6890673: Eliminate allocations immediately after EA

Try to eliminate allocations and related locks immediately after escape analysis.

Reviewed-by: never
This commit is contained in:
Vladimir Kozlov 2011-11-16 09:13:57 -08:00
parent 81c085a1e2
commit 8d2ee23293
11 changed files with 148 additions and 71 deletions

View file

@ -81,7 +81,7 @@ void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcal
uint old_unique = C->unique();
Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
if (old_unique != C->unique()) {
new_in->set_req(0, newcall->in(0)); // reset control edge
new_in->set_req(0, C->root()); // reset control edge
new_in = transform_later(new_in); // Register new node.
}
old_in = new_in;
@ -565,7 +565,6 @@ bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArr
if (res == NULL) {
// All users were eliminated.
} else if (!res->is_CheckCastPP()) {
alloc->_is_scalar_replaceable = false; // don't try again
NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
can_eliminate = false;
} else {
@ -719,7 +718,7 @@ bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <Sa
alloc,
#endif
first_ind, nfields);
sobj->init_req(0, sfpt->in(TypeFunc::Control));
sobj->init_req(0, C->root());
transform_later(sobj);
// Scan object's fields adding an input to the safepoint for each field.
@ -762,10 +761,10 @@ bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <Sa
Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
if (field_val == NULL) {
// we weren't able to find a value for this field,
// give up on eliminating this allocation
alloc->_is_scalar_replaceable = false; // don't try again
// remove any extra entries we added to the safepoint
// We weren't able to find a value for this field,
// give up on eliminating this allocation.
// Remove any extra entries we added to the safepoint.
uint last = sfpt->req() - 1;
for (int k = 0; k < j; k++) {
sfpt->del_req(last--);
@ -1804,9 +1803,9 @@ bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
#ifndef PRODUCT
if (PrintEliminateLocks) {
if (alock->is_Lock()) {
tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
} else {
tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
}
}
#endif
@ -2165,11 +2164,12 @@ void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
_igvn.replace_node(_memproj_fallthrough, mem_phi);
}
//------------------------------expand_macro_nodes----------------------
// Returns true if a failure occurred.
bool PhaseMacroExpand::expand_macro_nodes() {
//---------------------------eliminate_macro_nodes----------------------
// Eliminate scalar replaced allocations and associated locks.
void PhaseMacroExpand::eliminate_macro_nodes() {
if (C->macro_count() == 0)
return false;
return;
// First, attempt to eliminate locks
int cnt = C->macro_count();
for (int i=0; i < cnt; i++) {
@ -2189,14 +2189,6 @@ bool PhaseMacroExpand::expand_macro_nodes() {
debug_only(int old_macro_count = C->macro_count(););
if (n->is_AbstractLock()) {
success = eliminate_locking_node(n->as_AbstractLock());
} else if (n->Opcode() == Op_LoopLimit) {
// Remove it from macro list and put on IGVN worklist to optimize.
C->remove_macro_node(n);
_igvn._worklist.push(n);
success = true;
} else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
_igvn.replace_node(n, n->in(1));
success = true;
}
assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
progress = progress || success;
@ -2220,18 +2212,50 @@ bool PhaseMacroExpand::expand_macro_nodes() {
assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
break;
default:
assert(false, "unknown node type in macro list");
assert(n->Opcode() == Op_LoopLimit ||
n->Opcode() == Op_Opaque1 ||
n->Opcode() == Op_Opaque2, "unknown node type in macro list");
}
assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
progress = progress || success;
}
}
}
//------------------------------expand_macro_nodes----------------------
// Returns true if a failure occurred.
bool PhaseMacroExpand::expand_macro_nodes() {
// Last attempt to eliminate macro nodes.
eliminate_macro_nodes();
// Make sure expansion will not cause node limit to be exceeded.
// Worst case is a macro node gets expanded into about 50 nodes.
// Allow 50% more for optimization.
if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
return true;
// Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
bool progress = true;
while (progress) {
progress = false;
for (int i = C->macro_count(); i > 0; i--) {
Node * n = C->macro_node(i-1);
bool success = false;
debug_only(int old_macro_count = C->macro_count(););
if (n->Opcode() == Op_LoopLimit) {
// Remove it from macro list and put on IGVN worklist to optimize.
C->remove_macro_node(n);
_igvn._worklist.push(n);
success = true;
} else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
_igvn.replace_node(n, n->in(1));
success = true;
}
assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
progress = progress || success;
}
}
// expand "macro" nodes
// nodes are removed from the macro list as they are processed
while (C->macro_count() > 0) {
@ -2265,5 +2289,6 @@ bool PhaseMacroExpand::expand_macro_nodes() {
_igvn.set_delay_transform(false);
_igvn.optimize();
if (C->failing()) return true;
return false;
}