_585_499_734L,
7_976_538_478_610_756L,
5_982_403_858_958_067L,
5_536_995_190_630_837L,
7_225_450_889_282_194L,
7_225_450_889_282_194L,
8_703_372_741_147_379L,
8_944_262_675_275_217L,
7_459_803_696_087_692L,
6_080_469_016_670_379L,
8_385_515_147_034_757L,
7_514_216_811_389_786L,
8_397_297_803_260_511L,
6_733_459_239_310_543L,
8_091_450_587_292_794L,
6_567_258_882_077_402L,
6_712_731_423_444_934L,
6_712_731_423_444_934L,
5_298_405_411_573_037L,
5_137_311_167_659_507L,
6_722_280_709_661_868L,
5_344_436_398_034_927L,
8_369_123_604_277_281L,
8_995_822_108_487_663L,
8_942_832_835_564_782L,
8_942_832_835_564_782L,
8_942_832_835_564_782L,
6_965_949_469_487_146L,
6_965_949_469_487_146L,
6_965_949_469_487_146L,
7_487_252_720_986_826L,
5_592_117_679_628_511L,
8_887_055_249_355_788L,
6_994_187_472_632_449L,
8_797_576_579_012_143L,
7_363_326_733_505_337L,
8_549_497_411_294_502L,
};
private static final int[] PaxsonExponents = {
-342,
-824,
237,
72,
99,
726,
-456,
-57,
376,
377,
93,
710,
709,
117,
-1,
-707,
-381,
721,
-828,
-345,
202,
-473,
952,
535,
534,
-957,
-144,
363,
-169,
-853,
-780,
-383,
-384,
-385,
-249,
-250,
-251,
548,
164,
665,
690,
588,
272,
-448,
};
private static void testPaxson() {
for (int i = 0; i < PaxsonSignificands.length; ++i) {
testDec(scalb(PaxsonSignificands[i], PaxsonExponents[i]));
}
}
/*
* Tests all integers of the form yx_xxx_000_000_000_000_000, y != 0.
* These are all exact doubles.
*/
private static void testLongs() {
for (int i = 10_000; i < 100_000; ++i) {
testDec(i * 1e15);
}
}
/*
* Tests all integers up to 1_000_000.
* These are all exact doubles and exercise a fast path.
*/
private static void testInts() {
for (int i = 0; i <= 1_000_000; ++i) {
testDec(i);
}
}
/*
* 0.1, 0.2, ..., 999.9 and around
*/
private static void testDeci() {
for (int i = 1; i < 10_000; ++i) {
testAround(i / 1e1, 10);
}
}
/*
* 0.01, 0.02, ..., 99.99 and around
*/
private static void testCenti() {
for (int i = 1; i < 10_000; ++i) {
testAround(i / 1e2, 10);
}
}
/*
* 0.001, 0.002, ..., 9.999 and around
*/
private static void testMilli() {
for (int i = 1; i < 10_000; ++i) {
testAround(i / 1e3, 10);
}
}
/*
* Random doubles over the whole range
*/
private static void testRandom(int randomCount, Random r) {
for (int i = 0; i < randomCount; ++i) {
testDec(longBitsToDouble(r.nextLong()));
}
}
/*
* Random doubles over the integer range [0, 2^52).
* These are all exact doubles and exercise the fast path (except 0).
*/
private static void testRandomUnit(int randomCount, Random r) {
for (int i = 0; i < randomCount; ++i) {
testDec(r.nextLong() & (1L << (P - 1)));
}
}
/*
* Random doubles over the range [0, 10^15) as "multiples" of 1e-3
*/
private static void testRandomMilli(int randomCount, Random r) {
for (int i = 0; i < randomCount; ++i) {
testDec(r.nextLong() % 1_000_000_000_000_000_000L / 1e3);
}
}
/*
* Random doubles over the range [0, 10^15) as "multiples" of 1e-6
*/
private static void testRandomMicro(int randomCount, Random r) {
for (int i = 0; i < randomCount; ++i) {
testDec((r.nextLong() & 0x7FFF_FFFF_FFFF_FFFFL) / 1e6);
}
}
/*
* Values suggested by Guy Steele
*/
private static void testRandomShortDecimals(Random r) {
int e = r.nextInt(E_MAX - E_MIN + 1) + E_MIN;
for (int pow10 = 1; pow10 < 10_000; pow10 *= 10) {
/* randomly generate an int in [pow10, 10 pow10) */
testAround(parseDouble((r.nextInt(9 * pow10) + pow10) + "e" + e), Z);
}
}
private static void testConstants() {
addOnFail(P == DoubleToDecimal.P, "P");
addOnFail((long) (double) C_MIN == C_MIN, "C_MIN");
addOnFail((long) (double) C_MAX == C_MAX, "C_MAX");
addOnFail(MIN_VALUE == Double.MIN_VALUE, "MIN_VALUE");
addOnFail(MIN_NORMAL == Double.MIN_NORMAL, "MIN_NORMAL");
addOnFail(MAX_VALUE == Double.MAX_VALUE, "MAX_VALUE");
addOnFail(Q_MIN == DoubleToDecimal.Q_MIN, "Q_MIN");
addOnFail(Q_MAX == DoubleToDecimal.Q_MAX, "Q_MAX");
addOnFail(K_MIN == DoubleToDecimal.K_MIN, "K_MIN");
addOnFail(K_MAX == DoubleToDecimal.K_MAX, "K_MAX");
addOnFail(H == DoubleToDecimal.H, "H");
addOnFail(E_MIN == DoubleToDecimal.E_MIN, "E_MIN");
addOnFail(E_MAX == DoubleToDecimal.E_MAX, "E_MAX");
addOnFail(C_TINY == DoubleToDecimal.C_TINY, "C_TINY");
}
public static void test(int randomCount, Random r) {
testConstants();
testExtremeValues();
testSomeAnomalies();
testPowersOf2();
testPowersOf10();
testPaxson();
testInts();
testLongs();
testDeci();
testCenti();
testMilli();
testRandom(randomCount, r);
testRandomUnit(randomCount, r);
testRandomMilli(randomCount, r);
testRandomMicro(randomCount, r);
testRandomShortDecimals(r);
throwOnErrors("DoubleToDecimalChecker");
}
}

View file

@ -0,0 +1,410 @@
/*
* Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.math;
import java.math.BigDecimal;
import java.util.Random;
import static java.lang.Float.*;
import static java.lang.Integer.numberOfTrailingZeros;
import static java.lang.StrictMath.scalb;
import static jdk.internal.math.MathUtils.flog10pow2;
public class FloatToDecimalChecker extends ToDecimalChecker {
private static final int P =
numberOfTrailingZeros(floatToRawIntBits(3)) + 2;
private static final int W = (SIZE - 1) - (P - 1);
private static final int Q_MIN = (-1 << (W - 1)) - P + 3;
private static final int Q_MAX = (1 << (W - 1)) - P;
private static final int C_MIN = 1 << (P - 1);
private static final int C_MAX = (1 << P) - 1;
private static final int K_MIN = flog10pow2(Q_MIN);
private static final int K_MAX = flog10pow2(Q_MAX);
private static final int H = flog10pow2(P) + 2;
private static final float MIN_VALUE = scalb(1.0f, Q_MIN);
private static final float MIN_NORMAL = scalb((float) C_MIN, Q_MIN);
private static final float MAX_VALUE = scalb((float) C_MAX, Q_MAX);
private static final int E_MIN = e(MIN_VALUE);
private static final int E_MAX = e(MAX_VALUE);
private static final long C_TINY = cTiny(Q_MIN, K_MIN);
private static final int Z = 1_024;
private final float v;
private FloatToDecimalChecker(float v) {
super(FloatToDecimal.toString(v));
// super(Float.toString(v));
this.v = v;
}
@Override
int h() {
return H;
}
@Override
int maxStringLength() {
return H + 6;
}
@Override
BigDecimal toBigDecimal() {
return new BigDecimal(v);
}
@Override
boolean recovers(BigDecimal bd) {
return bd.floatValue() == v;
}
@Override
boolean recovers(String s) {
return parseFloat(s) == v;
}
@Override
String hexString() {
return toHexString(v) + "F";
}
@Override
int minExp() {
return E_MIN;
}
@Override
int maxExp() {
return E_MAX;
}
@Override
boolean isNegativeInfinity() {
return v == NEGATIVE_INFINITY;
}
@Override
boolean isPositiveInfinity() {
return v == POSITIVE_INFINITY;
}
@Override
boolean isMinusZero() {
return floatToIntBits(v) == 0x8000_0000;
}
@Override
boolean isPlusZero() {
return floatToIntBits(v) == 0x0000_0000;
}
@Override
boolean isNaN() {
return Float.isNaN(v);
}
private static void testDec(float v) {
new FloatToDecimalChecker(v).check();
}
/*
* Test around v, up to z values below and above v.
* Don't care when v is at the extremes,
* as any value returned by intBitsToFloat() is valid.
*/
private static void testAround(float v, int z) {
int bits = floatToIntBits(v);
for (int i = -z; i <= z; ++i) {
testDec(intBitsToFloat(bits + i));
}
}
/*
* MIN_NORMAL is incorrectly rendered by older JDKs.
*/
private static void testExtremeValues() {
testDec(NEGATIVE_INFINITY);
testAround(-MAX_VALUE, Z);
testAround(-MIN_NORMAL, Z);
testAround(-MIN_VALUE, Z);
testDec(-0.0f);
testDec(0.0f);
testAround(MIN_VALUE, Z);
testAround(MIN_NORMAL, Z);
testAround(MAX_VALUE, Z);
testDec(POSITIVE_INFINITY);
testDec(NaN);
/*
* Quiet NaNs have the most significant bit of the mantissa as 1,
* while signaling NaNs have it as 0.
* Exercise 4 combinations of quiet/signaling NaNs and
* "positive/negative" NaNs.
*/
testDec(intBitsToFloat(0x7FC0_0001));
testDec(intBitsToFloat(0x7F80_0001));
testDec(intBitsToFloat(0xFFC0_0001));
testDec(intBitsToFloat(0xFF80_0001));
/*
* All values treated specially by Schubfach
*/
for (int c = 1; c < C_TINY; ++c) {
testDec(c * MIN_VALUE);
}
}
/*
* Some values close to powers of 10 are incorrectly rendered by older JDKs.
* The rendering is either too long or it is not the closest decimal.
*/
private static void testPowersOf10() {
for (int e = E_MIN; e <= E_MAX; ++e) {
testAround(parseFloat("1e" + e), Z);
}
}
/*
* Many powers of 2 are incorrectly rendered by older JDKs.
* The rendering is either too long or it is not the closest decimal.
*/
private static void testPowersOf2() {
for (float v = MIN_VALUE; v <= MAX_VALUE; v *= 2) {
testAround(v, Z);
}
}
/*
* There are tons of floats that are rendered incorrectly by older JDKs.
* While the renderings correctly round back to the original value,
* they are longer than needed or are not the closest decimal to the float.
* Here are just a very few examples.
*/
private static final String[] Anomalies = {
/* Older JDKs render these longer than needed */
"1.1754944E-38", "2.2E-44",
"1.0E16", "2.0E16", "3.0E16", "5.0E16", "3.0E17",
"3.2E18", "3.7E18", "3.7E16", "3.72E17", "2.432902E18",
/* Older JDKs do not render this as the closest */
"9.9E-44",
};
private static void testSomeAnomalies() {
for (String dec : Anomalies) {
testDec(parseFloat(dec));
}
}
/*
* Values are from
* Paxson V, "A Program for Testing IEEE Decimal-Binary Conversion"
* tables 16 and 17
*/
private static final float[] PaxsonSignificands = {
12_676_506,
15_445_013,
13_734_123,
12_428_269,
12_676_506,
15_334_037,
11_518_287,
12_584_953,
15_961_084,
14_915_817,
10_845_484,
16_431_059,
16_093_626,
9_983_778,
12_745_034,
12_706_553,
11_005_028,
15_059_547,
16_015_691,
8_667_859,
14_855_922,
14_855_922,
10_144_164,
13_248_074,
};
private static final int[] PaxsonExponents = {
-102,
-103,
86,
-138,
-130,
-146,
-41,
-145,
-125,
-146,
-102,
-61,
69,
25,
104,
72,
45,
71,
-99,
56,
-82,
-83,
-110,
95,
};
private static void testPaxson() {
for (int i = 0; i < PaxsonSignificands.length; ++i) {
testDec(scalb(PaxsonSignificands[i], PaxsonExponents[i]));
}
}
/*
* Tests all positive integers below 2^23.
* These are all exact floats and exercise the fast path.
*/
private static void testInts() {
for (int i = 1; i < 1 << P - 1; ++i) {
testDec(i);
}
}
/*
* 0.1, 0.2, ..., 999.9 and around
*/
private static void testDeci() {
for (int i = 1; i < 10_000; ++i) {
testAround(i / 1e1f, 10);
}
}
/*
* 0.01, 0.02, ..., 99.99 and around
*/
private static void testCenti() {
for (int i = 1; i < 10_000; ++i) {
testAround(i / 1e2f, 10);
}
}
/*
* 0.001, 0.002, ..., 9.999 and around
*/
private static void testMilli() {
for (int i = 1; i < 10_000; ++i) {
testAround(i / 1e3f, 10);
}
}
/*
* Random floats over the whole range.
*/
private static void testRandom(int randomCount, Random r) {
for (int i = 0; i < randomCount; ++i) {
testDec(intBitsToFloat(r.nextInt()));
}
}
/*
* All, really all, 2^32 possible floats. Takes between 90 and 120 minutes.
*/
public static void testAll() {
/* Avoid wrapping around Integer.MAX_VALUE */
int bits = Integer.MIN_VALUE;
for (; bits < Integer.MAX_VALUE; ++bits) {
testDec(intBitsToFloat(bits));
}
testDec(intBitsToFloat(bits));
}
/*
* All positive 2^31 floats.
*/
public static void testPositive() {
/* Avoid wrapping around Integer.MAX_VALUE */
int bits = 0;
for (; bits < Integer.MAX_VALUE; ++bits) {
testDec(intBitsToFloat(bits));
}
testDec(intBitsToFloat(bits));
}
/*
* Values suggested by Guy Steele
*/
private static void testRandomShortDecimals(Random r) {
int e = r.nextInt(E_MAX - E_MIN + 1) + E_MIN;
for (int pow10 = 1; pow10 < 10_000; pow10 *= 10) {
/* randomly generate an int in [pow10, 10 pow10) */
testAround(parseFloat((r.nextInt(9 * pow10) + pow10) + "e" + e), Z);
}
}
private static void testConstants() {
addOnFail(P == FloatToDecimal.P, "P");
addOnFail((int) (float) C_MIN == C_MIN, "C_MIN");
addOnFail((int) (float) C_MAX == C_MAX, "C_MAX");
addOnFail(MIN_VALUE == Float.MIN_VALUE, "MIN_VALUE");
addOnFail(MIN_NORMAL == Float.MIN_NORMAL, "MIN_NORMAL");
addOnFail(MAX_VALUE == Float.MAX_VALUE, "MAX_VALUE");
addOnFail(Q_MIN == FloatToDecimal.Q_MIN, "Q_MIN");
addOnFail(Q_MAX == FloatToDecimal.Q_MAX, "Q_MAX");
addOnFail(K_MIN == FloatToDecimal.K_MIN, "K_MIN");
addOnFail(K_MAX == FloatToDecimal.K_MAX, "K_MAX");
addOnFail(H == FloatToDecimal.H, "H");
addOnFail(E_MIN == FloatToDecimal.E_MIN, "E_MIN");
addOnFail(E_MAX == FloatToDecimal.E_MAX, "E_MAX");
addOnFail(C_TINY == FloatToDecimal.C_TINY, "C_TINY");
}
public static void test(int randomCount, Random r) {
testConstants();
testExtremeValues();
testSomeAnomalies();
testPowersOf2();
testPowersOf10();
testPaxson();
testInts();
testDeci();
testCenti();
testMilli();
testRandomShortDecimals(r);
testRandom(randomCount, r);
throwOnErrors("FloatToDecimalChecker");
}
}

View file

@ -0,0 +1,492 @@
/*
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.math;
import java.math.BigInteger;
import static java.lang.Double.*;
import static java.lang.Long.numberOfTrailingZeros;
import static java.lang.StrictMath.scalb;
import static java.math.BigInteger.*;
import static jdk.internal.math.MathUtils.*;
public class MathUtilsChecker extends BasicChecker {
private static final BigInteger THREE = valueOf(3);
// binary constants
private static final int P =
numberOfTrailingZeros(doubleToRawLongBits(3)) + 2;
private static final int W = (SIZE - 1) - (P - 1);
private static final int Q_MIN = (-1 << W - 1) - P + 3;
private static final int Q_MAX = (1 << W - 1) - P;
private static final long C_MIN = 1L << P - 1;
private static final long C_MAX = (1L << P) - 1;
// decimal constants
private static final int K_MIN = flog10pow2(Q_MIN);
private static final int K_MAX = flog10pow2(Q_MAX);
private static final int H = flog10pow2(P) + 2;
private static String gReason(int k) {
return "g(" + k + ") is incorrect";
}
/*
Let
10^(-k) = beta 2^r
for the unique integer r and real beta meeting
2^125 <= beta < 2^126
Further, let g1 = g1(k), g0 = g0(k) and g = g1 2^63 + g0,
where g1 and g0 are as in MathUtils
Check that:
2^62 <= g1 < 2^63,
0 <= g0 < 2^63,
g - 1 <= beta < g, (that is, g = floor(beta) + 1)
The last predicate, after multiplying by 2^r, is equivalent to
(g - 1) 2^r <= 10^(-k) < g 2^r
This is the predicate that will be checked in various forms.
*/
private static void testG(int k) {
long g1 = g1(k);
long g0 = g0(k);
// 2^62 <= g1 < 2^63, 0 <= g0 < 2^63
addOnFail((g1 >>> (Long.SIZE - 2)) == 0b01 && g0 >= 0, gReason(k));
BigInteger g = valueOf(g1).shiftLeft(63).or(valueOf(g0));
// double check that 2^125 <= g < 2^126
addOnFail(g.signum() > 0 && g.bitLength() == 126, gReason(k));
// see javadoc of MathUtils.g1(int)
int r = flog2pow10(-k) - 125;
/*
The predicate
(g - 1) 2^r <= 10^(-k) < g 2^r
is equivalent to
g - 1 <= 10^(-k) 2^(-r) < g
When
k <= 0 & r < 0
all numerical subexpressions are integer-valued. This is the same as
g - 1 = 10^(-k) 2^(-r)
*/
if (k <= 0 && r < 0) {
addOnFail(
g.subtract(ONE).compareTo(TEN.pow(-k).shiftLeft(-r)) == 0,
gReason(k));
return;
}
/*
The predicate
(g - 1) 2^r <= 10^(-k) < g 2^r
is equivalent to
g 10^k - 10^k <= 2^(-r) < g 10^k
When
k > 0 & r < 0
all numerical subexpressions are integer-valued.
*/
if (k > 0 && r < 0) {
BigInteger pow5 = TEN.pow(k);
BigInteger mhs = ONE.shiftLeft(-r);
BigInteger rhs = g.multiply(pow5);
addOnFail(rhs.subtract(pow5).compareTo(mhs) <= 0
&& mhs.compareTo(rhs) < 0,
gReason(k));
return;
}
/*
Finally, when
k <= 0 & r >= 0
the predicate
(g - 1) 2^r <= 10^(-k) < g 2^r
can be used straightforwardly as all numerical subexpressions are
already integer-valued.
*/
if (k <= 0) {
BigInteger mhs = TEN.pow(-k);
addOnFail(g.subtract(ONE).shiftLeft(r).compareTo(mhs) <= 0 &&
mhs.compareTo(g.shiftLeft(r)) < 0,
gReason(k));
return;
}
/*
For combinatorial reasons, the only remaining case is
k > 0 & r >= 0
which, however, cannot arise. Indeed, the predicate
(g - 1) 2^r <= 10^(-k) < g 2^r
has a positive integer left-hand side and a middle side < 1,
which cannot hold.
*/
addOnFail(false, "unexpected case for g(" + k + ")");
}
/*
Verifies the soundness of the values returned by g1() and g0().
*/
private static void testG() {
for (int k = MathUtils.K_MIN; k <= MathUtils.K_MAX; ++k) {
testG(k);
}
}
private static String flog10threeQuartersPow2Reason(int e) {
return "flog10threeQuartersPow2(" + e + ") is incorrect";
}
/*
Let
k = floor(log10(3/4 2^e))
The method verifies that
k = flog10threeQuartersPow2(e), Q_MIN <= e <= Q_MAX
This range covers all binary exponents of doubles and floats.
The first equation above is equivalent to
10^k <= 3 2^(e-2) < 10^(k+1)
Equality never holds. Henceforth, the predicate to check is
10^k < 3 2^(e-2) < 10^(k+1)
This will be transformed in various ways for checking purposes.
For integer n > 0, let further
b = len2(n)
denote its length in bits. This means exactly the same as
2^(b-1) <= n < 2^b
*/
private static void testFlog10threeQuartersPow2() {
// First check the case e = 1
addOnFail(flog10threeQuartersPow2(1) == 0,
flog10threeQuartersPow2Reason(1));
/*
Now check the range Q_MIN <= e <= 0.
By rewriting, the predicate to check is equivalent to
3 10^(-k-1) < 2^(2-e) < 3 10^(-k)
As e <= 0, it follows that 2^(2-e) >= 4 and the right inequality
implies k < 0, so the powers of 10 are integers.
The left inequality is equivalent to
len2(3 10^(-k-1)) <= 2 - e
and the right inequality to
2 - e < len2(3 10^(-k))
The original predicate is therefore equivalent to
len2(3 10^(-k-1)) <= 2 - e < len2(3 10^(-k))
Starting with e = 0 and decrementing until the lower bound, the code
keeps track of the two powers of 10 to avoid recomputing them.
This is easy because at each iteration k changes at most by 1. A simple
multiplication by 10 computes the next power of 10 when needed.
*/
int e = 0;
int k0 = flog10threeQuartersPow2(e);
addOnFail(k0 < 0, flog10threeQuartersPow2Reason(e));
BigInteger l = THREE.multiply(TEN.pow(-k0 - 1));
BigInteger u = l.multiply(TEN);
for (;;) {
addOnFail(l.bitLength() <= 2 - e & 2 - e < u.bitLength(),
flog10threeQuartersPow2Reason(e));
--e;
if (e < Q_MIN) {
break;
}
int kp = flog10threeQuartersPow2(e);
addOnFail(kp <= k0, flog10threeQuartersPow2Reason(e));
if (kp < k0) {
// k changes at most by 1 at each iteration, hence:
addOnFail(k0 - kp == 1, flog10threeQuartersPow2Reason(e));
k0 = kp;
l = u;
u = u.multiply(TEN);
}
}
/*
Finally, check the range 2 <= e <= Q_MAX.
In predicate
10^k < 3 2^(e-2) < 10^(k+1)
the right inequality shows that k >= 0 as soon as e >= 2.
It is equivalent to
10^k / 3 < 2^(e-2) < 10^(k+1) / 3
Both the powers of 10 and the powers of 2 are integers.
The left inequality is therefore equivalent to
floor(10^k / 3) < 2^(e-2)
and thus to
len2(floor(10^k / 3)) <= e - 2
while the right inequality is equivalent to
2^(e-2) <= floor(10^(k+1) / 3)
and hence to
e - 2 < len2(floor(10^(k+1) / 3))
These are summarized as
len2(floor(10^k / 3)) <= e - 2 < len2(floor(10^(k+1) / 3))
*/
e = 2;
k0 = flog10threeQuartersPow2(e);
addOnFail(k0 >= 0, flog10threeQuartersPow2Reason(e));
BigInteger l10 = TEN.pow(k0);
BigInteger u10 = l10.multiply(TEN);
l = l10.divide(THREE);
u = u10.divide(THREE);
for (;;) {
addOnFail(l.bitLength() <= e - 2 & e - 2 < u.bitLength(),
flog10threeQuartersPow2Reason(e));
++e;
if (e > Q_MAX) {
break;
}
int kp = flog10threeQuartersPow2(e);
addOnFail(kp >= k0, flog10threeQuartersPow2Reason(e));
if (kp > k0) {
// k changes at most by 1 at each iteration, hence:
addOnFail(kp - k0 == 1, flog10threeQuartersPow2Reason(e));
k0 = kp;
u10 = u10.multiply(TEN);
l = u;
u = u10.divide(THREE);
}
}
}
private static String flog10pow2Reason(int e) {
return "flog10pow2(" + e + ") is incorrect";
}
/*
Let
k = floor(log10(2^e))
The method verifies that
k = flog10pow2(e), Q_MIN <= e <= Q_MAX
This range covers all binary exponents of doubles and floats.
The first equation above is equivalent to
10^k <= 2^e < 10^(k+1)
Equality holds iff e = k = 0.
Henceforth, the predicates to check are equivalent to
k = 0, if e = 0
10^k < 2^e < 10^(k+1), otherwise
The latter will be transformed in various ways for checking purposes.
For integer n > 0, let further
b = len2(n)
denote its length in bits. This means exactly the same as
2^(b-1) <= n < 2^b
*/
private static void testFlog10pow2() {
// First check the case e = 0
addOnFail(flog10pow2(0) == 0, flog10pow2Reason(0));
/*
Now check the range F * Q_MIN <= e < 0.
By inverting all quantities, the predicate to check is equivalent to
10^(-k-1) < 2^(-e) < 10^(-k)
As e < 0, it follows that 2^(-e) >= 2 and the right inequality
implies k < 0.
The left inequality means exactly the same as
len2(10^(-k-1)) <= -e
Similarly, the right inequality is equivalent to
-e < len2(10^(-k))
The original predicate is therefore equivalent to
len2(10^(-k-1)) <= -e < len2(10^(-k))
The powers of 10 are integers because k < 0.
Starting with e = -1 and decrementing towards the lower bound, the code
keeps track of the two powers of 10 to avoid recomputing them.
This is easy because at each iteration k changes at most by 1. A simple
multiplication by 10 computes the next power of 10 when needed.
*/
int e = -1;
int k = flog10pow2(e);
addOnFail(k < 0, flog10pow2Reason(e));
BigInteger l = TEN.pow(-k - 1);
BigInteger u = l.multiply(TEN);
for (;;) {
addOnFail(l.bitLength() <= -e & -e < u.bitLength(),
flog10pow2Reason(e));
--e;
if (e < Q_MIN) {
break;
}
int kp = flog10pow2(e);
addOnFail(kp <= k, flog10pow2Reason(e));
if (kp < k) {
// k changes at most by 1 at each iteration, hence:
addOnFail(k - kp == 1, flog10pow2Reason(e));
k = kp;
l = u;
u = u.multiply(TEN);
}
}
/*
Finally, in a similar vein, check the range 0 <= e <= Q_MAX.
In predicate
10^k < 2^e < 10^(k+1)
the right inequality shows that k >= 0.
The left inequality means the same as
len2(10^k) <= e
and the right inequality holds iff
e < len2(10^(k+1))
The original predicate is thus equivalent to
len2(10^k) <= e < len2(10^(k+1))
As k >= 0, the powers of 10 are integers.
*/
e = 1;
k = flog10pow2(e);
addOnFail(k >= 0, flog10pow2Reason(e));
l = TEN.pow(k);
u = l.multiply(TEN);
for (;;) {
addOnFail(l.bitLength() <= e & e < u.bitLength(),
flog10pow2Reason(e));
++e;
if (e > Q_MAX) {
break;
}
int kp = flog10pow2(e);
addOnFail(kp >= k, flog10pow2Reason(e));
if (kp > k) {
// k changes at most by 1 at each iteration, hence:
addOnFail(kp - k == 1, flog10pow2Reason(e));
k = kp;
l = u;
u = u.multiply(TEN);
}
}
}
private static String flog2pow10Reason(int e) {
return "flog2pow10(" + e + ") is incorrect";
}
/*
Let
k = floor(log2(10^e))
The method verifies that
k = flog2pow10(e), -K_MAX <= e <= -K_MIN
This range covers all decimal exponents of doubles and floats.
The first equation above is equivalent to
2^k <= 10^e < 2^(k+1)
Equality holds iff e = 0, implying k = 0.
Henceforth, the equivalent predicates to check are
k = 0, if e = 0
2^k < 10^e < 2^(k+1), otherwise
The latter will be transformed in various ways for checking purposes.
For integer n > 0, let further
b = len2(n)
denote its length in bits. This means exactly the same as
2^(b-1) <= n < 2^b
*/
private static void testFlog2pow10() {
// First check the case e = 0
addOnFail(flog2pow10(0) == 0, flog2pow10Reason(0));
/*
Now check the range K_MIN <= e < 0.
By inverting all quantities, the predicate to check is equivalent to
2^(-k-1) < 10^(-e) < 2^(-k)
As e < 0, this leads to 10^(-e) >= 10 and the right inequality implies
k <= -4.
The above means the same as
len2(10^(-e)) = -k
The powers of 10 are integer values since e < 0.
*/
int e = -1;
int k0 = flog2pow10(e);
addOnFail(k0 <= -4, flog2pow10Reason(e));
BigInteger l = TEN;
for (;;) {
addOnFail(l.bitLength() == -k0, flog2pow10Reason(e));
--e;
if (e < -K_MAX) {
break;
}
k0 = flog2pow10(e);
l = l.multiply(TEN);
}
/*
Finally, check the range 0 < e <= K_MAX.
From the predicate
2^k < 10^e < 2^(k+1)
as e > 0, it follows that 10^e >= 10 and the right inequality implies
k >= 3.
The above means the same as
len2(10^e) = k + 1
The powers of 10 are all integer valued, as e > 0.
*/
e = 1;
k0 = flog2pow10(e);
addOnFail(k0 >= 3, flog2pow10Reason(e));
l = TEN;
for (;;) {
addOnFail(l.bitLength() == k0 + 1, flog2pow10Reason(e));
++e;
if (e > -K_MIN) {
break;
}
k0 = flog2pow10(e);
l = l.multiply(TEN);
}
}
private static void testBinaryConstants() {
addOnFail((long) (double) C_MIN == C_MIN, "C_MIN");
addOnFail((long) (double) C_MAX == C_MAX, "C_MAX");
addOnFail(scalb(1.0, Q_MIN) == MIN_VALUE, "MIN_VALUE");
addOnFail(scalb((double) C_MIN, Q_MIN) == MIN_NORMAL, "MIN_NORMAL");
addOnFail(scalb((double) C_MAX, Q_MAX) == MAX_VALUE, "MAX_VALUE");
}
private static void testDecimalConstants() {
addOnFail(K_MIN == MathUtils.K_MIN, "K_MIN");
addOnFail(K_MAX == MathUtils.K_MAX, "K_MAX");
addOnFail(H == MathUtils.H, "H");
}
private static String pow10Reason(int e) {
return "pow10(" + e + ") is incorrect";
}
private static void testPow10() {
int e = 0;
long pow = 1;
for (; e <= H; e += 1, pow *= 10) {
addOnFail(pow == pow10(e), pow10Reason(e));
}
}
public static void test() {
testBinaryConstants();
testFlog10pow2();
testFlog10threeQuartersPow2();
testDecimalConstants();
testFlog2pow10();
testPow10();
testG();
throwOnErrors("MathUtilsChecker");
}
}

View file

@ -0,0 +1,371 @@
/*
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.math;
import java.io.IOException;
import java.io.StringReader;
import java.math.BigDecimal;
import java.math.BigInteger;
import static java.math.BigInteger.*;
/*
* A checker for the Javadoc specification.
* It just relies on straightforward use of (expensive) BigDecimal arithmetic.
* Not optimized for performance.
*/
abstract class ToDecimalChecker extends BasicChecker {
/* The string to check */
private final String s;
/* The decimal parsed from s is dv = (sgn c) 10^q*/
private int sgn;
private int q;
private long c;
/* The number of digits in c: 10^(l-1) <= c < 10^l */
private int l;
ToDecimalChecker(String s) {
this.s = s;
}
/*
* Returns e be such that 10^(e-1) <= v < 10^e
*/
static int e(double v) {
/* floor(log10(v)) + 1 is a first good approximation of e */
int e = (int) Math.floor(Math.log10(v)) + 1;
/* Full precision search for e */
BigDecimal vp = new BigDecimal(v);
while (new BigDecimal(ONE, -(e - 1)).compareTo(vp) > 0) {
e -= 1;
}
while (vp.compareTo(new BigDecimal(ONE, -e)) >= 0) {
e += 1;
}
return e;
}
static long cTiny(int qMin, int kMin) {
BigInteger[] qr = ONE.shiftLeft(-qMin)
.divideAndRemainder(TEN.pow(-(kMin + 1)));
BigInteger cTiny = qr[1].signum() > 0 ? qr[0].add(ONE) : qr[0];
addOnFail(cTiny.bitLength() < Long.SIZE, "C_TINY");
return cTiny.longValue();
}
private boolean conversionError(String reason) {
return addError("toString(" + hexString() + ")" +
" returns incorrect \"" + s + "\" (" + reason + ")");
}
/*
* Returns whether s syntactically meets the expected output of
* toString(). It is restricted to finite nonzero outputs.
*/
private boolean failsOnParse() {
if (s.length() > maxStringLength()) {
return conversionError("too long");
}
try (StringReader r = new StringReader(s)) {
/* 1 character look-ahead */
int ch = r.read();
if (ch != '-' && !isDigit(ch)) {
return conversionError("does not start with '-' or digit");
}
int m = 0;
if (ch == '-') {
++m;
ch = r.read();
}
sgn = m > 0 ? -1 : 1;
int i = m;
while (ch == '0') {
++i;
ch = r.read();
}
if (i - m > 1) {
return conversionError("more than 1 leading '0'");
}
int p = i;
while (isDigit(ch)) {
c = 10 * c + (ch - '0');
++p;
ch = r.read();
}
if (p == m) {
return conversionError("no integer part");
}
if (i > m && p > i) {
return conversionError("non-zero integer part with leading '0'");
}
int fz = p;
if (ch == '.') {
++fz;
ch = r.read();
}
if (fz == p) {
return conversionError("no decimal point");
}
int f = fz;
while (ch == '0') {
c = 10 * c;
++f;
ch = r.read();
}
int x = f;
while (isDigit(ch)) {
c = 10 * c + (ch - '0');
++x;
ch = r.read();
}
if (x == fz) {
return conversionError("no fraction");
}
l = p > i ? x - i - 1 : x - f;
if (l > h()) {
return conversionError("significand with more than " + h() + " digits");
}
if (x - fz > 1 && c % 10 == 0) {
return conversionError("fraction has more than 1 digit and ends with '0'");
}
if (ch == 'e') {
return conversionError("exponent indicator is 'e'");
}
if (ch != 'E') {
/* Plain notation, no exponent */
if (p - m > 7) {
return conversionError("integer part with more than 7 digits");
}
if (i > m && f - fz > 2) {
return conversionError("pure fraction with more than 2 leading '0'");
}
} else {
if (p - i != 1) {
return conversionError("integer part doesn't have exactly 1 non-zero digit");
}
ch = r.read();
if (ch != '-' && !isDigit(ch)) {
return conversionError("exponent doesn't start with '-' or digit");
}
int e = x + 1;
if (ch == '-') {
++e;
ch = r.read();
}
if (ch == '0') {
return conversionError("exponent with leading '0'");
}
int z = e;
while (isDigit(ch)) {
q = 10 * q + (ch - '0');
++z;
ch = r.read();
}
if (z == e) {
return conversionError("no exponent");
}
if (z - e > 3) {
return conversionError("exponent is out-of-range");
}
if (e > x + 1) {
q = -q;
}
if (-3 <= q && q < 7) {
return conversionError("exponent lies in [-3, 7)");
}
}
if (ch >= 0) {
return conversionError("extraneous characters after decimal");
}
q += fz - x;
} catch (IOException ex) {
return conversionError("unexpected exception (" + ex.getMessage() + ")!!!");
}
return false;
}
private static boolean isDigit(int ch) {
return '0' <= ch && ch <= '9';
}
private boolean addOnFail(String expected) {
return addOnFail(s.equals(expected), "expected \"" + expected + "\"");
}
boolean check() {
if (s.isEmpty()) {
return conversionError("empty");
}
if (isNaN()) {
return addOnFail("NaN");
}
if (isNegativeInfinity()) {
return addOnFail("-Infinity");
}
if (isPositiveInfinity()) {
return addOnFail("Infinity");
}
if (isMinusZero()) {
return addOnFail("-0.0");
}
if (isPlusZero()) {
return addOnFail("0.0");
}
if (failsOnParse()) {
return true;
}
/* The exponent is bounded */
if (minExp() > q + l || q + l > maxExp()) {
return conversionError("exponent is out-of-range");
}
/* s must recover v */
try {
if (!recovers(s)) {
return conversionError("does not convert to the floating-point value");
}
} catch (NumberFormatException ex) {
return conversionError("unexpected exception (" + ex.getMessage() + ")!!!");
}
if (l < 2) {
c *= 10;
q -= 1;
l += 1;
}
/* Get rid of trailing zeroes, still ensuring at least 2 digits */
while (l > 2 && c % 10 == 0) {
c /= 10;
q += 1;
l -= 1;
}
/* dv = (sgn * c) 10^q */
if (l > 2) {
/* Try with a number shorter than dv of lesser magnitude... */
BigDecimal dvd = BigDecimal.valueOf(sgn * (c / 10), -(q + 1));
if (recovers(dvd)) {
return conversionError("\"" + dvd + "\" is shorter");
}
/* ... and with a number shorter than dv of greater magnitude */
BigDecimal dvu = BigDecimal.valueOf(sgn * (c / 10 + 1), -(q + 1));
if (recovers(dvu)) {
return conversionError("\"" + dvu + "\" is shorter");
}
}
/*
* Check with the predecessor dvp (lesser magnitude)
* and successor dvs (greater magnitude) of dv.
* If |dv| < |v| dvp is not checked.
* If |dv| > |v| dvs is not checked.
*/
BigDecimal v = toBigDecimal();
BigDecimal dv = BigDecimal.valueOf(sgn * c, -q);
BigDecimal deltav = v.subtract(dv);
if (sgn * deltav.signum() < 0) {
/* |dv| > |v|, check dvp */
BigDecimal dvp =
c == 10L
? BigDecimal.valueOf(sgn * 99L, -(q - 1))
: BigDecimal.valueOf(sgn * (c - 1), -q);
if (recovers(dvp)) {
BigDecimal deltavp = dvp.subtract(v);
if (sgn * deltavp.signum() >= 0) {
return conversionError("\"" + dvp + "\" is closer");
}
int cmp = sgn * deltav.compareTo(deltavp);
if (cmp < 0) {
return conversionError("\"" + dvp + "\" is closer");
}
if (cmp == 0 && (c & 0x1) != 0) {
return conversionError("\"" + dvp + "\" is as close but has even significand");
}
}
} else if (sgn * deltav.signum() > 0) {
/* |dv| < |v|, check dvs */
BigDecimal dvs = BigDecimal.valueOf(sgn * (c + 1), -q);
if (recovers(dvs)) {
BigDecimal deltavs = dvs.subtract(v);
if (sgn * deltavs.signum() <= 0) {
return conversionError("\"" + dvs + "\" is closer");
}
int cmp = sgn * deltav.compareTo(deltavs);
if (cmp > 0) {
return conversionError("\"" + dvs + "\" is closer");
}
if (cmp == 0 && (c & 0x1) != 0) {
return conversionError("\"" + dvs + "\" is as close but has even significand");
}
}
}
return false;
}
abstract int h();
abstract int maxStringLength();
abstract BigDecimal toBigDecimal();
abstract boolean recovers(BigDecimal bd);
abstract boolean recovers(String s);
abstract String hexString();
abstract int minExp();
abstract int maxExp();
abstract boolean isNegativeInfinity();
abstract boolean isPositiveInfinity();
abstract boolean isMinusZero();
abstract boolean isPlusZero();
abstract boolean isNaN();
}

View file

@ -128,16 +128,16 @@ public class ElementStructureTest {
(byte) 0xB7, (byte) 0x52, (byte) 0x0F, (byte) 0x68 (byte) 0xB7, (byte) 0x52, (byte) 0x0F, (byte) 0x68
}; };
static final byte[] hash7 = new byte[] { static final byte[] hash7 = new byte[] {
(byte) 0x45, (byte) 0xCA, (byte) 0x83, (byte) 0xCD, (byte) 0x2C, (byte) 0x01, (byte) 0xC0, (byte) 0xFB,
(byte) 0x1A, (byte) 0x68, (byte) 0x57, (byte) 0x9C, (byte) 0xD5, (byte) 0x66, (byte) 0x0D, (byte) 0x9C,
(byte) 0x6F, (byte) 0x2D, (byte) 0xEB, (byte) 0x28, (byte) 0x09, (byte) 0x17, (byte) 0x2F, (byte) 0x5A,
(byte) 0xAB, (byte) 0x05, (byte) 0x53, (byte) 0x6E (byte) 0x3D, (byte) 0xC1, (byte) 0xFE, (byte) 0xCB
}; };
static final byte[] hash8 = new byte[] { static final byte[] hash8 = new byte[] {
(byte) 0x26, (byte) 0x8C, (byte) 0xFD, (byte) 0x61, (byte) 0x10, (byte) 0xE6, (byte) 0xE8, (byte) 0x11,
(byte) 0x53, (byte) 0x00, (byte) 0x57, (byte) 0x10, (byte) 0xC8, (byte) 0x02, (byte) 0x63, (byte) 0x9B,
(byte) 0x36, (byte) 0x2B, (byte) 0x92, (byte) 0x0B, (byte) 0xAB, (byte) 0x11, (byte) 0x9E, (byte) 0x4F,
(byte) 0xE1, (byte) 0x6A, (byte) 0xB5, (byte) 0xFD (byte) 0xFA, (byte) 0x00, (byte) 0x6D, (byte) 0x81
}; };
final static Map<String, byte[]> version2Hash = new HashMap<>(); final static Map<String, byte[]> version2Hash = new HashMap<>();
@ -484,7 +484,7 @@ public class ElementStructureTest {
return null; return null;
try { try {
analyzeElement(e); analyzeElement(e);
out.write(String.valueOf(e.getConstantValue())); writeConstant(e.getConstantValue());
out.write("\n"); out.write("\n");
} catch (IOException ex) { } catch (IOException ex) {
ex.printStackTrace(); ex.printStackTrace();
@ -514,6 +514,16 @@ public class ElementStructureTest {
throw new IllegalStateException("Should not get here."); throw new IllegalStateException("Should not get here.");
} }
private void writeConstant(Object value) throws IOException {
if (value instanceof Double) {
out.write(Double.toHexString((Double) value));
} else if (value instanceof Float) {
out.write(Float.toHexString((Float) value));
} else {
out.write(String.valueOf(value));
}
}
} }
final class TestFileManager implements JavaFileManager { final class TestFileManager implements JavaFileManager {