mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-27 23:04:50 +02:00
8248862: Implement Enhanced Pseudo-Random Number Generators
Reviewed-by: darcy
This commit is contained in:
parent
39719da9d1
commit
a0ec2cb289
27 changed files with 11384 additions and 1772 deletions
|
@ -24,21 +24,26 @@
|
|||
*/
|
||||
|
||||
package java.util;
|
||||
|
||||
import java.io.*;
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.function.DoubleConsumer;
|
||||
import java.util.function.IntConsumer;
|
||||
import java.util.function.LongConsumer;
|
||||
import java.util.stream.DoubleStream;
|
||||
import java.util.stream.IntStream;
|
||||
import java.util.stream.LongStream;
|
||||
import java.util.stream.StreamSupport;
|
||||
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSpliteratorGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
import jdk.internal.util.random.RandomSupport.RandomIntsSpliterator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomLongsSpliterator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomDoublesSpliterator;
|
||||
import static jdk.internal.util.random.RandomSupport.*;
|
||||
|
||||
import jdk.internal.misc.Unsafe;
|
||||
|
||||
/**
|
||||
* An instance of this class is used to generate a stream of
|
||||
* pseudorandom numbers. The class uses a 48-bit seed, which is
|
||||
* pseudorandom numbers; its period is only 2<sup>48</sup>.
|
||||
* The class uses a 48-bit seed, which is
|
||||
* modified using a linear congruential formula. (See Donald E. Knuth,
|
||||
* <cite>The Art of Computer Programming, Volume 2, Third
|
||||
* edition: Seminumerical Algorithms</cite>, Section 3.2.1.)
|
||||
|
@ -74,7 +79,14 @@ import jdk.internal.misc.Unsafe;
|
|||
* @author Frank Yellin
|
||||
* @since 1.0
|
||||
*/
|
||||
public class Random implements java.io.Serializable {
|
||||
@SuppressWarnings("exports")
|
||||
@RandomGeneratorProperties(
|
||||
name = "Random",
|
||||
i = 48, j = 0, k = 0,
|
||||
equidistribution = 0
|
||||
)
|
||||
public class Random extends AbstractSpliteratorGenerator
|
||||
implements java.io.Serializable {
|
||||
/** use serialVersionUID from JDK 1.1 for interoperability */
|
||||
@java.io.Serial
|
||||
static final long serialVersionUID = 3905348978240129619L;
|
||||
|
@ -92,11 +104,6 @@ public class Random implements java.io.Serializable {
|
|||
|
||||
private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
|
||||
|
||||
// IllegalArgumentException messages
|
||||
static final String BadBound = "bound must be positive";
|
||||
static final String BadRange = "bound must be greater than origin";
|
||||
static final String BadSize = "size must be non-negative";
|
||||
|
||||
/**
|
||||
* Creates a new random number generator. This constructor sets
|
||||
* the seed of the random number generator to a value very likely
|
||||
|
@ -118,17 +125,18 @@ public class Random implements java.io.Serializable {
|
|||
}
|
||||
|
||||
private static final AtomicLong seedUniquifier
|
||||
= new AtomicLong(8682522807148012L);
|
||||
= new AtomicLong(8682522807148012L);
|
||||
|
||||
/**
|
||||
* Creates a new random number generator using a single {@code long} seed.
|
||||
* The seed is the initial value of the internal state of the pseudorandom
|
||||
* number generator which is maintained by method {@link #next}.
|
||||
*
|
||||
* <p>The invocation {@code new Random(seed)} is equivalent to:
|
||||
* <pre> {@code
|
||||
* @implSpec The invocation {@code new Random(seed)} is equivalent to:
|
||||
* <pre>{@code
|
||||
* Random rnd = new Random();
|
||||
* rnd.setSeed(seed);}</pre>
|
||||
* rnd.setSeed(seed);
|
||||
* }</pre>
|
||||
*
|
||||
* @param seed the initial seed
|
||||
* @see #setSeed(long)
|
||||
|
@ -211,9 +219,9 @@ public class Random implements java.io.Serializable {
|
|||
* byte array. The number of random bytes produced is equal to
|
||||
* the length of the byte array.
|
||||
*
|
||||
* <p>The method {@code nextBytes} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* @implSpec The method {@code nextBytes} is
|
||||
* implemented by class {@code Random} as if by:
|
||||
* <pre>{@code
|
||||
* public void nextBytes(byte[] bytes) {
|
||||
* for (int i = 0; i < bytes.length; )
|
||||
* for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
|
||||
|
@ -225,90 +233,15 @@ public class Random implements java.io.Serializable {
|
|||
* @throws NullPointerException if the byte array is null
|
||||
* @since 1.1
|
||||
*/
|
||||
@Override
|
||||
public void nextBytes(byte[] bytes) {
|
||||
for (int i = 0, len = bytes.length; i < len; )
|
||||
for (int rnd = nextInt(),
|
||||
n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
|
||||
n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
|
||||
n-- > 0; rnd >>= Byte.SIZE)
|
||||
bytes[i++] = (byte)rnd;
|
||||
}
|
||||
|
||||
/**
|
||||
* The form of nextLong used by LongStream Spliterators. If
|
||||
* origin is greater than bound, acts as unbounded form of
|
||||
* nextLong, else as bounded form.
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final long internalNextLong(long origin, long bound) {
|
||||
long r = nextLong();
|
||||
if (origin < bound) {
|
||||
long n = bound - origin, m = n - 1;
|
||||
if ((n & m) == 0L) // power of two
|
||||
r = (r & m) + origin;
|
||||
else if (n > 0L) { // reject over-represented candidates
|
||||
for (long u = r >>> 1; // ensure nonnegative
|
||||
u + m - (r = u % n) < 0L; // rejection check
|
||||
u = nextLong() >>> 1) // retry
|
||||
;
|
||||
r += origin;
|
||||
}
|
||||
else { // range not representable as long
|
||||
while (r < origin || r >= bound)
|
||||
r = nextLong();
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* The form of nextInt used by IntStream Spliterators.
|
||||
* For the unbounded case: uses nextInt().
|
||||
* For the bounded case with representable range: uses nextInt(int bound)
|
||||
* For the bounded case with unrepresentable range: uses nextInt()
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final int internalNextInt(int origin, int bound) {
|
||||
if (origin < bound) {
|
||||
int n = bound - origin;
|
||||
if (n > 0) {
|
||||
return nextInt(n) + origin;
|
||||
}
|
||||
else { // range not representable as int
|
||||
int r;
|
||||
do {
|
||||
r = nextInt();
|
||||
} while (r < origin || r >= bound);
|
||||
return r;
|
||||
}
|
||||
}
|
||||
else {
|
||||
return nextInt();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* The form of nextDouble used by DoubleStream Spliterators.
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final double internalNextDouble(double origin, double bound) {
|
||||
double r = nextDouble();
|
||||
if (origin < bound) {
|
||||
r = r * (bound - origin) + origin;
|
||||
if (r >= bound) // correct for rounding
|
||||
r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the next pseudorandom, uniformly distributed {@code int}
|
||||
* value from this random number generator's sequence. The general
|
||||
|
@ -316,9 +249,9 @@ public class Random implements java.io.Serializable {
|
|||
* pseudorandomly generated and returned. All 2<sup>32</sup> possible
|
||||
* {@code int} values are produced with (approximately) equal probability.
|
||||
*
|
||||
* <p>The method {@code nextInt} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* @implSpec The method {@code nextInt} is
|
||||
* implemented by class {@code Random} as if by:
|
||||
* <pre>{@code
|
||||
* public int nextInt() {
|
||||
* return next(32);
|
||||
* }}</pre>
|
||||
|
@ -326,6 +259,7 @@ public class Random implements java.io.Serializable {
|
|||
* @return the next pseudorandom, uniformly distributed {@code int}
|
||||
* value from this random number generator's sequence
|
||||
*/
|
||||
@Override
|
||||
public int nextInt() {
|
||||
return next(32);
|
||||
}
|
||||
|
@ -337,9 +271,11 @@ public class Random implements java.io.Serializable {
|
|||
* {@code nextInt} is that one {@code int} value in the specified range
|
||||
* is pseudorandomly generated and returned. All {@code bound} possible
|
||||
* {@code int} values are produced with (approximately) equal
|
||||
* probability. The method {@code nextInt(int bound)} is implemented by
|
||||
* probability.
|
||||
*
|
||||
* @implSpec The method {@code nextInt(int bound)} is implemented by
|
||||
* class {@code Random} as if by:
|
||||
* <pre> {@code
|
||||
* <pre>{@code
|
||||
* public int nextInt(int bound) {
|
||||
* if (bound <= 0)
|
||||
* throw new IllegalArgumentException("bound must be positive");
|
||||
|
@ -384,15 +320,15 @@ public class Random implements java.io.Serializable {
|
|||
* @throws IllegalArgumentException if bound is not positive
|
||||
* @since 1.2
|
||||
*/
|
||||
@Override
|
||||
public int nextInt(int bound) {
|
||||
if (bound <= 0)
|
||||
throw new IllegalArgumentException(BadBound);
|
||||
|
||||
throw new IllegalArgumentException(BAD_BOUND);
|
||||
int r = next(31);
|
||||
int m = bound - 1;
|
||||
if ((bound & m) == 0) // i.e., bound is a power of 2
|
||||
r = (int)((bound * (long)r) >> 31);
|
||||
else {
|
||||
else { // reject over-represented candidates
|
||||
for (int u = r;
|
||||
u - (r = u % bound) + m < 0;
|
||||
u = next(31))
|
||||
|
@ -400,16 +336,15 @@ public class Random implements java.io.Serializable {
|
|||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the next pseudorandom, uniformly distributed {@code long}
|
||||
* value from this random number generator's sequence. The general
|
||||
* contract of {@code nextLong} is that one {@code long} value is
|
||||
* pseudorandomly generated and returned.
|
||||
*
|
||||
* <p>The method {@code nextLong} is implemented by class {@code Random}
|
||||
* @implSpec The method {@code nextLong} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* <pre>{@code
|
||||
* public long nextLong() {
|
||||
* return ((long)next(32) << 32) + next(32);
|
||||
* }}</pre>
|
||||
|
@ -420,6 +355,7 @@ public class Random implements java.io.Serializable {
|
|||
* @return the next pseudorandom, uniformly distributed {@code long}
|
||||
* value from this random number generator's sequence
|
||||
*/
|
||||
@Override
|
||||
public long nextLong() {
|
||||
// it's okay that the bottom word remains signed.
|
||||
return ((long)(next(32)) << 32) + next(32);
|
||||
|
@ -433,9 +369,9 @@ public class Random implements java.io.Serializable {
|
|||
* values {@code true} and {@code false} are produced with
|
||||
* (approximately) equal probability.
|
||||
*
|
||||
* <p>The method {@code nextBoolean} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* @implSpec The method {@code nextBoolean} is implemented by class
|
||||
* {@code Random} as if by:
|
||||
* <pre>{@code
|
||||
* public boolean nextBoolean() {
|
||||
* return next(1) != 0;
|
||||
* }}</pre>
|
||||
|
@ -445,6 +381,7 @@ public class Random implements java.io.Serializable {
|
|||
* sequence
|
||||
* @since 1.2
|
||||
*/
|
||||
@Override
|
||||
public boolean nextBoolean() {
|
||||
return next(1) != 0;
|
||||
}
|
||||
|
@ -462,21 +399,19 @@ public class Random implements java.io.Serializable {
|
|||
* where <i>m</i> is a positive integer less than 2<sup>24</sup>, are
|
||||
* produced with (approximately) equal probability.
|
||||
*
|
||||
* <p>The method {@code nextFloat} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* @implSpec The method {@code nextFloat} is implemented by class
|
||||
* {@code Random} as if by:
|
||||
* <pre>{@code
|
||||
* public float nextFloat() {
|
||||
* return next(24) / ((float)(1 << 24));
|
||||
* }}</pre>
|
||||
*
|
||||
* <p>The hedge "approximately" is used in the foregoing description only
|
||||
* because the next method is only approximately an unbiased source of
|
||||
* independently chosen bits. If it were a perfect source of randomly
|
||||
* chosen bits, then the algorithm shown would choose {@code float}
|
||||
* values from the stated range with perfect uniformity.<p>
|
||||
* [In early versions of Java, the result was incorrectly calculated as:
|
||||
* <pre> {@code
|
||||
* return next(30) / ((float)(1 << 30));}</pre>
|
||||
* <pre> {@code return next(30) / ((float)(1 << 30));}</pre>
|
||||
* This might seem to be equivalent, if not better, but in fact it
|
||||
* introduced a slight nonuniformity because of the bias in the rounding
|
||||
* of floating-point numbers: it was slightly more likely that the
|
||||
|
@ -486,6 +421,7 @@ public class Random implements java.io.Serializable {
|
|||
* value between {@code 0.0} and {@code 1.0} from this
|
||||
* random number generator's sequence
|
||||
*/
|
||||
@Override
|
||||
public float nextFloat() {
|
||||
return next(24) / ((float)(1 << 24));
|
||||
}
|
||||
|
@ -500,35 +436,33 @@ public class Random implements java.io.Serializable {
|
|||
* range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
|
||||
* pseudorandomly generated and returned.
|
||||
*
|
||||
* <p>The method {@code nextDouble} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* @implSpec The method {@code nextDouble} is implemented by class
|
||||
* {@code Random} as if by:
|
||||
* <pre>{@code
|
||||
* public double nextDouble() {
|
||||
* return (((long)next(26) << 27) + next(27))
|
||||
* / (double)(1L << 53);
|
||||
* }}</pre>
|
||||
*
|
||||
* <p>The hedge "approximately" is used in the foregoing description only
|
||||
* because the {@code next} method is only approximately an unbiased
|
||||
* source of independently chosen bits. If it were a perfect source of
|
||||
* randomly chosen bits, then the algorithm shown would choose
|
||||
* {@code double} values from the stated range with perfect uniformity.
|
||||
* because the {@code next} method is only approximately an unbiased source
|
||||
* of independently chosen bits. If it were a perfect source of randomly
|
||||
* chosen bits, then the algorithm shown would choose {@code double} values
|
||||
* from the stated range with perfect uniformity.
|
||||
* <p>[In early versions of Java, the result was incorrectly calculated as:
|
||||
* <pre> {@code
|
||||
* return (((long)next(27) << 27) + next(27))
|
||||
* / (double)(1L << 54);}</pre>
|
||||
* <pre> {@code return (((long)next(27) << 27) + next(27)) / (double)(1L << 54);}</pre>
|
||||
* This might seem to be equivalent, if not better, but in fact it
|
||||
* introduced a large nonuniformity because of the bias in the rounding
|
||||
* of floating-point numbers: it was three times as likely that the
|
||||
* low-order bit of the significand would be 0 than that it would be 1!
|
||||
* This nonuniformity probably doesn't matter much in practice, but we
|
||||
* strive for perfection.]
|
||||
* introduced a large nonuniformity because of the bias in the rounding of
|
||||
* floating-point numbers: it was three times as likely that the low-order
|
||||
* bit of the significand would be 0 than that it would be 1! This
|
||||
* nonuniformity probably doesn't matter much in practice, but we strive
|
||||
* for perfection.]
|
||||
*
|
||||
* @return the next pseudorandom, uniformly distributed {@code double}
|
||||
* value between {@code 0.0} and {@code 1.0} from this
|
||||
* random number generator's sequence
|
||||
* @see Math#random
|
||||
*/
|
||||
@Override
|
||||
public double nextDouble() {
|
||||
return (((long)(next(26)) << 27) + next(27)) * DOUBLE_UNIT;
|
||||
}
|
||||
|
@ -546,9 +480,9 @@ public class Random implements java.io.Serializable {
|
|||
* normal distribution with mean {@code 0.0} and standard deviation
|
||||
* {@code 1.0}, is pseudorandomly generated and returned.
|
||||
*
|
||||
* <p>The method {@code nextGaussian} is implemented by class
|
||||
* @implSpec The method {@code nextGaussian} is implemented by class
|
||||
* {@code Random} as if by a threadsafe version of the following:
|
||||
* <pre> {@code
|
||||
* <pre>{@code
|
||||
* private double nextNextGaussian;
|
||||
* private boolean haveNextNextGaussian = false;
|
||||
*
|
||||
|
@ -569,6 +503,7 @@ public class Random implements java.io.Serializable {
|
|||
* return v1 * multiplier;
|
||||
* }
|
||||
* }}</pre>
|
||||
*
|
||||
* This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
|
||||
* G. Marsaglia, as described by Donald E. Knuth in <cite>The Art of
|
||||
* Computer Programming, Volume 2, third edition: Seminumerical Algorithms</cite>,
|
||||
|
@ -581,6 +516,7 @@ public class Random implements java.io.Serializable {
|
|||
* standard deviation {@code 1.0} from this random number
|
||||
* generator's sequence
|
||||
*/
|
||||
@Override
|
||||
public synchronized double nextGaussian() {
|
||||
// See Knuth, TAOCP, Vol. 2, 3rd edition, Section 3.4.1 Algorithm C.
|
||||
if (haveNextNextGaussian) {
|
||||
|
@ -600,8 +536,110 @@ public class Random implements java.io.Serializable {
|
|||
}
|
||||
}
|
||||
|
||||
// stream methods, coded in a way intended to better isolate for
|
||||
// maintenance purposes the small differences across forms.
|
||||
/**
|
||||
* Serializable fields for Random.
|
||||
*
|
||||
* @serialField seed long
|
||||
* seed for random computations
|
||||
* @serialField nextNextGaussian double
|
||||
* next Gaussian to be returned
|
||||
* @serialField haveNextNextGaussian boolean
|
||||
* nextNextGaussian is valid
|
||||
*/
|
||||
@java.io.Serial
|
||||
private static final ObjectStreamField[] serialPersistentFields = {
|
||||
new ObjectStreamField("seed", Long.TYPE),
|
||||
new ObjectStreamField("nextNextGaussian", Double.TYPE),
|
||||
new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
|
||||
};
|
||||
|
||||
/**
|
||||
* Reconstitute the {@code Random} instance from a stream (that is,
|
||||
* deserialize it).
|
||||
*
|
||||
* @param s the {@code ObjectInputStream} from which data is read
|
||||
*
|
||||
* @throws IOException if an I/O error occurs
|
||||
* @throws ClassNotFoundException if a serialized class cannot be loaded
|
||||
*/
|
||||
@java.io.Serial
|
||||
private void readObject(java.io.ObjectInputStream s)
|
||||
throws java.io.IOException, ClassNotFoundException {
|
||||
|
||||
ObjectInputStream.GetField fields = s.readFields();
|
||||
|
||||
// The seed is read in as {@code long} for
|
||||
// historical reasons, but it is converted to an AtomicLong.
|
||||
long seedVal = fields.get("seed", -1L);
|
||||
if (seedVal < 0)
|
||||
throw new java.io.StreamCorruptedException(
|
||||
"Random: invalid seed");
|
||||
resetSeed(seedVal);
|
||||
nextNextGaussian = fields.get("nextNextGaussian", 0.0);
|
||||
haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Save the {@code Random} instance to a stream.
|
||||
*
|
||||
* @param s the {@code ObjectOutputStream} to which data is written
|
||||
*
|
||||
* @throws IOException if an I/O error occurs
|
||||
*/
|
||||
@java.io.Serial
|
||||
private synchronized void writeObject(ObjectOutputStream s)
|
||||
throws IOException {
|
||||
|
||||
// set the values of the Serializable fields
|
||||
ObjectOutputStream.PutField fields = s.putFields();
|
||||
|
||||
// The seed is serialized as a long for historical reasons.
|
||||
fields.put("seed", seed.get());
|
||||
fields.put("nextNextGaussian", nextNextGaussian);
|
||||
fields.put("haveNextNextGaussian", haveNextNextGaussian);
|
||||
|
||||
// save them
|
||||
s.writeFields();
|
||||
}
|
||||
|
||||
// Support for resetting seed while deserializing
|
||||
private static final Unsafe unsafe = Unsafe.getUnsafe();
|
||||
private static final long seedOffset;
|
||||
static {
|
||||
try {
|
||||
seedOffset = unsafe.objectFieldOffset
|
||||
(Random.class.getDeclaredField("seed"));
|
||||
} catch (Exception ex) { throw new Error(ex); }
|
||||
}
|
||||
private void resetSeed(long seedVal) {
|
||||
unsafe.putReferenceVolatile(this, seedOffset, new AtomicLong(seedVal));
|
||||
}
|
||||
|
||||
// Methods required by class AbstractSpliteratorGenerator
|
||||
|
||||
/**
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfInt makeIntsSpliterator(long index, long fence, int origin, int bound) {
|
||||
return new RandomIntsSpliterator(this, index, fence, origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfLong makeLongsSpliterator(long index, long fence, long origin, long bound) {
|
||||
return new RandomLongsSpliterator(this, index, fence, origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfDouble makeDoublesSpliterator(long index, long fence, double origin, double bound) {
|
||||
return new RandomDoublesSpliterator(this, index, fence, origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a stream producing the given {@code streamSize} number of
|
||||
|
@ -616,13 +654,9 @@ public class Random implements java.io.Serializable {
|
|||
* less than zero
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, streamSize, Integer.MAX_VALUE, 0),
|
||||
false);
|
||||
return super.ints(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -638,11 +672,9 @@ public class Random implements java.io.Serializable {
|
|||
* @return a stream of pseudorandom {@code int} values
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints() {
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
|
||||
false);
|
||||
return super.ints();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -677,16 +709,9 @@ public class Random implements java.io.Serializable {
|
|||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
public IntStream ints(long streamSize, int randomNumberOrigin,
|
||||
int randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public IntStream ints(long streamSize, int randomNumberOrigin, int randomNumberBound) {
|
||||
return super.ints(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -722,13 +747,9 @@ public class Random implements java.io.Serializable {
|
|||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
return super.ints(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -744,13 +765,9 @@ public class Random implements java.io.Serializable {
|
|||
* less than zero
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, streamSize, Long.MAX_VALUE, 0L),
|
||||
false);
|
||||
return super.longs(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -766,11 +783,9 @@ public class Random implements java.io.Serializable {
|
|||
* @return a stream of pseudorandom {@code long} values
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs() {
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
|
||||
false);
|
||||
return super.longs();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -810,16 +825,9 @@ public class Random implements java.io.Serializable {
|
|||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
public LongStream longs(long streamSize, long randomNumberOrigin,
|
||||
long randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public LongStream longs(long streamSize, long randomNumberOrigin, long randomNumberBound) {
|
||||
return super.longs(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -860,13 +868,9 @@ public class Random implements java.io.Serializable {
|
|||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
return super.longs(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -883,13 +887,9 @@ public class Random implements java.io.Serializable {
|
|||
* less than zero
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, streamSize, Double.MAX_VALUE, 0.0),
|
||||
false);
|
||||
return super.doubles(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -906,14 +906,12 @@ public class Random implements java.io.Serializable {
|
|||
* @return a stream of pseudorandom {@code double} values
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles() {
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
|
||||
false);
|
||||
return super.doubles();
|
||||
}
|
||||
|
||||
/**
|
||||
/**
|
||||
* Returns a stream producing the given {@code streamSize} number of
|
||||
* pseudorandom {@code double} values, each conforming to the given origin
|
||||
* (inclusive) and bound (exclusive).
|
||||
|
@ -934,22 +932,15 @@ public class Random implements java.io.Serializable {
|
|||
* @param randomNumberBound the bound (exclusive) of each random value
|
||||
* @return a stream of pseudorandom {@code double} values,
|
||||
* each with the given origin (inclusive) and bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code streamSize} is
|
||||
* less than zero
|
||||
* @throws IllegalArgumentException if {@code randomNumberOrigin}
|
||||
* @throws IllegalArgumentException if {@code streamSize} is less than zero,
|
||||
* or {@code randomNumberOrigin} is not finite,
|
||||
* or {@code randomNumberBound} is not finite, or {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
public DoubleStream doubles(long streamSize, double randomNumberOrigin,
|
||||
double randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
if (!(randomNumberOrigin < randomNumberBound))
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public DoubleStream doubles(long streamSize, double randomNumberOrigin, double randomNumberBound) {
|
||||
return super.doubles(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -979,260 +970,8 @@ public class Random implements java.io.Serializable {
|
|||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
|
||||
if (!(randomNumberOrigin < randomNumberBound))
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for int streams. We multiplex the four int
|
||||
* versions into one class by treating a bound less than origin as
|
||||
* unbounded, and also by treating "infinite" as equivalent to
|
||||
* Long.MAX_VALUE. For splits, it uses the standard divide-by-two
|
||||
* approach. The long and double versions of this class are
|
||||
* identical except for types.
|
||||
*/
|
||||
static final class RandomIntsSpliterator implements Spliterator.OfInt {
|
||||
final Random rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final int origin;
|
||||
final int bound;
|
||||
RandomIntsSpliterator(Random rng, long index, long fence,
|
||||
int origin, int bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomIntsSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomIntsSpliterator(rng, i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(IntConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextInt(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(IntConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
Random r = rng;
|
||||
int o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextInt(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for long streams.
|
||||
*/
|
||||
static final class RandomLongsSpliterator implements Spliterator.OfLong {
|
||||
final Random rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final long origin;
|
||||
final long bound;
|
||||
RandomLongsSpliterator(Random rng, long index, long fence,
|
||||
long origin, long bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomLongsSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomLongsSpliterator(rng, i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(LongConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextLong(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(LongConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
Random r = rng;
|
||||
long o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextLong(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for double streams.
|
||||
*/
|
||||
static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
|
||||
final Random rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final double origin;
|
||||
final double bound;
|
||||
RandomDoublesSpliterator(Random rng, long index, long fence,
|
||||
double origin, double bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomDoublesSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomDoublesSpliterator(rng, i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(DoubleConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextDouble(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(DoubleConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
Random r = rng;
|
||||
double o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextDouble(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Serializable fields for Random.
|
||||
*
|
||||
* @serialField seed long
|
||||
* seed for random computations
|
||||
* @serialField nextNextGaussian double
|
||||
* next Gaussian to be returned
|
||||
* @serialField haveNextNextGaussian boolean
|
||||
* nextNextGaussian is valid
|
||||
*/
|
||||
@java.io.Serial
|
||||
private static final ObjectStreamField[] serialPersistentFields = {
|
||||
new ObjectStreamField("seed", Long.TYPE),
|
||||
new ObjectStreamField("nextNextGaussian", Double.TYPE),
|
||||
new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
|
||||
};
|
||||
|
||||
/**
|
||||
* Reconstitute the {@code Random} instance from a stream (that is,
|
||||
* deserialize it).
|
||||
*
|
||||
* @param s the {@code ObjectInputStream} from which data is read
|
||||
* @throws IOException if an I/O error occurs
|
||||
* @throws ClassNotFoundException if a serialized class cannot be loaded
|
||||
*/
|
||||
@java.io.Serial
|
||||
private void readObject(java.io.ObjectInputStream s)
|
||||
throws java.io.IOException, ClassNotFoundException {
|
||||
|
||||
ObjectInputStream.GetField fields = s.readFields();
|
||||
|
||||
// The seed is read in as {@code long} for
|
||||
// historical reasons, but it is converted to an AtomicLong.
|
||||
long seedVal = fields.get("seed", -1L);
|
||||
if (seedVal < 0)
|
||||
throw new java.io.StreamCorruptedException(
|
||||
"Random: invalid seed");
|
||||
resetSeed(seedVal);
|
||||
nextNextGaussian = fields.get("nextNextGaussian", 0.0);
|
||||
haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Save the {@code Random} instance to a stream.
|
||||
*
|
||||
* @param s the {@code ObjectOutputStream} to which data is written
|
||||
* @throws IOException if an I/O error occurs
|
||||
*/
|
||||
@java.io.Serial
|
||||
private synchronized void writeObject(ObjectOutputStream s)
|
||||
throws IOException {
|
||||
|
||||
// set the values of the Serializable fields
|
||||
ObjectOutputStream.PutField fields = s.putFields();
|
||||
|
||||
// The seed is serialized as a long for historical reasons.
|
||||
fields.put("seed", seed.get());
|
||||
fields.put("nextNextGaussian", nextNextGaussian);
|
||||
fields.put("haveNextNextGaussian", haveNextNextGaussian);
|
||||
|
||||
// save them
|
||||
s.writeFields();
|
||||
}
|
||||
|
||||
// Support for resetting seed while deserializing
|
||||
private static final Unsafe unsafe = Unsafe.getUnsafe();
|
||||
private static final long seedOffset;
|
||||
static {
|
||||
try {
|
||||
seedOffset = unsafe.objectFieldOffset
|
||||
(Random.class.getDeclaredField("seed"));
|
||||
} catch (Exception ex) { throw new Error(ex); }
|
||||
}
|
||||
private void resetSeed(long seedVal) {
|
||||
unsafe.putReferenceVolatile(this, seedOffset, new AtomicLong(seedVal));
|
||||
return super.doubles(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 2013, 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
|
@ -22,24 +22,24 @@
|
|||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package java.util;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.function.DoubleConsumer;
|
||||
import java.util.function.IntConsumer;
|
||||
import java.util.function.LongConsumer;
|
||||
import java.util.stream.DoubleStream;
|
||||
import java.util.stream.IntStream;
|
||||
import java.util.stream.LongStream;
|
||||
import java.util.stream.StreamSupport;
|
||||
import java.util.stream.Stream;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSplittableGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A generator of uniform pseudorandom values applicable for use in
|
||||
* (among other contexts) isolated parallel computations that may
|
||||
* generate subtasks. Class {@code SplittableRandom} supports methods for
|
||||
* producing pseudorandom numbers of type {@code int}, {@code long},
|
||||
* and {@code double} with similar usages as for class
|
||||
* A generator of uniform pseudorandom values (with period 2<sup>64</sup>)
|
||||
* applicable for use in (among other contexts) isolated parallel
|
||||
* computations that may generate subtasks. Class {@code SplittableRandom}
|
||||
* supports methods for producing pseudorandom numbers of type {@code int},
|
||||
* {@code long}, and {@code double} with similar usages as for class
|
||||
* {@link java.util.Random} but differs in the following ways:
|
||||
*
|
||||
* <ul>
|
||||
|
@ -51,16 +51,16 @@ import java.util.stream.StreamSupport;
|
|||
* 3.31.1</a>.) These tests validate only the methods for certain
|
||||
* types and ranges, but similar properties are expected to hold, at
|
||||
* least approximately, for others as well. The <em>period</em>
|
||||
* (length of any series of generated values before it repeats) is at
|
||||
* least 2<sup>64</sup>.
|
||||
* (length of any series of generated values before it repeats) is
|
||||
* 2<sup>64</sup>. </li>
|
||||
*
|
||||
* <li>Method {@link #split} constructs and returns a new
|
||||
* <li> Method {@link #split} constructs and returns a new
|
||||
* SplittableRandom instance that shares no mutable state with the
|
||||
* current instance. However, with very high probability, the
|
||||
* values collectively generated by the two objects have the same
|
||||
* statistical properties as if the same quantity of values were
|
||||
* generated by a single thread using a single {@code
|
||||
* SplittableRandom} object.
|
||||
* SplittableRandom} object. </li>
|
||||
*
|
||||
* <li>Instances of SplittableRandom are <em>not</em> thread-safe.
|
||||
* They are designed to be split, not shared, across threads. For
|
||||
|
@ -71,7 +71,7 @@ import java.util.stream.StreamSupport;
|
|||
*
|
||||
* <li>This class provides additional methods for generating random
|
||||
* streams, that employ the above techniques when used in {@code
|
||||
* stream.parallel()} mode.
|
||||
* stream.parallel()} mode.</li>
|
||||
*
|
||||
* </ul>
|
||||
*
|
||||
|
@ -80,13 +80,19 @@ import java.util.stream.StreamSupport;
|
|||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@systemProperty java.util.secureRandomSeed} is set to {@code true}.
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @author Guy Steele
|
||||
* @author Doug Lea
|
||||
* @since 1.8
|
||||
*/
|
||||
public final class SplittableRandom {
|
||||
@SuppressWarnings("exports")
|
||||
@RandomGeneratorProperties(
|
||||
name = "SplittableRandom",
|
||||
i = 64, j = 0, k = 0,
|
||||
equidistribution = 1
|
||||
)
|
||||
public final class SplittableRandom extends AbstractSplittableGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
|
@ -160,12 +166,6 @@ public final class SplittableRandom {
|
|||
*/
|
||||
private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
|
||||
|
||||
/**
|
||||
* The least non-zero value returned by nextDouble(). This value
|
||||
* is scaled by a random value of 53 bits to produce a result.
|
||||
*/
|
||||
private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
|
||||
|
||||
/**
|
||||
* The seed. Updated only via method nextSeed.
|
||||
*/
|
||||
|
@ -186,6 +186,7 @@ public final class SplittableRandom {
|
|||
|
||||
/**
|
||||
* Computes Stafford variant 13 of 64bit mix function.
|
||||
* http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
|
||||
*/
|
||||
private static long mix64(long z) {
|
||||
z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
|
||||
|
@ -195,6 +196,7 @@ public final class SplittableRandom {
|
|||
|
||||
/**
|
||||
* Returns the 32 high bits of Stafford variant 4 mix64 function as int.
|
||||
* http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
|
||||
*/
|
||||
private static int mix32(long z) {
|
||||
z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
|
||||
|
@ -203,6 +205,8 @@ public final class SplittableRandom {
|
|||
|
||||
/**
|
||||
* Returns the gamma value to use for a new split instance.
|
||||
* Uses the 64bit mix function from MurmurHash3.
|
||||
* https://github.com/aappleby/smhasher/wiki/MurmurHash3
|
||||
*/
|
||||
private static long mixGamma(long z) {
|
||||
z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
|
||||
|
@ -219,141 +223,10 @@ public final class SplittableRandom {
|
|||
return seed += gamma;
|
||||
}
|
||||
|
||||
// IllegalArgumentException messages
|
||||
static final String BAD_BOUND = "bound must be positive";
|
||||
static final String BAD_RANGE = "bound must be greater than origin";
|
||||
static final String BAD_SIZE = "size must be non-negative";
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen
|
||||
= new AtomicLong(mix64(System.currentTimeMillis()) ^
|
||||
mix64(System.nanoTime()));
|
||||
|
||||
// at end of <clinit> to survive static initialization circularity
|
||||
static {
|
||||
if (java.security.AccessController.doPrivileged(
|
||||
new java.security.PrivilegedAction<Boolean>() {
|
||||
public Boolean run() {
|
||||
return Boolean.getBoolean("java.util.secureRandomSeed");
|
||||
}})) {
|
||||
byte[] seedBytes = java.security.SecureRandom.getSeed(8);
|
||||
long s = (long)seedBytes[0] & 0xffL;
|
||||
for (int i = 1; i < 8; ++i)
|
||||
s = (s << 8) | ((long)seedBytes[i] & 0xffL);
|
||||
defaultGen.set(s);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Internal versions of nextX methods used by streams, as well as
|
||||
* the public nextX(origin, bound) methods. These exist mainly to
|
||||
* avoid the need for multiple versions of stream spliterators
|
||||
* across the different exported forms of streams.
|
||||
*/
|
||||
|
||||
/**
|
||||
* The form of nextLong used by LongStream Spliterators. If
|
||||
* origin is greater than bound, acts as unbounded form of
|
||||
* nextLong, else as bounded form.
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final long internalNextLong(long origin, long bound) {
|
||||
/*
|
||||
* Four Cases:
|
||||
*
|
||||
* 1. If the arguments indicate unbounded form, act as
|
||||
* nextLong().
|
||||
*
|
||||
* 2. If the range is an exact power of two, apply the
|
||||
* associated bit mask.
|
||||
*
|
||||
* 3. If the range is positive, loop to avoid potential bias
|
||||
* when the implicit nextLong() bound (2<sup>64</sup>) is not
|
||||
* evenly divisible by the range. The loop rejects candidates
|
||||
* computed from otherwise over-represented values. The
|
||||
* expected number of iterations under an ideal generator
|
||||
* varies from 1 to 2, depending on the bound. The loop itself
|
||||
* takes an unlovable form. Because the first candidate is
|
||||
* already available, we need a break-in-the-middle
|
||||
* construction, which is concisely but cryptically performed
|
||||
* within the while-condition of a body-less for loop.
|
||||
*
|
||||
* 4. Otherwise, the range cannot be represented as a positive
|
||||
* long. The loop repeatedly generates unbounded longs until
|
||||
* obtaining a candidate meeting constraints (with an expected
|
||||
* number of iterations of less than two).
|
||||
*/
|
||||
|
||||
long r = mix64(nextSeed());
|
||||
if (origin < bound) {
|
||||
long n = bound - origin, m = n - 1;
|
||||
if ((n & m) == 0L) // power of two
|
||||
r = (r & m) + origin;
|
||||
else if (n > 0L) { // reject over-represented candidates
|
||||
for (long u = r >>> 1; // ensure nonnegative
|
||||
u + m - (r = u % n) < 0L; // rejection check
|
||||
u = mix64(nextSeed()) >>> 1) // retry
|
||||
;
|
||||
r += origin;
|
||||
}
|
||||
else { // range not representable as long
|
||||
while (r < origin || r >= bound)
|
||||
r = mix64(nextSeed());
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* The form of nextInt used by IntStream Spliterators.
|
||||
* Exactly the same as long version, except for types.
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final int internalNextInt(int origin, int bound) {
|
||||
int r = mix32(nextSeed());
|
||||
if (origin < bound) {
|
||||
int n = bound - origin, m = n - 1;
|
||||
if ((n & m) == 0)
|
||||
r = (r & m) + origin;
|
||||
else if (n > 0) {
|
||||
for (int u = r >>> 1;
|
||||
u + m - (r = u % n) < 0;
|
||||
u = mix32(nextSeed()) >>> 1)
|
||||
;
|
||||
r += origin;
|
||||
}
|
||||
else {
|
||||
while (r < origin || r >= bound)
|
||||
r = mix32(nextSeed());
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* The form of nextDouble used by DoubleStream Spliterators.
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final double internalNextDouble(double origin, double bound) {
|
||||
double r = (nextLong() >>> 11) * DOUBLE_UNIT;
|
||||
if (origin < bound) {
|
||||
r = r * (bound - origin) + origin;
|
||||
if (r >= bound) // correct for rounding
|
||||
r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
|
@ -375,7 +248,7 @@ public final class SplittableRandom {
|
|||
* may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public SplittableRandom() { // emulate defaultGen.split()
|
||||
long s = defaultGen.getAndAdd(GOLDEN_GAMMA << 1);
|
||||
long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
|
||||
this.seed = mix64(s);
|
||||
this.gamma = mixGamma(s + GOLDEN_GAMMA);
|
||||
}
|
||||
|
@ -399,186 +272,102 @@ public final class SplittableRandom {
|
|||
}
|
||||
|
||||
/**
|
||||
* Fills a user-supplied byte array with generated pseudorandom bytes.
|
||||
*
|
||||
* @param bytes the byte array to fill with pseudorandom bytes
|
||||
* @throws NullPointerException if bytes is null
|
||||
* @since 10
|
||||
* {@inheritDoc}
|
||||
* @throws NullPointerException {@inheritDoc}
|
||||
* @since 17
|
||||
*/
|
||||
public void nextBytes(byte[] bytes) {
|
||||
int i = 0;
|
||||
int len = bytes.length;
|
||||
for (int words = len >> 3; words--> 0; ) {
|
||||
long rnd = nextLong();
|
||||
for (int n = 8; n--> 0; rnd >>>= Byte.SIZE)
|
||||
bytes[i++] = (byte)rnd;
|
||||
}
|
||||
if (i < len)
|
||||
for (long rnd = nextLong(); i < len; rnd >>>= Byte.SIZE)
|
||||
bytes[i++] = (byte)rnd;
|
||||
public SplittableRandom split(SplittableGenerator source) {
|
||||
return new SplittableRandom(source.nextLong(), mixGamma(source.nextLong()));
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code int} value.
|
||||
*
|
||||
* @return a pseudorandom {@code int} value
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfInt makeIntsSpliterator(long index, long fence, int origin, int bound) {
|
||||
return super.makeIntsSpliterator(index, fence, origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfLong makeLongsSpliterator(long index, long fence, long origin, long bound) {
|
||||
return super.makeLongsSpliterator(index, fence, origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfDouble makeDoublesSpliterator(long index, long fence, double origin, double bound) {
|
||||
return super.makeDoublesSpliterator(index, fence, origin, bound);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int nextInt() {
|
||||
return mix32(nextSeed());
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code int} value between zero (inclusive)
|
||||
* and the specified bound (exclusive).
|
||||
*
|
||||
* @param bound the upper bound (exclusive). Must be positive.
|
||||
* @return a pseudorandom {@code int} value between zero
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code bound} is not positive
|
||||
*/
|
||||
public int nextInt(int bound) {
|
||||
if (bound <= 0)
|
||||
throw new IllegalArgumentException(BAD_BOUND);
|
||||
// Specialize internalNextInt for origin 0
|
||||
int r = mix32(nextSeed());
|
||||
int m = bound - 1;
|
||||
if ((bound & m) == 0) // power of two
|
||||
r &= m;
|
||||
else { // reject over-represented candidates
|
||||
for (int u = r >>> 1;
|
||||
u + m - (r = u % bound) < 0;
|
||||
u = mix32(nextSeed()) >>> 1)
|
||||
;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code int} value between the specified
|
||||
* origin (inclusive) and the specified bound (exclusive).
|
||||
*
|
||||
* @param origin the least value returned
|
||||
* @param bound the upper bound (exclusive)
|
||||
* @return a pseudorandom {@code int} value between the origin
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code origin} is greater than
|
||||
* or equal to {@code bound}
|
||||
*/
|
||||
public int nextInt(int origin, int bound) {
|
||||
if (origin >= bound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return internalNextInt(origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code long} value.
|
||||
*
|
||||
* @return a pseudorandom {@code long} value
|
||||
*/
|
||||
@Override
|
||||
public long nextLong() {
|
||||
return mix64(nextSeed());
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code long} value between zero (inclusive)
|
||||
* and the specified bound (exclusive).
|
||||
*
|
||||
* @param bound the upper bound (exclusive). Must be positive.
|
||||
* @return a pseudorandom {@code long} value between zero
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code bound} is not positive
|
||||
* {@inheritDoc}
|
||||
* @throws NullPointerException {@inheritDoc}
|
||||
* @since 10
|
||||
*/
|
||||
public long nextLong(long bound) {
|
||||
if (bound <= 0)
|
||||
throw new IllegalArgumentException(BAD_BOUND);
|
||||
// Specialize internalNextLong for origin 0
|
||||
long r = mix64(nextSeed());
|
||||
long m = bound - 1;
|
||||
if ((bound & m) == 0L) // power of two
|
||||
r &= m;
|
||||
else { // reject over-represented candidates
|
||||
for (long u = r >>> 1;
|
||||
u + m - (r = u % bound) < 0L;
|
||||
u = mix64(nextSeed()) >>> 1)
|
||||
;
|
||||
}
|
||||
return r;
|
||||
@Override
|
||||
public void nextBytes(byte[] bytes) {
|
||||
super.nextBytes(bytes);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code long} value between the specified
|
||||
* origin (inclusive) and the specified bound (exclusive).
|
||||
*
|
||||
* @param origin the least value returned
|
||||
* @param bound the upper bound (exclusive)
|
||||
* @return a pseudorandom {@code long} value between the origin
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code origin} is greater than
|
||||
* or equal to {@code bound}
|
||||
* {@inheritDoc}
|
||||
* @implSpec {@inheritDoc}
|
||||
* @since 17
|
||||
*/
|
||||
public long nextLong(long origin, long bound) {
|
||||
if (origin >= bound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return internalNextLong(origin, bound);
|
||||
@Override
|
||||
public Stream<SplittableGenerator> splits() {
|
||||
return super.splits();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code double} value between zero
|
||||
* (inclusive) and one (exclusive).
|
||||
*
|
||||
* @return a pseudorandom {@code double} value between zero
|
||||
* (inclusive) and one (exclusive)
|
||||
* {@inheritDoc}
|
||||
* @throws IllegalArgumentException {@inheritDoc}
|
||||
* @implSpec {@inheritDoc}
|
||||
* @since 17
|
||||
*/
|
||||
public double nextDouble() {
|
||||
return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
|
||||
@Override
|
||||
public Stream<SplittableGenerator> splits(long streamSize) {
|
||||
return super.splits(streamSize, this);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code double} value between 0.0
|
||||
* (inclusive) and the specified bound (exclusive).
|
||||
*
|
||||
* @param bound the upper bound (exclusive). Must be positive.
|
||||
* @return a pseudorandom {@code double} value between zero
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code bound} is not positive
|
||||
* {@inheritDoc}
|
||||
* @throws NullPointerException {@inheritDoc}
|
||||
* @implSpec {@inheritDoc}
|
||||
* @since 17
|
||||
*/
|
||||
public double nextDouble(double bound) {
|
||||
if (!(bound > 0.0))
|
||||
throw new IllegalArgumentException(BAD_BOUND);
|
||||
double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
|
||||
return (result < bound) ? result : // correct for rounding
|
||||
Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
|
||||
@Override
|
||||
public Stream<SplittableGenerator> splits(SplittableGenerator source) {
|
||||
return super.splits(Long.MAX_VALUE, source);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code double} value between the specified
|
||||
* origin (inclusive) and bound (exclusive).
|
||||
*
|
||||
* @param origin the least value returned
|
||||
* @param bound the upper bound (exclusive)
|
||||
* @return a pseudorandom {@code double} value between the origin
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code origin} is greater than
|
||||
* or equal to {@code bound}
|
||||
* {@inheritDoc}
|
||||
* @throws NullPointerException {@inheritDoc}
|
||||
* @throws IllegalArgumentException {@inheritDoc}
|
||||
* @implSpec {@inheritDoc}
|
||||
* @since 17
|
||||
*/
|
||||
public double nextDouble(double origin, double bound) {
|
||||
if (!(origin < bound))
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return internalNextDouble(origin, bound);
|
||||
@Override
|
||||
public Stream<SplittableGenerator> splits(long streamSize, SplittableGenerator source) {
|
||||
return super.splits(streamSize, source);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code boolean} value.
|
||||
*
|
||||
* @return a pseudorandom {@code boolean} value
|
||||
*/
|
||||
public boolean nextBoolean() {
|
||||
return mix32(nextSeed()) < 0;
|
||||
}
|
||||
|
||||
// stream methods, coded in a way intended to better isolate for
|
||||
// maintenance purposes the small differences across forms.
|
||||
|
||||
/**
|
||||
* Returns a stream producing the given {@code streamSize} number
|
||||
* of pseudorandom {@code int} values from this generator and/or
|
||||
|
@ -589,13 +378,9 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code streamSize} is
|
||||
* less than zero
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, streamSize, Integer.MAX_VALUE, 0),
|
||||
false);
|
||||
return super.ints(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -607,11 +392,9 @@ public final class SplittableRandom {
|
|||
*
|
||||
* @return a stream of pseudorandom {@code int} values
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints() {
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
|
||||
false);
|
||||
return super.ints();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -629,16 +412,9 @@ public final class SplittableRandom {
|
|||
* less than zero, or {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
public IntStream ints(long streamSize, int randomNumberOrigin,
|
||||
int randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public IntStream ints(long streamSize, int randomNumberOrigin, int randomNumberBound) {
|
||||
return super.ints(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -656,13 +432,9 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
return super.ints(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -675,13 +447,9 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code streamSize} is
|
||||
* less than zero
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, streamSize, Long.MAX_VALUE, 0L),
|
||||
false);
|
||||
return super.longs(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -693,11 +461,9 @@ public final class SplittableRandom {
|
|||
*
|
||||
* @return a stream of pseudorandom {@code long} values
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs() {
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
|
||||
false);
|
||||
return super.longs();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -715,16 +481,9 @@ public final class SplittableRandom {
|
|||
* less than zero, or {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
public LongStream longs(long streamSize, long randomNumberOrigin,
|
||||
long randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public LongStream longs(long streamSize, long randomNumberOrigin, long randomNumberBound) {
|
||||
return super.longs(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -742,13 +501,9 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
return super.longs(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -761,13 +516,9 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code streamSize} is
|
||||
* less than zero
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, streamSize, Double.MAX_VALUE, 0.0),
|
||||
false);
|
||||
return super.doubles(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -780,11 +531,9 @@ public final class SplittableRandom {
|
|||
*
|
||||
* @return a stream of pseudorandom {@code double} values
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles() {
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
|
||||
false);
|
||||
return super.doubles();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -802,16 +551,9 @@ public final class SplittableRandom {
|
|||
* less than zero, or {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
public DoubleStream doubles(long streamSize, double randomNumberOrigin,
|
||||
double randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
if (!(randomNumberOrigin < randomNumberBound))
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public DoubleStream doubles(long streamSize, double randomNumberOrigin, double randomNumberBound) {
|
||||
return super.doubles(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -829,187 +571,8 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
|
||||
if (!(randomNumberOrigin < randomNumberBound))
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
return super.doubles(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for int streams. We multiplex the four int
|
||||
* versions into one class by treating a bound less than origin as
|
||||
* unbounded, and also by treating "infinite" as equivalent to
|
||||
* Long.MAX_VALUE. For splits, it uses the standard divide-by-two
|
||||
* approach. The long and double versions of this class are
|
||||
* identical except for types.
|
||||
*/
|
||||
private static final class RandomIntsSpliterator
|
||||
implements Spliterator.OfInt {
|
||||
final SplittableRandom rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final int origin;
|
||||
final int bound;
|
||||
RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
|
||||
int origin, int bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomIntsSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(IntConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextInt(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(IntConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
SplittableRandom r = rng;
|
||||
int o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextInt(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for long streams.
|
||||
*/
|
||||
private static final class RandomLongsSpliterator
|
||||
implements Spliterator.OfLong {
|
||||
final SplittableRandom rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final long origin;
|
||||
final long bound;
|
||||
RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
|
||||
long origin, long bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomLongsSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(LongConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextLong(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(LongConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
SplittableRandom r = rng;
|
||||
long o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextLong(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for double streams.
|
||||
*/
|
||||
private static final class RandomDoublesSpliterator
|
||||
implements Spliterator.OfDouble {
|
||||
final SplittableRandom rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final double origin;
|
||||
final double bound;
|
||||
RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
|
||||
double origin, double bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomDoublesSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(DoubleConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextDouble(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(DoubleConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
SplittableRandom r = rng;
|
||||
double o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextDouble(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load diff
1546
src/java.base/share/classes/java/util/random/RandomGenerator.java
Normal file
1546
src/java.base/share/classes/java/util/random/RandomGenerator.java
Normal file
File diff suppressed because it is too large
Load diff
|
@ -0,0 +1,640 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package java.util.random;
|
||||
|
||||
import java.lang.reflect.Constructor;
|
||||
import java.math.BigInteger;
|
||||
import java.security.AccessController;
|
||||
import java.security.PrivilegedActionException;
|
||||
import java.security.PrivilegedExceptionAction;
|
||||
import java.util.Objects;
|
||||
import java.util.function.Function;
|
||||
import java.util.Map;
|
||||
import java.util.random.RandomGenerator.ArbitrarilyJumpableGenerator;
|
||||
import java.util.random.RandomGenerator.JumpableGenerator;
|
||||
import java.util.random.RandomGenerator.LeapableGenerator;
|
||||
import java.util.random.RandomGenerator.SplittableGenerator;
|
||||
import java.util.random.RandomGenerator.StreamableGenerator;
|
||||
import java.util.ServiceLoader;
|
||||
import java.util.ServiceLoader.Provider;
|
||||
import java.util.stream.Collectors;
|
||||
import java.util.stream.Stream;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* This is a factory class for generating multiple random number generators
|
||||
* of a specific <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
* {@link RandomGeneratorFactory} also provides
|
||||
* methods for selecting random number generator algorithms.
|
||||
*
|
||||
* A specific {@link RandomGeneratorFactory} can be located by using the
|
||||
* {@link RandomGeneratorFactory#of(String)} method, where the argument string
|
||||
* is the name of the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* required. The method
|
||||
* {@link RandomGeneratorFactory#all()} produces a non-empty {@link Stream} of all available
|
||||
* {@link RandomGeneratorFactory RandomGeneratorFactorys} that can be searched
|
||||
* to locate a {@link RandomGeneratorFactory} suitable to the task.
|
||||
*
|
||||
* There are three methods for constructing a RandomGenerator instance,
|
||||
* depending on the type of initial seed required.
|
||||
* {@link RandomGeneratorFactory#create(long)} is used for long
|
||||
* seed construction,
|
||||
* {@link RandomGeneratorFactory#create(byte[])} is used for byte[]
|
||||
* seed construction, and
|
||||
* {@link RandomGeneratorFactory#create()} is used for random seed
|
||||
* construction. Example;
|
||||
*
|
||||
* <pre>{@code
|
||||
* RandomGeneratorFactory<RandomGenerator> factory = RandomGeneratorFactory.of("Random");
|
||||
*
|
||||
* for (int i = 0; i < 10; i++) {
|
||||
* new Thread(() -> {
|
||||
* RandomGenerator random = factory.create(100L);
|
||||
* System.out.println(random.nextDouble());
|
||||
* }).start();
|
||||
* }
|
||||
* }</pre>
|
||||
*
|
||||
* RandomGeneratorFactory also provides methods describing the attributes (or properties)
|
||||
* of a generator and can be used to select random number generator
|
||||
* <a href="package-summary.html#algorithms">algorithms</a>.
|
||||
* These methods are typically used in
|
||||
* conjunction with {@link RandomGeneratorFactory#all()}. In this example, the code
|
||||
* locates the {@link RandomGeneratorFactory} that produces
|
||||
* {@link RandomGenerator RandomGenerators}
|
||||
* with the highest number of state bits.
|
||||
*
|
||||
* <pre>{@code
|
||||
* RandomGeneratorFactory<RandomGenerator> best = RandomGeneratorFactory.all()
|
||||
* .sorted(Comparator.comparingInt(RandomGenerator::stateBits).reversed())
|
||||
* .findFirst()
|
||||
* .orElse(RandomGeneratorFactory.of("Random"));
|
||||
* System.out.println(best.name() + " in " + best.group() + " was selected");
|
||||
*
|
||||
* RandomGenerator rng = best.create();
|
||||
* System.out.println(rng.nextLong());
|
||||
* }</pre>
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
* @see java.util.random
|
||||
*
|
||||
*/
|
||||
public final class RandomGeneratorFactory<T extends RandomGenerator> {
|
||||
/**
|
||||
* Instance provider class of random number algorithm.
|
||||
*/
|
||||
private final Provider<? extends RandomGenerator> provider;
|
||||
|
||||
/**
|
||||
* Provider RandomGeneratorProperties annotation.
|
||||
*/
|
||||
private volatile RandomGeneratorProperties properties;
|
||||
|
||||
/**
|
||||
* Default provider constructor.
|
||||
*/
|
||||
private volatile Constructor<T> ctor;
|
||||
|
||||
/**
|
||||
* Provider constructor with long seed.
|
||||
*/
|
||||
private Constructor<T> ctorLong;
|
||||
|
||||
/**
|
||||
* Provider constructor with byte[] seed.
|
||||
*/
|
||||
private Constructor<T> ctorBytes;
|
||||
|
||||
|
||||
private static class FactoryMapHolder {
|
||||
static final Map<String, Provider<? extends RandomGenerator>> FACTORY_MAP = createFactoryMap();
|
||||
|
||||
/**
|
||||
* Returns the factory map, lazily constructing map on first use.
|
||||
*
|
||||
* @return Map of RandomGeneratorFactory classes.
|
||||
*/
|
||||
private static Map<String, Provider<? extends RandomGenerator>> createFactoryMap() {
|
||||
return ServiceLoader
|
||||
.load(RandomGenerator.class)
|
||||
.stream()
|
||||
.filter(p -> !p.type().isInterface())
|
||||
.collect(Collectors.toMap(p -> p.type().getSimpleName(), Function.identity()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Private constructor.
|
||||
*
|
||||
* @param provider Provider class to wrap.
|
||||
*/
|
||||
private RandomGeneratorFactory(Provider<? extends RandomGenerator> provider) {
|
||||
this.provider = provider;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the factory map, lazily constructing map on first call.
|
||||
*
|
||||
* @return Map of RandomGeneratorFactory classes.
|
||||
*/
|
||||
private static Map<String, Provider<? extends RandomGenerator>> getFactoryMap() {
|
||||
return FactoryMapHolder.FACTORY_MAP;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the annotation for the specified provider.
|
||||
*
|
||||
* @return RandomGeneratorProperties annotation for the specified provider.
|
||||
*/
|
||||
private RandomGeneratorProperties getProperties() {
|
||||
if (properties == null) {
|
||||
synchronized (provider) {
|
||||
if (properties == null) {
|
||||
properties = provider.type().getDeclaredAnnotation(RandomGeneratorProperties.class);
|
||||
Objects.requireNonNull(properties, provider.type() + " missing annotation");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return properties;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if the provider is a subclass of the category.
|
||||
*
|
||||
* @param category Interface category, sub-interface of {@link RandomGenerator}.
|
||||
*
|
||||
* @return true if the provider is a subclass of the category.
|
||||
*/
|
||||
private boolean isSubclass(Class<? extends RandomGenerator> category) {
|
||||
return isSubclass(category, provider);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if the provider is a subclass of the category.
|
||||
*
|
||||
* @param category Interface category, sub-interface of {@link RandomGenerator}.
|
||||
* @param provider Provider that is being filtered.
|
||||
*
|
||||
* @return true if the provider is a subclass of the category.
|
||||
*/
|
||||
private static boolean isSubclass(Class<? extends RandomGenerator> category,
|
||||
Provider<? extends RandomGenerator> provider) {
|
||||
return provider != null && category.isAssignableFrom(provider.type());
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the provider matching name and category.
|
||||
*
|
||||
* @param name Name of RandomGenerator
|
||||
* @param category Interface category, sub-interface of {@link RandomGenerator}.
|
||||
*
|
||||
* @return A provider matching name and category.
|
||||
*
|
||||
* @throws IllegalArgumentException if provider is not a subclass of category.
|
||||
*/
|
||||
private static Provider<? extends RandomGenerator> findProvider(String name,
|
||||
Class<? extends RandomGenerator> category)
|
||||
throws IllegalArgumentException {
|
||||
Map<String, Provider<? extends RandomGenerator>> fm = getFactoryMap();
|
||||
Provider<? extends RandomGenerator> provider = fm.get(name);
|
||||
if (provider == null) {
|
||||
throw new IllegalArgumentException("No implementation of the random number generator algorithm \"" +
|
||||
name +
|
||||
"\" is available");
|
||||
} else if (!isSubclass(category, provider)) {
|
||||
throw new IllegalArgumentException("The random number generator algorithm \"" +
|
||||
name +
|
||||
"\" is not implemented with the interface \"" +
|
||||
category.getSimpleName() +
|
||||
"\"");
|
||||
}
|
||||
return provider;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a {@link RandomGenerator} that utilizes the {@code name}
|
||||
* <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*
|
||||
* @param name Name of random number algorithm to use
|
||||
* @param category Sub-interface of {@link RandomGenerator} to type check
|
||||
* @param <T> Sub-interface of {@link RandomGenerator} to produce
|
||||
*
|
||||
* @return An instance of {@link RandomGenerator}
|
||||
*
|
||||
* @throws IllegalArgumentException when either the name or category is null
|
||||
*/
|
||||
static <T extends RandomGenerator> T of(String name, Class<T> category)
|
||||
throws IllegalArgumentException {
|
||||
@SuppressWarnings("unchecked")
|
||||
T uncheckedRandomGenerator = (T)findProvider(name, category).get();
|
||||
return uncheckedRandomGenerator;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a {@link RandomGeneratorFactory} that will produce instances
|
||||
* of {@link RandomGenerator} that utilizes the named algorithm.
|
||||
*
|
||||
* @param name Name of random number algorithm to use
|
||||
* @param category Sub-interface of {@link RandomGenerator} to type check
|
||||
* @param <T> Sub-interface of {@link RandomGenerator} to produce
|
||||
*
|
||||
* @return Factory of {@link RandomGenerator}
|
||||
*
|
||||
* @throws IllegalArgumentException when either the name or category is null
|
||||
*/
|
||||
static <T extends RandomGenerator> RandomGeneratorFactory<T> factoryOf(String name, Class<T> category)
|
||||
throws IllegalArgumentException {
|
||||
Provider<? extends RandomGenerator> uncheckedProvider = findProvider(name, category);
|
||||
return new RandomGeneratorFactory<>(uncheckedProvider);
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetch the required constructors for class of random number algorithm.
|
||||
*
|
||||
* @param randomGeneratorClass class of random number algorithm (provider)
|
||||
*/
|
||||
private void getConstructors(Class<? extends RandomGenerator> randomGeneratorClass) {
|
||||
if (ctor == null) {
|
||||
synchronized (provider) {
|
||||
if (ctor == null) {
|
||||
PrivilegedExceptionAction<Constructor<?>[]> ctorAction = randomGeneratorClass::getConstructors;
|
||||
try {
|
||||
Constructor<?>[] ctors = AccessController.doPrivileged(ctorAction);
|
||||
|
||||
Constructor<T> tmpCtor = null;
|
||||
Constructor<T> tmpCtorLong = null;
|
||||
Constructor<T> tmpCtorBytes = null;
|
||||
|
||||
|
||||
for (Constructor<?> ctorGeneric : ctors) {
|
||||
@SuppressWarnings("unchecked")
|
||||
Constructor<T> ctorSpecific = (Constructor<T>) ctorGeneric;
|
||||
final Class<?>[] parameterTypes = ctorSpecific.getParameterTypes();
|
||||
|
||||
if (parameterTypes.length == 0) {
|
||||
tmpCtor = ctorSpecific;
|
||||
} else if (parameterTypes.length == 1) {
|
||||
Class<?> argType = parameterTypes[0];
|
||||
|
||||
if (argType == long.class) {
|
||||
tmpCtorLong = ctorSpecific;
|
||||
} else if (argType == byte[].class) {
|
||||
tmpCtorBytes = ctorSpecific;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (tmpCtor == null) {
|
||||
throw new IllegalStateException("Random algorithm " + name() + " is missing a default constructor");
|
||||
}
|
||||
|
||||
// Store specialized constructors first, guarded by ctor
|
||||
ctorBytes = tmpCtorBytes;
|
||||
ctorLong = tmpCtorLong;
|
||||
ctor = tmpCtor;
|
||||
} catch (PrivilegedActionException ex) {
|
||||
// Do nothing
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure all the required constructors are fetched.
|
||||
*/
|
||||
private void ensureConstructors() {
|
||||
getConstructors(provider.type());
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a {@link RandomGeneratorFactory} that can produce instances of
|
||||
* {@link RandomGenerator} that utilize the {@code name}
|
||||
* <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*
|
||||
* @implSpec Availability is determined by RandomGeneratorFactory using the
|
||||
* service provider API to locate implementations of the RandomGenerator interface.
|
||||
*
|
||||
* @param name Name of random number generator
|
||||
* <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* @param <T> Sub-interface of {@link RandomGenerator} to produce
|
||||
*
|
||||
* @return {@link RandomGeneratorFactory} of {@link RandomGenerator}
|
||||
*
|
||||
* @throws NullPointerException if name is null
|
||||
* @throws IllegalArgumentException if the named algorithm is not found
|
||||
*/
|
||||
public static <T extends RandomGenerator> RandomGeneratorFactory<T> of(String name) {
|
||||
Objects.requireNonNull(name);
|
||||
@SuppressWarnings("unchecked")
|
||||
RandomGeneratorFactory<T> factory =
|
||||
(RandomGeneratorFactory<T>)factoryOf(name, RandomGenerator.class);
|
||||
return factory;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a {@link RandomGeneratorFactory} meeting the minimal requirement
|
||||
* of having an algorithm whose state bits are greater than or equal 64.
|
||||
*
|
||||
* @implSpec Since algorithms will improve over time, there is no
|
||||
* guarantee that this method will return the same algorithm over time.
|
||||
*
|
||||
* @return a {@link RandomGeneratorFactory}
|
||||
*/
|
||||
public static RandomGeneratorFactory<RandomGenerator> getDefault() {
|
||||
return factoryOf("L32X64MixRandom", RandomGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a stream of matching Providers.
|
||||
*
|
||||
* @param category {@link RandomGenerator} sub-interface class to filter
|
||||
* @param <T> {@link RandomGenerator} sub-interface return type
|
||||
*
|
||||
* RandomGenerators that are marked as deprecated or are not properly configured are not included in the result.
|
||||
*
|
||||
* @implSpec Availability is determined by RandomGeneratorFactory using the service provider API
|
||||
* to locate implementations of the RandomGenerator interface.
|
||||
*
|
||||
* @return Stream of matching {@link RandomGeneratorFactory RandomGeneratorFactory(s)}.
|
||||
*
|
||||
* @hidden
|
||||
*/
|
||||
public static <T extends RandomGenerator> Stream<RandomGeneratorFactory<T>> all(Class<T> category) {
|
||||
Map<String, Provider<? extends RandomGenerator>> fm = getFactoryMap();
|
||||
return fm.values()
|
||||
.stream()
|
||||
.filter(p -> isSubclass(category, p) &&
|
||||
!p.type().isAnnotationPresent(Deprecated.class) &&
|
||||
p.type().isAnnotationPresent(RandomGeneratorProperties.class))
|
||||
.map(RandomGeneratorFactory::new);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a non-empty stream of available {@link RandomGeneratorFactory RandomGeneratorFactory(s)}.
|
||||
*
|
||||
* RandomGenerators that are marked as deprecated or are not properly configured are not included in the result.
|
||||
*
|
||||
* @implSpec Availability is determined by RandomGeneratorFactory using the service provider API
|
||||
* to locate implementations of the RandomGenerator interface.
|
||||
*
|
||||
* @return a non-empty stream of all available {@link RandomGeneratorFactory RandomGeneratorFactory(s)}.
|
||||
*/
|
||||
public static Stream<RandomGeneratorFactory<RandomGenerator>> all() {
|
||||
Map<String, Provider<? extends RandomGenerator>> fm = getFactoryMap();
|
||||
return fm.values()
|
||||
.stream()
|
||||
.filter(p -> !p.type().isAnnotationPresent(Deprecated.class) &&
|
||||
p.type().isAnnotationPresent(RandomGeneratorProperties.class))
|
||||
.map(RandomGeneratorFactory::new);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the name of the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* used by the random number generator.
|
||||
*
|
||||
* @return Name of the <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*/
|
||||
public String name() {
|
||||
return provider.type().getSimpleName();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the group name of the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* used by the random number generator.
|
||||
*
|
||||
* @return Group name of the <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*/
|
||||
public String group() {
|
||||
return getProperties().group();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns number of bits used by the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* to maintain state of seed.
|
||||
*
|
||||
* @return number of bits used by the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* to maintain state of seed.
|
||||
*/
|
||||
public int stateBits() {
|
||||
RandomGeneratorProperties properties = getProperties();
|
||||
int i = properties.i();
|
||||
int k = properties.k();
|
||||
|
||||
return i == 0 && k == 0 ? Integer.MAX_VALUE : i + k;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the equidistribution of the <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*
|
||||
* @return the equidistribution of the <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*/
|
||||
public int equidistribution() {
|
||||
return getProperties().equidistribution();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the period of the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* used by the random number generator.
|
||||
* Returns BigInteger.ZERO if period is not determinable.
|
||||
*
|
||||
* @return BigInteger period.
|
||||
*/
|
||||
public BigInteger period() {
|
||||
RandomGeneratorProperties properties = getProperties();
|
||||
int i = properties.i();
|
||||
int j = properties.j();
|
||||
int k = properties.k();
|
||||
|
||||
if (i == 0 && j == 0 && k == 0) {
|
||||
return BigInteger.ZERO;
|
||||
} else {
|
||||
return BigInteger.ONE.shiftLeft(i).subtract(BigInteger.valueOf(j)).shiftLeft(k);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator is computed using an arithmetic
|
||||
* <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* and is statistically deterministic.
|
||||
*
|
||||
* @return true if random generator is statistical.
|
||||
*/
|
||||
public boolean isStatistical() {
|
||||
return !getProperties().isStochastic();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator is computed using external or entropic
|
||||
* sources as inputs.
|
||||
*
|
||||
* @return true if random generator is stochastic.
|
||||
*/
|
||||
public boolean isStochastic() {
|
||||
return getProperties().isStochastic();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator uses a hardware device (HRNG) to produce
|
||||
* entropic input.
|
||||
*
|
||||
* @return true if random generator is generated by hardware.
|
||||
*/
|
||||
public boolean isHardware() {
|
||||
return getProperties().isHardware();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator can jump an arbitrarily specified distant
|
||||
* point in the state cycle.
|
||||
*
|
||||
* @return true if random generator is arbitrarily jumpable.
|
||||
*/
|
||||
public boolean isArbitrarilyJumpable() {
|
||||
return isSubclass(ArbitrarilyJumpableGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator can jump a specified distant point in
|
||||
* the state cycle.
|
||||
*
|
||||
* @return true if random generator is jumpable.
|
||||
*/
|
||||
public boolean isJumpable() {
|
||||
return isSubclass(JumpableGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator is jumpable and can leap to a very distant
|
||||
* point in the state cycle.
|
||||
*
|
||||
* @return true if random generator is leapable.
|
||||
*/
|
||||
public boolean isLeapable() {
|
||||
return isSubclass(LeapableGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator can be cloned into a separate object with
|
||||
* the same properties but positioned further in the state cycle.
|
||||
*
|
||||
* @return true if random generator is splittable.
|
||||
*/
|
||||
public boolean isSplittable() {
|
||||
return isSubclass(SplittableGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator can be used to create
|
||||
* {@link java.util.stream.Stream Streams} of random numbers.
|
||||
*
|
||||
* @return true if random generator is streamable.
|
||||
*/
|
||||
public boolean isStreamable() {
|
||||
return isSubclass(StreamableGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if the implementation of RandomGenerator (algorithm) has been
|
||||
* marked for deprecation.
|
||||
*
|
||||
* @implNote Random number generator algorithms evolve over time; new
|
||||
* algorithms will be introduced and old algorithms will
|
||||
* lose standing. If an older algorithm is deemed unsuitable
|
||||
* for continued use, it will be marked as deprecated to indicate
|
||||
* that it may be removed at some point in the future.
|
||||
*
|
||||
* @return true if the implementation of RandomGenerator (algorithm) has been
|
||||
* marked for deprecation
|
||||
*/
|
||||
public boolean isDeprecated() {
|
||||
return provider.type().isAnnotationPresent(Deprecated.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an instance of {@link RandomGenerator} based on
|
||||
* <a href="package-summary.html#algorithms">algorithm</a> chosen.
|
||||
*
|
||||
* @return new in instance of {@link RandomGenerator}.
|
||||
*
|
||||
*/
|
||||
public T create() {
|
||||
try {
|
||||
ensureConstructors();
|
||||
return ctor.newInstance();
|
||||
} catch (Exception ex) {
|
||||
// Should never happen.
|
||||
throw new IllegalStateException("Random algorithm " + name() + " is missing a default constructor", ex);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an instance of {@link RandomGenerator} based on
|
||||
* <a href="package-summary.html#algorithms">algorithm</a> chosen
|
||||
* providing a starting long seed. If long seed is not supported by an
|
||||
* algorithm then the no argument form of create is used.
|
||||
*
|
||||
* @param seed long random seed value.
|
||||
*
|
||||
* @return new in instance of {@link RandomGenerator}.
|
||||
*/
|
||||
public T create(long seed) {
|
||||
try {
|
||||
ensureConstructors();
|
||||
return ctorLong.newInstance(seed);
|
||||
} catch (Exception ex) {
|
||||
return create();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an instance of {@link RandomGenerator} based on
|
||||
* <a href="package-summary.html#algorithms">algorithm</a> chosen
|
||||
* providing a starting byte[] seed. If byte[] seed is not supported by an
|
||||
* <a href="package-summary.html#algorithms">algorithm</a> then the no
|
||||
* argument form of create is used.
|
||||
*
|
||||
* @param seed byte array random seed value.
|
||||
*
|
||||
* @return new in instance of {@link RandomGenerator}.
|
||||
*
|
||||
* @throws NullPointerException if seed is null.
|
||||
*/
|
||||
public T create(byte[] seed) {
|
||||
Objects.requireNonNull(seed, "seed must not be null");
|
||||
try {
|
||||
ensureConstructors();
|
||||
return ctorBytes.newInstance(seed);
|
||||
} catch (Exception ex) {
|
||||
return create();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
628
src/java.base/share/classes/java/util/random/package-info.java
Normal file
628
src/java.base/share/classes/java/util/random/package-info.java
Normal file
|
@ -0,0 +1,628 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
/**
|
||||
* This package contains classes and interfaces that support a generic API
|
||||
* for random number generation.
|
||||
*
|
||||
* <p>These classes and interfaces support the definition and use of "random
|
||||
* generators", a term covering what have traditionally been called "random
|
||||
* number generators" as well as generators of other sorts of randomly chosen
|
||||
* values (eg. booleans). These classes and interfaces cover not only
|
||||
* deterministic (pseudorandom) algorithms but also generators of values that
|
||||
* use some "truly random" physical source (stochastic algorithms perhaps making
|
||||
* use of thermal noise, for example, or quantum-mechanical effects).
|
||||
*
|
||||
* <p> The principal interface is {@link RandomGenerator}, which provides
|
||||
* methods for requesting individual values of type {@code int}, {@code long},
|
||||
* {@code float}, {@code double}, or {@code boolean} chosen pseudorandomly
|
||||
* from a uniform distribution; methods for requesting values of type
|
||||
* {@code double} chosen pseudorandomly from a normal distribution or from an
|
||||
* exponential distribution; and methods for creating streams of values of type
|
||||
* {@code int}, {@code long}, or {@code double} chosen pseudorandomly from a
|
||||
* uniform distribution (such streams are spliterator-based, allowing for
|
||||
* parallel processing of their elements). There are also static factory methods
|
||||
* for creating an instance of a specific random number generator algorithm
|
||||
* given its name.
|
||||
*
|
||||
* <p> The principal supporting class is {@link RandomGeneratorFactory}. This
|
||||
* can be used to generate multiple random number generators for a specific
|
||||
* algorithm. {@link RandomGeneratorFactory} also provides methods for
|
||||
* selecting random number generator algorithms. RandomGeneratorFactory
|
||||
* registers implementations of {@link RandomGenerator} interface using the
|
||||
* service provider API.
|
||||
*
|
||||
* <p> An important subsidiary interface is
|
||||
* {@link RandomGenerator.StreamableGenerator}, which provides methods for
|
||||
* creating spliterator-based streams of {@link RandomGenerator} objects,
|
||||
* allowing for parallel processing of these objects using multiple threads.
|
||||
* Unlike {@link java.util.Random}, most implementations of
|
||||
* {@link RandomGenerator} are <i>not</i> thread-safe. The intent is that
|
||||
* instances should not be shared among threads; rather, each thread should have
|
||||
* its own random generator(s) to use. The various pseudorandom algorithms
|
||||
* provided by this package are designed so that multiple instances will (with
|
||||
* very high probability) behave as if statistically independent.
|
||||
*
|
||||
* <p> For many purposes, these are the only two interfaces that a consumer of
|
||||
* pseudorandom values will need. There are also some more specialized
|
||||
* interfaces that describe more specialized categories of random number
|
||||
* generators {@link RandomGenerator.SplittableGenerator SplittableGenerator},
|
||||
* {@link RandomGenerator.JumpableGenerator JumpableGenerator},
|
||||
* {@link RandomGenerator.LeapableGenerator LeapableGenerator}, and
|
||||
* {@link RandomGenerator.ArbitrarilyJumpableGenerator ArbitrarilyJumpableGenerator}
|
||||
* that have specific strategies for creating statistically independent instances.
|
||||
*
|
||||
* <h2>Using the Random Number Generator Interfaces</h2>
|
||||
*
|
||||
* To get started, an application should first create one instance of a
|
||||
* generator class. Assume that the contents of the package
|
||||
* {@link java.util.random} has been imported:
|
||||
*
|
||||
* <blockquote>{@code import java.util.random.*;}</blockquote>
|
||||
*
|
||||
* Then one can choose a specific implementation by giving the name of a generator
|
||||
* algorithm to the static method {@link RandomGenerator#of}, in which case the
|
||||
* no-arguments constructor for that implementation is used:
|
||||
*
|
||||
* <blockquote>{@code RandomGenerator g = RandomGenerator.of("L64X128MixRandom");}</blockquote>
|
||||
*
|
||||
* For a single-threaded application, this is all that is needed. One can then
|
||||
* invoke methods of {@code g} such as
|
||||
* {@link RandomGenerator#nextLong nextLong()},
|
||||
* {@link RandomGenerator#nextInt nextInt()},
|
||||
* {@link RandomGenerator#nextFloat nextFloat()},
|
||||
* {@link RandomGenerator#nextDouble nextDouble()} and
|
||||
* {@link RandomGenerator#nextBoolean nextBoolean()} to generate individual
|
||||
* randomly chosen values. One can also use the methods
|
||||
* {@link RandomGenerator#ints ints()}, {@link RandomGenerator#longs longs()}
|
||||
* and {@link RandomGenerator#doubles doubles()} to create streams of randomly
|
||||
* chosen values. The methods
|
||||
* {@link RandomGenerator#nextGaussian nextGaussian()} and
|
||||
* {@link RandomGenerator#nextExponential nextExponential()} draw floating-point
|
||||
* values from nonuniform distributions.
|
||||
*
|
||||
* <p> For a multi-threaded application, one can repeat the preceding steps
|
||||
* to create additional {@linkplain RandomGenerator RandomGenerators}, but
|
||||
* often it is preferable to use methods of the one single initially
|
||||
* created generator to create others like it. (One reason is that some
|
||||
* generator algorithms, if asked to create a new set of generators all at
|
||||
* once, can make a special effort to ensure that the new generators are
|
||||
* statistically independent.) If the initial generator implements the
|
||||
* interface {@link RandomGenerator.StreamableGenerator}, then the method
|
||||
* {@link RandomGenerator.StreamableGenerator#rngs rngs()} can be used to
|
||||
* create a stream of generators. If this is a parallel stream, then it is
|
||||
* easy to get parallel execution by using the
|
||||
* {@link java.util.stream.Stream#map map()} method on the stream.
|
||||
* <p> For a multi-threaded application that forks new threads dynamically,
|
||||
* another approach is to use an initial generator that implements the interface
|
||||
* {@link RandomGenerator.SplittableGenerator}, which is then considered to
|
||||
* "belong" to the initial thread for its exclusive use; then whenever any
|
||||
* thread needs to fork a new thread, it first uses the
|
||||
* {@link RandomGenerator.SplittableGenerator#split split()} method of its own
|
||||
* generator to create a new generator, which is then passed to the newly
|
||||
* created thread for exclusive use by that new thread.
|
||||
*
|
||||
*
|
||||
* <h2>Choosing a Random Number Generator Algorithm</h2>
|
||||
*
|
||||
* <p> There are three groups of random number generator algorithm provided
|
||||
* in Java; Legacy group, LXM group and Xoroshiro/Xoshiro group.
|
||||
*
|
||||
* <p> The legacy group includes random number generators that existed
|
||||
* before JDK 17; Random, ThreadLocalRandom, SplittableRandom and
|
||||
* SecureRandom. Random (LCG) is the weakest of available algorithms and it
|
||||
* is recommended that users migrate to newer algorithms. If an application
|
||||
* requires a random number generator algorithm that is cryptographically
|
||||
* secure, then it should continue to use an instance of the class {@link
|
||||
* java.security.SecureRandom}.
|
||||
*
|
||||
* <p> The algorithms in the LXM group use a similar algorithm. The parameters
|
||||
* of the algorithm can be found in algorithm name. The numbers indicate the
|
||||
* number of bits in the lower and upper state bits respectively. Mix indicates
|
||||
* the algorithm uses mix congruency. StarStar indicates use a double
|
||||
* multiplier.
|
||||
*
|
||||
* <p> The algorithms in the Xoroshiro/Xoshiro are more traditional algorithms
|
||||
* where the number in the name indicates the period.
|
||||
*
|
||||
* <p> For applications (such as physical simulation, machine learning, and
|
||||
* games) that do not require a cryptographically secure algorithm, this package
|
||||
* provides multiple implementations of interface {@link RandomGenerator} that
|
||||
* provide trade-offs among speed, space, period, accidental correlation, and
|
||||
* equidistribution properties.
|
||||
*
|
||||
* <p> For applications with no special requirements,
|
||||
* {@code L64X128MixRandom} has a good balance among speed, space,
|
||||
* and period, and is suitable for both single-threaded and multi-threaded
|
||||
* applications when used properly (a separate instance for each thread).
|
||||
*
|
||||
* <p> If the application uses only a single thread, then
|
||||
* {@code Xoroshiro128PlusPlus} is even smaller and faster, and
|
||||
* certainly has a sufficiently long period.
|
||||
*
|
||||
* <p> For an application running in a 32-bit hardware environment and using
|
||||
* only one thread or a small number of threads, {@code L32X64MixRandom} may be a good
|
||||
* choice.
|
||||
*
|
||||
* <p> For an application that uses many threads that are allocated in one batch
|
||||
* at the start of the computation, either a "jumpable" generator such as
|
||||
* {@code Xoroshiro128PlusPlus} or
|
||||
* {@code Xoshiro256PlusPlus} may be used, or a "splittable"
|
||||
* generator such as {@code L64X128MixRandom} or
|
||||
* {@code L64X256MixRandom} may be used.
|
||||
*
|
||||
* <p> For an application that creates many threads dynamically, perhaps through
|
||||
* the use of spliterators, a "splittable" generator such as
|
||||
* {@code L64X128MixRandom} or {@code L64X256MixRandom} is
|
||||
* recommended. If the number of generators created dynamically may
|
||||
* be very large (millions or more), then using generators such as
|
||||
* {@code L128X128MixRandom} or {@code L128X256MixRandom},
|
||||
* which use a 128-bit parameter rather than a 64-bit parameter for their LCG
|
||||
* subgenerator, will make it much less likely that two instances use the same
|
||||
* state cycle.
|
||||
*
|
||||
* <p> For an application that uses tuples of consecutively generated values, it
|
||||
* may be desirable to use a generator that is <i>k</i>-equidistributed such
|
||||
* that <i>k</i> is at least as large as the length of the tuples being
|
||||
* generated. The generator {@code L64X256MixRandom} is provably
|
||||
* 4-equidistributed, and {@code L64X1024MixRandom} is provably
|
||||
* 16-equidistributed.
|
||||
*
|
||||
* <p> For applications that generate large permutations, it may be best to use
|
||||
* a generator whose period is much larger than the total number of possible
|
||||
* permutations; otherwise it will be impossible to generate some of the
|
||||
* intended permutations. For example, if the goal is to shuffle a deck of 52
|
||||
* cards, the number of possible permutations is 52! (52 factorial), which is
|
||||
* larger than 2<sup>225</sup> (but smaller than 2<sup>226</sup>), so it may be
|
||||
* best to use a generator whose period at least 2<sup>256</sup>, such as
|
||||
* {@code L64X256MixRandom} or {@code L64X1024MixRandom}
|
||||
* or {@code L128X256MixRandom} or
|
||||
* {@code L128X1024MixRandom}. (It is of course also necessary to
|
||||
* provide sufficiently many seed bits when the generator is initialized, or
|
||||
* else it will still be impossible to generate some of the intended
|
||||
* permutations.)
|
||||
*
|
||||
*
|
||||
* <h2><a id="algorithms">Random Number Generator Algorithms Available</a></h2>
|
||||
*
|
||||
* These algorithms [in the table below] must be found with the current version
|
||||
* of Java SE. A particular JDK implementation may recognize additional
|
||||
* algorithms; check the JDK's documentation for details. The set of algorithm
|
||||
* required by Java SE may be updated by changes to the Java SE specification.
|
||||
* Over time, new algorithms may be added and old algorithms may be removed.
|
||||
* <p>In addition, as another life-cycle phase, an algorithm may be {@linkplain
|
||||
* RandomGeneratorFactory#isDeprecated() deprecated}. A deprecated algorithm is
|
||||
* not recommended for use. If a required algorithm is deprecated, it may be
|
||||
* removed in a future release. Due to advances in random number generator
|
||||
* algorithm development and analysis, an algorithm may be deprecated during the
|
||||
* lifetime of a particular Java SE release. Changing the deprecation status of
|
||||
* an algorithm is <em>not</em> a specification change.
|
||||
*
|
||||
* <table style="padding:0px 20px 0px 0px">
|
||||
* <caption>Available Algorithms</caption>
|
||||
* <thead>
|
||||
* <tr>
|
||||
* <th style="text-align:left">Algorithm</th>
|
||||
* <th style="text-align:left">Group</th>
|
||||
* <th style="text-align:left">Period</th>
|
||||
* <th style="text-align:right">StateBits</th>
|
||||
* <th style="text-align:right">Equidistribution</th>
|
||||
* </tr>
|
||||
* </thead>
|
||||
* <tbody>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L128X1024MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(N*64).subtract(BigInteger.ONE).shiftLeft(128)</td>
|
||||
* <td style="text-align:right">1152</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L128X128MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(128)</td>
|
||||
* <td style="text-align:right">256</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L128X256MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE).shiftLeft(128)</td>
|
||||
* <td style="text-align:right">384</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L32X64MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(64).subtract(BigInteger.ONE).shiftLeft(32)</td>
|
||||
* <td style="text-align:right">96</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L64X1024MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(N*64).subtract(BigInteger.ONE).shiftLeft(64)</td>
|
||||
* <td style="text-align:right">1088</td>
|
||||
* <td style="text-align:right">16</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L64X128MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(64)</td>
|
||||
* <td style="text-align:right">192</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L64X128StarStarRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(64)</td>
|
||||
* <td style="text-align:right">192</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L64X256MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE).shiftLeft(64)</td>
|
||||
* <td style="text-align:right">320</td>
|
||||
* <td style="text-align:right">4</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">Random</td>
|
||||
* <td style="text-align:left">Legacy</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(48)</td>
|
||||
* <td style="text-align:right">48</td>
|
||||
* <td style="text-align:right">0</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">SplittableRandom</td>
|
||||
* <td style="text-align:left">Legacy</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(64)</td>
|
||||
* <td style="text-align:right">64</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">ThreadLocalRandom <sup>*</sup></td>
|
||||
* <td style="text-align:left">Legacy</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(64)</td>
|
||||
* <td style="text-align:right">64</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">Xoroshiro128PlusPlus</td>
|
||||
* <td style="text-align:left">Xoroshiro</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE)</td>
|
||||
* <td style="text-align:right">128</td>
|
||||
* <td style="text-align:right">2</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">Xoshiro256PlusPlus</td>
|
||||
* <td style="text-align:left">Xoshiro</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE)</td>
|
||||
* <td style="text-align:right">256</td>
|
||||
* <td style="text-align:right">4</td>
|
||||
* </tr>
|
||||
* </tbody>
|
||||
* </table>
|
||||
*
|
||||
* <p><sup>*</sup> ThreadLocalRandom can only be accessed via
|
||||
* {@link java.util.concurrent.ThreadLocalRandom#current()}.
|
||||
*
|
||||
* <h2>Categories of Random Number Generator Algorithms</h2>
|
||||
*
|
||||
* Historically, most pseudorandom generator algorithms have been based on some
|
||||
* sort of finite-state machine with a single, large cycle of states; when it is
|
||||
* necessary to have multiple threads use the same algorithm simultaneously, the
|
||||
* usual technique is to arrange for each thread to traverse a different region
|
||||
* of the state cycle. These regions may be doled out to threads by starting
|
||||
* with a single initial state and then using a "jump function" that travels a
|
||||
* long distance around the cycle (perhaps 2<sup>64</sup> steps or more); the
|
||||
* jump function is applied repeatedly and sequentially, to identify widely
|
||||
* spaced states that are then doled out, one to each thread, to serve as the
|
||||
* initial state for the generator to be used by that thread. This strategy is
|
||||
* supported by the interface {@link RandomGenerator.JumpableGenerator}.
|
||||
* Sometimes it is desirable to support two levels of jumping (by long distances
|
||||
* and by <i>really</i> long distances); this strategy is supported by the
|
||||
* interface {@link RandomGenerator.LeapableGenerator}. There is also an interface
|
||||
* {@link RandomGenerator.ArbitrarilyJumpableGenerator} for algorithms that allow
|
||||
* jumping along the state cycle by any user-specified distance. In this package,
|
||||
* implementations of these interfaces include
|
||||
* "Xoroshiro128PlusPlus", and
|
||||
* "Xoshiro256PlusPlus".
|
||||
*
|
||||
* <p> A more recent category of "splittable" pseudorandom generator algorithms
|
||||
* uses a large family of state cycles and makes some attempt to ensure that
|
||||
* distinct instances use different state cycles; but even if two instances
|
||||
* "accidentally" use the same state cycle, they are highly likely to traverse
|
||||
* different regions parts of that shared state cycle. This strategy is
|
||||
* supported by the interface {@link RandomGenerator.SplittableGenerator}.
|
||||
* In this package, implementations of this interface include
|
||||
* "L32X64MixRandom",
|
||||
* "L64X128StarStarRandom",
|
||||
* "L64X128MixRandom",
|
||||
* "L64X256MixRandom",
|
||||
* "L64X1024MixRandom",
|
||||
* "L128X128MixRandom",
|
||||
* "L128X256MixRandom", and
|
||||
* "L128X1024MixRandom"; note that the class
|
||||
* {@link java.util.SplittableRandom} also implements this interface.
|
||||
*
|
||||
*
|
||||
* <h2>The LXM Family of Random Number Generator Algorithms</h2>
|
||||
*
|
||||
* The structure of the central nextLong (or nextInt) method of an LXM
|
||||
* algorithm follows a suggestion in December 2017 by Sebastiano Vigna
|
||||
* that using one LCG subgenerator and one xor-based subgenerator (rather
|
||||
* than two LCG subgenerators) would provide a longer period, superior
|
||||
* equidistribution, scalability, and better quality. Each of the
|
||||
* specific implementations here combines one of the best currently known
|
||||
* xor-based generators (xoroshiro or xoshiro, described by Blackman and
|
||||
* Vigna in "Scrambled Linear Pseudorandom Number Generators", ACM
|
||||
* Trans. Math. Softw., 2021) with an LCG that uses one of the best
|
||||
* currently known multipliers (found by a search for better multipliers
|
||||
* in 2019 by Steele and Vigna), and then applies a mixing function
|
||||
* identified by Doug Lea. Testing has confirmed that the LXM algorithm
|
||||
* is far superior in quality to the SplitMix algorithm (2014) used by
|
||||
* SplittableRandom.
|
||||
*
|
||||
* Each class with a name of the form {@code L}<i>p</i>{@code X}<i>q</i>{@code
|
||||
* SomethingRandom} uses some specific member of the LXM family of random number
|
||||
* algorithms; "LXM" is short for "LCG, Xorshift, Mixing function". Every LXM
|
||||
* generator consists of two subgenerators; one is an LCG (Linear Congruential
|
||||
* Generator) and the other is an Xorshift generator. Each output of an LXM
|
||||
* generator is the result of combining state from the LCG with state from the
|
||||
* Xorshift generator by using a Mixing function (and then the state of the LCG
|
||||
* and the state of the Xorshift generator are advanced).
|
||||
*
|
||||
* <p> The LCG subgenerator has an update step of the form {@code s = m*s + a},
|
||||
* where {@code s}, {@code m}, and {@code a} are all binary integers of the same
|
||||
* size, each having <i>p</i> bits; {@code s} is the mutable state, the
|
||||
* multiplier {@code m} is fixed (the same for all instances of a class) and the
|
||||
* addend {@code a} is a parameter (a final field of the instance). The
|
||||
* parameter {@code a} is required to be odd (this allows the LCG to have the
|
||||
* maximal period, namely 2<sup><i>p</i></sup>); therefore there are
|
||||
* 2<sup><i>p</i>−1</sup> distinct choices of parameter. (When the size of
|
||||
* {@code s} is 128 bits, then we use the name "{@code sh}" below to refer to
|
||||
* the high half of {@code s}, that is, the high-order 64 bits of {@code s}.)
|
||||
*
|
||||
* <p> The Xorshift subgenerator can in principle be any one of a wide variety
|
||||
* of xorshift algorithms; in this package it is always either
|
||||
* {@code xoroshiro128}, {@code xoshiro256}, or {@code xoroshiro1024}, in each
|
||||
* case without any final scrambler such as "+" or "**". Its state consists of
|
||||
* some fixed number of {@code int} or {@code long} fields, generally named
|
||||
* {@code x0}, {@code x1}, and so on, which can take on any values provided that
|
||||
* they are not all zero. The collective total size of these fields is <i>q</i>
|
||||
* bits; therefore the period of this subgenerator is
|
||||
* 2<sup><i>q</i></sup>−1.
|
||||
*
|
||||
* <p> Because the periods 2<sup><i>p</i></sup> and 2<sup><i>q</i></sup>−1
|
||||
* of the two subgenerators are relatively prime, the <em>period</em> of any
|
||||
* single instance of an LXM algorithm (the length of the series of generated
|
||||
* values before it repeats) is the product of the periods of the subgenerators,
|
||||
* that is, 2<sup><i>p</i></sup>(2<sup><i>q</i></sup>−1), which is just
|
||||
* slightly smaller than 2<sup>(<i>p</i>+<i>q</i>)</sup>. Moreover, if two
|
||||
* distinct instances of the same LXM algorithm have different {@code a}
|
||||
* parameters, then their cycles of produced values will be different.
|
||||
*
|
||||
* <p> Generally speaking, among the "{@code L}<i>p</i>{@code X}<i>q</i>"
|
||||
* generators, the memory required for an instance is 2<i>p</i>+<i>q</i> bits.
|
||||
* (If <i>q</i> is 1024 or larger, the Xorshift state is represented as an
|
||||
* array, so additional bits are needed for the array object header, and another
|
||||
* 32 bits are used for an array index.)
|
||||
*
|
||||
* <p> Larger values of <i>p</i> imply a lower probability that two distinct
|
||||
* instances will traverse the same state cycle, and larger values of <i>q</i>
|
||||
* imply that the generator is equidistributed in a larger number of dimensions
|
||||
* (this is provably true when <i>p</i> is 64, and conjectured to be
|
||||
* approximately true when <i>p</i> is 128). A class with "{@code Mix}" in its
|
||||
* name uses a fairly strong mixing function with excellent avalanche
|
||||
* characteristics; a class with "{@code StarStar}" in its name uses a weaker
|
||||
* but faster mixing function.
|
||||
*
|
||||
* <p> The specific LXM algorithms used in this package are all chosen so that
|
||||
* the 64-bit values produced by the {@link RandomGenerator#nextLong nextLong()}
|
||||
* method are exactly equidistributed (for example, for any specific instance of
|
||||
* "L64X128MixRandom", over the course of its cycle each of the
|
||||
* 2<sup>64</sup> possible {@code long} values will be produced
|
||||
* 2<sup>128</sup>−1 times). The values produced by the
|
||||
* {@link RandomGenerator#nextInt nextInt()},
|
||||
* {@link RandomGenerator#nextFloat nextFloat()}, and
|
||||
* {@link RandomGenerator#nextDouble nextDouble()} methods are likewise exactly
|
||||
* equidistributed. Some algorithms provide a further guarantee of
|
||||
* <i>k</i>-equidistribution for some <i>k</i> greater than 1, meaning that successive
|
||||
* non-overlapping <i>k</i>-tuples of 64-bit values produced by the
|
||||
* {@link RandomGenerator#nextLong nextLong()} method are exactly
|
||||
* equidistributed (equally likely to occur).
|
||||
*
|
||||
* <p> The following table gives the period, state size (in bits), parameter
|
||||
* size (in bits, including the low-order bit that is required always to be a
|
||||
* 1-bit), and equidistribution property for each of the specific LXM algorithms
|
||||
* used in this package.
|
||||
*
|
||||
* <table style="padding:0px 20px 0px 0px">
|
||||
* <caption>Algorithm Properties</caption>
|
||||
* <thead>
|
||||
* <tr><th style="text-align:left">Implementation</th>
|
||||
* <th style="text-align:right">Period</th>
|
||||
* <th style="text-align:right">State size</th>
|
||||
* <th style="text-align:right">Parameter size</th>
|
||||
* <th style="text-align:left">{@link RandomGenerator#nextLong nextLong()} values are</th></tr>
|
||||
* </thead>
|
||||
* <tbody>
|
||||
* <tr><td style="text-align:left">"L32X64MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>32</sup>(2<sup>64</sup>−1)</td>
|
||||
* <td style="text-align:right">96 bits</td>
|
||||
* <td style="text-align:right">32 bits</td>
|
||||
* <td style="text-align:left"></td></tr>
|
||||
* <tr><td style="text-align:left">"L64X128StarStarRandom"</td>
|
||||
* <td style="text-align:right">2<sup>64</sup>(2<sup>128</sup>−1)</td>
|
||||
* <td style="text-align:right">192 bits</td>
|
||||
* <td style="text-align:right">64 bits</td>
|
||||
* <td style="text-align:left">2-equidistributed and exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X128MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>64</sup>(2<sup>128</sup>−1)</td>
|
||||
* <td style="text-align:right">192 bits</td>
|
||||
* <td style="text-align:right">64 bits</td>
|
||||
* <td style="text-align:left">2-equidistributed and exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X256MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>64</sup>(2<sup>256</sup>−1)</td>
|
||||
* <td style="text-align:right">320 bits</td>
|
||||
* <td style="text-align:right">64 bits</td>
|
||||
* <td style="text-align:left">4-equidistributed and exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X1024MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>64</sup>(2<sup>1024</sup>−1)</td>
|
||||
* <td style="text-align:right">1088 bits</td>
|
||||
* <td style="text-align:right">64 bits</td>
|
||||
* <td style="text-align:left">16-equidistributed and exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X128MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>128</sup>(2<sup>128</sup>−1)</td>
|
||||
* <td style="text-align:right">256 bits</td>
|
||||
* <td style="text-align:right">128 bits</td>
|
||||
* <td style="text-align:left">exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X256MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>128</sup>(2<sup>256</sup>−1)</td>
|
||||
* <td style="text-align:right">384 bits</td>
|
||||
* <td style="text-align:right">128 bits</td>
|
||||
* <td style="text-align:left">exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X1024MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>128</sup>(2<sup>1024</sup>−1)</td>
|
||||
* <td style="text-align:right">1152 bits</td>
|
||||
* <td style="text-align:right">128 bits</td>
|
||||
* <td style="text-align:left">exactly equidistributed</td></tr>
|
||||
* </tbody>
|
||||
* </table>
|
||||
*
|
||||
* For the algorithms listed above whose names begin with {@code L32}, the
|
||||
* 32-bit values produced by the {@link RandomGenerator#nextInt nextInt()}
|
||||
* method are exactly equidistributed, but the 64-bit values produced by the
|
||||
* {@link RandomGenerator#nextLong nextLong()} method are not exactly
|
||||
* equidistributed.
|
||||
*
|
||||
* <p> For the algorithms listed above whose names begin with {@code L64} or
|
||||
* {@code L128}, the 64-bit values produced by the
|
||||
* {@link RandomGenerator#nextLong nextLong()} method are <i>exactly
|
||||
* equidistributed</i>: every instance, over the course of its cycle, will
|
||||
* produce each of the 2<sup>64</sup> possible {@code long} values exactly the
|
||||
* same number of times. For example, any specific instance of
|
||||
* "L64X256MixRandom", over the course of its cycle each of the
|
||||
* 2<sup>64</sup> possible {@code long} values will be produced
|
||||
* 2<sup>256</sup>−1 times. The values produced by the
|
||||
* {@link RandomGenerator#nextInt nextInt()},
|
||||
* {@link RandomGenerator#nextFloat nextFloat()}, and
|
||||
* {@link RandomGenerator#nextDouble nextDouble()} methods are likewise exactly
|
||||
* equidistributed.
|
||||
*
|
||||
* <p> In addition, for the algorithms listed above whose names begin with
|
||||
* {@code L64}, the 64-bit values produced by the
|
||||
* {@link RandomGenerator#nextLong nextLong()} method are
|
||||
* <i>k</i>-equidistributed (but not exactly <i>k</i>-equidistributed). To be
|
||||
* precise, and taking "L64X256MixRandom" as an example: for
|
||||
* any specific instance of "L64X256MixRandom", consider the
|
||||
* (overlapping) length-4 subsequences of the cycle of 64-bit values produced by
|
||||
* {@link RandomGenerator#nextLong nextLong()} (assuming no other methods are
|
||||
* called that would affect the state). There are
|
||||
* 2<sup>64</sup>(2<sup>256</sup>−1) such subsequences, and each
|
||||
* subsequence, which consists of 4 64-bit values, can have one of
|
||||
* 2<sup>256</sup> values. Of those 2<sup>256</sup> subsequence values, nearly
|
||||
* all of them (2<sup>256</sup>%minus;2<sup>64</sup>) occur 2<sup>64</sup> times
|
||||
* over the course of the entire cycle, and the other 2<sup>64</sup> subsequence
|
||||
* values occur only 2<sup>64</sup>−1 times. So the ratio of the
|
||||
* probability of getting any specific one of the less common subsequence values
|
||||
* and the probability of getting any specific one of the more common
|
||||
* subsequence values is 1−2<sup>-64</sup>. (Note that the set of
|
||||
* 2<sup>64</sup> less-common subsequence values will differ from one instance
|
||||
* of "L64X256MixRandom" to another, as a function of the
|
||||
* additive parameter of the LCG.) The values produced by the
|
||||
* {@link RandomGenerator#nextInt nextInt()},
|
||||
* {@link RandomGenerator#nextFloat nextFloat()}, and
|
||||
* {@link RandomGenerator#nextDouble nextDouble()} methods are likewise
|
||||
* 4-equidistributed (but not exactly 4-equidistributed).
|
||||
*
|
||||
* <p> The next table gives the LCG multiplier value, the name of the specific
|
||||
* Xorshift algorithm used, the specific numeric parameters for that Xorshift
|
||||
* algorithm, and the mixing function for each of the specific LXM algorithms
|
||||
* used in this package. (Note that the multiplier used for the 128-bit LCG
|
||||
* cases is 65 bits wide, so the constant {@code 0x1d605bbb58c8abbfdL} shown in
|
||||
* the table cannot actually be used in code; instead, only the 64 low-order
|
||||
* bits {@code 0xd605bbb58c8abbfdL} are represented in the source code, and the
|
||||
* missing 1-bit is handled through special coding of the multiply-add algorithm
|
||||
* used in the LCG.)
|
||||
*
|
||||
* <table style="padding:0px 20px 0px 0px">
|
||||
* <caption>LXM Multipliers</caption>
|
||||
* <thead>
|
||||
* <tr><th style="text-align:left">Implementation</th>
|
||||
* <th style="text-align:right">LCG multiplier {@code m}</th>
|
||||
* <th style="text-align:left">Xorshift algorithm</th>
|
||||
* <th style="text-align:left">Xorshift parameters</th>
|
||||
* <th style="text-align:left">Mixing function</th></tr>
|
||||
* </thead>
|
||||
* <tbody>
|
||||
* <tr><td style="text-align:left">"L32X64MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0xadb4a92d}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro64}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (26, 9, 13)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X128StarStarRandom" </td>
|
||||
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (24, 16, 37)}</td>
|
||||
* <td style="text-align:left">{@code Long.rotateLeft((s+x0)* 5, 7) * 9}</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X128MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (24, 16, 37)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X256MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
|
||||
* <td style="text-align:left">{@code xoshiro256}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (17, 45)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X1024MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro1024}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (25, 27, 36)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X128MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (24, 16, 37)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (sh+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X256MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
|
||||
* <td style="text-align:left">{@code xoshiro256}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (17, 45)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (sh+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X1024MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro1024}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (25, 27, 36)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (sh+x0)}</td></tr>
|
||||
* </tbody>
|
||||
* </table>
|
||||
*
|
||||
* @since 17
|
||||
*/
|
||||
package java.util.random;
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue