mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-28 15:24:43 +02:00
Initial load
This commit is contained in:
parent
686d76f772
commit
8153779ad3
2894 changed files with 911801 additions and 0 deletions
176
hotspot/src/share/vm/gc_implementation/shared/gcUtil.hpp
Normal file
176
hotspot/src/share/vm/gc_implementation/shared/gcUtil.hpp
Normal file
|
@ -0,0 +1,176 @@
|
|||
/*
|
||||
* Copyright 2002-2005 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
||||
* CA 95054 USA or visit www.sun.com if you need additional information or
|
||||
* have any questions.
|
||||
*
|
||||
*/
|
||||
|
||||
// Catch-all file for utility classes
|
||||
|
||||
// A weighted average maintains a running, weighted average
|
||||
// of some float value (templates would be handy here if we
|
||||
// need different types).
|
||||
//
|
||||
// The average is adaptive in that we smooth it for the
|
||||
// initial samples; we don't use the weight until we have
|
||||
// enough samples for it to be meaningful.
|
||||
//
|
||||
// This serves as our best estimate of a future unknown.
|
||||
//
|
||||
class AdaptiveWeightedAverage : public CHeapObj {
|
||||
private:
|
||||
float _average; // The last computed average
|
||||
unsigned _sample_count; // How often we've sampled this average
|
||||
unsigned _weight; // The weight used to smooth the averages
|
||||
// A higher weight favors the most
|
||||
// recent data.
|
||||
|
||||
protected:
|
||||
float _last_sample; // The last value sampled.
|
||||
|
||||
void increment_count() { _sample_count++; }
|
||||
void set_average(float avg) { _average = avg; }
|
||||
|
||||
// Helper function, computes an adaptive weighted average
|
||||
// given a sample and the last average
|
||||
float compute_adaptive_average(float new_sample, float average);
|
||||
|
||||
public:
|
||||
// Input weight must be between 0 and 100
|
||||
AdaptiveWeightedAverage(unsigned weight) :
|
||||
_average(0.0), _sample_count(0), _weight(weight), _last_sample(0.0) {
|
||||
}
|
||||
|
||||
// Accessors
|
||||
float average() const { return _average; }
|
||||
unsigned weight() const { return _weight; }
|
||||
unsigned count() const { return _sample_count; }
|
||||
float last_sample() const { return _last_sample; }
|
||||
|
||||
// Update data with a new sample.
|
||||
void sample(float new_sample);
|
||||
|
||||
static inline float exp_avg(float avg, float sample,
|
||||
unsigned int weight) {
|
||||
assert(0 <= weight && weight <= 100, "weight must be a percent");
|
||||
return (100.0F - weight) * avg / 100.0F + weight * sample / 100.0F;
|
||||
}
|
||||
static inline size_t exp_avg(size_t avg, size_t sample,
|
||||
unsigned int weight) {
|
||||
// Convert to float and back to avoid integer overflow.
|
||||
return (size_t)exp_avg((float)avg, (float)sample, weight);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// A weighted average that includes a deviation from the average,
|
||||
// some multiple of which is added to the average.
|
||||
//
|
||||
// This serves as our best estimate of an upper bound on a future
|
||||
// unknown.
|
||||
class AdaptivePaddedAverage : public AdaptiveWeightedAverage {
|
||||
private:
|
||||
float _padded_avg; // The last computed padded average
|
||||
float _deviation; // Running deviation from the average
|
||||
unsigned _padding; // A multiple which, added to the average,
|
||||
// gives us an upper bound guess.
|
||||
|
||||
protected:
|
||||
void set_padded_average(float avg) { _padded_avg = avg; }
|
||||
void set_deviation(float dev) { _deviation = dev; }
|
||||
|
||||
public:
|
||||
AdaptivePaddedAverage() :
|
||||
AdaptiveWeightedAverage(0),
|
||||
_padded_avg(0.0), _deviation(0.0), _padding(0) {}
|
||||
|
||||
AdaptivePaddedAverage(unsigned weight, unsigned padding) :
|
||||
AdaptiveWeightedAverage(weight),
|
||||
_padded_avg(0.0), _deviation(0.0), _padding(padding) {}
|
||||
|
||||
// Placement support
|
||||
void* operator new(size_t ignored, void* p) { return p; }
|
||||
// Allocator
|
||||
void* operator new(size_t size) { return CHeapObj::operator new(size); }
|
||||
|
||||
// Accessor
|
||||
float padded_average() const { return _padded_avg; }
|
||||
float deviation() const { return _deviation; }
|
||||
unsigned padding() const { return _padding; }
|
||||
|
||||
// Override
|
||||
void sample(float new_sample);
|
||||
};
|
||||
|
||||
// A weighted average that includes a deviation from the average,
|
||||
// some multiple of which is added to the average.
|
||||
//
|
||||
// This serves as our best estimate of an upper bound on a future
|
||||
// unknown.
|
||||
// A special sort of padded average: it doesn't update deviations
|
||||
// if the sample is zero. The average is allowed to change. We're
|
||||
// preventing the zero samples from drastically changing our padded
|
||||
// average.
|
||||
class AdaptivePaddedNoZeroDevAverage : public AdaptivePaddedAverage {
|
||||
public:
|
||||
AdaptivePaddedNoZeroDevAverage(unsigned weight, unsigned padding) :
|
||||
AdaptivePaddedAverage(weight, padding) {}
|
||||
// Override
|
||||
void sample(float new_sample);
|
||||
};
|
||||
// Use a least squares fit to a set of data to generate a linear
|
||||
// equation.
|
||||
// y = intercept + slope * x
|
||||
|
||||
class LinearLeastSquareFit : public CHeapObj {
|
||||
double _sum_x; // sum of all independent data points x
|
||||
double _sum_x_squared; // sum of all independent data points x**2
|
||||
double _sum_y; // sum of all dependent data points y
|
||||
double _sum_xy; // sum of all x * y.
|
||||
double _intercept; // constant term
|
||||
double _slope; // slope
|
||||
// The weighted averages are not currently used but perhaps should
|
||||
// be used to get decaying averages.
|
||||
AdaptiveWeightedAverage _mean_x; // weighted mean of independent variable
|
||||
AdaptiveWeightedAverage _mean_y; // weighted mean of dependent variable
|
||||
|
||||
public:
|
||||
LinearLeastSquareFit(unsigned weight);
|
||||
void update(double x, double y);
|
||||
double y(double x);
|
||||
double slope() { return _slope; }
|
||||
// Methods to decide if a change in the dependent variable will
|
||||
// achive a desired goal. Note that these methods are not
|
||||
// complementary and both are needed.
|
||||
bool decrement_will_decrease();
|
||||
bool increment_will_decrease();
|
||||
};
|
||||
|
||||
class GCPauseTimer : StackObj {
|
||||
elapsedTimer* _timer;
|
||||
public:
|
||||
GCPauseTimer(elapsedTimer* timer) {
|
||||
_timer = timer;
|
||||
_timer->stop();
|
||||
}
|
||||
~GCPauseTimer() {
|
||||
_timer->start();
|
||||
}
|
||||
};
|
Loading…
Add table
Add a link
Reference in a new issue