8301202: Port fdlibm log to Java

Reviewed-by: bpb
This commit is contained in:
Joe Darcy 2023-02-11 02:15:46 +00:00
parent 98e98e9049
commit 919a6da2a7
5 changed files with 498 additions and 2 deletions

View file

@ -747,6 +747,146 @@ class FdLibm {
}
}
/**
* Return the (natural) logarithm of x
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
static final class Log {
private Log() {throw new UnsupportedOperationException();}
private static final double
ln2_hi = 0x1.62e42feep-1, // 6.93147180369123816490e-01
ln2_lo = 0x1.a39ef35793c76p-33, // 1.90821492927058770002e-10
Lg1 = 0x1.5555555555593p-1, // 6.666666666666735130e-01
Lg2 = 0x1.999999997fa04p-2, // 3.999999999940941908e-01
Lg3 = 0x1.2492494229359p-2, // 2.857142874366239149e-01
Lg4 = 0x1.c71c51d8e78afp-3, // 2.222219843214978396e-01
Lg5 = 0x1.7466496cb03dep-3, // 1.818357216161805012e-01
Lg6 = 0x1.39a09d078c69fp-3, // 1.531383769920937332e-01
Lg7 = 0x1.2f112df3e5244p-3; // 1.479819860511658591e-01
private static final double zero = 0.0;
static double compute(double x) {
double hfsq, f, s, z, R, w, t1, t2, dk;
int k, hx, i, j;
/*unsigned*/ int lx;
hx = __HI(x); // high word of x
lx = __LO(x); // low word of x
k=0;
if (hx < 0x0010_0000) { // x < 2**-1022
if (((hx & 0x7fff_ffff) | lx) == 0) { // log(+-0) = -inf
return -TWO54/zero;
}
if (hx < 0) { // log(-#) = NaN
return (x - x)/zero;
}
k -= 54;
x *= TWO54; // subnormal number, scale up x
hx = __HI(x); // high word of x
}
if (hx >= 0x7ff0_0000) {
return x + x;
}
k += (hx >> 20) - 1023;
hx &= 0x000f_ffff;
i = (hx + 0x9_5f64) & 0x10_0000;
x =__HI(x, hx | (i ^ 0x3ff0_0000)); // normalize x or x/2
k += (i >> 20);
f = x - 1.0;
if ((0x000f_ffff & (2 + hx)) < 3) {// |f| < 2**-20
if (f == zero) {
if (k == 0) {
return zero;
} else {
dk = (double)k;
return dk*ln2_hi + dk*ln2_lo;
}
}
R = f*f*(0.5 - 0.33333333333333333*f);
if (k == 0) {
return f - R;
} else {
dk = (double)k;
return dk*ln2_hi - ((R - dk*ln2_lo) - f);
}
}
s = f/(2.0 + f);
dk = (double)k;
z = s*s;
i = hx - 0x6_147a;
w = z*z;
j = 0x6b851 - hx;
t1= w*(Lg2 + w*(Lg4 + w*Lg6));
t2= z*(Lg1 + w*(Lg3 + w*(Lg5 + w*Lg7)));
i |= j;
R = t2 + t1;
if (i > 0) {
hfsq = 0.5*f*f;
if (k == 0) {
return f-(hfsq - s*(hfsq + R));
} else {
return dk*ln2_hi - ((hfsq - (s*(hfsq + R) + dk*ln2_lo)) - f);
}
} else {
if (k == 0) {
return f - s*(f - R);
} else {
return dk*ln2_hi - ((s*(f - R) - dk*ln2_lo) - f);
}
}
}
}
/**
* Return the base 10 logarithm of x
*