mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-20 19:14:38 +02:00
Initial load
This commit is contained in:
parent
686d76f772
commit
8153779ad3
2894 changed files with 911801 additions and 0 deletions
547
hotspot/src/share/vm/memory/cardTableModRefBS.cpp
Normal file
547
hotspot/src/share/vm/memory/cardTableModRefBS.cpp
Normal file
|
@ -0,0 +1,547 @@
|
|||
/*
|
||||
* Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
||||
* CA 95054 USA or visit www.sun.com if you need additional information or
|
||||
* have any questions.
|
||||
*
|
||||
*/
|
||||
|
||||
// This kind of "BarrierSet" allows a "CollectedHeap" to detect and
|
||||
// enumerate ref fields that have been modified (since the last
|
||||
// enumeration.)
|
||||
|
||||
# include "incls/_precompiled.incl"
|
||||
# include "incls/_cardTableModRefBS.cpp.incl"
|
||||
|
||||
size_t CardTableModRefBS::cards_required(size_t covered_words)
|
||||
{
|
||||
// Add one for a guard card, used to detect errors.
|
||||
const size_t words = align_size_up(covered_words, card_size_in_words);
|
||||
return words / card_size_in_words + 1;
|
||||
}
|
||||
|
||||
size_t CardTableModRefBS::compute_byte_map_size()
|
||||
{
|
||||
assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
|
||||
"unitialized, check declaration order");
|
||||
assert(_page_size != 0, "unitialized, check declaration order");
|
||||
const size_t granularity = os::vm_allocation_granularity();
|
||||
return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
|
||||
}
|
||||
|
||||
CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
|
||||
int max_covered_regions):
|
||||
ModRefBarrierSet(max_covered_regions),
|
||||
_whole_heap(whole_heap),
|
||||
_guard_index(cards_required(whole_heap.word_size()) - 1),
|
||||
_last_valid_index(_guard_index - 1),
|
||||
_page_size(os::page_size_for_region(_guard_index + 1, _guard_index + 1, 1)),
|
||||
_byte_map_size(compute_byte_map_size())
|
||||
{
|
||||
_kind = BarrierSet::CardTableModRef;
|
||||
|
||||
HeapWord* low_bound = _whole_heap.start();
|
||||
HeapWord* high_bound = _whole_heap.end();
|
||||
assert((uintptr_t(low_bound) & (card_size - 1)) == 0, "heap must start at card boundary");
|
||||
assert((uintptr_t(high_bound) & (card_size - 1)) == 0, "heap must end at card boundary");
|
||||
|
||||
assert(card_size <= 512, "card_size must be less than 512"); // why?
|
||||
|
||||
_covered = new MemRegion[max_covered_regions];
|
||||
_committed = new MemRegion[max_covered_regions];
|
||||
if (_covered == NULL || _committed == NULL)
|
||||
vm_exit_during_initialization("couldn't alloc card table covered region set.");
|
||||
int i;
|
||||
for (i = 0; i < max_covered_regions; i++) {
|
||||
_covered[i].set_word_size(0);
|
||||
_committed[i].set_word_size(0);
|
||||
}
|
||||
_cur_covered_regions = 0;
|
||||
|
||||
const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
|
||||
MAX2(_page_size, (size_t) os::vm_allocation_granularity());
|
||||
ReservedSpace heap_rs(_byte_map_size, rs_align, false);
|
||||
os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
|
||||
_page_size, heap_rs.base(), heap_rs.size());
|
||||
if (!heap_rs.is_reserved()) {
|
||||
vm_exit_during_initialization("Could not reserve enough space for the "
|
||||
"card marking array");
|
||||
}
|
||||
|
||||
// The assember store_check code will do an unsigned shift of the oop,
|
||||
// then add it to byte_map_base, i.e.
|
||||
//
|
||||
// _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
|
||||
_byte_map = (jbyte*) heap_rs.base();
|
||||
byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
|
||||
assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
|
||||
assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
|
||||
|
||||
jbyte* guard_card = &_byte_map[_guard_index];
|
||||
uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
|
||||
_guard_region = MemRegion((HeapWord*)guard_page, _page_size);
|
||||
if (!os::commit_memory((char*)guard_page, _page_size, _page_size)) {
|
||||
// Do better than this for Merlin
|
||||
vm_exit_out_of_memory(_page_size, "card table last card");
|
||||
}
|
||||
*guard_card = last_card;
|
||||
|
||||
_lowest_non_clean =
|
||||
NEW_C_HEAP_ARRAY(CardArr, max_covered_regions);
|
||||
_lowest_non_clean_chunk_size =
|
||||
NEW_C_HEAP_ARRAY(size_t, max_covered_regions);
|
||||
_lowest_non_clean_base_chunk_index =
|
||||
NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions);
|
||||
_last_LNC_resizing_collection =
|
||||
NEW_C_HEAP_ARRAY(int, max_covered_regions);
|
||||
if (_lowest_non_clean == NULL
|
||||
|| _lowest_non_clean_chunk_size == NULL
|
||||
|| _lowest_non_clean_base_chunk_index == NULL
|
||||
|| _last_LNC_resizing_collection == NULL)
|
||||
vm_exit_during_initialization("couldn't allocate an LNC array.");
|
||||
for (i = 0; i < max_covered_regions; i++) {
|
||||
_lowest_non_clean[i] = NULL;
|
||||
_lowest_non_clean_chunk_size[i] = 0;
|
||||
_last_LNC_resizing_collection[i] = -1;
|
||||
}
|
||||
|
||||
if (TraceCardTableModRefBS) {
|
||||
gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
|
||||
gclog_or_tty->print_cr(" "
|
||||
" &_byte_map[0]: " INTPTR_FORMAT
|
||||
" &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
|
||||
&_byte_map[0],
|
||||
&_byte_map[_last_valid_index]);
|
||||
gclog_or_tty->print_cr(" "
|
||||
" byte_map_base: " INTPTR_FORMAT,
|
||||
byte_map_base);
|
||||
}
|
||||
}
|
||||
|
||||
int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
|
||||
int i;
|
||||
for (i = 0; i < _cur_covered_regions; i++) {
|
||||
if (_covered[i].start() == base) return i;
|
||||
if (_covered[i].start() > base) break;
|
||||
}
|
||||
// If we didn't find it, create a new one.
|
||||
assert(_cur_covered_regions < _max_covered_regions,
|
||||
"too many covered regions");
|
||||
// Move the ones above up, to maintain sorted order.
|
||||
for (int j = _cur_covered_regions; j > i; j--) {
|
||||
_covered[j] = _covered[j-1];
|
||||
_committed[j] = _committed[j-1];
|
||||
}
|
||||
int res = i;
|
||||
_cur_covered_regions++;
|
||||
_covered[res].set_start(base);
|
||||
_covered[res].set_word_size(0);
|
||||
jbyte* ct_start = byte_for(base);
|
||||
uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
|
||||
_committed[res].set_start((HeapWord*)ct_start_aligned);
|
||||
_committed[res].set_word_size(0);
|
||||
return res;
|
||||
}
|
||||
|
||||
int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
|
||||
for (int i = 0; i < _cur_covered_regions; i++) {
|
||||
if (_covered[i].contains(addr)) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
assert(0, "address outside of heap?");
|
||||
return -1;
|
||||
}
|
||||
|
||||
HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
|
||||
HeapWord* max_end = NULL;
|
||||
for (int j = 0; j < ind; j++) {
|
||||
HeapWord* this_end = _committed[j].end();
|
||||
if (this_end > max_end) max_end = this_end;
|
||||
}
|
||||
return max_end;
|
||||
}
|
||||
|
||||
MemRegion CardTableModRefBS::committed_unique_to_self(int self,
|
||||
MemRegion mr) const {
|
||||
MemRegion result = mr;
|
||||
for (int r = 0; r < _cur_covered_regions; r += 1) {
|
||||
if (r != self) {
|
||||
result = result.minus(_committed[r]);
|
||||
}
|
||||
}
|
||||
// Never include the guard page.
|
||||
result = result.minus(_guard_region);
|
||||
return result;
|
||||
}
|
||||
|
||||
void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
|
||||
// We don't change the start of a region, only the end.
|
||||
assert(_whole_heap.contains(new_region),
|
||||
"attempt to cover area not in reserved area");
|
||||
debug_only(verify_guard();)
|
||||
int ind = find_covering_region_by_base(new_region.start());
|
||||
MemRegion old_region = _covered[ind];
|
||||
assert(old_region.start() == new_region.start(), "just checking");
|
||||
if (new_region.word_size() != old_region.word_size()) {
|
||||
// Commit new or uncommit old pages, if necessary.
|
||||
MemRegion cur_committed = _committed[ind];
|
||||
// Extend the end of this _commited region
|
||||
// to cover the end of any lower _committed regions.
|
||||
// This forms overlapping regions, but never interior regions.
|
||||
HeapWord* max_prev_end = largest_prev_committed_end(ind);
|
||||
if (max_prev_end > cur_committed.end()) {
|
||||
cur_committed.set_end(max_prev_end);
|
||||
}
|
||||
// Align the end up to a page size (starts are already aligned).
|
||||
jbyte* new_end = byte_after(new_region.last());
|
||||
HeapWord* new_end_aligned =
|
||||
(HeapWord*)align_size_up((uintptr_t)new_end, _page_size);
|
||||
assert(new_end_aligned >= (HeapWord*) new_end,
|
||||
"align up, but less");
|
||||
// The guard page is always committed and should not be committed over.
|
||||
HeapWord* new_end_for_commit = MIN2(new_end_aligned, _guard_region.start());
|
||||
if (new_end_for_commit > cur_committed.end()) {
|
||||
// Must commit new pages.
|
||||
MemRegion new_committed =
|
||||
MemRegion(cur_committed.end(), new_end_for_commit);
|
||||
|
||||
assert(!new_committed.is_empty(), "Region should not be empty here");
|
||||
if (!os::commit_memory((char*)new_committed.start(),
|
||||
new_committed.byte_size(), _page_size)) {
|
||||
// Do better than this for Merlin
|
||||
vm_exit_out_of_memory(new_committed.byte_size(),
|
||||
"card table expansion");
|
||||
}
|
||||
// Use new_end_aligned (as opposed to new_end_for_commit) because
|
||||
// the cur_committed region may include the guard region.
|
||||
} else if (new_end_aligned < cur_committed.end()) {
|
||||
// Must uncommit pages.
|
||||
MemRegion uncommit_region =
|
||||
committed_unique_to_self(ind, MemRegion(new_end_aligned,
|
||||
cur_committed.end()));
|
||||
if (!uncommit_region.is_empty()) {
|
||||
if (!os::uncommit_memory((char*)uncommit_region.start(),
|
||||
uncommit_region.byte_size())) {
|
||||
// Do better than this for Merlin
|
||||
vm_exit_out_of_memory(uncommit_region.byte_size(),
|
||||
"card table contraction");
|
||||
}
|
||||
}
|
||||
}
|
||||
// In any case, we can reset the end of the current committed entry.
|
||||
_committed[ind].set_end(new_end_aligned);
|
||||
|
||||
// The default of 0 is not necessarily clean cards.
|
||||
jbyte* entry;
|
||||
if (old_region.last() < _whole_heap.start()) {
|
||||
entry = byte_for(_whole_heap.start());
|
||||
} else {
|
||||
entry = byte_after(old_region.last());
|
||||
}
|
||||
assert(index_for(new_region.last()) < (int) _guard_index,
|
||||
"The guard card will be overwritten");
|
||||
jbyte* end = byte_after(new_region.last());
|
||||
// do nothing if we resized downward.
|
||||
if (entry < end) {
|
||||
memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
|
||||
}
|
||||
}
|
||||
// In any case, the covered size changes.
|
||||
_covered[ind].set_word_size(new_region.word_size());
|
||||
if (TraceCardTableModRefBS) {
|
||||
gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
|
||||
gclog_or_tty->print_cr(" "
|
||||
" _covered[%d].start(): " INTPTR_FORMAT
|
||||
" _covered[%d].last(): " INTPTR_FORMAT,
|
||||
ind, _covered[ind].start(),
|
||||
ind, _covered[ind].last());
|
||||
gclog_or_tty->print_cr(" "
|
||||
" _committed[%d].start(): " INTPTR_FORMAT
|
||||
" _committed[%d].last(): " INTPTR_FORMAT,
|
||||
ind, _committed[ind].start(),
|
||||
ind, _committed[ind].last());
|
||||
gclog_or_tty->print_cr(" "
|
||||
" byte_for(start): " INTPTR_FORMAT
|
||||
" byte_for(last): " INTPTR_FORMAT,
|
||||
byte_for(_covered[ind].start()),
|
||||
byte_for(_covered[ind].last()));
|
||||
gclog_or_tty->print_cr(" "
|
||||
" addr_for(start): " INTPTR_FORMAT
|
||||
" addr_for(last): " INTPTR_FORMAT,
|
||||
addr_for((jbyte*) _committed[ind].start()),
|
||||
addr_for((jbyte*) _committed[ind].last()));
|
||||
}
|
||||
debug_only(verify_guard();)
|
||||
}
|
||||
|
||||
// Note that these versions are precise! The scanning code has to handle the
|
||||
// fact that the write barrier may be either precise or imprecise.
|
||||
|
||||
void CardTableModRefBS::write_ref_field_work(oop* field, oop newVal) {
|
||||
inline_write_ref_field(field, newVal);
|
||||
}
|
||||
|
||||
|
||||
void CardTableModRefBS::non_clean_card_iterate(Space* sp,
|
||||
MemRegion mr,
|
||||
DirtyCardToOopClosure* dcto_cl,
|
||||
MemRegionClosure* cl,
|
||||
bool clear) {
|
||||
if (!mr.is_empty()) {
|
||||
int n_threads = SharedHeap::heap()->n_par_threads();
|
||||
if (n_threads > 0) {
|
||||
#ifndef SERIALGC
|
||||
par_non_clean_card_iterate_work(sp, mr, dcto_cl, cl, clear, n_threads);
|
||||
#else // SERIALGC
|
||||
fatal("Parallel gc not supported here.");
|
||||
#endif // SERIALGC
|
||||
} else {
|
||||
non_clean_card_iterate_work(mr, cl, clear);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: For this to work correctly, it is important that
|
||||
// we look for non-clean cards below (so as to catch those
|
||||
// marked precleaned), rather than look explicitly for dirty
|
||||
// cards (and miss those marked precleaned). In that sense,
|
||||
// the name precleaned is currently somewhat of a misnomer.
|
||||
void CardTableModRefBS::non_clean_card_iterate_work(MemRegion mr,
|
||||
MemRegionClosure* cl,
|
||||
bool clear) {
|
||||
// Figure out whether we have to worry about parallelism.
|
||||
bool is_par = (SharedHeap::heap()->n_par_threads() > 1);
|
||||
for (int i = 0; i < _cur_covered_regions; i++) {
|
||||
MemRegion mri = mr.intersection(_covered[i]);
|
||||
if (mri.word_size() > 0) {
|
||||
jbyte* cur_entry = byte_for(mri.last());
|
||||
jbyte* limit = byte_for(mri.start());
|
||||
while (cur_entry >= limit) {
|
||||
jbyte* next_entry = cur_entry - 1;
|
||||
if (*cur_entry != clean_card) {
|
||||
size_t non_clean_cards = 1;
|
||||
// Should the next card be included in this range of dirty cards.
|
||||
while (next_entry >= limit && *next_entry != clean_card) {
|
||||
non_clean_cards++;
|
||||
cur_entry = next_entry;
|
||||
next_entry--;
|
||||
}
|
||||
// The memory region may not be on a card boundary. So that
|
||||
// objects beyond the end of the region are not processed, make
|
||||
// cur_cards precise with regard to the end of the memory region.
|
||||
MemRegion cur_cards(addr_for(cur_entry),
|
||||
non_clean_cards * card_size_in_words);
|
||||
MemRegion dirty_region = cur_cards.intersection(mri);
|
||||
if (clear) {
|
||||
for (size_t i = 0; i < non_clean_cards; i++) {
|
||||
// Clean the dirty cards (but leave the other non-clean
|
||||
// alone.) If parallel, do the cleaning atomically.
|
||||
jbyte cur_entry_val = cur_entry[i];
|
||||
if (card_is_dirty_wrt_gen_iter(cur_entry_val)) {
|
||||
if (is_par) {
|
||||
jbyte res = Atomic::cmpxchg(clean_card, &cur_entry[i], cur_entry_val);
|
||||
assert(res != clean_card,
|
||||
"Dirty card mysteriously cleaned");
|
||||
} else {
|
||||
cur_entry[i] = clean_card;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
cl->do_MemRegion(dirty_region);
|
||||
}
|
||||
cur_entry = next_entry;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CardTableModRefBS::mod_oop_in_space_iterate(Space* sp,
|
||||
OopClosure* cl,
|
||||
bool clear,
|
||||
bool before_save_marks) {
|
||||
// Note that dcto_cl is resource-allocated, so there is no
|
||||
// corresponding "delete".
|
||||
DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision());
|
||||
MemRegion used_mr;
|
||||
if (before_save_marks) {
|
||||
used_mr = sp->used_region_at_save_marks();
|
||||
} else {
|
||||
used_mr = sp->used_region();
|
||||
}
|
||||
non_clean_card_iterate(sp, used_mr, dcto_cl, dcto_cl, clear);
|
||||
}
|
||||
|
||||
void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
|
||||
jbyte* cur = byte_for(mr.start());
|
||||
jbyte* last = byte_after(mr.last());
|
||||
while (cur < last) {
|
||||
*cur = dirty_card;
|
||||
cur++;
|
||||
}
|
||||
}
|
||||
|
||||
void CardTableModRefBS::invalidate(MemRegion mr) {
|
||||
for (int i = 0; i < _cur_covered_regions; i++) {
|
||||
MemRegion mri = mr.intersection(_covered[i]);
|
||||
if (!mri.is_empty()) dirty_MemRegion(mri);
|
||||
}
|
||||
}
|
||||
|
||||
void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
|
||||
// Be conservative: only clean cards entirely contained within the
|
||||
// region.
|
||||
jbyte* cur;
|
||||
if (mr.start() == _whole_heap.start()) {
|
||||
cur = byte_for(mr.start());
|
||||
} else {
|
||||
assert(mr.start() > _whole_heap.start(), "mr is not covered.");
|
||||
cur = byte_after(mr.start() - 1);
|
||||
}
|
||||
jbyte* last = byte_after(mr.last());
|
||||
memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
|
||||
}
|
||||
|
||||
void CardTableModRefBS::clear(MemRegion mr) {
|
||||
for (int i = 0; i < _cur_covered_regions; i++) {
|
||||
MemRegion mri = mr.intersection(_covered[i]);
|
||||
if (!mri.is_empty()) clear_MemRegion(mri);
|
||||
}
|
||||
}
|
||||
|
||||
// NOTES:
|
||||
// (1) Unlike mod_oop_in_space_iterate() above, dirty_card_iterate()
|
||||
// iterates over dirty cards ranges in increasing address order.
|
||||
// (2) Unlike, e.g., dirty_card_range_after_preclean() below,
|
||||
// this method does not make the dirty cards prelceaned.
|
||||
void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
|
||||
MemRegionClosure* cl) {
|
||||
for (int i = 0; i < _cur_covered_regions; i++) {
|
||||
MemRegion mri = mr.intersection(_covered[i]);
|
||||
if (!mri.is_empty()) {
|
||||
jbyte *cur_entry, *next_entry, *limit;
|
||||
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
||||
cur_entry <= limit;
|
||||
cur_entry = next_entry) {
|
||||
next_entry = cur_entry + 1;
|
||||
if (*cur_entry == dirty_card) {
|
||||
size_t dirty_cards;
|
||||
// Accumulate maximal dirty card range, starting at cur_entry
|
||||
for (dirty_cards = 1;
|
||||
next_entry <= limit && *next_entry == dirty_card;
|
||||
dirty_cards++, next_entry++);
|
||||
MemRegion cur_cards(addr_for(cur_entry),
|
||||
dirty_cards*card_size_in_words);
|
||||
cl->do_MemRegion(cur_cards);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MemRegion CardTableModRefBS::dirty_card_range_after_preclean(MemRegion mr) {
|
||||
for (int i = 0; i < _cur_covered_regions; i++) {
|
||||
MemRegion mri = mr.intersection(_covered[i]);
|
||||
if (!mri.is_empty()) {
|
||||
jbyte* cur_entry, *next_entry, *limit;
|
||||
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
||||
cur_entry <= limit;
|
||||
cur_entry = next_entry) {
|
||||
next_entry = cur_entry + 1;
|
||||
if (*cur_entry == dirty_card) {
|
||||
size_t dirty_cards;
|
||||
// Accumulate maximal dirty card range, starting at cur_entry
|
||||
for (dirty_cards = 1;
|
||||
next_entry <= limit && *next_entry == dirty_card;
|
||||
dirty_cards++, next_entry++);
|
||||
MemRegion cur_cards(addr_for(cur_entry),
|
||||
dirty_cards*card_size_in_words);
|
||||
for (size_t i = 0; i < dirty_cards; i++) {
|
||||
cur_entry[i] = precleaned_card;
|
||||
}
|
||||
return cur_cards;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return MemRegion(mr.end(), mr.end());
|
||||
}
|
||||
|
||||
// Set all the dirty cards in the given region to "precleaned" state.
|
||||
void CardTableModRefBS::preclean_dirty_cards(MemRegion mr) {
|
||||
for (int i = 0; i < _cur_covered_regions; i++) {
|
||||
MemRegion mri = mr.intersection(_covered[i]);
|
||||
if (!mri.is_empty()) {
|
||||
jbyte *cur_entry, *limit;
|
||||
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
||||
cur_entry <= limit;
|
||||
cur_entry++) {
|
||||
if (*cur_entry == dirty_card) {
|
||||
*cur_entry = precleaned_card;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uintx CardTableModRefBS::ct_max_alignment_constraint() {
|
||||
return card_size * os::vm_page_size();
|
||||
}
|
||||
|
||||
void CardTableModRefBS::verify_guard() {
|
||||
// For product build verification
|
||||
guarantee(_byte_map[_guard_index] == last_card,
|
||||
"card table guard has been modified");
|
||||
}
|
||||
|
||||
void CardTableModRefBS::verify() {
|
||||
verify_guard();
|
||||
}
|
||||
|
||||
#ifndef PRODUCT
|
||||
class GuaranteeNotModClosure: public MemRegionClosure {
|
||||
CardTableModRefBS* _ct;
|
||||
public:
|
||||
GuaranteeNotModClosure(CardTableModRefBS* ct) : _ct(ct) {}
|
||||
void do_MemRegion(MemRegion mr) {
|
||||
jbyte* entry = _ct->byte_for(mr.start());
|
||||
guarantee(*entry != CardTableModRefBS::clean_card,
|
||||
"Dirty card in region that should be clean");
|
||||
}
|
||||
};
|
||||
|
||||
void CardTableModRefBS::verify_clean_region(MemRegion mr) {
|
||||
GuaranteeNotModClosure blk(this);
|
||||
non_clean_card_iterate_work(mr, &blk, false);
|
||||
}
|
||||
#endif
|
||||
|
||||
bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
|
||||
return
|
||||
CardTableModRefBS::card_will_be_scanned(cv) ||
|
||||
_rs->is_prev_nonclean_card_val(cv);
|
||||
};
|
||||
|
||||
bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
|
||||
return
|
||||
cv != clean_card &&
|
||||
(CardTableModRefBS::card_may_have_been_dirty(cv) ||
|
||||
CardTableRS::youngergen_may_have_been_dirty(cv));
|
||||
};
|
Loading…
Add table
Add a link
Reference in a new issue