8248862: Implement Enhanced Pseudo-Random Number Generators

Reviewed-by: darcy
This commit is contained in:
Jim Laskey 2021-04-05 16:29:18 +00:00
parent 39719da9d1
commit a0ec2cb289
27 changed files with 11384 additions and 1772 deletions

View file

@ -25,11 +25,13 @@
package java.security;
import java.math.BigInteger;
import java.util.*;
import java.util.random.RandomGenerator;
import java.util.regex.*;
import java.security.Provider.Service;
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
import sun.security.jca.*;
import sun.security.jca.GetInstance.Instance;
import sun.security.provider.SunEntries;
@ -147,6 +149,10 @@ import sun.security.util.Debug;
* @since 1.1
*/
@RandomGeneratorProperties(
name = "SecureRandom",
isStochastic = true
)
public class SecureRandom extends java.util.Random {
private static final Debug pdebug =

View file

@ -24,21 +24,26 @@
*/
package java.util;
import java.io.*;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.DoubleConsumer;
import java.util.function.IntConsumer;
import java.util.function.LongConsumer;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.StreamSupport;
import jdk.internal.util.random.RandomSupport.AbstractSpliteratorGenerator;
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
import jdk.internal.util.random.RandomSupport.RandomIntsSpliterator;
import jdk.internal.util.random.RandomSupport.RandomLongsSpliterator;
import jdk.internal.util.random.RandomSupport.RandomDoublesSpliterator;
import static jdk.internal.util.random.RandomSupport.*;
import jdk.internal.misc.Unsafe;
/**
* An instance of this class is used to generate a stream of
* pseudorandom numbers. The class uses a 48-bit seed, which is
* pseudorandom numbers; its period is only 2<sup>48</sup>.
* The class uses a 48-bit seed, which is
* modified using a linear congruential formula. (See Donald E. Knuth,
* <cite>The Art of Computer Programming, Volume 2, Third
* edition: Seminumerical Algorithms</cite>, Section 3.2.1.)
@ -74,7 +79,14 @@ import jdk.internal.misc.Unsafe;
* @author Frank Yellin
* @since 1.0
*/
public class Random implements java.io.Serializable {
@SuppressWarnings("exports")
@RandomGeneratorProperties(
name = "Random",
i = 48, j = 0, k = 0,
equidistribution = 0
)
public class Random extends AbstractSpliteratorGenerator
implements java.io.Serializable {
/** use serialVersionUID from JDK 1.1 for interoperability */
@java.io.Serial
static final long serialVersionUID = 3905348978240129619L;
@ -92,11 +104,6 @@ public class Random implements java.io.Serializable {
private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
// IllegalArgumentException messages
static final String BadBound = "bound must be positive";
static final String BadRange = "bound must be greater than origin";
static final String BadSize = "size must be non-negative";
/**
* Creates a new random number generator. This constructor sets
* the seed of the random number generator to a value very likely
@ -118,17 +125,18 @@ public class Random implements java.io.Serializable {
}
private static final AtomicLong seedUniquifier
= new AtomicLong(8682522807148012L);
= new AtomicLong(8682522807148012L);
/**
* Creates a new random number generator using a single {@code long} seed.
* The seed is the initial value of the internal state of the pseudorandom
* number generator which is maintained by method {@link #next}.
*
* <p>The invocation {@code new Random(seed)} is equivalent to:
* <pre> {@code
* @implSpec The invocation {@code new Random(seed)} is equivalent to:
* <pre>{@code
* Random rnd = new Random();
* rnd.setSeed(seed);}</pre>
* rnd.setSeed(seed);
* }</pre>
*
* @param seed the initial seed
* @see #setSeed(long)
@ -211,9 +219,9 @@ public class Random implements java.io.Serializable {
* byte array. The number of random bytes produced is equal to
* the length of the byte array.
*
* <p>The method {@code nextBytes} is implemented by class {@code Random}
* as if by:
* <pre> {@code
* @implSpec The method {@code nextBytes} is
* implemented by class {@code Random} as if by:
* <pre>{@code
* public void nextBytes(byte[] bytes) {
* for (int i = 0; i < bytes.length; )
* for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
@ -225,90 +233,15 @@ public class Random implements java.io.Serializable {
* @throws NullPointerException if the byte array is null
* @since 1.1
*/
@Override
public void nextBytes(byte[] bytes) {
for (int i = 0, len = bytes.length; i < len; )
for (int rnd = nextInt(),
n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
n-- > 0; rnd >>= Byte.SIZE)
bytes[i++] = (byte)rnd;
}
/**
* The form of nextLong used by LongStream Spliterators. If
* origin is greater than bound, acts as unbounded form of
* nextLong, else as bounded form.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final long internalNextLong(long origin, long bound) {
long r = nextLong();
if (origin < bound) {
long n = bound - origin, m = n - 1;
if ((n & m) == 0L) // power of two
r = (r & m) + origin;
else if (n > 0L) { // reject over-represented candidates
for (long u = r >>> 1; // ensure nonnegative
u + m - (r = u % n) < 0L; // rejection check
u = nextLong() >>> 1) // retry
;
r += origin;
}
else { // range not representable as long
while (r < origin || r >= bound)
r = nextLong();
}
}
return r;
}
/**
* The form of nextInt used by IntStream Spliterators.
* For the unbounded case: uses nextInt().
* For the bounded case with representable range: uses nextInt(int bound)
* For the bounded case with unrepresentable range: uses nextInt()
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final int internalNextInt(int origin, int bound) {
if (origin < bound) {
int n = bound - origin;
if (n > 0) {
return nextInt(n) + origin;
}
else { // range not representable as int
int r;
do {
r = nextInt();
} while (r < origin || r >= bound);
return r;
}
}
else {
return nextInt();
}
}
/**
* The form of nextDouble used by DoubleStream Spliterators.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final double internalNextDouble(double origin, double bound) {
double r = nextDouble();
if (origin < bound) {
r = r * (bound - origin) + origin;
if (r >= bound) // correct for rounding
r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
}
return r;
}
/**
* Returns the next pseudorandom, uniformly distributed {@code int}
* value from this random number generator's sequence. The general
@ -316,9 +249,9 @@ public class Random implements java.io.Serializable {
* pseudorandomly generated and returned. All 2<sup>32</sup> possible
* {@code int} values are produced with (approximately) equal probability.
*
* <p>The method {@code nextInt} is implemented by class {@code Random}
* as if by:
* <pre> {@code
* @implSpec The method {@code nextInt} is
* implemented by class {@code Random} as if by:
* <pre>{@code
* public int nextInt() {
* return next(32);
* }}</pre>
@ -326,6 +259,7 @@ public class Random implements java.io.Serializable {
* @return the next pseudorandom, uniformly distributed {@code int}
* value from this random number generator's sequence
*/
@Override
public int nextInt() {
return next(32);
}
@ -337,9 +271,11 @@ public class Random implements java.io.Serializable {
* {@code nextInt} is that one {@code int} value in the specified range
* is pseudorandomly generated and returned. All {@code bound} possible
* {@code int} values are produced with (approximately) equal
* probability. The method {@code nextInt(int bound)} is implemented by
* probability.
*
* @implSpec The method {@code nextInt(int bound)} is implemented by
* class {@code Random} as if by:
* <pre> {@code
* <pre>{@code
* public int nextInt(int bound) {
* if (bound <= 0)
* throw new IllegalArgumentException("bound must be positive");
@ -384,15 +320,15 @@ public class Random implements java.io.Serializable {
* @throws IllegalArgumentException if bound is not positive
* @since 1.2
*/
@Override
public int nextInt(int bound) {
if (bound <= 0)
throw new IllegalArgumentException(BadBound);
throw new IllegalArgumentException(BAD_BOUND);
int r = next(31);
int m = bound - 1;
if ((bound & m) == 0) // i.e., bound is a power of 2
r = (int)((bound * (long)r) >> 31);
else {
else { // reject over-represented candidates
for (int u = r;
u - (r = u % bound) + m < 0;
u = next(31))
@ -400,16 +336,15 @@ public class Random implements java.io.Serializable {
}
return r;
}
/**
* Returns the next pseudorandom, uniformly distributed {@code long}
* value from this random number generator's sequence. The general
* contract of {@code nextLong} is that one {@code long} value is
* pseudorandomly generated and returned.
*
* <p>The method {@code nextLong} is implemented by class {@code Random}
* @implSpec The method {@code nextLong} is implemented by class {@code Random}
* as if by:
* <pre> {@code
* <pre>{@code
* public long nextLong() {
* return ((long)next(32) << 32) + next(32);
* }}</pre>
@ -420,6 +355,7 @@ public class Random implements java.io.Serializable {
* @return the next pseudorandom, uniformly distributed {@code long}
* value from this random number generator's sequence
*/
@Override
public long nextLong() {
// it's okay that the bottom word remains signed.
return ((long)(next(32)) << 32) + next(32);
@ -433,9 +369,9 @@ public class Random implements java.io.Serializable {
* values {@code true} and {@code false} are produced with
* (approximately) equal probability.
*
* <p>The method {@code nextBoolean} is implemented by class {@code Random}
* as if by:
* <pre> {@code
* @implSpec The method {@code nextBoolean} is implemented by class
* {@code Random} as if by:
* <pre>{@code
* public boolean nextBoolean() {
* return next(1) != 0;
* }}</pre>
@ -445,6 +381,7 @@ public class Random implements java.io.Serializable {
* sequence
* @since 1.2
*/
@Override
public boolean nextBoolean() {
return next(1) != 0;
}
@ -462,21 +399,19 @@ public class Random implements java.io.Serializable {
* where <i>m</i> is a positive integer less than 2<sup>24</sup>, are
* produced with (approximately) equal probability.
*
* <p>The method {@code nextFloat} is implemented by class {@code Random}
* as if by:
* <pre> {@code
* @implSpec The method {@code nextFloat} is implemented by class
* {@code Random} as if by:
* <pre>{@code
* public float nextFloat() {
* return next(24) / ((float)(1 << 24));
* }}</pre>
*
* <p>The hedge "approximately" is used in the foregoing description only
* because the next method is only approximately an unbiased source of
* independently chosen bits. If it were a perfect source of randomly
* chosen bits, then the algorithm shown would choose {@code float}
* values from the stated range with perfect uniformity.<p>
* [In early versions of Java, the result was incorrectly calculated as:
* <pre> {@code
* return next(30) / ((float)(1 << 30));}</pre>
* <pre> {@code return next(30) / ((float)(1 << 30));}</pre>
* This might seem to be equivalent, if not better, but in fact it
* introduced a slight nonuniformity because of the bias in the rounding
* of floating-point numbers: it was slightly more likely that the
@ -486,6 +421,7 @@ public class Random implements java.io.Serializable {
* value between {@code 0.0} and {@code 1.0} from this
* random number generator's sequence
*/
@Override
public float nextFloat() {
return next(24) / ((float)(1 << 24));
}
@ -500,35 +436,33 @@ public class Random implements java.io.Serializable {
* range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
* pseudorandomly generated and returned.
*
* <p>The method {@code nextDouble} is implemented by class {@code Random}
* as if by:
* <pre> {@code
* @implSpec The method {@code nextDouble} is implemented by class
* {@code Random} as if by:
* <pre>{@code
* public double nextDouble() {
* return (((long)next(26) << 27) + next(27))
* / (double)(1L << 53);
* }}</pre>
*
* <p>The hedge "approximately" is used in the foregoing description only
* because the {@code next} method is only approximately an unbiased
* source of independently chosen bits. If it were a perfect source of
* randomly chosen bits, then the algorithm shown would choose
* {@code double} values from the stated range with perfect uniformity.
* because the {@code next} method is only approximately an unbiased source
* of independently chosen bits. If it were a perfect source of randomly
* chosen bits, then the algorithm shown would choose {@code double} values
* from the stated range with perfect uniformity.
* <p>[In early versions of Java, the result was incorrectly calculated as:
* <pre> {@code
* return (((long)next(27) << 27) + next(27))
* / (double)(1L << 54);}</pre>
* <pre> {@code return (((long)next(27) << 27) + next(27)) / (double)(1L << 54);}</pre>
* This might seem to be equivalent, if not better, but in fact it
* introduced a large nonuniformity because of the bias in the rounding
* of floating-point numbers: it was three times as likely that the
* low-order bit of the significand would be 0 than that it would be 1!
* This nonuniformity probably doesn't matter much in practice, but we
* strive for perfection.]
* introduced a large nonuniformity because of the bias in the rounding of
* floating-point numbers: it was three times as likely that the low-order
* bit of the significand would be 0 than that it would be 1! This
* nonuniformity probably doesn't matter much in practice, but we strive
* for perfection.]
*
* @return the next pseudorandom, uniformly distributed {@code double}
* value between {@code 0.0} and {@code 1.0} from this
* random number generator's sequence
* @see Math#random
*/
@Override
public double nextDouble() {
return (((long)(next(26)) << 27) + next(27)) * DOUBLE_UNIT;
}
@ -546,9 +480,9 @@ public class Random implements java.io.Serializable {
* normal distribution with mean {@code 0.0} and standard deviation
* {@code 1.0}, is pseudorandomly generated and returned.
*
* <p>The method {@code nextGaussian} is implemented by class
* @implSpec The method {@code nextGaussian} is implemented by class
* {@code Random} as if by a threadsafe version of the following:
* <pre> {@code
* <pre>{@code
* private double nextNextGaussian;
* private boolean haveNextNextGaussian = false;
*
@ -569,6 +503,7 @@ public class Random implements java.io.Serializable {
* return v1 * multiplier;
* }
* }}</pre>
*
* This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
* G. Marsaglia, as described by Donald E. Knuth in <cite>The Art of
* Computer Programming, Volume 2, third edition: Seminumerical Algorithms</cite>,
@ -581,6 +516,7 @@ public class Random implements java.io.Serializable {
* standard deviation {@code 1.0} from this random number
* generator's sequence
*/
@Override
public synchronized double nextGaussian() {
// See Knuth, TAOCP, Vol. 2, 3rd edition, Section 3.4.1 Algorithm C.
if (haveNextNextGaussian) {
@ -600,8 +536,110 @@ public class Random implements java.io.Serializable {
}
}
// stream methods, coded in a way intended to better isolate for
// maintenance purposes the small differences across forms.
/**
* Serializable fields for Random.
*
* @serialField seed long
* seed for random computations
* @serialField nextNextGaussian double
* next Gaussian to be returned
* @serialField haveNextNextGaussian boolean
* nextNextGaussian is valid
*/
@java.io.Serial
private static final ObjectStreamField[] serialPersistentFields = {
new ObjectStreamField("seed", Long.TYPE),
new ObjectStreamField("nextNextGaussian", Double.TYPE),
new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
};
/**
* Reconstitute the {@code Random} instance from a stream (that is,
* deserialize it).
*
* @param s the {@code ObjectInputStream} from which data is read
*
* @throws IOException if an I/O error occurs
* @throws ClassNotFoundException if a serialized class cannot be loaded
*/
@java.io.Serial
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
ObjectInputStream.GetField fields = s.readFields();
// The seed is read in as {@code long} for
// historical reasons, but it is converted to an AtomicLong.
long seedVal = fields.get("seed", -1L);
if (seedVal < 0)
throw new java.io.StreamCorruptedException(
"Random: invalid seed");
resetSeed(seedVal);
nextNextGaussian = fields.get("nextNextGaussian", 0.0);
haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
}
/**
* Save the {@code Random} instance to a stream.
*
* @param s the {@code ObjectOutputStream} to which data is written
*
* @throws IOException if an I/O error occurs
*/
@java.io.Serial
private synchronized void writeObject(ObjectOutputStream s)
throws IOException {
// set the values of the Serializable fields
ObjectOutputStream.PutField fields = s.putFields();
// The seed is serialized as a long for historical reasons.
fields.put("seed", seed.get());
fields.put("nextNextGaussian", nextNextGaussian);
fields.put("haveNextNextGaussian", haveNextNextGaussian);
// save them
s.writeFields();
}
// Support for resetting seed while deserializing
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long seedOffset;
static {
try {
seedOffset = unsafe.objectFieldOffset
(Random.class.getDeclaredField("seed"));
} catch (Exception ex) { throw new Error(ex); }
}
private void resetSeed(long seedVal) {
unsafe.putReferenceVolatile(this, seedOffset, new AtomicLong(seedVal));
}
// Methods required by class AbstractSpliteratorGenerator
/**
* @hidden
*/
@Override
public Spliterator.OfInt makeIntsSpliterator(long index, long fence, int origin, int bound) {
return new RandomIntsSpliterator(this, index, fence, origin, bound);
}
/**
* @hidden
*/
@Override
public Spliterator.OfLong makeLongsSpliterator(long index, long fence, long origin, long bound) {
return new RandomLongsSpliterator(this, index, fence, origin, bound);
}
/**
* @hidden
*/
@Override
public Spliterator.OfDouble makeDoublesSpliterator(long index, long fence, double origin, double bound) {
return new RandomDoublesSpliterator(this, index, fence, origin, bound);
}
/**
* Returns a stream producing the given {@code streamSize} number of
@ -616,13 +654,9 @@ public class Random implements java.io.Serializable {
* less than zero
* @since 1.8
*/
@Override
public IntStream ints(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, streamSize, Integer.MAX_VALUE, 0),
false);
return super.ints(streamSize);
}
/**
@ -638,11 +672,9 @@ public class Random implements java.io.Serializable {
* @return a stream of pseudorandom {@code int} values
* @since 1.8
*/
@Override
public IntStream ints() {
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
false);
return super.ints();
}
/**
@ -677,16 +709,9 @@ public class Random implements java.io.Serializable {
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
public IntStream ints(long streamSize, int randomNumberOrigin,
int randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
@Override
public IntStream ints(long streamSize, int randomNumberOrigin, int randomNumberBound) {
return super.ints(streamSize, randomNumberOrigin, randomNumberBound);
}
/**
@ -722,13 +747,9 @@ public class Random implements java.io.Serializable {
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
@Override
public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
return super.ints(randomNumberOrigin, randomNumberBound);
}
/**
@ -744,13 +765,9 @@ public class Random implements java.io.Serializable {
* less than zero
* @since 1.8
*/
@Override
public LongStream longs(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, streamSize, Long.MAX_VALUE, 0L),
false);
return super.longs(streamSize);
}
/**
@ -766,11 +783,9 @@ public class Random implements java.io.Serializable {
* @return a stream of pseudorandom {@code long} values
* @since 1.8
*/
@Override
public LongStream longs() {
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
false);
return super.longs();
}
/**
@ -810,16 +825,9 @@ public class Random implements java.io.Serializable {
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
public LongStream longs(long streamSize, long randomNumberOrigin,
long randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
@Override
public LongStream longs(long streamSize, long randomNumberOrigin, long randomNumberBound) {
return super.longs(streamSize, randomNumberOrigin, randomNumberBound);
}
/**
@ -860,13 +868,9 @@ public class Random implements java.io.Serializable {
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
@Override
public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
return super.longs(randomNumberOrigin, randomNumberBound);
}
/**
@ -883,13 +887,9 @@ public class Random implements java.io.Serializable {
* less than zero
* @since 1.8
*/
@Override
public DoubleStream doubles(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, streamSize, Double.MAX_VALUE, 0.0),
false);
return super.doubles(streamSize);
}
/**
@ -906,14 +906,12 @@ public class Random implements java.io.Serializable {
* @return a stream of pseudorandom {@code double} values
* @since 1.8
*/
@Override
public DoubleStream doubles() {
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
false);
return super.doubles();
}
/**
/**
* Returns a stream producing the given {@code streamSize} number of
* pseudorandom {@code double} values, each conforming to the given origin
* (inclusive) and bound (exclusive).
@ -934,22 +932,15 @@ public class Random implements java.io.Serializable {
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code double} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* @throws IllegalArgumentException if {@code streamSize} is less than zero,
* or {@code randomNumberOrigin} is not finite,
* or {@code randomNumberBound} is not finite, or {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
public DoubleStream doubles(long streamSize, double randomNumberOrigin,
double randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
if (!(randomNumberOrigin < randomNumberBound))
throw new IllegalArgumentException(BadRange);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
@Override
public DoubleStream doubles(long streamSize, double randomNumberOrigin, double randomNumberBound) {
return super.doubles(streamSize, randomNumberOrigin, randomNumberBound);
}
/**
@ -979,260 +970,8 @@ public class Random implements java.io.Serializable {
* is greater than or equal to {@code randomNumberBound}
* @since 1.8
*/
@Override
public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
if (!(randomNumberOrigin < randomNumberBound))
throw new IllegalArgumentException(BadRange);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Spliterator for int streams. We multiplex the four int
* versions into one class by treating a bound less than origin as
* unbounded, and also by treating "infinite" as equivalent to
* Long.MAX_VALUE. For splits, it uses the standard divide-by-two
* approach. The long and double versions of this class are
* identical except for types.
*/
static final class RandomIntsSpliterator implements Spliterator.OfInt {
final Random rng;
long index;
final long fence;
final int origin;
final int bound;
RandomIntsSpliterator(Random rng, long index, long fence,
int origin, int bound) {
this.rng = rng; this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomIntsSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomIntsSpliterator(rng, i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(IntConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(rng.internalNextInt(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(IntConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
Random r = rng;
int o = origin, b = bound;
do {
consumer.accept(r.internalNextInt(o, b));
} while (++i < f);
}
}
}
/**
* Spliterator for long streams.
*/
static final class RandomLongsSpliterator implements Spliterator.OfLong {
final Random rng;
long index;
final long fence;
final long origin;
final long bound;
RandomLongsSpliterator(Random rng, long index, long fence,
long origin, long bound) {
this.rng = rng; this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomLongsSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomLongsSpliterator(rng, i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(LongConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(rng.internalNextLong(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(LongConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
Random r = rng;
long o = origin, b = bound;
do {
consumer.accept(r.internalNextLong(o, b));
} while (++i < f);
}
}
}
/**
* Spliterator for double streams.
*/
static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
final Random rng;
long index;
final long fence;
final double origin;
final double bound;
RandomDoublesSpliterator(Random rng, long index, long fence,
double origin, double bound) {
this.rng = rng; this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomDoublesSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomDoublesSpliterator(rng, i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(DoubleConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(rng.internalNextDouble(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(DoubleConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
Random r = rng;
double o = origin, b = bound;
do {
consumer.accept(r.internalNextDouble(o, b));
} while (++i < f);
}
}
}
/**
* Serializable fields for Random.
*
* @serialField seed long
* seed for random computations
* @serialField nextNextGaussian double
* next Gaussian to be returned
* @serialField haveNextNextGaussian boolean
* nextNextGaussian is valid
*/
@java.io.Serial
private static final ObjectStreamField[] serialPersistentFields = {
new ObjectStreamField("seed", Long.TYPE),
new ObjectStreamField("nextNextGaussian", Double.TYPE),
new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
};
/**
* Reconstitute the {@code Random} instance from a stream (that is,
* deserialize it).
*
* @param s the {@code ObjectInputStream} from which data is read
* @throws IOException if an I/O error occurs
* @throws ClassNotFoundException if a serialized class cannot be loaded
*/
@java.io.Serial
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
ObjectInputStream.GetField fields = s.readFields();
// The seed is read in as {@code long} for
// historical reasons, but it is converted to an AtomicLong.
long seedVal = fields.get("seed", -1L);
if (seedVal < 0)
throw new java.io.StreamCorruptedException(
"Random: invalid seed");
resetSeed(seedVal);
nextNextGaussian = fields.get("nextNextGaussian", 0.0);
haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
}
/**
* Save the {@code Random} instance to a stream.
*
* @param s the {@code ObjectOutputStream} to which data is written
* @throws IOException if an I/O error occurs
*/
@java.io.Serial
private synchronized void writeObject(ObjectOutputStream s)
throws IOException {
// set the values of the Serializable fields
ObjectOutputStream.PutField fields = s.putFields();
// The seed is serialized as a long for historical reasons.
fields.put("seed", seed.get());
fields.put("nextNextGaussian", nextNextGaussian);
fields.put("haveNextNextGaussian", haveNextNextGaussian);
// save them
s.writeFields();
}
// Support for resetting seed while deserializing
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long seedOffset;
static {
try {
seedOffset = unsafe.objectFieldOffset
(Random.class.getDeclaredField("seed"));
} catch (Exception ex) { throw new Error(ex); }
}
private void resetSeed(long seedVal) {
unsafe.putReferenceVolatile(this, seedOffset, new AtomicLong(seedVal));
return super.doubles(randomNumberOrigin, randomNumberBound);
}
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -22,24 +22,24 @@
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
import java.math.BigInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.DoubleConsumer;
import java.util.function.IntConsumer;
import java.util.function.LongConsumer;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.StreamSupport;
import java.util.stream.Stream;
import jdk.internal.util.random.RandomSupport;
import jdk.internal.util.random.RandomSupport.AbstractSplittableGenerator;
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
/**
* A generator of uniform pseudorandom values applicable for use in
* (among other contexts) isolated parallel computations that may
* generate subtasks. Class {@code SplittableRandom} supports methods for
* producing pseudorandom numbers of type {@code int}, {@code long},
* and {@code double} with similar usages as for class
* A generator of uniform pseudorandom values (with period 2<sup>64</sup>)
* applicable for use in (among other contexts) isolated parallel
* computations that may generate subtasks. Class {@code SplittableRandom}
* supports methods for producing pseudorandom numbers of type {@code int},
* {@code long}, and {@code double} with similar usages as for class
* {@link java.util.Random} but differs in the following ways:
*
* <ul>
@ -51,16 +51,16 @@ import java.util.stream.StreamSupport;
* 3.31.1</a>.) These tests validate only the methods for certain
* types and ranges, but similar properties are expected to hold, at
* least approximately, for others as well. The <em>period</em>
* (length of any series of generated values before it repeats) is at
* least 2<sup>64</sup>.
* (length of any series of generated values before it repeats) is
* 2<sup>64</sup>. </li>
*
* <li>Method {@link #split} constructs and returns a new
* <li> Method {@link #split} constructs and returns a new
* SplittableRandom instance that shares no mutable state with the
* current instance. However, with very high probability, the
* values collectively generated by the two objects have the same
* statistical properties as if the same quantity of values were
* generated by a single thread using a single {@code
* SplittableRandom} object.
* SplittableRandom} object. </li>
*
* <li>Instances of SplittableRandom are <em>not</em> thread-safe.
* They are designed to be split, not shared, across threads. For
@ -71,7 +71,7 @@ import java.util.stream.StreamSupport;
*
* <li>This class provides additional methods for generating random
* streams, that employ the above techniques when used in {@code
* stream.parallel()} mode.
* stream.parallel()} mode.</li>
*
* </ul>
*
@ -80,13 +80,19 @@ import java.util.stream.StreamSupport;
* in security-sensitive applications. Additionally,
* default-constructed instances do not use a cryptographically random
* seed unless the {@linkplain System#getProperty system property}
* {@systemProperty java.util.secureRandomSeed} is set to {@code true}.
* {@code java.util.secureRandomSeed} is set to {@code true}.
*
* @author Guy Steele
* @author Doug Lea
* @since 1.8
*/
public final class SplittableRandom {
@SuppressWarnings("exports")
@RandomGeneratorProperties(
name = "SplittableRandom",
i = 64, j = 0, k = 0,
equidistribution = 1
)
public final class SplittableRandom extends AbstractSplittableGenerator {
/*
* Implementation Overview.
@ -160,12 +166,6 @@ public final class SplittableRandom {
*/
private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
/**
* The least non-zero value returned by nextDouble(). This value
* is scaled by a random value of 53 bits to produce a result.
*/
private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
/**
* The seed. Updated only via method nextSeed.
*/
@ -186,6 +186,7 @@ public final class SplittableRandom {
/**
* Computes Stafford variant 13 of 64bit mix function.
* http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
*/
private static long mix64(long z) {
z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
@ -195,6 +196,7 @@ public final class SplittableRandom {
/**
* Returns the 32 high bits of Stafford variant 4 mix64 function as int.
* http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
*/
private static int mix32(long z) {
z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
@ -203,6 +205,8 @@ public final class SplittableRandom {
/**
* Returns the gamma value to use for a new split instance.
* Uses the 64bit mix function from MurmurHash3.
* https://github.com/aappleby/smhasher/wiki/MurmurHash3
*/
private static long mixGamma(long z) {
z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
@ -219,141 +223,10 @@ public final class SplittableRandom {
return seed += gamma;
}
// IllegalArgumentException messages
static final String BAD_BOUND = "bound must be positive";
static final String BAD_RANGE = "bound must be greater than origin";
static final String BAD_SIZE = "size must be non-negative";
/**
* The seed generator for default constructors.
*/
private static final AtomicLong defaultGen
= new AtomicLong(mix64(System.currentTimeMillis()) ^
mix64(System.nanoTime()));
// at end of <clinit> to survive static initialization circularity
static {
if (java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction<Boolean>() {
public Boolean run() {
return Boolean.getBoolean("java.util.secureRandomSeed");
}})) {
byte[] seedBytes = java.security.SecureRandom.getSeed(8);
long s = (long)seedBytes[0] & 0xffL;
for (int i = 1; i < 8; ++i)
s = (s << 8) | ((long)seedBytes[i] & 0xffL);
defaultGen.set(s);
}
}
/*
* Internal versions of nextX methods used by streams, as well as
* the public nextX(origin, bound) methods. These exist mainly to
* avoid the need for multiple versions of stream spliterators
* across the different exported forms of streams.
*/
/**
* The form of nextLong used by LongStream Spliterators. If
* origin is greater than bound, acts as unbounded form of
* nextLong, else as bounded form.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final long internalNextLong(long origin, long bound) {
/*
* Four Cases:
*
* 1. If the arguments indicate unbounded form, act as
* nextLong().
*
* 2. If the range is an exact power of two, apply the
* associated bit mask.
*
* 3. If the range is positive, loop to avoid potential bias
* when the implicit nextLong() bound (2<sup>64</sup>) is not
* evenly divisible by the range. The loop rejects candidates
* computed from otherwise over-represented values. The
* expected number of iterations under an ideal generator
* varies from 1 to 2, depending on the bound. The loop itself
* takes an unlovable form. Because the first candidate is
* already available, we need a break-in-the-middle
* construction, which is concisely but cryptically performed
* within the while-condition of a body-less for loop.
*
* 4. Otherwise, the range cannot be represented as a positive
* long. The loop repeatedly generates unbounded longs until
* obtaining a candidate meeting constraints (with an expected
* number of iterations of less than two).
*/
long r = mix64(nextSeed());
if (origin < bound) {
long n = bound - origin, m = n - 1;
if ((n & m) == 0L) // power of two
r = (r & m) + origin;
else if (n > 0L) { // reject over-represented candidates
for (long u = r >>> 1; // ensure nonnegative
u + m - (r = u % n) < 0L; // rejection check
u = mix64(nextSeed()) >>> 1) // retry
;
r += origin;
}
else { // range not representable as long
while (r < origin || r >= bound)
r = mix64(nextSeed());
}
}
return r;
}
/**
* The form of nextInt used by IntStream Spliterators.
* Exactly the same as long version, except for types.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final int internalNextInt(int origin, int bound) {
int r = mix32(nextSeed());
if (origin < bound) {
int n = bound - origin, m = n - 1;
if ((n & m) == 0)
r = (r & m) + origin;
else if (n > 0) {
for (int u = r >>> 1;
u + m - (r = u % n) < 0;
u = mix32(nextSeed()) >>> 1)
;
r += origin;
}
else {
while (r < origin || r >= bound)
r = mix32(nextSeed());
}
}
return r;
}
/**
* The form of nextDouble used by DoubleStream Spliterators.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final double internalNextDouble(double origin, double bound) {
double r = (nextLong() >>> 11) * DOUBLE_UNIT;
if (origin < bound) {
r = r * (bound - origin) + origin;
if (r >= bound) // correct for rounding
r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
}
return r;
}
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
/* ---------------- public methods ---------------- */
@ -375,7 +248,7 @@ public final class SplittableRandom {
* may, and typically does, vary across program invocations.
*/
public SplittableRandom() { // emulate defaultGen.split()
long s = defaultGen.getAndAdd(GOLDEN_GAMMA << 1);
long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
this.seed = mix64(s);
this.gamma = mixGamma(s + GOLDEN_GAMMA);
}
@ -399,186 +272,102 @@ public final class SplittableRandom {
}
/**
* Fills a user-supplied byte array with generated pseudorandom bytes.
*
* @param bytes the byte array to fill with pseudorandom bytes
* @throws NullPointerException if bytes is null
* @since 10
* {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @since 17
*/
public void nextBytes(byte[] bytes) {
int i = 0;
int len = bytes.length;
for (int words = len >> 3; words--> 0; ) {
long rnd = nextLong();
for (int n = 8; n--> 0; rnd >>>= Byte.SIZE)
bytes[i++] = (byte)rnd;
}
if (i < len)
for (long rnd = nextLong(); i < len; rnd >>>= Byte.SIZE)
bytes[i++] = (byte)rnd;
public SplittableRandom split(SplittableGenerator source) {
return new SplittableRandom(source.nextLong(), mixGamma(source.nextLong()));
}
/**
* Returns a pseudorandom {@code int} value.
*
* @return a pseudorandom {@code int} value
* @hidden
*/
@Override
public Spliterator.OfInt makeIntsSpliterator(long index, long fence, int origin, int bound) {
return super.makeIntsSpliterator(index, fence, origin, bound);
}
/**
* @hidden
*/
@Override
public Spliterator.OfLong makeLongsSpliterator(long index, long fence, long origin, long bound) {
return super.makeLongsSpliterator(index, fence, origin, bound);
}
/**
* @hidden
*/
@Override
public Spliterator.OfDouble makeDoublesSpliterator(long index, long fence, double origin, double bound) {
return super.makeDoublesSpliterator(index, fence, origin, bound);
}
@Override
public int nextInt() {
return mix32(nextSeed());
}
/**
* Returns a pseudorandom {@code int} value between zero (inclusive)
* and the specified bound (exclusive).
*
* @param bound the upper bound (exclusive). Must be positive.
* @return a pseudorandom {@code int} value between zero
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code bound} is not positive
*/
public int nextInt(int bound) {
if (bound <= 0)
throw new IllegalArgumentException(BAD_BOUND);
// Specialize internalNextInt for origin 0
int r = mix32(nextSeed());
int m = bound - 1;
if ((bound & m) == 0) // power of two
r &= m;
else { // reject over-represented candidates
for (int u = r >>> 1;
u + m - (r = u % bound) < 0;
u = mix32(nextSeed()) >>> 1)
;
}
return r;
}
/**
* Returns a pseudorandom {@code int} value between the specified
* origin (inclusive) and the specified bound (exclusive).
*
* @param origin the least value returned
* @param bound the upper bound (exclusive)
* @return a pseudorandom {@code int} value between the origin
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code origin} is greater than
* or equal to {@code bound}
*/
public int nextInt(int origin, int bound) {
if (origin >= bound)
throw new IllegalArgumentException(BAD_RANGE);
return internalNextInt(origin, bound);
}
/**
* Returns a pseudorandom {@code long} value.
*
* @return a pseudorandom {@code long} value
*/
@Override
public long nextLong() {
return mix64(nextSeed());
}
/**
* Returns a pseudorandom {@code long} value between zero (inclusive)
* and the specified bound (exclusive).
*
* @param bound the upper bound (exclusive). Must be positive.
* @return a pseudorandom {@code long} value between zero
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code bound} is not positive
* {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @since 10
*/
public long nextLong(long bound) {
if (bound <= 0)
throw new IllegalArgumentException(BAD_BOUND);
// Specialize internalNextLong for origin 0
long r = mix64(nextSeed());
long m = bound - 1;
if ((bound & m) == 0L) // power of two
r &= m;
else { // reject over-represented candidates
for (long u = r >>> 1;
u + m - (r = u % bound) < 0L;
u = mix64(nextSeed()) >>> 1)
;
}
return r;
@Override
public void nextBytes(byte[] bytes) {
super.nextBytes(bytes);
}
/**
* Returns a pseudorandom {@code long} value between the specified
* origin (inclusive) and the specified bound (exclusive).
*
* @param origin the least value returned
* @param bound the upper bound (exclusive)
* @return a pseudorandom {@code long} value between the origin
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code origin} is greater than
* or equal to {@code bound}
* {@inheritDoc}
* @implSpec {@inheritDoc}
* @since 17
*/
public long nextLong(long origin, long bound) {
if (origin >= bound)
throw new IllegalArgumentException(BAD_RANGE);
return internalNextLong(origin, bound);
@Override
public Stream<SplittableGenerator> splits() {
return super.splits();
}
/**
* Returns a pseudorandom {@code double} value between zero
* (inclusive) and one (exclusive).
*
* @return a pseudorandom {@code double} value between zero
* (inclusive) and one (exclusive)
* {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
* @implSpec {@inheritDoc}
* @since 17
*/
public double nextDouble() {
return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
@Override
public Stream<SplittableGenerator> splits(long streamSize) {
return super.splits(streamSize, this);
}
/**
* Returns a pseudorandom {@code double} value between 0.0
* (inclusive) and the specified bound (exclusive).
*
* @param bound the upper bound (exclusive). Must be positive.
* @return a pseudorandom {@code double} value between zero
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code bound} is not positive
* {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @implSpec {@inheritDoc}
* @since 17
*/
public double nextDouble(double bound) {
if (!(bound > 0.0))
throw new IllegalArgumentException(BAD_BOUND);
double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
return (result < bound) ? result : // correct for rounding
Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
@Override
public Stream<SplittableGenerator> splits(SplittableGenerator source) {
return super.splits(Long.MAX_VALUE, source);
}
/**
* Returns a pseudorandom {@code double} value between the specified
* origin (inclusive) and bound (exclusive).
*
* @param origin the least value returned
* @param bound the upper bound (exclusive)
* @return a pseudorandom {@code double} value between the origin
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code origin} is greater than
* or equal to {@code bound}
* {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
* @implSpec {@inheritDoc}
* @since 17
*/
public double nextDouble(double origin, double bound) {
if (!(origin < bound))
throw new IllegalArgumentException(BAD_RANGE);
return internalNextDouble(origin, bound);
@Override
public Stream<SplittableGenerator> splits(long streamSize, SplittableGenerator source) {
return super.splits(streamSize, source);
}
/**
* Returns a pseudorandom {@code boolean} value.
*
* @return a pseudorandom {@code boolean} value
*/
public boolean nextBoolean() {
return mix32(nextSeed()) < 0;
}
// stream methods, coded in a way intended to better isolate for
// maintenance purposes the small differences across forms.
/**
* Returns a stream producing the given {@code streamSize} number
* of pseudorandom {@code int} values from this generator and/or
@ -589,13 +378,9 @@ public final class SplittableRandom {
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
*/
@Override
public IntStream ints(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, streamSize, Integer.MAX_VALUE, 0),
false);
return super.ints(streamSize);
}
/**
@ -607,11 +392,9 @@ public final class SplittableRandom {
*
* @return a stream of pseudorandom {@code int} values
*/
@Override
public IntStream ints() {
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
false);
return super.ints();
}
/**
@ -629,16 +412,9 @@ public final class SplittableRandom {
* less than zero, or {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
public IntStream ints(long streamSize, int randomNumberOrigin,
int randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
@Override
public IntStream ints(long streamSize, int randomNumberOrigin, int randomNumberBound) {
return super.ints(streamSize, randomNumberOrigin, randomNumberBound);
}
/**
@ -656,13 +432,9 @@ public final class SplittableRandom {
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
@Override
public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
return super.ints(randomNumberOrigin, randomNumberBound);
}
/**
@ -675,13 +447,9 @@ public final class SplittableRandom {
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
*/
@Override
public LongStream longs(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, streamSize, Long.MAX_VALUE, 0L),
false);
return super.longs(streamSize);
}
/**
@ -693,11 +461,9 @@ public final class SplittableRandom {
*
* @return a stream of pseudorandom {@code long} values
*/
@Override
public LongStream longs() {
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
false);
return super.longs();
}
/**
@ -715,16 +481,9 @@ public final class SplittableRandom {
* less than zero, or {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
public LongStream longs(long streamSize, long randomNumberOrigin,
long randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
@Override
public LongStream longs(long streamSize, long randomNumberOrigin, long randomNumberBound) {
return super.longs(streamSize, randomNumberOrigin, randomNumberBound);
}
/**
@ -742,13 +501,9 @@ public final class SplittableRandom {
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
@Override
public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
return super.longs(randomNumberOrigin, randomNumberBound);
}
/**
@ -761,13 +516,9 @@ public final class SplittableRandom {
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
*/
@Override
public DoubleStream doubles(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, streamSize, Double.MAX_VALUE, 0.0),
false);
return super.doubles(streamSize);
}
/**
@ -780,11 +531,9 @@ public final class SplittableRandom {
*
* @return a stream of pseudorandom {@code double} values
*/
@Override
public DoubleStream doubles() {
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
false);
return super.doubles();
}
/**
@ -802,16 +551,9 @@ public final class SplittableRandom {
* less than zero, or {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
public DoubleStream doubles(long streamSize, double randomNumberOrigin,
double randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BAD_SIZE);
if (!(randomNumberOrigin < randomNumberBound))
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
@Override
public DoubleStream doubles(long streamSize, double randomNumberOrigin, double randomNumberBound) {
return super.doubles(streamSize, randomNumberOrigin, randomNumberBound);
}
/**
@ -829,187 +571,8 @@ public final class SplittableRandom {
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
@Override
public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
if (!(randomNumberOrigin < randomNumberBound))
throw new IllegalArgumentException(BAD_RANGE);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
return super.doubles(randomNumberOrigin, randomNumberBound);
}
/**
* Spliterator for int streams. We multiplex the four int
* versions into one class by treating a bound less than origin as
* unbounded, and also by treating "infinite" as equivalent to
* Long.MAX_VALUE. For splits, it uses the standard divide-by-two
* approach. The long and double versions of this class are
* identical except for types.
*/
private static final class RandomIntsSpliterator
implements Spliterator.OfInt {
final SplittableRandom rng;
long index;
final long fence;
final int origin;
final int bound;
RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
int origin, int bound) {
this.rng = rng; this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomIntsSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(IntConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(rng.internalNextInt(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(IntConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
SplittableRandom r = rng;
int o = origin, b = bound;
do {
consumer.accept(r.internalNextInt(o, b));
} while (++i < f);
}
}
}
/**
* Spliterator for long streams.
*/
private static final class RandomLongsSpliterator
implements Spliterator.OfLong {
final SplittableRandom rng;
long index;
final long fence;
final long origin;
final long bound;
RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
long origin, long bound) {
this.rng = rng; this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomLongsSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(LongConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(rng.internalNextLong(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(LongConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
SplittableRandom r = rng;
long o = origin, b = bound;
do {
consumer.accept(r.internalNextLong(o, b));
} while (++i < f);
}
}
}
/**
* Spliterator for double streams.
*/
private static final class RandomDoublesSpliterator
implements Spliterator.OfDouble {
final SplittableRandom rng;
long index;
final long fence;
final double origin;
final double bound;
RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
double origin, double bound) {
this.rng = rng; this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomDoublesSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(DoubleConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(rng.internalNextDouble(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(DoubleConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
SplittableRandom r = rng;
double o = origin, b = bound;
do {
consumer.accept(r.internalNextDouble(o, b));
} while (++i < f);
}
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,640 @@
/*
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util.random;
import java.lang.reflect.Constructor;
import java.math.BigInteger;
import java.security.AccessController;
import java.security.PrivilegedActionException;
import java.security.PrivilegedExceptionAction;
import java.util.Objects;
import java.util.function.Function;
import java.util.Map;
import java.util.random.RandomGenerator.ArbitrarilyJumpableGenerator;
import java.util.random.RandomGenerator.JumpableGenerator;
import java.util.random.RandomGenerator.LeapableGenerator;
import java.util.random.RandomGenerator.SplittableGenerator;
import java.util.random.RandomGenerator.StreamableGenerator;
import java.util.ServiceLoader;
import java.util.ServiceLoader.Provider;
import java.util.stream.Collectors;
import java.util.stream.Stream;
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
/**
* This is a factory class for generating multiple random number generators
* of a specific <a href="package-summary.html#algorithms">algorithm</a>.
* {@link RandomGeneratorFactory} also provides
* methods for selecting random number generator algorithms.
*
* A specific {@link RandomGeneratorFactory} can be located by using the
* {@link RandomGeneratorFactory#of(String)} method, where the argument string
* is the name of the <a href="package-summary.html#algorithms">algorithm</a>
* required. The method
* {@link RandomGeneratorFactory#all()} produces a non-empty {@link Stream} of all available
* {@link RandomGeneratorFactory RandomGeneratorFactorys} that can be searched
* to locate a {@link RandomGeneratorFactory} suitable to the task.
*
* There are three methods for constructing a RandomGenerator instance,
* depending on the type of initial seed required.
* {@link RandomGeneratorFactory#create(long)} is used for long
* seed construction,
* {@link RandomGeneratorFactory#create(byte[])} is used for byte[]
* seed construction, and
* {@link RandomGeneratorFactory#create()} is used for random seed
* construction. Example;
*
* <pre>{@code
* RandomGeneratorFactory<RandomGenerator> factory = RandomGeneratorFactory.of("Random");
*
* for (int i = 0; i < 10; i++) {
* new Thread(() -> {
* RandomGenerator random = factory.create(100L);
* System.out.println(random.nextDouble());
* }).start();
* }
* }</pre>
*
* RandomGeneratorFactory also provides methods describing the attributes (or properties)
* of a generator and can be used to select random number generator
* <a href="package-summary.html#algorithms">algorithms</a>.
* These methods are typically used in
* conjunction with {@link RandomGeneratorFactory#all()}. In this example, the code
* locates the {@link RandomGeneratorFactory} that produces
* {@link RandomGenerator RandomGenerators}
* with the highest number of state bits.
*
* <pre>{@code
* RandomGeneratorFactory<RandomGenerator> best = RandomGeneratorFactory.all()
* .sorted(Comparator.comparingInt(RandomGenerator::stateBits).reversed())
* .findFirst()
* .orElse(RandomGeneratorFactory.of("Random"));
* System.out.println(best.name() + " in " + best.group() + " was selected");
*
* RandomGenerator rng = best.create();
* System.out.println(rng.nextLong());
* }</pre>
*
* @since 17
*
* @see java.util.random
*
*/
public final class RandomGeneratorFactory<T extends RandomGenerator> {
/**
* Instance provider class of random number algorithm.
*/
private final Provider<? extends RandomGenerator> provider;
/**
* Provider RandomGeneratorProperties annotation.
*/
private volatile RandomGeneratorProperties properties;
/**
* Default provider constructor.
*/
private volatile Constructor<T> ctor;
/**
* Provider constructor with long seed.
*/
private Constructor<T> ctorLong;
/**
* Provider constructor with byte[] seed.
*/
private Constructor<T> ctorBytes;
private static class FactoryMapHolder {
static final Map<String, Provider<? extends RandomGenerator>> FACTORY_MAP = createFactoryMap();
/**
* Returns the factory map, lazily constructing map on first use.
*
* @return Map of RandomGeneratorFactory classes.
*/
private static Map<String, Provider<? extends RandomGenerator>> createFactoryMap() {
return ServiceLoader
.load(RandomGenerator.class)
.stream()
.filter(p -> !p.type().isInterface())
.collect(Collectors.toMap(p -> p.type().getSimpleName(), Function.identity()));
}
}
/**
* Private constructor.
*
* @param provider Provider class to wrap.
*/
private RandomGeneratorFactory(Provider<? extends RandomGenerator> provider) {
this.provider = provider;
}
/**
* Returns the factory map, lazily constructing map on first call.
*
* @return Map of RandomGeneratorFactory classes.
*/
private static Map<String, Provider<? extends RandomGenerator>> getFactoryMap() {
return FactoryMapHolder.FACTORY_MAP;
}
/**
* Return the annotation for the specified provider.
*
* @return RandomGeneratorProperties annotation for the specified provider.
*/
private RandomGeneratorProperties getProperties() {
if (properties == null) {
synchronized (provider) {
if (properties == null) {
properties = provider.type().getDeclaredAnnotation(RandomGeneratorProperties.class);
Objects.requireNonNull(properties, provider.type() + " missing annotation");
}
}
}
return properties;
}
/**
* Return true if the provider is a subclass of the category.
*
* @param category Interface category, sub-interface of {@link RandomGenerator}.
*
* @return true if the provider is a subclass of the category.
*/
private boolean isSubclass(Class<? extends RandomGenerator> category) {
return isSubclass(category, provider);
}
/**
* Return true if the provider is a subclass of the category.
*
* @param category Interface category, sub-interface of {@link RandomGenerator}.
* @param provider Provider that is being filtered.
*
* @return true if the provider is a subclass of the category.
*/
private static boolean isSubclass(Class<? extends RandomGenerator> category,
Provider<? extends RandomGenerator> provider) {
return provider != null && category.isAssignableFrom(provider.type());
}
/**
* Returns the provider matching name and category.
*
* @param name Name of RandomGenerator
* @param category Interface category, sub-interface of {@link RandomGenerator}.
*
* @return A provider matching name and category.
*
* @throws IllegalArgumentException if provider is not a subclass of category.
*/
private static Provider<? extends RandomGenerator> findProvider(String name,
Class<? extends RandomGenerator> category)
throws IllegalArgumentException {
Map<String, Provider<? extends RandomGenerator>> fm = getFactoryMap();
Provider<? extends RandomGenerator> provider = fm.get(name);
if (provider == null) {
throw new IllegalArgumentException("No implementation of the random number generator algorithm \"" +
name +
"\" is available");
} else if (!isSubclass(category, provider)) {
throw new IllegalArgumentException("The random number generator algorithm \"" +
name +
"\" is not implemented with the interface \"" +
category.getSimpleName() +
"\"");
}
return provider;
}
/**
* Returns a {@link RandomGenerator} that utilizes the {@code name}
* <a href="package-summary.html#algorithms">algorithm</a>.
*
* @param name Name of random number algorithm to use
* @param category Sub-interface of {@link RandomGenerator} to type check
* @param <T> Sub-interface of {@link RandomGenerator} to produce
*
* @return An instance of {@link RandomGenerator}
*
* @throws IllegalArgumentException when either the name or category is null
*/
static <T extends RandomGenerator> T of(String name, Class<T> category)
throws IllegalArgumentException {
@SuppressWarnings("unchecked")
T uncheckedRandomGenerator = (T)findProvider(name, category).get();
return uncheckedRandomGenerator;
}
/**
* Returns a {@link RandomGeneratorFactory} that will produce instances
* of {@link RandomGenerator} that utilizes the named algorithm.
*
* @param name Name of random number algorithm to use
* @param category Sub-interface of {@link RandomGenerator} to type check
* @param <T> Sub-interface of {@link RandomGenerator} to produce
*
* @return Factory of {@link RandomGenerator}
*
* @throws IllegalArgumentException when either the name or category is null
*/
static <T extends RandomGenerator> RandomGeneratorFactory<T> factoryOf(String name, Class<T> category)
throws IllegalArgumentException {
Provider<? extends RandomGenerator> uncheckedProvider = findProvider(name, category);
return new RandomGeneratorFactory<>(uncheckedProvider);
}
/**
* Fetch the required constructors for class of random number algorithm.
*
* @param randomGeneratorClass class of random number algorithm (provider)
*/
private void getConstructors(Class<? extends RandomGenerator> randomGeneratorClass) {
if (ctor == null) {
synchronized (provider) {
if (ctor == null) {
PrivilegedExceptionAction<Constructor<?>[]> ctorAction = randomGeneratorClass::getConstructors;
try {
Constructor<?>[] ctors = AccessController.doPrivileged(ctorAction);
Constructor<T> tmpCtor = null;
Constructor<T> tmpCtorLong = null;
Constructor<T> tmpCtorBytes = null;
for (Constructor<?> ctorGeneric : ctors) {
@SuppressWarnings("unchecked")
Constructor<T> ctorSpecific = (Constructor<T>) ctorGeneric;
final Class<?>[] parameterTypes = ctorSpecific.getParameterTypes();
if (parameterTypes.length == 0) {
tmpCtor = ctorSpecific;
} else if (parameterTypes.length == 1) {
Class<?> argType = parameterTypes[0];
if (argType == long.class) {
tmpCtorLong = ctorSpecific;
} else if (argType == byte[].class) {
tmpCtorBytes = ctorSpecific;
}
}
}
if (tmpCtor == null) {
throw new IllegalStateException("Random algorithm " + name() + " is missing a default constructor");
}
// Store specialized constructors first, guarded by ctor
ctorBytes = tmpCtorBytes;
ctorLong = tmpCtorLong;
ctor = tmpCtor;
} catch (PrivilegedActionException ex) {
// Do nothing
}
}
}
}
}
/**
* Ensure all the required constructors are fetched.
*/
private void ensureConstructors() {
getConstructors(provider.type());
}
/**
* Returns a {@link RandomGeneratorFactory} that can produce instances of
* {@link RandomGenerator} that utilize the {@code name}
* <a href="package-summary.html#algorithms">algorithm</a>.
*
* @implSpec Availability is determined by RandomGeneratorFactory using the
* service provider API to locate implementations of the RandomGenerator interface.
*
* @param name Name of random number generator
* <a href="package-summary.html#algorithms">algorithm</a>
* @param <T> Sub-interface of {@link RandomGenerator} to produce
*
* @return {@link RandomGeneratorFactory} of {@link RandomGenerator}
*
* @throws NullPointerException if name is null
* @throws IllegalArgumentException if the named algorithm is not found
*/
public static <T extends RandomGenerator> RandomGeneratorFactory<T> of(String name) {
Objects.requireNonNull(name);
@SuppressWarnings("unchecked")
RandomGeneratorFactory<T> factory =
(RandomGeneratorFactory<T>)factoryOf(name, RandomGenerator.class);
return factory;
}
/**
* Returns a {@link RandomGeneratorFactory} meeting the minimal requirement
* of having an algorithm whose state bits are greater than or equal 64.
*
* @implSpec Since algorithms will improve over time, there is no
* guarantee that this method will return the same algorithm over time.
*
* @return a {@link RandomGeneratorFactory}
*/
public static RandomGeneratorFactory<RandomGenerator> getDefault() {
return factoryOf("L32X64MixRandom", RandomGenerator.class);
}
/**
* Returns a stream of matching Providers.
*
* @param category {@link RandomGenerator} sub-interface class to filter
* @param <T> {@link RandomGenerator} sub-interface return type
*
* RandomGenerators that are marked as deprecated or are not properly configured are not included in the result.
*
* @implSpec Availability is determined by RandomGeneratorFactory using the service provider API
* to locate implementations of the RandomGenerator interface.
*
* @return Stream of matching {@link RandomGeneratorFactory RandomGeneratorFactory(s)}.
*
* @hidden
*/
public static <T extends RandomGenerator> Stream<RandomGeneratorFactory<T>> all(Class<T> category) {
Map<String, Provider<? extends RandomGenerator>> fm = getFactoryMap();
return fm.values()
.stream()
.filter(p -> isSubclass(category, p) &&
!p.type().isAnnotationPresent(Deprecated.class) &&
p.type().isAnnotationPresent(RandomGeneratorProperties.class))
.map(RandomGeneratorFactory::new);
}
/**
* Returns a non-empty stream of available {@link RandomGeneratorFactory RandomGeneratorFactory(s)}.
*
* RandomGenerators that are marked as deprecated or are not properly configured are not included in the result.
*
* @implSpec Availability is determined by RandomGeneratorFactory using the service provider API
* to locate implementations of the RandomGenerator interface.
*
* @return a non-empty stream of all available {@link RandomGeneratorFactory RandomGeneratorFactory(s)}.
*/
public static Stream<RandomGeneratorFactory<RandomGenerator>> all() {
Map<String, Provider<? extends RandomGenerator>> fm = getFactoryMap();
return fm.values()
.stream()
.filter(p -> !p.type().isAnnotationPresent(Deprecated.class) &&
p.type().isAnnotationPresent(RandomGeneratorProperties.class))
.map(RandomGeneratorFactory::new);
}
/**
* Return the name of the <a href="package-summary.html#algorithms">algorithm</a>
* used by the random number generator.
*
* @return Name of the <a href="package-summary.html#algorithms">algorithm</a>.
*/
public String name() {
return provider.type().getSimpleName();
}
/**
* Return the group name of the <a href="package-summary.html#algorithms">algorithm</a>
* used by the random number generator.
*
* @return Group name of the <a href="package-summary.html#algorithms">algorithm</a>.
*/
public String group() {
return getProperties().group();
}
/**
* Returns number of bits used by the <a href="package-summary.html#algorithms">algorithm</a>
* to maintain state of seed.
*
* @return number of bits used by the <a href="package-summary.html#algorithms">algorithm</a>
* to maintain state of seed.
*/
public int stateBits() {
RandomGeneratorProperties properties = getProperties();
int i = properties.i();
int k = properties.k();
return i == 0 && k == 0 ? Integer.MAX_VALUE : i + k;
}
/**
* Returns the equidistribution of the <a href="package-summary.html#algorithms">algorithm</a>.
*
* @return the equidistribution of the <a href="package-summary.html#algorithms">algorithm</a>.
*/
public int equidistribution() {
return getProperties().equidistribution();
}
/**
* Return the period of the <a href="package-summary.html#algorithms">algorithm</a>
* used by the random number generator.
* Returns BigInteger.ZERO if period is not determinable.
*
* @return BigInteger period.
*/
public BigInteger period() {
RandomGeneratorProperties properties = getProperties();
int i = properties.i();
int j = properties.j();
int k = properties.k();
if (i == 0 && j == 0 && k == 0) {
return BigInteger.ZERO;
} else {
return BigInteger.ONE.shiftLeft(i).subtract(BigInteger.valueOf(j)).shiftLeft(k);
}
}
/**
* Return true if random generator is computed using an arithmetic
* <a href="package-summary.html#algorithms">algorithm</a>
* and is statistically deterministic.
*
* @return true if random generator is statistical.
*/
public boolean isStatistical() {
return !getProperties().isStochastic();
}
/**
* Return true if random generator is computed using external or entropic
* sources as inputs.
*
* @return true if random generator is stochastic.
*/
public boolean isStochastic() {
return getProperties().isStochastic();
}
/**
* Return true if random generator uses a hardware device (HRNG) to produce
* entropic input.
*
* @return true if random generator is generated by hardware.
*/
public boolean isHardware() {
return getProperties().isHardware();
}
/**
* Return true if random generator can jump an arbitrarily specified distant
* point in the state cycle.
*
* @return true if random generator is arbitrarily jumpable.
*/
public boolean isArbitrarilyJumpable() {
return isSubclass(ArbitrarilyJumpableGenerator.class);
}
/**
* Return true if random generator can jump a specified distant point in
* the state cycle.
*
* @return true if random generator is jumpable.
*/
public boolean isJumpable() {
return isSubclass(JumpableGenerator.class);
}
/**
* Return true if random generator is jumpable and can leap to a very distant
* point in the state cycle.
*
* @return true if random generator is leapable.
*/
public boolean isLeapable() {
return isSubclass(LeapableGenerator.class);
}
/**
* Return true if random generator can be cloned into a separate object with
* the same properties but positioned further in the state cycle.
*
* @return true if random generator is splittable.
*/
public boolean isSplittable() {
return isSubclass(SplittableGenerator.class);
}
/**
* Return true if random generator can be used to create
* {@link java.util.stream.Stream Streams} of random numbers.
*
* @return true if random generator is streamable.
*/
public boolean isStreamable() {
return isSubclass(StreamableGenerator.class);
}
/**
* Return true if the implementation of RandomGenerator (algorithm) has been
* marked for deprecation.
*
* @implNote Random number generator algorithms evolve over time; new
* algorithms will be introduced and old algorithms will
* lose standing. If an older algorithm is deemed unsuitable
* for continued use, it will be marked as deprecated to indicate
* that it may be removed at some point in the future.
*
* @return true if the implementation of RandomGenerator (algorithm) has been
* marked for deprecation
*/
public boolean isDeprecated() {
return provider.type().isAnnotationPresent(Deprecated.class);
}
/**
* Create an instance of {@link RandomGenerator} based on
* <a href="package-summary.html#algorithms">algorithm</a> chosen.
*
* @return new in instance of {@link RandomGenerator}.
*
*/
public T create() {
try {
ensureConstructors();
return ctor.newInstance();
} catch (Exception ex) {
// Should never happen.
throw new IllegalStateException("Random algorithm " + name() + " is missing a default constructor", ex);
}
}
/**
* Create an instance of {@link RandomGenerator} based on
* <a href="package-summary.html#algorithms">algorithm</a> chosen
* providing a starting long seed. If long seed is not supported by an
* algorithm then the no argument form of create is used.
*
* @param seed long random seed value.
*
* @return new in instance of {@link RandomGenerator}.
*/
public T create(long seed) {
try {
ensureConstructors();
return ctorLong.newInstance(seed);
} catch (Exception ex) {
return create();
}
}
/**
* Create an instance of {@link RandomGenerator} based on
* <a href="package-summary.html#algorithms">algorithm</a> chosen
* providing a starting byte[] seed. If byte[] seed is not supported by an
* <a href="package-summary.html#algorithms">algorithm</a> then the no
* argument form of create is used.
*
* @param seed byte array random seed value.
*
* @return new in instance of {@link RandomGenerator}.
*
* @throws NullPointerException if seed is null.
*/
public T create(byte[] seed) {
Objects.requireNonNull(seed, "seed must not be null");
try {
ensureConstructors();
return ctorBytes.newInstance(seed);
} catch (Exception ex) {
return create();
}
}
}

View file

@ -0,0 +1,628 @@
/*
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* This package contains classes and interfaces that support a generic API
* for random number generation.
*
* <p>These classes and interfaces support the definition and use of "random
* generators", a term covering what have traditionally been called "random
* number generators" as well as generators of other sorts of randomly chosen
* values (eg. booleans). These classes and interfaces cover not only
* deterministic (pseudorandom) algorithms but also generators of values that
* use some "truly random" physical source (stochastic algorithms perhaps making
* use of thermal noise, for example, or quantum-mechanical effects).
*
* <p> The principal interface is {@link RandomGenerator}, which provides
* methods for requesting individual values of type {@code int}, {@code long},
* {@code float}, {@code double}, or {@code boolean} chosen pseudorandomly
* from a uniform distribution; methods for requesting values of type
* {@code double} chosen pseudorandomly from a normal distribution or from an
* exponential distribution; and methods for creating streams of values of type
* {@code int}, {@code long}, or {@code double} chosen pseudorandomly from a
* uniform distribution (such streams are spliterator-based, allowing for
* parallel processing of their elements). There are also static factory methods
* for creating an instance of a specific random number generator algorithm
* given its name.
*
* <p> The principal supporting class is {@link RandomGeneratorFactory}. This
* can be used to generate multiple random number generators for a specific
* algorithm. {@link RandomGeneratorFactory} also provides methods for
* selecting random number generator algorithms. RandomGeneratorFactory
* registers implementations of {@link RandomGenerator} interface using the
* service provider API.
*
* <p> An important subsidiary interface is
* {@link RandomGenerator.StreamableGenerator}, which provides methods for
* creating spliterator-based streams of {@link RandomGenerator} objects,
* allowing for parallel processing of these objects using multiple threads.
* Unlike {@link java.util.Random}, most implementations of
* {@link RandomGenerator} are <i>not</i> thread-safe. The intent is that
* instances should not be shared among threads; rather, each thread should have
* its own random generator(s) to use. The various pseudorandom algorithms
* provided by this package are designed so that multiple instances will (with
* very high probability) behave as if statistically independent.
*
* <p> For many purposes, these are the only two interfaces that a consumer of
* pseudorandom values will need. There are also some more specialized
* interfaces that describe more specialized categories of random number
* generators {@link RandomGenerator.SplittableGenerator SplittableGenerator},
* {@link RandomGenerator.JumpableGenerator JumpableGenerator},
* {@link RandomGenerator.LeapableGenerator LeapableGenerator}, and
* {@link RandomGenerator.ArbitrarilyJumpableGenerator ArbitrarilyJumpableGenerator}
* that have specific strategies for creating statistically independent instances.
*
* <h2>Using the Random Number Generator Interfaces</h2>
*
* To get started, an application should first create one instance of a
* generator class. Assume that the contents of the package
* {@link java.util.random} has been imported:
*
* <blockquote>{@code import java.util.random.*;}</blockquote>
*
* Then one can choose a specific implementation by giving the name of a generator
* algorithm to the static method {@link RandomGenerator#of}, in which case the
* no-arguments constructor for that implementation is used:
*
* <blockquote>{@code RandomGenerator g = RandomGenerator.of("L64X128MixRandom");}</blockquote>
*
* For a single-threaded application, this is all that is needed. One can then
* invoke methods of {@code g} such as
* {@link RandomGenerator#nextLong nextLong()},
* {@link RandomGenerator#nextInt nextInt()},
* {@link RandomGenerator#nextFloat nextFloat()},
* {@link RandomGenerator#nextDouble nextDouble()} and
* {@link RandomGenerator#nextBoolean nextBoolean()} to generate individual
* randomly chosen values. One can also use the methods
* {@link RandomGenerator#ints ints()}, {@link RandomGenerator#longs longs()}
* and {@link RandomGenerator#doubles doubles()} to create streams of randomly
* chosen values. The methods
* {@link RandomGenerator#nextGaussian nextGaussian()} and
* {@link RandomGenerator#nextExponential nextExponential()} draw floating-point
* values from nonuniform distributions.
*
* <p> For a multi-threaded application, one can repeat the preceding steps
* to create additional {@linkplain RandomGenerator RandomGenerators}, but
* often it is preferable to use methods of the one single initially
* created generator to create others like it. (One reason is that some
* generator algorithms, if asked to create a new set of generators all at
* once, can make a special effort to ensure that the new generators are
* statistically independent.) If the initial generator implements the
* interface {@link RandomGenerator.StreamableGenerator}, then the method
* {@link RandomGenerator.StreamableGenerator#rngs rngs()} can be used to
* create a stream of generators. If this is a parallel stream, then it is
* easy to get parallel execution by using the
* {@link java.util.stream.Stream#map map()} method on the stream.
* <p> For a multi-threaded application that forks new threads dynamically,
* another approach is to use an initial generator that implements the interface
* {@link RandomGenerator.SplittableGenerator}, which is then considered to
* "belong" to the initial thread for its exclusive use; then whenever any
* thread needs to fork a new thread, it first uses the
* {@link RandomGenerator.SplittableGenerator#split split()} method of its own
* generator to create a new generator, which is then passed to the newly
* created thread for exclusive use by that new thread.
*
*
* <h2>Choosing a Random Number Generator Algorithm</h2>
*
* <p> There are three groups of random number generator algorithm provided
* in Java; Legacy group, LXM group and Xoroshiro/Xoshiro group.
*
* <p> The legacy group includes random number generators that existed
* before JDK 17; Random, ThreadLocalRandom, SplittableRandom and
* SecureRandom. Random (LCG) is the weakest of available algorithms and it
* is recommended that users migrate to newer algorithms. If an application
* requires a random number generator algorithm that is cryptographically
* secure, then it should continue to use an instance of the class {@link
* java.security.SecureRandom}.
*
* <p> The algorithms in the LXM group use a similar algorithm. The parameters
* of the algorithm can be found in algorithm name. The numbers indicate the
* number of bits in the lower and upper state bits respectively. Mix indicates
* the algorithm uses mix congruency. StarStar indicates use a double
* multiplier.
*
* <p> The algorithms in the Xoroshiro/Xoshiro are more traditional algorithms
* where the number in the name indicates the period.
*
* <p> For applications (such as physical simulation, machine learning, and
* games) that do not require a cryptographically secure algorithm, this package
* provides multiple implementations of interface {@link RandomGenerator} that
* provide trade-offs among speed, space, period, accidental correlation, and
* equidistribution properties.
*
* <p> For applications with no special requirements,
* {@code L64X128MixRandom} has a good balance among speed, space,
* and period, and is suitable for both single-threaded and multi-threaded
* applications when used properly (a separate instance for each thread).
*
* <p> If the application uses only a single thread, then
* {@code Xoroshiro128PlusPlus} is even smaller and faster, and
* certainly has a sufficiently long period.
*
* <p> For an application running in a 32-bit hardware environment and using
* only one thread or a small number of threads, {@code L32X64MixRandom} may be a good
* choice.
*
* <p> For an application that uses many threads that are allocated in one batch
* at the start of the computation, either a "jumpable" generator such as
* {@code Xoroshiro128PlusPlus} or
* {@code Xoshiro256PlusPlus} may be used, or a "splittable"
* generator such as {@code L64X128MixRandom} or
* {@code L64X256MixRandom} may be used.
*
* <p> For an application that creates many threads dynamically, perhaps through
* the use of spliterators, a "splittable" generator such as
* {@code L64X128MixRandom} or {@code L64X256MixRandom} is
* recommended. If the number of generators created dynamically may
* be very large (millions or more), then using generators such as
* {@code L128X128MixRandom} or {@code L128X256MixRandom},
* which use a 128-bit parameter rather than a 64-bit parameter for their LCG
* subgenerator, will make it much less likely that two instances use the same
* state cycle.
*
* <p> For an application that uses tuples of consecutively generated values, it
* may be desirable to use a generator that is <i>k</i>-equidistributed such
* that <i>k</i> is at least as large as the length of the tuples being
* generated. The generator {@code L64X256MixRandom} is provably
* 4-equidistributed, and {@code L64X1024MixRandom} is provably
* 16-equidistributed.
*
* <p> For applications that generate large permutations, it may be best to use
* a generator whose period is much larger than the total number of possible
* permutations; otherwise it will be impossible to generate some of the
* intended permutations. For example, if the goal is to shuffle a deck of 52
* cards, the number of possible permutations is 52! (52 factorial), which is
* larger than 2<sup>225</sup> (but smaller than 2<sup>226</sup>), so it may be
* best to use a generator whose period at least 2<sup>256</sup>, such as
* {@code L64X256MixRandom} or {@code L64X1024MixRandom}
* or {@code L128X256MixRandom} or
* {@code L128X1024MixRandom}. (It is of course also necessary to
* provide sufficiently many seed bits when the generator is initialized, or
* else it will still be impossible to generate some of the intended
* permutations.)
*
*
* <h2><a id="algorithms">Random Number Generator Algorithms Available</a></h2>
*
* These algorithms [in the table below] must be found with the current version
* of Java SE. A particular JDK implementation may recognize additional
* algorithms; check the JDK's documentation for details. The set of algorithm
* required by Java SE may be updated by changes to the Java SE specification.
* Over time, new algorithms may be added and old algorithms may be removed.
* <p>In addition, as another life-cycle phase, an algorithm may be {@linkplain
* RandomGeneratorFactory#isDeprecated() deprecated}. A deprecated algorithm is
* not recommended for use. If a required algorithm is deprecated, it may be
* removed in a future release. Due to advances in random number generator
* algorithm development and analysis, an algorithm may be deprecated during the
* lifetime of a particular Java SE release. Changing the deprecation status of
* an algorithm is <em>not</em> a specification change.
*
* <table style="padding:0px 20px 0px 0px">
* <caption>Available Algorithms</caption>
* <thead>
* <tr>
* <th style="text-align:left">Algorithm</th>
* <th style="text-align:left">Group</th>
* <th style="text-align:left">Period</th>
* <th style="text-align:right">StateBits</th>
* <th style="text-align:right">Equidistribution</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <td style="text-align:left">L128X1024MixRandom</td>
* <td style="text-align:left">LXM</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(N*64).subtract(BigInteger.ONE).shiftLeft(128)</td>
* <td style="text-align:right">1152</td>
* <td style="text-align:right">1</td>
* </tr>
* <tr>
* <td style="text-align:left">L128X128MixRandom</td>
* <td style="text-align:left">LXM</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(128)</td>
* <td style="text-align:right">256</td>
* <td style="text-align:right">1</td>
* </tr>
* <tr>
* <td style="text-align:left">L128X256MixRandom</td>
* <td style="text-align:left">LXM</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE).shiftLeft(128)</td>
* <td style="text-align:right">384</td>
* <td style="text-align:right">1</td>
* </tr>
* <tr>
* <td style="text-align:left">L32X64MixRandom</td>
* <td style="text-align:left">LXM</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(64).subtract(BigInteger.ONE).shiftLeft(32)</td>
* <td style="text-align:right">96</td>
* <td style="text-align:right">1</td>
* </tr>
* <tr>
* <td style="text-align:left">L64X1024MixRandom</td>
* <td style="text-align:left">LXM</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(N*64).subtract(BigInteger.ONE).shiftLeft(64)</td>
* <td style="text-align:right">1088</td>
* <td style="text-align:right">16</td>
* </tr>
* <tr>
* <td style="text-align:left">L64X128MixRandom</td>
* <td style="text-align:left">LXM</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(64)</td>
* <td style="text-align:right">192</td>
* <td style="text-align:right">1</td>
* </tr>
* <tr>
* <td style="text-align:left">L64X128StarStarRandom</td>
* <td style="text-align:left">LXM</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(64)</td>
* <td style="text-align:right">192</td>
* <td style="text-align:right">1</td>
* </tr>
* <tr>
* <td style="text-align:left">L64X256MixRandom</td>
* <td style="text-align:left">LXM</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE).shiftLeft(64)</td>
* <td style="text-align:right">320</td>
* <td style="text-align:right">4</td>
* </tr>
* <tr>
* <td style="text-align:left">Random</td>
* <td style="text-align:left">Legacy</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(48)</td>
* <td style="text-align:right">48</td>
* <td style="text-align:right">0</td>
* </tr>
* <tr>
* <td style="text-align:left">SplittableRandom</td>
* <td style="text-align:left">Legacy</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(64)</td>
* <td style="text-align:right">64</td>
* <td style="text-align:right">1</td>
* </tr>
* <tr>
* <td style="text-align:left">ThreadLocalRandom <sup>*</sup></td>
* <td style="text-align:left">Legacy</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(64)</td>
* <td style="text-align:right">64</td>
* <td style="text-align:right">1</td>
* </tr>
* <tr>
* <td style="text-align:left">Xoroshiro128PlusPlus</td>
* <td style="text-align:left">Xoroshiro</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE)</td>
* <td style="text-align:right">128</td>
* <td style="text-align:right">2</td>
* </tr>
* <tr>
* <td style="text-align:left">Xoshiro256PlusPlus</td>
* <td style="text-align:left">Xoshiro</td>
* <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE)</td>
* <td style="text-align:right">256</td>
* <td style="text-align:right">4</td>
* </tr>
* </tbody>
* </table>
*
* <p><sup>*</sup> ThreadLocalRandom can only be accessed via
* {@link java.util.concurrent.ThreadLocalRandom#current()}.
*
* <h2>Categories of Random Number Generator Algorithms</h2>
*
* Historically, most pseudorandom generator algorithms have been based on some
* sort of finite-state machine with a single, large cycle of states; when it is
* necessary to have multiple threads use the same algorithm simultaneously, the
* usual technique is to arrange for each thread to traverse a different region
* of the state cycle. These regions may be doled out to threads by starting
* with a single initial state and then using a "jump function" that travels a
* long distance around the cycle (perhaps 2<sup>64</sup> steps or more); the
* jump function is applied repeatedly and sequentially, to identify widely
* spaced states that are then doled out, one to each thread, to serve as the
* initial state for the generator to be used by that thread. This strategy is
* supported by the interface {@link RandomGenerator.JumpableGenerator}.
* Sometimes it is desirable to support two levels of jumping (by long distances
* and by <i>really</i> long distances); this strategy is supported by the
* interface {@link RandomGenerator.LeapableGenerator}. There is also an interface
* {@link RandomGenerator.ArbitrarilyJumpableGenerator} for algorithms that allow
* jumping along the state cycle by any user-specified distance. In this package,
* implementations of these interfaces include
* "Xoroshiro128PlusPlus", and
* "Xoshiro256PlusPlus".
*
* <p> A more recent category of "splittable" pseudorandom generator algorithms
* uses a large family of state cycles and makes some attempt to ensure that
* distinct instances use different state cycles; but even if two instances
* "accidentally" use the same state cycle, they are highly likely to traverse
* different regions parts of that shared state cycle. This strategy is
* supported by the interface {@link RandomGenerator.SplittableGenerator}.
* In this package, implementations of this interface include
* "L32X64MixRandom",
* "L64X128StarStarRandom",
* "L64X128MixRandom",
* "L64X256MixRandom",
* "L64X1024MixRandom",
* "L128X128MixRandom",
* "L128X256MixRandom", and
* "L128X1024MixRandom"; note that the class
* {@link java.util.SplittableRandom} also implements this interface.
*
*
* <h2>The LXM Family of Random Number Generator Algorithms</h2>
*
* The structure of the central nextLong (or nextInt) method of an LXM
* algorithm follows a suggestion in December 2017 by Sebastiano Vigna
* that using one LCG subgenerator and one xor-based subgenerator (rather
* than two LCG subgenerators) would provide a longer period, superior
* equidistribution, scalability, and better quality. Each of the
* specific implementations here combines one of the best currently known
* xor-based generators (xoroshiro or xoshiro, described by Blackman and
* Vigna in "Scrambled Linear Pseudorandom Number Generators", ACM
* Trans. Math. Softw., 2021) with an LCG that uses one of the best
* currently known multipliers (found by a search for better multipliers
* in 2019 by Steele and Vigna), and then applies a mixing function
* identified by Doug Lea. Testing has confirmed that the LXM algorithm
* is far superior in quality to the SplitMix algorithm (2014) used by
* SplittableRandom.
*
* Each class with a name of the form {@code L}<i>p</i>{@code X}<i>q</i>{@code
* SomethingRandom} uses some specific member of the LXM family of random number
* algorithms; "LXM" is short for "LCG, Xorshift, Mixing function". Every LXM
* generator consists of two subgenerators; one is an LCG (Linear Congruential
* Generator) and the other is an Xorshift generator. Each output of an LXM
* generator is the result of combining state from the LCG with state from the
* Xorshift generator by using a Mixing function (and then the state of the LCG
* and the state of the Xorshift generator are advanced).
*
* <p> The LCG subgenerator has an update step of the form {@code s = m*s + a},
* where {@code s}, {@code m}, and {@code a} are all binary integers of the same
* size, each having <i>p</i> bits; {@code s} is the mutable state, the
* multiplier {@code m} is fixed (the same for all instances of a class) and the
* addend {@code a} is a parameter (a final field of the instance). The
* parameter {@code a} is required to be odd (this allows the LCG to have the
* maximal period, namely 2<sup><i>p</i></sup>); therefore there are
* 2<sup><i>p</i>&minus;1</sup> distinct choices of parameter. (When the size of
* {@code s} is 128 bits, then we use the name "{@code sh}" below to refer to
* the high half of {@code s}, that is, the high-order 64 bits of {@code s}.)
*
* <p> The Xorshift subgenerator can in principle be any one of a wide variety
* of xorshift algorithms; in this package it is always either
* {@code xoroshiro128}, {@code xoshiro256}, or {@code xoroshiro1024}, in each
* case without any final scrambler such as "+" or "**". Its state consists of
* some fixed number of {@code int} or {@code long} fields, generally named
* {@code x0}, {@code x1}, and so on, which can take on any values provided that
* they are not all zero. The collective total size of these fields is <i>q</i>
* bits; therefore the period of this subgenerator is
* 2<sup><i>q</i></sup>&minus;1.
*
* <p> Because the periods 2<sup><i>p</i></sup> and 2<sup><i>q</i></sup>&minus;1
* of the two subgenerators are relatively prime, the <em>period</em> of any
* single instance of an LXM algorithm (the length of the series of generated
* values before it repeats) is the product of the periods of the subgenerators,
* that is, 2<sup><i>p</i></sup>(2<sup><i>q</i></sup>&minus;1), which is just
* slightly smaller than 2<sup>(<i>p</i>+<i>q</i>)</sup>. Moreover, if two
* distinct instances of the same LXM algorithm have different {@code a}
* parameters, then their cycles of produced values will be different.
*
* <p> Generally speaking, among the "{@code L}<i>p</i>{@code X}<i>q</i>"
* generators, the memory required for an instance is 2<i>p</i>+<i>q</i> bits.
* (If <i>q</i> is 1024 or larger, the Xorshift state is represented as an
* array, so additional bits are needed for the array object header, and another
* 32 bits are used for an array index.)
*
* <p> Larger values of <i>p</i> imply a lower probability that two distinct
* instances will traverse the same state cycle, and larger values of <i>q</i>
* imply that the generator is equidistributed in a larger number of dimensions
* (this is provably true when <i>p</i> is 64, and conjectured to be
* approximately true when <i>p</i> is 128). A class with "{@code Mix}" in its
* name uses a fairly strong mixing function with excellent avalanche
* characteristics; a class with "{@code StarStar}" in its name uses a weaker
* but faster mixing function.
*
* <p> The specific LXM algorithms used in this package are all chosen so that
* the 64-bit values produced by the {@link RandomGenerator#nextLong nextLong()}
* method are exactly equidistributed (for example, for any specific instance of
* "L64X128MixRandom", over the course of its cycle each of the
* 2<sup>64</sup> possible {@code long} values will be produced
* 2<sup>128</sup>&minus;1 times). The values produced by the
* {@link RandomGenerator#nextInt nextInt()},
* {@link RandomGenerator#nextFloat nextFloat()}, and
* {@link RandomGenerator#nextDouble nextDouble()} methods are likewise exactly
* equidistributed. Some algorithms provide a further guarantee of
* <i>k</i>-equidistribution for some <i>k</i> greater than 1, meaning that successive
* non-overlapping <i>k</i>-tuples of 64-bit values produced by the
* {@link RandomGenerator#nextLong nextLong()} method are exactly
* equidistributed (equally likely to occur).
*
* <p> The following table gives the period, state size (in bits), parameter
* size (in bits, including the low-order bit that is required always to be a
* 1-bit), and equidistribution property for each of the specific LXM algorithms
* used in this package.
*
* <table style="padding:0px 20px 0px 0px">
* <caption>Algorithm Properties</caption>
* <thead>
* <tr><th style="text-align:left">Implementation</th>
* <th style="text-align:right">Period</th>
* <th style="text-align:right">State size</th>
* <th style="text-align:right">Parameter size</th>
* <th style="text-align:left">{@link RandomGenerator#nextLong nextLong()} values are</th></tr>
* </thead>
* <tbody>
* <tr><td style="text-align:left">"L32X64MixRandom"</td>
* <td style="text-align:right">2<sup>32</sup>(2<sup>64</sup>&minus;1)</td>
* <td style="text-align:right">96 bits</td>
* <td style="text-align:right">32 bits</td>
* <td style="text-align:left"></td></tr>
* <tr><td style="text-align:left">"L64X128StarStarRandom"</td>
* <td style="text-align:right">2<sup>64</sup>(2<sup>128</sup>&minus;1)</td>
* <td style="text-align:right">192 bits</td>
* <td style="text-align:right">64 bits</td>
* <td style="text-align:left">2-equidistributed and exactly equidistributed</td></tr>
* <tr><td style="text-align:left">"L64X128MixRandom"</td>
* <td style="text-align:right">2<sup>64</sup>(2<sup>128</sup>&minus;1)</td>
* <td style="text-align:right">192 bits</td>
* <td style="text-align:right">64 bits</td>
* <td style="text-align:left">2-equidistributed and exactly equidistributed</td></tr>
* <tr><td style="text-align:left">"L64X256MixRandom"</td>
* <td style="text-align:right">2<sup>64</sup>(2<sup>256</sup>&minus;1)</td>
* <td style="text-align:right">320 bits</td>
* <td style="text-align:right">64 bits</td>
* <td style="text-align:left">4-equidistributed and exactly equidistributed</td></tr>
* <tr><td style="text-align:left">"L64X1024MixRandom"</td>
* <td style="text-align:right">2<sup>64</sup>(2<sup>1024</sup>&minus;1)</td>
* <td style="text-align:right">1088 bits</td>
* <td style="text-align:right">64 bits</td>
* <td style="text-align:left">16-equidistributed and exactly equidistributed</td></tr>
* <tr><td style="text-align:left">"L128X128MixRandom"</td>
* <td style="text-align:right">2<sup>128</sup>(2<sup>128</sup>&minus;1)</td>
* <td style="text-align:right">256 bits</td>
* <td style="text-align:right">128 bits</td>
* <td style="text-align:left">exactly equidistributed</td></tr>
* <tr><td style="text-align:left">"L128X256MixRandom"</td>
* <td style="text-align:right">2<sup>128</sup>(2<sup>256</sup>&minus;1)</td>
* <td style="text-align:right">384 bits</td>
* <td style="text-align:right">128 bits</td>
* <td style="text-align:left">exactly equidistributed</td></tr>
* <tr><td style="text-align:left">"L128X1024MixRandom"</td>
* <td style="text-align:right">2<sup>128</sup>(2<sup>1024</sup>&minus;1)</td>
* <td style="text-align:right">1152 bits</td>
* <td style="text-align:right">128 bits</td>
* <td style="text-align:left">exactly equidistributed</td></tr>
* </tbody>
* </table>
*
* For the algorithms listed above whose names begin with {@code L32}, the
* 32-bit values produced by the {@link RandomGenerator#nextInt nextInt()}
* method are exactly equidistributed, but the 64-bit values produced by the
* {@link RandomGenerator#nextLong nextLong()} method are not exactly
* equidistributed.
*
* <p> For the algorithms listed above whose names begin with {@code L64} or
* {@code L128}, the 64-bit values produced by the
* {@link RandomGenerator#nextLong nextLong()} method are <i>exactly
* equidistributed</i>: every instance, over the course of its cycle, will
* produce each of the 2<sup>64</sup> possible {@code long} values exactly the
* same number of times. For example, any specific instance of
* "L64X256MixRandom", over the course of its cycle each of the
* 2<sup>64</sup> possible {@code long} values will be produced
* 2<sup>256</sup>&minus;1 times. The values produced by the
* {@link RandomGenerator#nextInt nextInt()},
* {@link RandomGenerator#nextFloat nextFloat()}, and
* {@link RandomGenerator#nextDouble nextDouble()} methods are likewise exactly
* equidistributed.
*
* <p> In addition, for the algorithms listed above whose names begin with
* {@code L64}, the 64-bit values produced by the
* {@link RandomGenerator#nextLong nextLong()} method are
* <i>k</i>-equidistributed (but not exactly <i>k</i>-equidistributed). To be
* precise, and taking "L64X256MixRandom" as an example: for
* any specific instance of "L64X256MixRandom", consider the
* (overlapping) length-4 subsequences of the cycle of 64-bit values produced by
* {@link RandomGenerator#nextLong nextLong()} (assuming no other methods are
* called that would affect the state). There are
* 2<sup>64</sup>(2<sup>256</sup>&minus;1) such subsequences, and each
* subsequence, which consists of 4 64-bit values, can have one of
* 2<sup>256</sup> values. Of those 2<sup>256</sup> subsequence values, nearly
* all of them (2<sup>256</sup>%minus;2<sup>64</sup>) occur 2<sup>64</sup> times
* over the course of the entire cycle, and the other 2<sup>64</sup> subsequence
* values occur only 2<sup>64</sup>&minus;1 times. So the ratio of the
* probability of getting any specific one of the less common subsequence values
* and the probability of getting any specific one of the more common
* subsequence values is 1&minus;2<sup>-64</sup>. (Note that the set of
* 2<sup>64</sup> less-common subsequence values will differ from one instance
* of "L64X256MixRandom" to another, as a function of the
* additive parameter of the LCG.) The values produced by the
* {@link RandomGenerator#nextInt nextInt()},
* {@link RandomGenerator#nextFloat nextFloat()}, and
* {@link RandomGenerator#nextDouble nextDouble()} methods are likewise
* 4-equidistributed (but not exactly 4-equidistributed).
*
* <p> The next table gives the LCG multiplier value, the name of the specific
* Xorshift algorithm used, the specific numeric parameters for that Xorshift
* algorithm, and the mixing function for each of the specific LXM algorithms
* used in this package. (Note that the multiplier used for the 128-bit LCG
* cases is 65 bits wide, so the constant {@code 0x1d605bbb58c8abbfdL} shown in
* the table cannot actually be used in code; instead, only the 64 low-order
* bits {@code 0xd605bbb58c8abbfdL} are represented in the source code, and the
* missing 1-bit is handled through special coding of the multiply-add algorithm
* used in the LCG.)
*
* <table style="padding:0px 20px 0px 0px">
* <caption>LXM Multipliers</caption>
* <thead>
* <tr><th style="text-align:left">Implementation</th>
* <th style="text-align:right">LCG multiplier {@code m}</th>
* <th style="text-align:left">Xorshift algorithm</th>
* <th style="text-align:left">Xorshift parameters</th>
* <th style="text-align:left">Mixing function</th></tr>
* </thead>
* <tbody>
* <tr><td style="text-align:left">"L32X64MixRandom"</td>
* <td style="text-align:right">{@code 0xadb4a92d}</td>
* <td style="text-align:left">{@code xoroshiro64}, version 1.0</td>
* <td style="text-align:left">{@code (26, 9, 13)}</td>
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
* <tr><td style="text-align:left">"L64X128StarStarRandom" </td>
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
* <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
* <td style="text-align:left">{@code (24, 16, 37)}</td>
* <td style="text-align:left">{@code Long.rotateLeft((s+x0)* 5, 7) * 9}</td></tr>
* <tr><td style="text-align:left">"L64X128MixRandom"</td>
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
* <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
* <td style="text-align:left">{@code (24, 16, 37)}</td>
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
* <tr><td style="text-align:left">"L64X256MixRandom"</td>
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
* <td style="text-align:left">{@code xoshiro256}, version 1.0</td>
* <td style="text-align:left">{@code (17, 45)}</td>
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
* <tr><td style="text-align:left">"L64X1024MixRandom"</td>
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
* <td style="text-align:left">{@code xoroshiro1024}, version 1.0</td>
* <td style="text-align:left">{@code (25, 27, 36)}</td>
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
* <tr><td style="text-align:left">"L128X128MixRandom"</td>
* <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
* <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
* <td style="text-align:left">{@code (24, 16, 37)}</td>
* <td style="text-align:left">mixLea32{@code (sh+x0)}</td></tr>
* <tr><td style="text-align:left">"L128X256MixRandom"</td>
* <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
* <td style="text-align:left">{@code xoshiro256}, version 1.0</td>
* <td style="text-align:left">{@code (17, 45)}</td>
* <td style="text-align:left">mixLea32{@code (sh+x0)}</td></tr>
* <tr><td style="text-align:left">"L128X1024MixRandom"</td>
* <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
* <td style="text-align:left">{@code xoroshiro1024}, version 1.0</td>
* <td style="text-align:left">{@code (25, 27, 36)}</td>
* <td style="text-align:left">mixLea32{@code (sh+x0)}</td></tr>
* </tbody>
* </table>
*
* @since 17
*/
package java.util.random;