8289551: Conversions between bit representations of half precision values and floats

Reviewed-by: psandoz, jrose
This commit is contained in:
Joe Darcy 2022-07-26 16:54:32 +00:00
parent 2ae8e31183
commit 7318b22209
3 changed files with 703 additions and 0 deletions

View file

@ -30,6 +30,7 @@ import java.lang.constant.Constable;
import java.lang.constant.ConstantDesc;
import java.util.Optional;
import jdk.internal.math.FloatConsts;
import jdk.internal.math.FloatingDecimal;
import jdk.internal.math.FloatToDecimal;
import jdk.internal.vm.annotation.IntrinsicCandidate;
@ -975,6 +976,198 @@ public final class Float extends Number
@IntrinsicCandidate
public static native float intBitsToFloat(int bits);
/**
* {@return the {@code float} value closest to the numerical value
* of the argument, a floating-point binary16 value encoded in a
* {@code short}} The conversion is exact; all binary16 values can
* be exactly represented in {@code float}.
*
* Special cases:
* <ul>
* <li> If the argument is zero, the result is a zero with the
* same sign as the argument.
* <li> If the argument is infinite, the result is an infinity
* with the same sign as the argument.
* <li> If the argument is a NaN, the result is a NaN.
* </ul>
*
* <h4><a id=binary16Format>IEEE 754 binary16 format</a></h4>
* The IEEE 754 standard defines binary16 as a 16-bit format, along
* with the 32-bit binary32 format (corresponding to the {@code
* float} type) and the 64-bit binary64 format (corresponding to
* the {@code double} type). The binary16 format is similar to the
* other IEEE 754 formats, except smaller, having all the usual
* IEEE 754 values such as NaN, signed infinities, signed zeros,
* and subnormals. The parameters (JLS {@jls 4.2.3}) for the
* binary16 format are N = 11 precision bits, K = 5 exponent bits,
* <i>E</i><sub><i>max</i></sub> = 15, and
* <i>E</i><sub><i>min</i></sub> = -14.
*
* @apiNote
* This method corresponds to the convertFormat operation defined
* in IEEE 754 from the binary16 format to the binary32 format.
* The operation of this method is analogous to a primitive
* widening conversion (JLS {@jls 5.1.2}).
*
* @param floatBinary16 the binary16 value to convert to {@code float}
* @since 20
*/
// @IntrinsicCandidate
public static float float16ToFloat(short floatBinary16) {
/*
* The binary16 format has 1 sign bit, 5 exponent bits, and 10
* significand bits. The exponent bias is 15.
*/
int bin16arg = (int)floatBinary16;
int bin16SignBit = 0x8000 & bin16arg;
int bin16ExpBits = 0x7c00 & bin16arg;
int bin16SignifBits = 0x03FF & bin16arg;
// Shift left difference in the number of significand bits in
// the float and binary16 formats
final int SIGNIF_SHIFT = (FloatConsts.SIGNIFICAND_WIDTH - 11);
float sign = (bin16SignBit != 0) ? -1.0f : 1.0f;
// Extract binary16 exponent, remove its bias, add in the bias
// of a float exponent and shift to correct bit location
// (significand width includes the implicit bit so shift one
// less).
int bin16Exp = (bin16ExpBits >> 10) - 15;
if (bin16Exp == -15) {
// For subnormal binary16 values and 0, the numerical
// value is 2^24 * the significand as an integer (no
// implicit bit).
return sign * (0x1p-24f * bin16SignifBits);
} else if (bin16Exp == 16) {
return (bin16SignifBits == 0) ?
sign * Float.POSITIVE_INFINITY :
Float.intBitsToFloat((bin16SignBit << 16) |
0x7f80_0000 |
// Preserve NaN signif bits
( bin16SignifBits << SIGNIF_SHIFT ));
}
assert -15 < bin16Exp && bin16Exp < 16;
int floatExpBits = (bin16Exp + FloatConsts.EXP_BIAS)
<< (FloatConsts.SIGNIFICAND_WIDTH - 1);
// Compute and combine result sign, exponent, and significand bits.
return Float.intBitsToFloat((bin16SignBit << 16) |
floatExpBits |
(bin16SignifBits << SIGNIF_SHIFT));
}
/**
* {@return the floating-point binary16 value, encoded in a {@code
* short}, closest in value to the argument}
* The conversion is computed under the {@linkplain
* java.math.RoundingMode#HALF_EVEN round to nearest even rounding
* mode}.
*
* Special cases:
* <ul>
* <li> If the argument is zero, the result is a zero with the
* same sign as the argument.
* <li> If the argument is infinite, the result is an infinity
* with the same sign as the argument.
* <li> If the argument is a NaN, the result is a NaN.
* </ul>
*
* The <a href="#binary16Format">binary16 format</a> is discussed in
* more detail in the {@link #float16ToFloat} method.
*
* @apiNote
* This method corresponds to the convertFormat operation defined
* in IEEE 754 from the binary32 format to the binary16 format.
* The operation of this method is analogous to a primitive
* narrowing conversion (JLS {@jls 5.1.3}).
*
* @param f the {@code float} value to convert to binary16
* @since 20
*/
// @IntrinsicCandidate
public static short floatToFloat16(float f) {
int doppel = Float.floatToRawIntBits(f);
short sign_bit = (short)((doppel & 0x8000_0000) >> 16);
if (Float.isNaN(f)) {
// Preserve sign and attempt to preserve significand bits
return (short)(sign_bit
| 0x7c00 // max exponent + 1
// Preserve high order bit of float NaN in the
// binary16 result NaN (tenth bit); OR in remaining
// bits into lower 9 bits of binary 16 significand.
| (doppel & 0x007f_e000) >> 13 // 10 bits
| (doppel & 0x0000_1ff0) >> 4 // 9 bits
| (doppel & 0x0000_000f)); // 4 bits
}
float abs_f = Math.abs(f);
// The overflow threshold is binary16 MAX_VALUE + 1/2 ulp
if (abs_f >= (0x1.ffcp15f + 0x0.002p15f) ) {
return (short)(sign_bit | 0x7c00); // Positive or negative infinity
}
// Smallest magnitude nonzero representable binary16 value
// is equal to 0x1.0p-24; half-way and smaller rounds to zero.
if (abs_f <= 0x1.0p-24f * 0.5f) { // Covers float zeros and subnormals.
return sign_bit; // Positive or negative zero
}
// Dealing with finite values in exponent range of binary16
// (when rounding is done, could still round up)
int exp = Math.getExponent(f);
assert -25 <= exp && exp <= 15;
// For binary16 subnormals, beside forcing exp to -15, retain
// the difference expdelta = E_min - exp. This is the excess
// shift value, in addition to 13, to be used in the
// computations below. Further the (hidden) msb with value 1
// in f must be involved as well.
int expdelta = 0;
int msb = 0x0000_0000;
if (exp < -14) {
expdelta = -14 - exp;
exp = -15;
msb = 0x0080_0000;
}
int f_signif_bits = doppel & 0x007f_ffff | msb;
// Significand bits as if using rounding to zero (truncation).
short signif_bits = (short)(f_signif_bits >> (13 + expdelta));
// For round to nearest even, determining whether or not to
// round up (in magnitude) is a function of the least
// significant bit (LSB), the next bit position (the round
// position), and the sticky bit (whether there are any
// nonzero bits in the exact result to the right of the round
// digit). An increment occurs in three cases:
//
// LSB Round Sticky
// 0 1 1
// 1 1 0
// 1 1 1
// See "Computer Arithmetic Algorithms," Koren, Table 4.9
int lsb = f_signif_bits & (1 << 13 + expdelta);
int round = f_signif_bits & (1 << 12 + expdelta);
int sticky = f_signif_bits & ((1 << 12 + expdelta) - 1);
if (round != 0 && ((lsb | sticky) != 0 )) {
signif_bits++;
}
// No bits set in significand beyond the *first* exponent bit,
// not just the sigificand; quantity is added to the exponent
// to implement a carry out from rounding the significand.
assert (0xf800 & signif_bits) == 0x0;
return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) );
}
/**
* Compares two {@code Float} objects numerically.
*