mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-27 14:54:52 +02:00
8248862: Implement Enhanced Pseudo-Random Number Generators
Reviewed-by: darcy
This commit is contained in:
parent
39719da9d1
commit
a0ec2cb289
27 changed files with 11384 additions and 1772 deletions
|
@ -25,11 +25,13 @@
|
|||
|
||||
package java.security;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.util.*;
|
||||
import java.util.random.RandomGenerator;
|
||||
import java.util.regex.*;
|
||||
|
||||
import java.security.Provider.Service;
|
||||
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
import sun.security.jca.*;
|
||||
import sun.security.jca.GetInstance.Instance;
|
||||
import sun.security.provider.SunEntries;
|
||||
|
@ -147,6 +149,10 @@ import sun.security.util.Debug;
|
|||
* @since 1.1
|
||||
*/
|
||||
|
||||
@RandomGeneratorProperties(
|
||||
name = "SecureRandom",
|
||||
isStochastic = true
|
||||
)
|
||||
public class SecureRandom extends java.util.Random {
|
||||
|
||||
private static final Debug pdebug =
|
||||
|
|
|
@ -24,21 +24,26 @@
|
|||
*/
|
||||
|
||||
package java.util;
|
||||
|
||||
import java.io.*;
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.function.DoubleConsumer;
|
||||
import java.util.function.IntConsumer;
|
||||
import java.util.function.LongConsumer;
|
||||
import java.util.stream.DoubleStream;
|
||||
import java.util.stream.IntStream;
|
||||
import java.util.stream.LongStream;
|
||||
import java.util.stream.StreamSupport;
|
||||
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSpliteratorGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
import jdk.internal.util.random.RandomSupport.RandomIntsSpliterator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomLongsSpliterator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomDoublesSpliterator;
|
||||
import static jdk.internal.util.random.RandomSupport.*;
|
||||
|
||||
import jdk.internal.misc.Unsafe;
|
||||
|
||||
/**
|
||||
* An instance of this class is used to generate a stream of
|
||||
* pseudorandom numbers. The class uses a 48-bit seed, which is
|
||||
* pseudorandom numbers; its period is only 2<sup>48</sup>.
|
||||
* The class uses a 48-bit seed, which is
|
||||
* modified using a linear congruential formula. (See Donald E. Knuth,
|
||||
* <cite>The Art of Computer Programming, Volume 2, Third
|
||||
* edition: Seminumerical Algorithms</cite>, Section 3.2.1.)
|
||||
|
@ -74,7 +79,14 @@ import jdk.internal.misc.Unsafe;
|
|||
* @author Frank Yellin
|
||||
* @since 1.0
|
||||
*/
|
||||
public class Random implements java.io.Serializable {
|
||||
@SuppressWarnings("exports")
|
||||
@RandomGeneratorProperties(
|
||||
name = "Random",
|
||||
i = 48, j = 0, k = 0,
|
||||
equidistribution = 0
|
||||
)
|
||||
public class Random extends AbstractSpliteratorGenerator
|
||||
implements java.io.Serializable {
|
||||
/** use serialVersionUID from JDK 1.1 for interoperability */
|
||||
@java.io.Serial
|
||||
static final long serialVersionUID = 3905348978240129619L;
|
||||
|
@ -92,11 +104,6 @@ public class Random implements java.io.Serializable {
|
|||
|
||||
private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
|
||||
|
||||
// IllegalArgumentException messages
|
||||
static final String BadBound = "bound must be positive";
|
||||
static final String BadRange = "bound must be greater than origin";
|
||||
static final String BadSize = "size must be non-negative";
|
||||
|
||||
/**
|
||||
* Creates a new random number generator. This constructor sets
|
||||
* the seed of the random number generator to a value very likely
|
||||
|
@ -125,10 +132,11 @@ public class Random implements java.io.Serializable {
|
|||
* The seed is the initial value of the internal state of the pseudorandom
|
||||
* number generator which is maintained by method {@link #next}.
|
||||
*
|
||||
* <p>The invocation {@code new Random(seed)} is equivalent to:
|
||||
* <pre> {@code
|
||||
* @implSpec The invocation {@code new Random(seed)} is equivalent to:
|
||||
* <pre>{@code
|
||||
* Random rnd = new Random();
|
||||
* rnd.setSeed(seed);}</pre>
|
||||
* rnd.setSeed(seed);
|
||||
* }</pre>
|
||||
*
|
||||
* @param seed the initial seed
|
||||
* @see #setSeed(long)
|
||||
|
@ -211,9 +219,9 @@ public class Random implements java.io.Serializable {
|
|||
* byte array. The number of random bytes produced is equal to
|
||||
* the length of the byte array.
|
||||
*
|
||||
* <p>The method {@code nextBytes} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* @implSpec The method {@code nextBytes} is
|
||||
* implemented by class {@code Random} as if by:
|
||||
* <pre>{@code
|
||||
* public void nextBytes(byte[] bytes) {
|
||||
* for (int i = 0; i < bytes.length; )
|
||||
* for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
|
||||
|
@ -225,6 +233,7 @@ public class Random implements java.io.Serializable {
|
|||
* @throws NullPointerException if the byte array is null
|
||||
* @since 1.1
|
||||
*/
|
||||
@Override
|
||||
public void nextBytes(byte[] bytes) {
|
||||
for (int i = 0, len = bytes.length; i < len; )
|
||||
for (int rnd = nextInt(),
|
||||
|
@ -233,82 +242,6 @@ public class Random implements java.io.Serializable {
|
|||
bytes[i++] = (byte)rnd;
|
||||
}
|
||||
|
||||
/**
|
||||
* The form of nextLong used by LongStream Spliterators. If
|
||||
* origin is greater than bound, acts as unbounded form of
|
||||
* nextLong, else as bounded form.
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final long internalNextLong(long origin, long bound) {
|
||||
long r = nextLong();
|
||||
if (origin < bound) {
|
||||
long n = bound - origin, m = n - 1;
|
||||
if ((n & m) == 0L) // power of two
|
||||
r = (r & m) + origin;
|
||||
else if (n > 0L) { // reject over-represented candidates
|
||||
for (long u = r >>> 1; // ensure nonnegative
|
||||
u + m - (r = u % n) < 0L; // rejection check
|
||||
u = nextLong() >>> 1) // retry
|
||||
;
|
||||
r += origin;
|
||||
}
|
||||
else { // range not representable as long
|
||||
while (r < origin || r >= bound)
|
||||
r = nextLong();
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* The form of nextInt used by IntStream Spliterators.
|
||||
* For the unbounded case: uses nextInt().
|
||||
* For the bounded case with representable range: uses nextInt(int bound)
|
||||
* For the bounded case with unrepresentable range: uses nextInt()
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final int internalNextInt(int origin, int bound) {
|
||||
if (origin < bound) {
|
||||
int n = bound - origin;
|
||||
if (n > 0) {
|
||||
return nextInt(n) + origin;
|
||||
}
|
||||
else { // range not representable as int
|
||||
int r;
|
||||
do {
|
||||
r = nextInt();
|
||||
} while (r < origin || r >= bound);
|
||||
return r;
|
||||
}
|
||||
}
|
||||
else {
|
||||
return nextInt();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* The form of nextDouble used by DoubleStream Spliterators.
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final double internalNextDouble(double origin, double bound) {
|
||||
double r = nextDouble();
|
||||
if (origin < bound) {
|
||||
r = r * (bound - origin) + origin;
|
||||
if (r >= bound) // correct for rounding
|
||||
r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the next pseudorandom, uniformly distributed {@code int}
|
||||
* value from this random number generator's sequence. The general
|
||||
|
@ -316,9 +249,9 @@ public class Random implements java.io.Serializable {
|
|||
* pseudorandomly generated and returned. All 2<sup>32</sup> possible
|
||||
* {@code int} values are produced with (approximately) equal probability.
|
||||
*
|
||||
* <p>The method {@code nextInt} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* @implSpec The method {@code nextInt} is
|
||||
* implemented by class {@code Random} as if by:
|
||||
* <pre>{@code
|
||||
* public int nextInt() {
|
||||
* return next(32);
|
||||
* }}</pre>
|
||||
|
@ -326,6 +259,7 @@ public class Random implements java.io.Serializable {
|
|||
* @return the next pseudorandom, uniformly distributed {@code int}
|
||||
* value from this random number generator's sequence
|
||||
*/
|
||||
@Override
|
||||
public int nextInt() {
|
||||
return next(32);
|
||||
}
|
||||
|
@ -337,9 +271,11 @@ public class Random implements java.io.Serializable {
|
|||
* {@code nextInt} is that one {@code int} value in the specified range
|
||||
* is pseudorandomly generated and returned. All {@code bound} possible
|
||||
* {@code int} values are produced with (approximately) equal
|
||||
* probability. The method {@code nextInt(int bound)} is implemented by
|
||||
* probability.
|
||||
*
|
||||
* @implSpec The method {@code nextInt(int bound)} is implemented by
|
||||
* class {@code Random} as if by:
|
||||
* <pre> {@code
|
||||
* <pre>{@code
|
||||
* public int nextInt(int bound) {
|
||||
* if (bound <= 0)
|
||||
* throw new IllegalArgumentException("bound must be positive");
|
||||
|
@ -384,15 +320,15 @@ public class Random implements java.io.Serializable {
|
|||
* @throws IllegalArgumentException if bound is not positive
|
||||
* @since 1.2
|
||||
*/
|
||||
@Override
|
||||
public int nextInt(int bound) {
|
||||
if (bound <= 0)
|
||||
throw new IllegalArgumentException(BadBound);
|
||||
|
||||
throw new IllegalArgumentException(BAD_BOUND);
|
||||
int r = next(31);
|
||||
int m = bound - 1;
|
||||
if ((bound & m) == 0) // i.e., bound is a power of 2
|
||||
r = (int)((bound * (long)r) >> 31);
|
||||
else {
|
||||
else { // reject over-represented candidates
|
||||
for (int u = r;
|
||||
u - (r = u % bound) + m < 0;
|
||||
u = next(31))
|
||||
|
@ -400,16 +336,15 @@ public class Random implements java.io.Serializable {
|
|||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the next pseudorandom, uniformly distributed {@code long}
|
||||
* value from this random number generator's sequence. The general
|
||||
* contract of {@code nextLong} is that one {@code long} value is
|
||||
* pseudorandomly generated and returned.
|
||||
*
|
||||
* <p>The method {@code nextLong} is implemented by class {@code Random}
|
||||
* @implSpec The method {@code nextLong} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* <pre>{@code
|
||||
* public long nextLong() {
|
||||
* return ((long)next(32) << 32) + next(32);
|
||||
* }}</pre>
|
||||
|
@ -420,6 +355,7 @@ public class Random implements java.io.Serializable {
|
|||
* @return the next pseudorandom, uniformly distributed {@code long}
|
||||
* value from this random number generator's sequence
|
||||
*/
|
||||
@Override
|
||||
public long nextLong() {
|
||||
// it's okay that the bottom word remains signed.
|
||||
return ((long)(next(32)) << 32) + next(32);
|
||||
|
@ -433,9 +369,9 @@ public class Random implements java.io.Serializable {
|
|||
* values {@code true} and {@code false} are produced with
|
||||
* (approximately) equal probability.
|
||||
*
|
||||
* <p>The method {@code nextBoolean} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* @implSpec The method {@code nextBoolean} is implemented by class
|
||||
* {@code Random} as if by:
|
||||
* <pre>{@code
|
||||
* public boolean nextBoolean() {
|
||||
* return next(1) != 0;
|
||||
* }}</pre>
|
||||
|
@ -445,6 +381,7 @@ public class Random implements java.io.Serializable {
|
|||
* sequence
|
||||
* @since 1.2
|
||||
*/
|
||||
@Override
|
||||
public boolean nextBoolean() {
|
||||
return next(1) != 0;
|
||||
}
|
||||
|
@ -462,21 +399,19 @@ public class Random implements java.io.Serializable {
|
|||
* where <i>m</i> is a positive integer less than 2<sup>24</sup>, are
|
||||
* produced with (approximately) equal probability.
|
||||
*
|
||||
* <p>The method {@code nextFloat} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* @implSpec The method {@code nextFloat} is implemented by class
|
||||
* {@code Random} as if by:
|
||||
* <pre>{@code
|
||||
* public float nextFloat() {
|
||||
* return next(24) / ((float)(1 << 24));
|
||||
* }}</pre>
|
||||
*
|
||||
* <p>The hedge "approximately" is used in the foregoing description only
|
||||
* because the next method is only approximately an unbiased source of
|
||||
* independently chosen bits. If it were a perfect source of randomly
|
||||
* chosen bits, then the algorithm shown would choose {@code float}
|
||||
* values from the stated range with perfect uniformity.<p>
|
||||
* [In early versions of Java, the result was incorrectly calculated as:
|
||||
* <pre> {@code
|
||||
* return next(30) / ((float)(1 << 30));}</pre>
|
||||
* <pre> {@code return next(30) / ((float)(1 << 30));}</pre>
|
||||
* This might seem to be equivalent, if not better, but in fact it
|
||||
* introduced a slight nonuniformity because of the bias in the rounding
|
||||
* of floating-point numbers: it was slightly more likely that the
|
||||
|
@ -486,6 +421,7 @@ public class Random implements java.io.Serializable {
|
|||
* value between {@code 0.0} and {@code 1.0} from this
|
||||
* random number generator's sequence
|
||||
*/
|
||||
@Override
|
||||
public float nextFloat() {
|
||||
return next(24) / ((float)(1 << 24));
|
||||
}
|
||||
|
@ -500,35 +436,33 @@ public class Random implements java.io.Serializable {
|
|||
* range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
|
||||
* pseudorandomly generated and returned.
|
||||
*
|
||||
* <p>The method {@code nextDouble} is implemented by class {@code Random}
|
||||
* as if by:
|
||||
* <pre> {@code
|
||||
* @implSpec The method {@code nextDouble} is implemented by class
|
||||
* {@code Random} as if by:
|
||||
* <pre>{@code
|
||||
* public double nextDouble() {
|
||||
* return (((long)next(26) << 27) + next(27))
|
||||
* / (double)(1L << 53);
|
||||
* }}</pre>
|
||||
*
|
||||
* <p>The hedge "approximately" is used in the foregoing description only
|
||||
* because the {@code next} method is only approximately an unbiased
|
||||
* source of independently chosen bits. If it were a perfect source of
|
||||
* randomly chosen bits, then the algorithm shown would choose
|
||||
* {@code double} values from the stated range with perfect uniformity.
|
||||
* because the {@code next} method is only approximately an unbiased source
|
||||
* of independently chosen bits. If it were a perfect source of randomly
|
||||
* chosen bits, then the algorithm shown would choose {@code double} values
|
||||
* from the stated range with perfect uniformity.
|
||||
* <p>[In early versions of Java, the result was incorrectly calculated as:
|
||||
* <pre> {@code
|
||||
* return (((long)next(27) << 27) + next(27))
|
||||
* / (double)(1L << 54);}</pre>
|
||||
* <pre> {@code return (((long)next(27) << 27) + next(27)) / (double)(1L << 54);}</pre>
|
||||
* This might seem to be equivalent, if not better, but in fact it
|
||||
* introduced a large nonuniformity because of the bias in the rounding
|
||||
* of floating-point numbers: it was three times as likely that the
|
||||
* low-order bit of the significand would be 0 than that it would be 1!
|
||||
* This nonuniformity probably doesn't matter much in practice, but we
|
||||
* strive for perfection.]
|
||||
* introduced a large nonuniformity because of the bias in the rounding of
|
||||
* floating-point numbers: it was three times as likely that the low-order
|
||||
* bit of the significand would be 0 than that it would be 1! This
|
||||
* nonuniformity probably doesn't matter much in practice, but we strive
|
||||
* for perfection.]
|
||||
*
|
||||
* @return the next pseudorandom, uniformly distributed {@code double}
|
||||
* value between {@code 0.0} and {@code 1.0} from this
|
||||
* random number generator's sequence
|
||||
* @see Math#random
|
||||
*/
|
||||
@Override
|
||||
public double nextDouble() {
|
||||
return (((long)(next(26)) << 27) + next(27)) * DOUBLE_UNIT;
|
||||
}
|
||||
|
@ -546,9 +480,9 @@ public class Random implements java.io.Serializable {
|
|||
* normal distribution with mean {@code 0.0} and standard deviation
|
||||
* {@code 1.0}, is pseudorandomly generated and returned.
|
||||
*
|
||||
* <p>The method {@code nextGaussian} is implemented by class
|
||||
* @implSpec The method {@code nextGaussian} is implemented by class
|
||||
* {@code Random} as if by a threadsafe version of the following:
|
||||
* <pre> {@code
|
||||
* <pre>{@code
|
||||
* private double nextNextGaussian;
|
||||
* private boolean haveNextNextGaussian = false;
|
||||
*
|
||||
|
@ -569,6 +503,7 @@ public class Random implements java.io.Serializable {
|
|||
* return v1 * multiplier;
|
||||
* }
|
||||
* }}</pre>
|
||||
*
|
||||
* This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
|
||||
* G. Marsaglia, as described by Donald E. Knuth in <cite>The Art of
|
||||
* Computer Programming, Volume 2, third edition: Seminumerical Algorithms</cite>,
|
||||
|
@ -581,6 +516,7 @@ public class Random implements java.io.Serializable {
|
|||
* standard deviation {@code 1.0} from this random number
|
||||
* generator's sequence
|
||||
*/
|
||||
@Override
|
||||
public synchronized double nextGaussian() {
|
||||
// See Knuth, TAOCP, Vol. 2, 3rd edition, Section 3.4.1 Algorithm C.
|
||||
if (haveNextNextGaussian) {
|
||||
|
@ -600,8 +536,110 @@ public class Random implements java.io.Serializable {
|
|||
}
|
||||
}
|
||||
|
||||
// stream methods, coded in a way intended to better isolate for
|
||||
// maintenance purposes the small differences across forms.
|
||||
/**
|
||||
* Serializable fields for Random.
|
||||
*
|
||||
* @serialField seed long
|
||||
* seed for random computations
|
||||
* @serialField nextNextGaussian double
|
||||
* next Gaussian to be returned
|
||||
* @serialField haveNextNextGaussian boolean
|
||||
* nextNextGaussian is valid
|
||||
*/
|
||||
@java.io.Serial
|
||||
private static final ObjectStreamField[] serialPersistentFields = {
|
||||
new ObjectStreamField("seed", Long.TYPE),
|
||||
new ObjectStreamField("nextNextGaussian", Double.TYPE),
|
||||
new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
|
||||
};
|
||||
|
||||
/**
|
||||
* Reconstitute the {@code Random} instance from a stream (that is,
|
||||
* deserialize it).
|
||||
*
|
||||
* @param s the {@code ObjectInputStream} from which data is read
|
||||
*
|
||||
* @throws IOException if an I/O error occurs
|
||||
* @throws ClassNotFoundException if a serialized class cannot be loaded
|
||||
*/
|
||||
@java.io.Serial
|
||||
private void readObject(java.io.ObjectInputStream s)
|
||||
throws java.io.IOException, ClassNotFoundException {
|
||||
|
||||
ObjectInputStream.GetField fields = s.readFields();
|
||||
|
||||
// The seed is read in as {@code long} for
|
||||
// historical reasons, but it is converted to an AtomicLong.
|
||||
long seedVal = fields.get("seed", -1L);
|
||||
if (seedVal < 0)
|
||||
throw new java.io.StreamCorruptedException(
|
||||
"Random: invalid seed");
|
||||
resetSeed(seedVal);
|
||||
nextNextGaussian = fields.get("nextNextGaussian", 0.0);
|
||||
haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Save the {@code Random} instance to a stream.
|
||||
*
|
||||
* @param s the {@code ObjectOutputStream} to which data is written
|
||||
*
|
||||
* @throws IOException if an I/O error occurs
|
||||
*/
|
||||
@java.io.Serial
|
||||
private synchronized void writeObject(ObjectOutputStream s)
|
||||
throws IOException {
|
||||
|
||||
// set the values of the Serializable fields
|
||||
ObjectOutputStream.PutField fields = s.putFields();
|
||||
|
||||
// The seed is serialized as a long for historical reasons.
|
||||
fields.put("seed", seed.get());
|
||||
fields.put("nextNextGaussian", nextNextGaussian);
|
||||
fields.put("haveNextNextGaussian", haveNextNextGaussian);
|
||||
|
||||
// save them
|
||||
s.writeFields();
|
||||
}
|
||||
|
||||
// Support for resetting seed while deserializing
|
||||
private static final Unsafe unsafe = Unsafe.getUnsafe();
|
||||
private static final long seedOffset;
|
||||
static {
|
||||
try {
|
||||
seedOffset = unsafe.objectFieldOffset
|
||||
(Random.class.getDeclaredField("seed"));
|
||||
} catch (Exception ex) { throw new Error(ex); }
|
||||
}
|
||||
private void resetSeed(long seedVal) {
|
||||
unsafe.putReferenceVolatile(this, seedOffset, new AtomicLong(seedVal));
|
||||
}
|
||||
|
||||
// Methods required by class AbstractSpliteratorGenerator
|
||||
|
||||
/**
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfInt makeIntsSpliterator(long index, long fence, int origin, int bound) {
|
||||
return new RandomIntsSpliterator(this, index, fence, origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfLong makeLongsSpliterator(long index, long fence, long origin, long bound) {
|
||||
return new RandomLongsSpliterator(this, index, fence, origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfDouble makeDoublesSpliterator(long index, long fence, double origin, double bound) {
|
||||
return new RandomDoublesSpliterator(this, index, fence, origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a stream producing the given {@code streamSize} number of
|
||||
|
@ -616,13 +654,9 @@ public class Random implements java.io.Serializable {
|
|||
* less than zero
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, streamSize, Integer.MAX_VALUE, 0),
|
||||
false);
|
||||
return super.ints(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -638,11 +672,9 @@ public class Random implements java.io.Serializable {
|
|||
* @return a stream of pseudorandom {@code int} values
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints() {
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
|
||||
false);
|
||||
return super.ints();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -677,16 +709,9 @@ public class Random implements java.io.Serializable {
|
|||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
public IntStream ints(long streamSize, int randomNumberOrigin,
|
||||
int randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public IntStream ints(long streamSize, int randomNumberOrigin, int randomNumberBound) {
|
||||
return super.ints(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -722,13 +747,9 @@ public class Random implements java.io.Serializable {
|
|||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
return super.ints(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -744,13 +765,9 @@ public class Random implements java.io.Serializable {
|
|||
* less than zero
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, streamSize, Long.MAX_VALUE, 0L),
|
||||
false);
|
||||
return super.longs(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -766,11 +783,9 @@ public class Random implements java.io.Serializable {
|
|||
* @return a stream of pseudorandom {@code long} values
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs() {
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
|
||||
false);
|
||||
return super.longs();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -810,16 +825,9 @@ public class Random implements java.io.Serializable {
|
|||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
public LongStream longs(long streamSize, long randomNumberOrigin,
|
||||
long randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public LongStream longs(long streamSize, long randomNumberOrigin, long randomNumberBound) {
|
||||
return super.longs(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -860,13 +868,9 @@ public class Random implements java.io.Serializable {
|
|||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
return super.longs(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -883,13 +887,9 @@ public class Random implements java.io.Serializable {
|
|||
* less than zero
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, streamSize, Double.MAX_VALUE, 0.0),
|
||||
false);
|
||||
return super.doubles(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -906,11 +906,9 @@ public class Random implements java.io.Serializable {
|
|||
* @return a stream of pseudorandom {@code double} values
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles() {
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
|
||||
false);
|
||||
return super.doubles();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -934,22 +932,15 @@ public class Random implements java.io.Serializable {
|
|||
* @param randomNumberBound the bound (exclusive) of each random value
|
||||
* @return a stream of pseudorandom {@code double} values,
|
||||
* each with the given origin (inclusive) and bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code streamSize} is
|
||||
* less than zero
|
||||
* @throws IllegalArgumentException if {@code randomNumberOrigin}
|
||||
* @throws IllegalArgumentException if {@code streamSize} is less than zero,
|
||||
* or {@code randomNumberOrigin} is not finite,
|
||||
* or {@code randomNumberBound} is not finite, or {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
public DoubleStream doubles(long streamSize, double randomNumberOrigin,
|
||||
double randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BadSize);
|
||||
if (!(randomNumberOrigin < randomNumberBound))
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public DoubleStream doubles(long streamSize, double randomNumberOrigin, double randomNumberBound) {
|
||||
return super.doubles(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -979,260 +970,8 @@ public class Random implements java.io.Serializable {
|
|||
* is greater than or equal to {@code randomNumberBound}
|
||||
* @since 1.8
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
|
||||
if (!(randomNumberOrigin < randomNumberBound))
|
||||
throw new IllegalArgumentException(BadRange);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for int streams. We multiplex the four int
|
||||
* versions into one class by treating a bound less than origin as
|
||||
* unbounded, and also by treating "infinite" as equivalent to
|
||||
* Long.MAX_VALUE. For splits, it uses the standard divide-by-two
|
||||
* approach. The long and double versions of this class are
|
||||
* identical except for types.
|
||||
*/
|
||||
static final class RandomIntsSpliterator implements Spliterator.OfInt {
|
||||
final Random rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final int origin;
|
||||
final int bound;
|
||||
RandomIntsSpliterator(Random rng, long index, long fence,
|
||||
int origin, int bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomIntsSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomIntsSpliterator(rng, i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(IntConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextInt(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(IntConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
Random r = rng;
|
||||
int o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextInt(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for long streams.
|
||||
*/
|
||||
static final class RandomLongsSpliterator implements Spliterator.OfLong {
|
||||
final Random rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final long origin;
|
||||
final long bound;
|
||||
RandomLongsSpliterator(Random rng, long index, long fence,
|
||||
long origin, long bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomLongsSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomLongsSpliterator(rng, i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(LongConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextLong(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(LongConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
Random r = rng;
|
||||
long o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextLong(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for double streams.
|
||||
*/
|
||||
static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
|
||||
final Random rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final double origin;
|
||||
final double bound;
|
||||
RandomDoublesSpliterator(Random rng, long index, long fence,
|
||||
double origin, double bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomDoublesSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomDoublesSpliterator(rng, i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(DoubleConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextDouble(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(DoubleConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
Random r = rng;
|
||||
double o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextDouble(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Serializable fields for Random.
|
||||
*
|
||||
* @serialField seed long
|
||||
* seed for random computations
|
||||
* @serialField nextNextGaussian double
|
||||
* next Gaussian to be returned
|
||||
* @serialField haveNextNextGaussian boolean
|
||||
* nextNextGaussian is valid
|
||||
*/
|
||||
@java.io.Serial
|
||||
private static final ObjectStreamField[] serialPersistentFields = {
|
||||
new ObjectStreamField("seed", Long.TYPE),
|
||||
new ObjectStreamField("nextNextGaussian", Double.TYPE),
|
||||
new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
|
||||
};
|
||||
|
||||
/**
|
||||
* Reconstitute the {@code Random} instance from a stream (that is,
|
||||
* deserialize it).
|
||||
*
|
||||
* @param s the {@code ObjectInputStream} from which data is read
|
||||
* @throws IOException if an I/O error occurs
|
||||
* @throws ClassNotFoundException if a serialized class cannot be loaded
|
||||
*/
|
||||
@java.io.Serial
|
||||
private void readObject(java.io.ObjectInputStream s)
|
||||
throws java.io.IOException, ClassNotFoundException {
|
||||
|
||||
ObjectInputStream.GetField fields = s.readFields();
|
||||
|
||||
// The seed is read in as {@code long} for
|
||||
// historical reasons, but it is converted to an AtomicLong.
|
||||
long seedVal = fields.get("seed", -1L);
|
||||
if (seedVal < 0)
|
||||
throw new java.io.StreamCorruptedException(
|
||||
"Random: invalid seed");
|
||||
resetSeed(seedVal);
|
||||
nextNextGaussian = fields.get("nextNextGaussian", 0.0);
|
||||
haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Save the {@code Random} instance to a stream.
|
||||
*
|
||||
* @param s the {@code ObjectOutputStream} to which data is written
|
||||
* @throws IOException if an I/O error occurs
|
||||
*/
|
||||
@java.io.Serial
|
||||
private synchronized void writeObject(ObjectOutputStream s)
|
||||
throws IOException {
|
||||
|
||||
// set the values of the Serializable fields
|
||||
ObjectOutputStream.PutField fields = s.putFields();
|
||||
|
||||
// The seed is serialized as a long for historical reasons.
|
||||
fields.put("seed", seed.get());
|
||||
fields.put("nextNextGaussian", nextNextGaussian);
|
||||
fields.put("haveNextNextGaussian", haveNextNextGaussian);
|
||||
|
||||
// save them
|
||||
s.writeFields();
|
||||
}
|
||||
|
||||
// Support for resetting seed while deserializing
|
||||
private static final Unsafe unsafe = Unsafe.getUnsafe();
|
||||
private static final long seedOffset;
|
||||
static {
|
||||
try {
|
||||
seedOffset = unsafe.objectFieldOffset
|
||||
(Random.class.getDeclaredField("seed"));
|
||||
} catch (Exception ex) { throw new Error(ex); }
|
||||
}
|
||||
private void resetSeed(long seedVal) {
|
||||
unsafe.putReferenceVolatile(this, seedOffset, new AtomicLong(seedVal));
|
||||
return super.doubles(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 2013, 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
|
@ -22,24 +22,24 @@
|
|||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package java.util;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.function.DoubleConsumer;
|
||||
import java.util.function.IntConsumer;
|
||||
import java.util.function.LongConsumer;
|
||||
import java.util.stream.DoubleStream;
|
||||
import java.util.stream.IntStream;
|
||||
import java.util.stream.LongStream;
|
||||
import java.util.stream.StreamSupport;
|
||||
import java.util.stream.Stream;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSplittableGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A generator of uniform pseudorandom values applicable for use in
|
||||
* (among other contexts) isolated parallel computations that may
|
||||
* generate subtasks. Class {@code SplittableRandom} supports methods for
|
||||
* producing pseudorandom numbers of type {@code int}, {@code long},
|
||||
* and {@code double} with similar usages as for class
|
||||
* A generator of uniform pseudorandom values (with period 2<sup>64</sup>)
|
||||
* applicable for use in (among other contexts) isolated parallel
|
||||
* computations that may generate subtasks. Class {@code SplittableRandom}
|
||||
* supports methods for producing pseudorandom numbers of type {@code int},
|
||||
* {@code long}, and {@code double} with similar usages as for class
|
||||
* {@link java.util.Random} but differs in the following ways:
|
||||
*
|
||||
* <ul>
|
||||
|
@ -51,16 +51,16 @@ import java.util.stream.StreamSupport;
|
|||
* 3.31.1</a>.) These tests validate only the methods for certain
|
||||
* types and ranges, but similar properties are expected to hold, at
|
||||
* least approximately, for others as well. The <em>period</em>
|
||||
* (length of any series of generated values before it repeats) is at
|
||||
* least 2<sup>64</sup>.
|
||||
* (length of any series of generated values before it repeats) is
|
||||
* 2<sup>64</sup>. </li>
|
||||
*
|
||||
* <li>Method {@link #split} constructs and returns a new
|
||||
* <li> Method {@link #split} constructs and returns a new
|
||||
* SplittableRandom instance that shares no mutable state with the
|
||||
* current instance. However, with very high probability, the
|
||||
* values collectively generated by the two objects have the same
|
||||
* statistical properties as if the same quantity of values were
|
||||
* generated by a single thread using a single {@code
|
||||
* SplittableRandom} object.
|
||||
* SplittableRandom} object. </li>
|
||||
*
|
||||
* <li>Instances of SplittableRandom are <em>not</em> thread-safe.
|
||||
* They are designed to be split, not shared, across threads. For
|
||||
|
@ -71,7 +71,7 @@ import java.util.stream.StreamSupport;
|
|||
*
|
||||
* <li>This class provides additional methods for generating random
|
||||
* streams, that employ the above techniques when used in {@code
|
||||
* stream.parallel()} mode.
|
||||
* stream.parallel()} mode.</li>
|
||||
*
|
||||
* </ul>
|
||||
*
|
||||
|
@ -80,13 +80,19 @@ import java.util.stream.StreamSupport;
|
|||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@systemProperty java.util.secureRandomSeed} is set to {@code true}.
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @author Guy Steele
|
||||
* @author Doug Lea
|
||||
* @since 1.8
|
||||
*/
|
||||
public final class SplittableRandom {
|
||||
@SuppressWarnings("exports")
|
||||
@RandomGeneratorProperties(
|
||||
name = "SplittableRandom",
|
||||
i = 64, j = 0, k = 0,
|
||||
equidistribution = 1
|
||||
)
|
||||
public final class SplittableRandom extends AbstractSplittableGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
|
@ -160,12 +166,6 @@ public final class SplittableRandom {
|
|||
*/
|
||||
private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
|
||||
|
||||
/**
|
||||
* The least non-zero value returned by nextDouble(). This value
|
||||
* is scaled by a random value of 53 bits to produce a result.
|
||||
*/
|
||||
private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
|
||||
|
||||
/**
|
||||
* The seed. Updated only via method nextSeed.
|
||||
*/
|
||||
|
@ -186,6 +186,7 @@ public final class SplittableRandom {
|
|||
|
||||
/**
|
||||
* Computes Stafford variant 13 of 64bit mix function.
|
||||
* http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
|
||||
*/
|
||||
private static long mix64(long z) {
|
||||
z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
|
||||
|
@ -195,6 +196,7 @@ public final class SplittableRandom {
|
|||
|
||||
/**
|
||||
* Returns the 32 high bits of Stafford variant 4 mix64 function as int.
|
||||
* http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
|
||||
*/
|
||||
private static int mix32(long z) {
|
||||
z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
|
||||
|
@ -203,6 +205,8 @@ public final class SplittableRandom {
|
|||
|
||||
/**
|
||||
* Returns the gamma value to use for a new split instance.
|
||||
* Uses the 64bit mix function from MurmurHash3.
|
||||
* https://github.com/aappleby/smhasher/wiki/MurmurHash3
|
||||
*/
|
||||
private static long mixGamma(long z) {
|
||||
z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
|
||||
|
@ -219,141 +223,10 @@ public final class SplittableRandom {
|
|||
return seed += gamma;
|
||||
}
|
||||
|
||||
// IllegalArgumentException messages
|
||||
static final String BAD_BOUND = "bound must be positive";
|
||||
static final String BAD_RANGE = "bound must be greater than origin";
|
||||
static final String BAD_SIZE = "size must be non-negative";
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen
|
||||
= new AtomicLong(mix64(System.currentTimeMillis()) ^
|
||||
mix64(System.nanoTime()));
|
||||
|
||||
// at end of <clinit> to survive static initialization circularity
|
||||
static {
|
||||
if (java.security.AccessController.doPrivileged(
|
||||
new java.security.PrivilegedAction<Boolean>() {
|
||||
public Boolean run() {
|
||||
return Boolean.getBoolean("java.util.secureRandomSeed");
|
||||
}})) {
|
||||
byte[] seedBytes = java.security.SecureRandom.getSeed(8);
|
||||
long s = (long)seedBytes[0] & 0xffL;
|
||||
for (int i = 1; i < 8; ++i)
|
||||
s = (s << 8) | ((long)seedBytes[i] & 0xffL);
|
||||
defaultGen.set(s);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Internal versions of nextX methods used by streams, as well as
|
||||
* the public nextX(origin, bound) methods. These exist mainly to
|
||||
* avoid the need for multiple versions of stream spliterators
|
||||
* across the different exported forms of streams.
|
||||
*/
|
||||
|
||||
/**
|
||||
* The form of nextLong used by LongStream Spliterators. If
|
||||
* origin is greater than bound, acts as unbounded form of
|
||||
* nextLong, else as bounded form.
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final long internalNextLong(long origin, long bound) {
|
||||
/*
|
||||
* Four Cases:
|
||||
*
|
||||
* 1. If the arguments indicate unbounded form, act as
|
||||
* nextLong().
|
||||
*
|
||||
* 2. If the range is an exact power of two, apply the
|
||||
* associated bit mask.
|
||||
*
|
||||
* 3. If the range is positive, loop to avoid potential bias
|
||||
* when the implicit nextLong() bound (2<sup>64</sup>) is not
|
||||
* evenly divisible by the range. The loop rejects candidates
|
||||
* computed from otherwise over-represented values. The
|
||||
* expected number of iterations under an ideal generator
|
||||
* varies from 1 to 2, depending on the bound. The loop itself
|
||||
* takes an unlovable form. Because the first candidate is
|
||||
* already available, we need a break-in-the-middle
|
||||
* construction, which is concisely but cryptically performed
|
||||
* within the while-condition of a body-less for loop.
|
||||
*
|
||||
* 4. Otherwise, the range cannot be represented as a positive
|
||||
* long. The loop repeatedly generates unbounded longs until
|
||||
* obtaining a candidate meeting constraints (with an expected
|
||||
* number of iterations of less than two).
|
||||
*/
|
||||
|
||||
long r = mix64(nextSeed());
|
||||
if (origin < bound) {
|
||||
long n = bound - origin, m = n - 1;
|
||||
if ((n & m) == 0L) // power of two
|
||||
r = (r & m) + origin;
|
||||
else if (n > 0L) { // reject over-represented candidates
|
||||
for (long u = r >>> 1; // ensure nonnegative
|
||||
u + m - (r = u % n) < 0L; // rejection check
|
||||
u = mix64(nextSeed()) >>> 1) // retry
|
||||
;
|
||||
r += origin;
|
||||
}
|
||||
else { // range not representable as long
|
||||
while (r < origin || r >= bound)
|
||||
r = mix64(nextSeed());
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* The form of nextInt used by IntStream Spliterators.
|
||||
* Exactly the same as long version, except for types.
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final int internalNextInt(int origin, int bound) {
|
||||
int r = mix32(nextSeed());
|
||||
if (origin < bound) {
|
||||
int n = bound - origin, m = n - 1;
|
||||
if ((n & m) == 0)
|
||||
r = (r & m) + origin;
|
||||
else if (n > 0) {
|
||||
for (int u = r >>> 1;
|
||||
u + m - (r = u % n) < 0;
|
||||
u = mix32(nextSeed()) >>> 1)
|
||||
;
|
||||
r += origin;
|
||||
}
|
||||
else {
|
||||
while (r < origin || r >= bound)
|
||||
r = mix32(nextSeed());
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* The form of nextDouble used by DoubleStream Spliterators.
|
||||
*
|
||||
* @param origin the least value, unless greater than bound
|
||||
* @param bound the upper bound (exclusive), must not equal origin
|
||||
* @return a pseudorandom value
|
||||
*/
|
||||
final double internalNextDouble(double origin, double bound) {
|
||||
double r = (nextLong() >>> 11) * DOUBLE_UNIT;
|
||||
if (origin < bound) {
|
||||
r = r * (bound - origin) + origin;
|
||||
if (r >= bound) // correct for rounding
|
||||
r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
|
@ -375,7 +248,7 @@ public final class SplittableRandom {
|
|||
* may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public SplittableRandom() { // emulate defaultGen.split()
|
||||
long s = defaultGen.getAndAdd(GOLDEN_GAMMA << 1);
|
||||
long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
|
||||
this.seed = mix64(s);
|
||||
this.gamma = mixGamma(s + GOLDEN_GAMMA);
|
||||
}
|
||||
|
@ -399,186 +272,102 @@ public final class SplittableRandom {
|
|||
}
|
||||
|
||||
/**
|
||||
* Fills a user-supplied byte array with generated pseudorandom bytes.
|
||||
*
|
||||
* @param bytes the byte array to fill with pseudorandom bytes
|
||||
* @throws NullPointerException if bytes is null
|
||||
* @since 10
|
||||
* {@inheritDoc}
|
||||
* @throws NullPointerException {@inheritDoc}
|
||||
* @since 17
|
||||
*/
|
||||
public void nextBytes(byte[] bytes) {
|
||||
int i = 0;
|
||||
int len = bytes.length;
|
||||
for (int words = len >> 3; words--> 0; ) {
|
||||
long rnd = nextLong();
|
||||
for (int n = 8; n--> 0; rnd >>>= Byte.SIZE)
|
||||
bytes[i++] = (byte)rnd;
|
||||
}
|
||||
if (i < len)
|
||||
for (long rnd = nextLong(); i < len; rnd >>>= Byte.SIZE)
|
||||
bytes[i++] = (byte)rnd;
|
||||
public SplittableRandom split(SplittableGenerator source) {
|
||||
return new SplittableRandom(source.nextLong(), mixGamma(source.nextLong()));
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code int} value.
|
||||
*
|
||||
* @return a pseudorandom {@code int} value
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfInt makeIntsSpliterator(long index, long fence, int origin, int bound) {
|
||||
return super.makeIntsSpliterator(index, fence, origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfLong makeLongsSpliterator(long index, long fence, long origin, long bound) {
|
||||
return super.makeLongsSpliterator(index, fence, origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* @hidden
|
||||
*/
|
||||
@Override
|
||||
public Spliterator.OfDouble makeDoublesSpliterator(long index, long fence, double origin, double bound) {
|
||||
return super.makeDoublesSpliterator(index, fence, origin, bound);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int nextInt() {
|
||||
return mix32(nextSeed());
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code int} value between zero (inclusive)
|
||||
* and the specified bound (exclusive).
|
||||
*
|
||||
* @param bound the upper bound (exclusive). Must be positive.
|
||||
* @return a pseudorandom {@code int} value between zero
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code bound} is not positive
|
||||
*/
|
||||
public int nextInt(int bound) {
|
||||
if (bound <= 0)
|
||||
throw new IllegalArgumentException(BAD_BOUND);
|
||||
// Specialize internalNextInt for origin 0
|
||||
int r = mix32(nextSeed());
|
||||
int m = bound - 1;
|
||||
if ((bound & m) == 0) // power of two
|
||||
r &= m;
|
||||
else { // reject over-represented candidates
|
||||
for (int u = r >>> 1;
|
||||
u + m - (r = u % bound) < 0;
|
||||
u = mix32(nextSeed()) >>> 1)
|
||||
;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code int} value between the specified
|
||||
* origin (inclusive) and the specified bound (exclusive).
|
||||
*
|
||||
* @param origin the least value returned
|
||||
* @param bound the upper bound (exclusive)
|
||||
* @return a pseudorandom {@code int} value between the origin
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code origin} is greater than
|
||||
* or equal to {@code bound}
|
||||
*/
|
||||
public int nextInt(int origin, int bound) {
|
||||
if (origin >= bound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return internalNextInt(origin, bound);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code long} value.
|
||||
*
|
||||
* @return a pseudorandom {@code long} value
|
||||
*/
|
||||
@Override
|
||||
public long nextLong() {
|
||||
return mix64(nextSeed());
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code long} value between zero (inclusive)
|
||||
* and the specified bound (exclusive).
|
||||
*
|
||||
* @param bound the upper bound (exclusive). Must be positive.
|
||||
* @return a pseudorandom {@code long} value between zero
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code bound} is not positive
|
||||
* {@inheritDoc}
|
||||
* @throws NullPointerException {@inheritDoc}
|
||||
* @since 10
|
||||
*/
|
||||
public long nextLong(long bound) {
|
||||
if (bound <= 0)
|
||||
throw new IllegalArgumentException(BAD_BOUND);
|
||||
// Specialize internalNextLong for origin 0
|
||||
long r = mix64(nextSeed());
|
||||
long m = bound - 1;
|
||||
if ((bound & m) == 0L) // power of two
|
||||
r &= m;
|
||||
else { // reject over-represented candidates
|
||||
for (long u = r >>> 1;
|
||||
u + m - (r = u % bound) < 0L;
|
||||
u = mix64(nextSeed()) >>> 1)
|
||||
;
|
||||
}
|
||||
return r;
|
||||
@Override
|
||||
public void nextBytes(byte[] bytes) {
|
||||
super.nextBytes(bytes);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code long} value between the specified
|
||||
* origin (inclusive) and the specified bound (exclusive).
|
||||
*
|
||||
* @param origin the least value returned
|
||||
* @param bound the upper bound (exclusive)
|
||||
* @return a pseudorandom {@code long} value between the origin
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code origin} is greater than
|
||||
* or equal to {@code bound}
|
||||
* {@inheritDoc}
|
||||
* @implSpec {@inheritDoc}
|
||||
* @since 17
|
||||
*/
|
||||
public long nextLong(long origin, long bound) {
|
||||
if (origin >= bound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return internalNextLong(origin, bound);
|
||||
@Override
|
||||
public Stream<SplittableGenerator> splits() {
|
||||
return super.splits();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code double} value between zero
|
||||
* (inclusive) and one (exclusive).
|
||||
*
|
||||
* @return a pseudorandom {@code double} value between zero
|
||||
* (inclusive) and one (exclusive)
|
||||
* {@inheritDoc}
|
||||
* @throws IllegalArgumentException {@inheritDoc}
|
||||
* @implSpec {@inheritDoc}
|
||||
* @since 17
|
||||
*/
|
||||
public double nextDouble() {
|
||||
return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
|
||||
@Override
|
||||
public Stream<SplittableGenerator> splits(long streamSize) {
|
||||
return super.splits(streamSize, this);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code double} value between 0.0
|
||||
* (inclusive) and the specified bound (exclusive).
|
||||
*
|
||||
* @param bound the upper bound (exclusive). Must be positive.
|
||||
* @return a pseudorandom {@code double} value between zero
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code bound} is not positive
|
||||
* {@inheritDoc}
|
||||
* @throws NullPointerException {@inheritDoc}
|
||||
* @implSpec {@inheritDoc}
|
||||
* @since 17
|
||||
*/
|
||||
public double nextDouble(double bound) {
|
||||
if (!(bound > 0.0))
|
||||
throw new IllegalArgumentException(BAD_BOUND);
|
||||
double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
|
||||
return (result < bound) ? result : // correct for rounding
|
||||
Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
|
||||
@Override
|
||||
public Stream<SplittableGenerator> splits(SplittableGenerator source) {
|
||||
return super.splits(Long.MAX_VALUE, source);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code double} value between the specified
|
||||
* origin (inclusive) and bound (exclusive).
|
||||
*
|
||||
* @param origin the least value returned
|
||||
* @param bound the upper bound (exclusive)
|
||||
* @return a pseudorandom {@code double} value between the origin
|
||||
* (inclusive) and the bound (exclusive)
|
||||
* @throws IllegalArgumentException if {@code origin} is greater than
|
||||
* or equal to {@code bound}
|
||||
* {@inheritDoc}
|
||||
* @throws NullPointerException {@inheritDoc}
|
||||
* @throws IllegalArgumentException {@inheritDoc}
|
||||
* @implSpec {@inheritDoc}
|
||||
* @since 17
|
||||
*/
|
||||
public double nextDouble(double origin, double bound) {
|
||||
if (!(origin < bound))
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return internalNextDouble(origin, bound);
|
||||
@Override
|
||||
public Stream<SplittableGenerator> splits(long streamSize, SplittableGenerator source) {
|
||||
return super.splits(streamSize, source);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a pseudorandom {@code boolean} value.
|
||||
*
|
||||
* @return a pseudorandom {@code boolean} value
|
||||
*/
|
||||
public boolean nextBoolean() {
|
||||
return mix32(nextSeed()) < 0;
|
||||
}
|
||||
|
||||
// stream methods, coded in a way intended to better isolate for
|
||||
// maintenance purposes the small differences across forms.
|
||||
|
||||
/**
|
||||
* Returns a stream producing the given {@code streamSize} number
|
||||
* of pseudorandom {@code int} values from this generator and/or
|
||||
|
@ -589,13 +378,9 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code streamSize} is
|
||||
* less than zero
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, streamSize, Integer.MAX_VALUE, 0),
|
||||
false);
|
||||
return super.ints(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -607,11 +392,9 @@ public final class SplittableRandom {
|
|||
*
|
||||
* @return a stream of pseudorandom {@code int} values
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints() {
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
|
||||
false);
|
||||
return super.ints();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -629,16 +412,9 @@ public final class SplittableRandom {
|
|||
* less than zero, or {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
public IntStream ints(long streamSize, int randomNumberOrigin,
|
||||
int randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public IntStream ints(long streamSize, int randomNumberOrigin, int randomNumberBound) {
|
||||
return super.ints(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -656,13 +432,9 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
@Override
|
||||
public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.intStream
|
||||
(new RandomIntsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
return super.ints(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -675,13 +447,9 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code streamSize} is
|
||||
* less than zero
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, streamSize, Long.MAX_VALUE, 0L),
|
||||
false);
|
||||
return super.longs(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -693,11 +461,9 @@ public final class SplittableRandom {
|
|||
*
|
||||
* @return a stream of pseudorandom {@code long} values
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs() {
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
|
||||
false);
|
||||
return super.longs();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -715,16 +481,9 @@ public final class SplittableRandom {
|
|||
* less than zero, or {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
public LongStream longs(long streamSize, long randomNumberOrigin,
|
||||
long randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public LongStream longs(long streamSize, long randomNumberOrigin, long randomNumberBound) {
|
||||
return super.longs(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -742,13 +501,9 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
@Override
|
||||
public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
|
||||
if (randomNumberOrigin >= randomNumberBound)
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.longStream
|
||||
(new RandomLongsSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
return super.longs(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -761,13 +516,9 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code streamSize} is
|
||||
* less than zero
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles(long streamSize) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, streamSize, Double.MAX_VALUE, 0.0),
|
||||
false);
|
||||
return super.doubles(streamSize);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -780,11 +531,9 @@ public final class SplittableRandom {
|
|||
*
|
||||
* @return a stream of pseudorandom {@code double} values
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles() {
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
|
||||
false);
|
||||
return super.doubles();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -802,16 +551,9 @@ public final class SplittableRandom {
|
|||
* less than zero, or {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
public DoubleStream doubles(long streamSize, double randomNumberOrigin,
|
||||
double randomNumberBound) {
|
||||
if (streamSize < 0L)
|
||||
throw new IllegalArgumentException(BAD_SIZE);
|
||||
if (!(randomNumberOrigin < randomNumberBound))
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
@Override
|
||||
public DoubleStream doubles(long streamSize, double randomNumberOrigin, double randomNumberBound) {
|
||||
return super.doubles(streamSize, randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -829,187 +571,8 @@ public final class SplittableRandom {
|
|||
* @throws IllegalArgumentException if {@code randomNumberOrigin}
|
||||
* is greater than or equal to {@code randomNumberBound}
|
||||
*/
|
||||
@Override
|
||||
public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
|
||||
if (!(randomNumberOrigin < randomNumberBound))
|
||||
throw new IllegalArgumentException(BAD_RANGE);
|
||||
return StreamSupport.doubleStream
|
||||
(new RandomDoublesSpliterator
|
||||
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
|
||||
false);
|
||||
return super.doubles(randomNumberOrigin, randomNumberBound);
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for int streams. We multiplex the four int
|
||||
* versions into one class by treating a bound less than origin as
|
||||
* unbounded, and also by treating "infinite" as equivalent to
|
||||
* Long.MAX_VALUE. For splits, it uses the standard divide-by-two
|
||||
* approach. The long and double versions of this class are
|
||||
* identical except for types.
|
||||
*/
|
||||
private static final class RandomIntsSpliterator
|
||||
implements Spliterator.OfInt {
|
||||
final SplittableRandom rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final int origin;
|
||||
final int bound;
|
||||
RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
|
||||
int origin, int bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomIntsSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(IntConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextInt(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(IntConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
SplittableRandom r = rng;
|
||||
int o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextInt(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for long streams.
|
||||
*/
|
||||
private static final class RandomLongsSpliterator
|
||||
implements Spliterator.OfLong {
|
||||
final SplittableRandom rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final long origin;
|
||||
final long bound;
|
||||
RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
|
||||
long origin, long bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomLongsSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(LongConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextLong(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(LongConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
SplittableRandom r = rng;
|
||||
long o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextLong(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Spliterator for double streams.
|
||||
*/
|
||||
private static final class RandomDoublesSpliterator
|
||||
implements Spliterator.OfDouble {
|
||||
final SplittableRandom rng;
|
||||
long index;
|
||||
final long fence;
|
||||
final double origin;
|
||||
final double bound;
|
||||
RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
|
||||
double origin, double bound) {
|
||||
this.rng = rng; this.index = index; this.fence = fence;
|
||||
this.origin = origin; this.bound = bound;
|
||||
}
|
||||
|
||||
public RandomDoublesSpliterator trySplit() {
|
||||
long i = index, m = (i + fence) >>> 1;
|
||||
return (m <= i) ? null :
|
||||
new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
|
||||
}
|
||||
|
||||
public long estimateSize() {
|
||||
return fence - index;
|
||||
}
|
||||
|
||||
public int characteristics() {
|
||||
return (Spliterator.SIZED | Spliterator.SUBSIZED |
|
||||
Spliterator.NONNULL | Spliterator.IMMUTABLE);
|
||||
}
|
||||
|
||||
public boolean tryAdvance(DoubleConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
consumer.accept(rng.internalNextDouble(origin, bound));
|
||||
index = i + 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public void forEachRemaining(DoubleConsumer consumer) {
|
||||
if (consumer == null) throw new NullPointerException();
|
||||
long i = index, f = fence;
|
||||
if (i < f) {
|
||||
index = f;
|
||||
SplittableRandom r = rng;
|
||||
double o = origin, b = bound;
|
||||
do {
|
||||
consumer.accept(r.internalNextDouble(o, b));
|
||||
} while (++i < f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load diff
1546
src/java.base/share/classes/java/util/random/RandomGenerator.java
Normal file
1546
src/java.base/share/classes/java/util/random/RandomGenerator.java
Normal file
File diff suppressed because it is too large
Load diff
|
@ -0,0 +1,640 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package java.util.random;
|
||||
|
||||
import java.lang.reflect.Constructor;
|
||||
import java.math.BigInteger;
|
||||
import java.security.AccessController;
|
||||
import java.security.PrivilegedActionException;
|
||||
import java.security.PrivilegedExceptionAction;
|
||||
import java.util.Objects;
|
||||
import java.util.function.Function;
|
||||
import java.util.Map;
|
||||
import java.util.random.RandomGenerator.ArbitrarilyJumpableGenerator;
|
||||
import java.util.random.RandomGenerator.JumpableGenerator;
|
||||
import java.util.random.RandomGenerator.LeapableGenerator;
|
||||
import java.util.random.RandomGenerator.SplittableGenerator;
|
||||
import java.util.random.RandomGenerator.StreamableGenerator;
|
||||
import java.util.ServiceLoader;
|
||||
import java.util.ServiceLoader.Provider;
|
||||
import java.util.stream.Collectors;
|
||||
import java.util.stream.Stream;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* This is a factory class for generating multiple random number generators
|
||||
* of a specific <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
* {@link RandomGeneratorFactory} also provides
|
||||
* methods for selecting random number generator algorithms.
|
||||
*
|
||||
* A specific {@link RandomGeneratorFactory} can be located by using the
|
||||
* {@link RandomGeneratorFactory#of(String)} method, where the argument string
|
||||
* is the name of the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* required. The method
|
||||
* {@link RandomGeneratorFactory#all()} produces a non-empty {@link Stream} of all available
|
||||
* {@link RandomGeneratorFactory RandomGeneratorFactorys} that can be searched
|
||||
* to locate a {@link RandomGeneratorFactory} suitable to the task.
|
||||
*
|
||||
* There are three methods for constructing a RandomGenerator instance,
|
||||
* depending on the type of initial seed required.
|
||||
* {@link RandomGeneratorFactory#create(long)} is used for long
|
||||
* seed construction,
|
||||
* {@link RandomGeneratorFactory#create(byte[])} is used for byte[]
|
||||
* seed construction, and
|
||||
* {@link RandomGeneratorFactory#create()} is used for random seed
|
||||
* construction. Example;
|
||||
*
|
||||
* <pre>{@code
|
||||
* RandomGeneratorFactory<RandomGenerator> factory = RandomGeneratorFactory.of("Random");
|
||||
*
|
||||
* for (int i = 0; i < 10; i++) {
|
||||
* new Thread(() -> {
|
||||
* RandomGenerator random = factory.create(100L);
|
||||
* System.out.println(random.nextDouble());
|
||||
* }).start();
|
||||
* }
|
||||
* }</pre>
|
||||
*
|
||||
* RandomGeneratorFactory also provides methods describing the attributes (or properties)
|
||||
* of a generator and can be used to select random number generator
|
||||
* <a href="package-summary.html#algorithms">algorithms</a>.
|
||||
* These methods are typically used in
|
||||
* conjunction with {@link RandomGeneratorFactory#all()}. In this example, the code
|
||||
* locates the {@link RandomGeneratorFactory} that produces
|
||||
* {@link RandomGenerator RandomGenerators}
|
||||
* with the highest number of state bits.
|
||||
*
|
||||
* <pre>{@code
|
||||
* RandomGeneratorFactory<RandomGenerator> best = RandomGeneratorFactory.all()
|
||||
* .sorted(Comparator.comparingInt(RandomGenerator::stateBits).reversed())
|
||||
* .findFirst()
|
||||
* .orElse(RandomGeneratorFactory.of("Random"));
|
||||
* System.out.println(best.name() + " in " + best.group() + " was selected");
|
||||
*
|
||||
* RandomGenerator rng = best.create();
|
||||
* System.out.println(rng.nextLong());
|
||||
* }</pre>
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
* @see java.util.random
|
||||
*
|
||||
*/
|
||||
public final class RandomGeneratorFactory<T extends RandomGenerator> {
|
||||
/**
|
||||
* Instance provider class of random number algorithm.
|
||||
*/
|
||||
private final Provider<? extends RandomGenerator> provider;
|
||||
|
||||
/**
|
||||
* Provider RandomGeneratorProperties annotation.
|
||||
*/
|
||||
private volatile RandomGeneratorProperties properties;
|
||||
|
||||
/**
|
||||
* Default provider constructor.
|
||||
*/
|
||||
private volatile Constructor<T> ctor;
|
||||
|
||||
/**
|
||||
* Provider constructor with long seed.
|
||||
*/
|
||||
private Constructor<T> ctorLong;
|
||||
|
||||
/**
|
||||
* Provider constructor with byte[] seed.
|
||||
*/
|
||||
private Constructor<T> ctorBytes;
|
||||
|
||||
|
||||
private static class FactoryMapHolder {
|
||||
static final Map<String, Provider<? extends RandomGenerator>> FACTORY_MAP = createFactoryMap();
|
||||
|
||||
/**
|
||||
* Returns the factory map, lazily constructing map on first use.
|
||||
*
|
||||
* @return Map of RandomGeneratorFactory classes.
|
||||
*/
|
||||
private static Map<String, Provider<? extends RandomGenerator>> createFactoryMap() {
|
||||
return ServiceLoader
|
||||
.load(RandomGenerator.class)
|
||||
.stream()
|
||||
.filter(p -> !p.type().isInterface())
|
||||
.collect(Collectors.toMap(p -> p.type().getSimpleName(), Function.identity()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Private constructor.
|
||||
*
|
||||
* @param provider Provider class to wrap.
|
||||
*/
|
||||
private RandomGeneratorFactory(Provider<? extends RandomGenerator> provider) {
|
||||
this.provider = provider;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the factory map, lazily constructing map on first call.
|
||||
*
|
||||
* @return Map of RandomGeneratorFactory classes.
|
||||
*/
|
||||
private static Map<String, Provider<? extends RandomGenerator>> getFactoryMap() {
|
||||
return FactoryMapHolder.FACTORY_MAP;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the annotation for the specified provider.
|
||||
*
|
||||
* @return RandomGeneratorProperties annotation for the specified provider.
|
||||
*/
|
||||
private RandomGeneratorProperties getProperties() {
|
||||
if (properties == null) {
|
||||
synchronized (provider) {
|
||||
if (properties == null) {
|
||||
properties = provider.type().getDeclaredAnnotation(RandomGeneratorProperties.class);
|
||||
Objects.requireNonNull(properties, provider.type() + " missing annotation");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return properties;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if the provider is a subclass of the category.
|
||||
*
|
||||
* @param category Interface category, sub-interface of {@link RandomGenerator}.
|
||||
*
|
||||
* @return true if the provider is a subclass of the category.
|
||||
*/
|
||||
private boolean isSubclass(Class<? extends RandomGenerator> category) {
|
||||
return isSubclass(category, provider);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if the provider is a subclass of the category.
|
||||
*
|
||||
* @param category Interface category, sub-interface of {@link RandomGenerator}.
|
||||
* @param provider Provider that is being filtered.
|
||||
*
|
||||
* @return true if the provider is a subclass of the category.
|
||||
*/
|
||||
private static boolean isSubclass(Class<? extends RandomGenerator> category,
|
||||
Provider<? extends RandomGenerator> provider) {
|
||||
return provider != null && category.isAssignableFrom(provider.type());
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the provider matching name and category.
|
||||
*
|
||||
* @param name Name of RandomGenerator
|
||||
* @param category Interface category, sub-interface of {@link RandomGenerator}.
|
||||
*
|
||||
* @return A provider matching name and category.
|
||||
*
|
||||
* @throws IllegalArgumentException if provider is not a subclass of category.
|
||||
*/
|
||||
private static Provider<? extends RandomGenerator> findProvider(String name,
|
||||
Class<? extends RandomGenerator> category)
|
||||
throws IllegalArgumentException {
|
||||
Map<String, Provider<? extends RandomGenerator>> fm = getFactoryMap();
|
||||
Provider<? extends RandomGenerator> provider = fm.get(name);
|
||||
if (provider == null) {
|
||||
throw new IllegalArgumentException("No implementation of the random number generator algorithm \"" +
|
||||
name +
|
||||
"\" is available");
|
||||
} else if (!isSubclass(category, provider)) {
|
||||
throw new IllegalArgumentException("The random number generator algorithm \"" +
|
||||
name +
|
||||
"\" is not implemented with the interface \"" +
|
||||
category.getSimpleName() +
|
||||
"\"");
|
||||
}
|
||||
return provider;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a {@link RandomGenerator} that utilizes the {@code name}
|
||||
* <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*
|
||||
* @param name Name of random number algorithm to use
|
||||
* @param category Sub-interface of {@link RandomGenerator} to type check
|
||||
* @param <T> Sub-interface of {@link RandomGenerator} to produce
|
||||
*
|
||||
* @return An instance of {@link RandomGenerator}
|
||||
*
|
||||
* @throws IllegalArgumentException when either the name or category is null
|
||||
*/
|
||||
static <T extends RandomGenerator> T of(String name, Class<T> category)
|
||||
throws IllegalArgumentException {
|
||||
@SuppressWarnings("unchecked")
|
||||
T uncheckedRandomGenerator = (T)findProvider(name, category).get();
|
||||
return uncheckedRandomGenerator;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a {@link RandomGeneratorFactory} that will produce instances
|
||||
* of {@link RandomGenerator} that utilizes the named algorithm.
|
||||
*
|
||||
* @param name Name of random number algorithm to use
|
||||
* @param category Sub-interface of {@link RandomGenerator} to type check
|
||||
* @param <T> Sub-interface of {@link RandomGenerator} to produce
|
||||
*
|
||||
* @return Factory of {@link RandomGenerator}
|
||||
*
|
||||
* @throws IllegalArgumentException when either the name or category is null
|
||||
*/
|
||||
static <T extends RandomGenerator> RandomGeneratorFactory<T> factoryOf(String name, Class<T> category)
|
||||
throws IllegalArgumentException {
|
||||
Provider<? extends RandomGenerator> uncheckedProvider = findProvider(name, category);
|
||||
return new RandomGeneratorFactory<>(uncheckedProvider);
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetch the required constructors for class of random number algorithm.
|
||||
*
|
||||
* @param randomGeneratorClass class of random number algorithm (provider)
|
||||
*/
|
||||
private void getConstructors(Class<? extends RandomGenerator> randomGeneratorClass) {
|
||||
if (ctor == null) {
|
||||
synchronized (provider) {
|
||||
if (ctor == null) {
|
||||
PrivilegedExceptionAction<Constructor<?>[]> ctorAction = randomGeneratorClass::getConstructors;
|
||||
try {
|
||||
Constructor<?>[] ctors = AccessController.doPrivileged(ctorAction);
|
||||
|
||||
Constructor<T> tmpCtor = null;
|
||||
Constructor<T> tmpCtorLong = null;
|
||||
Constructor<T> tmpCtorBytes = null;
|
||||
|
||||
|
||||
for (Constructor<?> ctorGeneric : ctors) {
|
||||
@SuppressWarnings("unchecked")
|
||||
Constructor<T> ctorSpecific = (Constructor<T>) ctorGeneric;
|
||||
final Class<?>[] parameterTypes = ctorSpecific.getParameterTypes();
|
||||
|
||||
if (parameterTypes.length == 0) {
|
||||
tmpCtor = ctorSpecific;
|
||||
} else if (parameterTypes.length == 1) {
|
||||
Class<?> argType = parameterTypes[0];
|
||||
|
||||
if (argType == long.class) {
|
||||
tmpCtorLong = ctorSpecific;
|
||||
} else if (argType == byte[].class) {
|
||||
tmpCtorBytes = ctorSpecific;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (tmpCtor == null) {
|
||||
throw new IllegalStateException("Random algorithm " + name() + " is missing a default constructor");
|
||||
}
|
||||
|
||||
// Store specialized constructors first, guarded by ctor
|
||||
ctorBytes = tmpCtorBytes;
|
||||
ctorLong = tmpCtorLong;
|
||||
ctor = tmpCtor;
|
||||
} catch (PrivilegedActionException ex) {
|
||||
// Do nothing
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure all the required constructors are fetched.
|
||||
*/
|
||||
private void ensureConstructors() {
|
||||
getConstructors(provider.type());
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a {@link RandomGeneratorFactory} that can produce instances of
|
||||
* {@link RandomGenerator} that utilize the {@code name}
|
||||
* <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*
|
||||
* @implSpec Availability is determined by RandomGeneratorFactory using the
|
||||
* service provider API to locate implementations of the RandomGenerator interface.
|
||||
*
|
||||
* @param name Name of random number generator
|
||||
* <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* @param <T> Sub-interface of {@link RandomGenerator} to produce
|
||||
*
|
||||
* @return {@link RandomGeneratorFactory} of {@link RandomGenerator}
|
||||
*
|
||||
* @throws NullPointerException if name is null
|
||||
* @throws IllegalArgumentException if the named algorithm is not found
|
||||
*/
|
||||
public static <T extends RandomGenerator> RandomGeneratorFactory<T> of(String name) {
|
||||
Objects.requireNonNull(name);
|
||||
@SuppressWarnings("unchecked")
|
||||
RandomGeneratorFactory<T> factory =
|
||||
(RandomGeneratorFactory<T>)factoryOf(name, RandomGenerator.class);
|
||||
return factory;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a {@link RandomGeneratorFactory} meeting the minimal requirement
|
||||
* of having an algorithm whose state bits are greater than or equal 64.
|
||||
*
|
||||
* @implSpec Since algorithms will improve over time, there is no
|
||||
* guarantee that this method will return the same algorithm over time.
|
||||
*
|
||||
* @return a {@link RandomGeneratorFactory}
|
||||
*/
|
||||
public static RandomGeneratorFactory<RandomGenerator> getDefault() {
|
||||
return factoryOf("L32X64MixRandom", RandomGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a stream of matching Providers.
|
||||
*
|
||||
* @param category {@link RandomGenerator} sub-interface class to filter
|
||||
* @param <T> {@link RandomGenerator} sub-interface return type
|
||||
*
|
||||
* RandomGenerators that are marked as deprecated or are not properly configured are not included in the result.
|
||||
*
|
||||
* @implSpec Availability is determined by RandomGeneratorFactory using the service provider API
|
||||
* to locate implementations of the RandomGenerator interface.
|
||||
*
|
||||
* @return Stream of matching {@link RandomGeneratorFactory RandomGeneratorFactory(s)}.
|
||||
*
|
||||
* @hidden
|
||||
*/
|
||||
public static <T extends RandomGenerator> Stream<RandomGeneratorFactory<T>> all(Class<T> category) {
|
||||
Map<String, Provider<? extends RandomGenerator>> fm = getFactoryMap();
|
||||
return fm.values()
|
||||
.stream()
|
||||
.filter(p -> isSubclass(category, p) &&
|
||||
!p.type().isAnnotationPresent(Deprecated.class) &&
|
||||
p.type().isAnnotationPresent(RandomGeneratorProperties.class))
|
||||
.map(RandomGeneratorFactory::new);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a non-empty stream of available {@link RandomGeneratorFactory RandomGeneratorFactory(s)}.
|
||||
*
|
||||
* RandomGenerators that are marked as deprecated or are not properly configured are not included in the result.
|
||||
*
|
||||
* @implSpec Availability is determined by RandomGeneratorFactory using the service provider API
|
||||
* to locate implementations of the RandomGenerator interface.
|
||||
*
|
||||
* @return a non-empty stream of all available {@link RandomGeneratorFactory RandomGeneratorFactory(s)}.
|
||||
*/
|
||||
public static Stream<RandomGeneratorFactory<RandomGenerator>> all() {
|
||||
Map<String, Provider<? extends RandomGenerator>> fm = getFactoryMap();
|
||||
return fm.values()
|
||||
.stream()
|
||||
.filter(p -> !p.type().isAnnotationPresent(Deprecated.class) &&
|
||||
p.type().isAnnotationPresent(RandomGeneratorProperties.class))
|
||||
.map(RandomGeneratorFactory::new);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the name of the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* used by the random number generator.
|
||||
*
|
||||
* @return Name of the <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*/
|
||||
public String name() {
|
||||
return provider.type().getSimpleName();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the group name of the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* used by the random number generator.
|
||||
*
|
||||
* @return Group name of the <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*/
|
||||
public String group() {
|
||||
return getProperties().group();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns number of bits used by the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* to maintain state of seed.
|
||||
*
|
||||
* @return number of bits used by the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* to maintain state of seed.
|
||||
*/
|
||||
public int stateBits() {
|
||||
RandomGeneratorProperties properties = getProperties();
|
||||
int i = properties.i();
|
||||
int k = properties.k();
|
||||
|
||||
return i == 0 && k == 0 ? Integer.MAX_VALUE : i + k;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the equidistribution of the <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*
|
||||
* @return the equidistribution of the <a href="package-summary.html#algorithms">algorithm</a>.
|
||||
*/
|
||||
public int equidistribution() {
|
||||
return getProperties().equidistribution();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the period of the <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* used by the random number generator.
|
||||
* Returns BigInteger.ZERO if period is not determinable.
|
||||
*
|
||||
* @return BigInteger period.
|
||||
*/
|
||||
public BigInteger period() {
|
||||
RandomGeneratorProperties properties = getProperties();
|
||||
int i = properties.i();
|
||||
int j = properties.j();
|
||||
int k = properties.k();
|
||||
|
||||
if (i == 0 && j == 0 && k == 0) {
|
||||
return BigInteger.ZERO;
|
||||
} else {
|
||||
return BigInteger.ONE.shiftLeft(i).subtract(BigInteger.valueOf(j)).shiftLeft(k);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator is computed using an arithmetic
|
||||
* <a href="package-summary.html#algorithms">algorithm</a>
|
||||
* and is statistically deterministic.
|
||||
*
|
||||
* @return true if random generator is statistical.
|
||||
*/
|
||||
public boolean isStatistical() {
|
||||
return !getProperties().isStochastic();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator is computed using external or entropic
|
||||
* sources as inputs.
|
||||
*
|
||||
* @return true if random generator is stochastic.
|
||||
*/
|
||||
public boolean isStochastic() {
|
||||
return getProperties().isStochastic();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator uses a hardware device (HRNG) to produce
|
||||
* entropic input.
|
||||
*
|
||||
* @return true if random generator is generated by hardware.
|
||||
*/
|
||||
public boolean isHardware() {
|
||||
return getProperties().isHardware();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator can jump an arbitrarily specified distant
|
||||
* point in the state cycle.
|
||||
*
|
||||
* @return true if random generator is arbitrarily jumpable.
|
||||
*/
|
||||
public boolean isArbitrarilyJumpable() {
|
||||
return isSubclass(ArbitrarilyJumpableGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator can jump a specified distant point in
|
||||
* the state cycle.
|
||||
*
|
||||
* @return true if random generator is jumpable.
|
||||
*/
|
||||
public boolean isJumpable() {
|
||||
return isSubclass(JumpableGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator is jumpable and can leap to a very distant
|
||||
* point in the state cycle.
|
||||
*
|
||||
* @return true if random generator is leapable.
|
||||
*/
|
||||
public boolean isLeapable() {
|
||||
return isSubclass(LeapableGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator can be cloned into a separate object with
|
||||
* the same properties but positioned further in the state cycle.
|
||||
*
|
||||
* @return true if random generator is splittable.
|
||||
*/
|
||||
public boolean isSplittable() {
|
||||
return isSubclass(SplittableGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if random generator can be used to create
|
||||
* {@link java.util.stream.Stream Streams} of random numbers.
|
||||
*
|
||||
* @return true if random generator is streamable.
|
||||
*/
|
||||
public boolean isStreamable() {
|
||||
return isSubclass(StreamableGenerator.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if the implementation of RandomGenerator (algorithm) has been
|
||||
* marked for deprecation.
|
||||
*
|
||||
* @implNote Random number generator algorithms evolve over time; new
|
||||
* algorithms will be introduced and old algorithms will
|
||||
* lose standing. If an older algorithm is deemed unsuitable
|
||||
* for continued use, it will be marked as deprecated to indicate
|
||||
* that it may be removed at some point in the future.
|
||||
*
|
||||
* @return true if the implementation of RandomGenerator (algorithm) has been
|
||||
* marked for deprecation
|
||||
*/
|
||||
public boolean isDeprecated() {
|
||||
return provider.type().isAnnotationPresent(Deprecated.class);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an instance of {@link RandomGenerator} based on
|
||||
* <a href="package-summary.html#algorithms">algorithm</a> chosen.
|
||||
*
|
||||
* @return new in instance of {@link RandomGenerator}.
|
||||
*
|
||||
*/
|
||||
public T create() {
|
||||
try {
|
||||
ensureConstructors();
|
||||
return ctor.newInstance();
|
||||
} catch (Exception ex) {
|
||||
// Should never happen.
|
||||
throw new IllegalStateException("Random algorithm " + name() + " is missing a default constructor", ex);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an instance of {@link RandomGenerator} based on
|
||||
* <a href="package-summary.html#algorithms">algorithm</a> chosen
|
||||
* providing a starting long seed. If long seed is not supported by an
|
||||
* algorithm then the no argument form of create is used.
|
||||
*
|
||||
* @param seed long random seed value.
|
||||
*
|
||||
* @return new in instance of {@link RandomGenerator}.
|
||||
*/
|
||||
public T create(long seed) {
|
||||
try {
|
||||
ensureConstructors();
|
||||
return ctorLong.newInstance(seed);
|
||||
} catch (Exception ex) {
|
||||
return create();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an instance of {@link RandomGenerator} based on
|
||||
* <a href="package-summary.html#algorithms">algorithm</a> chosen
|
||||
* providing a starting byte[] seed. If byte[] seed is not supported by an
|
||||
* <a href="package-summary.html#algorithms">algorithm</a> then the no
|
||||
* argument form of create is used.
|
||||
*
|
||||
* @param seed byte array random seed value.
|
||||
*
|
||||
* @return new in instance of {@link RandomGenerator}.
|
||||
*
|
||||
* @throws NullPointerException if seed is null.
|
||||
*/
|
||||
public T create(byte[] seed) {
|
||||
Objects.requireNonNull(seed, "seed must not be null");
|
||||
try {
|
||||
ensureConstructors();
|
||||
return ctorBytes.newInstance(seed);
|
||||
} catch (Exception ex) {
|
||||
return create();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
628
src/java.base/share/classes/java/util/random/package-info.java
Normal file
628
src/java.base/share/classes/java/util/random/package-info.java
Normal file
|
@ -0,0 +1,628 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
/**
|
||||
* This package contains classes and interfaces that support a generic API
|
||||
* for random number generation.
|
||||
*
|
||||
* <p>These classes and interfaces support the definition and use of "random
|
||||
* generators", a term covering what have traditionally been called "random
|
||||
* number generators" as well as generators of other sorts of randomly chosen
|
||||
* values (eg. booleans). These classes and interfaces cover not only
|
||||
* deterministic (pseudorandom) algorithms but also generators of values that
|
||||
* use some "truly random" physical source (stochastic algorithms perhaps making
|
||||
* use of thermal noise, for example, or quantum-mechanical effects).
|
||||
*
|
||||
* <p> The principal interface is {@link RandomGenerator}, which provides
|
||||
* methods for requesting individual values of type {@code int}, {@code long},
|
||||
* {@code float}, {@code double}, or {@code boolean} chosen pseudorandomly
|
||||
* from a uniform distribution; methods for requesting values of type
|
||||
* {@code double} chosen pseudorandomly from a normal distribution or from an
|
||||
* exponential distribution; and methods for creating streams of values of type
|
||||
* {@code int}, {@code long}, or {@code double} chosen pseudorandomly from a
|
||||
* uniform distribution (such streams are spliterator-based, allowing for
|
||||
* parallel processing of their elements). There are also static factory methods
|
||||
* for creating an instance of a specific random number generator algorithm
|
||||
* given its name.
|
||||
*
|
||||
* <p> The principal supporting class is {@link RandomGeneratorFactory}. This
|
||||
* can be used to generate multiple random number generators for a specific
|
||||
* algorithm. {@link RandomGeneratorFactory} also provides methods for
|
||||
* selecting random number generator algorithms. RandomGeneratorFactory
|
||||
* registers implementations of {@link RandomGenerator} interface using the
|
||||
* service provider API.
|
||||
*
|
||||
* <p> An important subsidiary interface is
|
||||
* {@link RandomGenerator.StreamableGenerator}, which provides methods for
|
||||
* creating spliterator-based streams of {@link RandomGenerator} objects,
|
||||
* allowing for parallel processing of these objects using multiple threads.
|
||||
* Unlike {@link java.util.Random}, most implementations of
|
||||
* {@link RandomGenerator} are <i>not</i> thread-safe. The intent is that
|
||||
* instances should not be shared among threads; rather, each thread should have
|
||||
* its own random generator(s) to use. The various pseudorandom algorithms
|
||||
* provided by this package are designed so that multiple instances will (with
|
||||
* very high probability) behave as if statistically independent.
|
||||
*
|
||||
* <p> For many purposes, these are the only two interfaces that a consumer of
|
||||
* pseudorandom values will need. There are also some more specialized
|
||||
* interfaces that describe more specialized categories of random number
|
||||
* generators {@link RandomGenerator.SplittableGenerator SplittableGenerator},
|
||||
* {@link RandomGenerator.JumpableGenerator JumpableGenerator},
|
||||
* {@link RandomGenerator.LeapableGenerator LeapableGenerator}, and
|
||||
* {@link RandomGenerator.ArbitrarilyJumpableGenerator ArbitrarilyJumpableGenerator}
|
||||
* that have specific strategies for creating statistically independent instances.
|
||||
*
|
||||
* <h2>Using the Random Number Generator Interfaces</h2>
|
||||
*
|
||||
* To get started, an application should first create one instance of a
|
||||
* generator class. Assume that the contents of the package
|
||||
* {@link java.util.random} has been imported:
|
||||
*
|
||||
* <blockquote>{@code import java.util.random.*;}</blockquote>
|
||||
*
|
||||
* Then one can choose a specific implementation by giving the name of a generator
|
||||
* algorithm to the static method {@link RandomGenerator#of}, in which case the
|
||||
* no-arguments constructor for that implementation is used:
|
||||
*
|
||||
* <blockquote>{@code RandomGenerator g = RandomGenerator.of("L64X128MixRandom");}</blockquote>
|
||||
*
|
||||
* For a single-threaded application, this is all that is needed. One can then
|
||||
* invoke methods of {@code g} such as
|
||||
* {@link RandomGenerator#nextLong nextLong()},
|
||||
* {@link RandomGenerator#nextInt nextInt()},
|
||||
* {@link RandomGenerator#nextFloat nextFloat()},
|
||||
* {@link RandomGenerator#nextDouble nextDouble()} and
|
||||
* {@link RandomGenerator#nextBoolean nextBoolean()} to generate individual
|
||||
* randomly chosen values. One can also use the methods
|
||||
* {@link RandomGenerator#ints ints()}, {@link RandomGenerator#longs longs()}
|
||||
* and {@link RandomGenerator#doubles doubles()} to create streams of randomly
|
||||
* chosen values. The methods
|
||||
* {@link RandomGenerator#nextGaussian nextGaussian()} and
|
||||
* {@link RandomGenerator#nextExponential nextExponential()} draw floating-point
|
||||
* values from nonuniform distributions.
|
||||
*
|
||||
* <p> For a multi-threaded application, one can repeat the preceding steps
|
||||
* to create additional {@linkplain RandomGenerator RandomGenerators}, but
|
||||
* often it is preferable to use methods of the one single initially
|
||||
* created generator to create others like it. (One reason is that some
|
||||
* generator algorithms, if asked to create a new set of generators all at
|
||||
* once, can make a special effort to ensure that the new generators are
|
||||
* statistically independent.) If the initial generator implements the
|
||||
* interface {@link RandomGenerator.StreamableGenerator}, then the method
|
||||
* {@link RandomGenerator.StreamableGenerator#rngs rngs()} can be used to
|
||||
* create a stream of generators. If this is a parallel stream, then it is
|
||||
* easy to get parallel execution by using the
|
||||
* {@link java.util.stream.Stream#map map()} method on the stream.
|
||||
* <p> For a multi-threaded application that forks new threads dynamically,
|
||||
* another approach is to use an initial generator that implements the interface
|
||||
* {@link RandomGenerator.SplittableGenerator}, which is then considered to
|
||||
* "belong" to the initial thread for its exclusive use; then whenever any
|
||||
* thread needs to fork a new thread, it first uses the
|
||||
* {@link RandomGenerator.SplittableGenerator#split split()} method of its own
|
||||
* generator to create a new generator, which is then passed to the newly
|
||||
* created thread for exclusive use by that new thread.
|
||||
*
|
||||
*
|
||||
* <h2>Choosing a Random Number Generator Algorithm</h2>
|
||||
*
|
||||
* <p> There are three groups of random number generator algorithm provided
|
||||
* in Java; Legacy group, LXM group and Xoroshiro/Xoshiro group.
|
||||
*
|
||||
* <p> The legacy group includes random number generators that existed
|
||||
* before JDK 17; Random, ThreadLocalRandom, SplittableRandom and
|
||||
* SecureRandom. Random (LCG) is the weakest of available algorithms and it
|
||||
* is recommended that users migrate to newer algorithms. If an application
|
||||
* requires a random number generator algorithm that is cryptographically
|
||||
* secure, then it should continue to use an instance of the class {@link
|
||||
* java.security.SecureRandom}.
|
||||
*
|
||||
* <p> The algorithms in the LXM group use a similar algorithm. The parameters
|
||||
* of the algorithm can be found in algorithm name. The numbers indicate the
|
||||
* number of bits in the lower and upper state bits respectively. Mix indicates
|
||||
* the algorithm uses mix congruency. StarStar indicates use a double
|
||||
* multiplier.
|
||||
*
|
||||
* <p> The algorithms in the Xoroshiro/Xoshiro are more traditional algorithms
|
||||
* where the number in the name indicates the period.
|
||||
*
|
||||
* <p> For applications (such as physical simulation, machine learning, and
|
||||
* games) that do not require a cryptographically secure algorithm, this package
|
||||
* provides multiple implementations of interface {@link RandomGenerator} that
|
||||
* provide trade-offs among speed, space, period, accidental correlation, and
|
||||
* equidistribution properties.
|
||||
*
|
||||
* <p> For applications with no special requirements,
|
||||
* {@code L64X128MixRandom} has a good balance among speed, space,
|
||||
* and period, and is suitable for both single-threaded and multi-threaded
|
||||
* applications when used properly (a separate instance for each thread).
|
||||
*
|
||||
* <p> If the application uses only a single thread, then
|
||||
* {@code Xoroshiro128PlusPlus} is even smaller and faster, and
|
||||
* certainly has a sufficiently long period.
|
||||
*
|
||||
* <p> For an application running in a 32-bit hardware environment and using
|
||||
* only one thread or a small number of threads, {@code L32X64MixRandom} may be a good
|
||||
* choice.
|
||||
*
|
||||
* <p> For an application that uses many threads that are allocated in one batch
|
||||
* at the start of the computation, either a "jumpable" generator such as
|
||||
* {@code Xoroshiro128PlusPlus} or
|
||||
* {@code Xoshiro256PlusPlus} may be used, or a "splittable"
|
||||
* generator such as {@code L64X128MixRandom} or
|
||||
* {@code L64X256MixRandom} may be used.
|
||||
*
|
||||
* <p> For an application that creates many threads dynamically, perhaps through
|
||||
* the use of spliterators, a "splittable" generator such as
|
||||
* {@code L64X128MixRandom} or {@code L64X256MixRandom} is
|
||||
* recommended. If the number of generators created dynamically may
|
||||
* be very large (millions or more), then using generators such as
|
||||
* {@code L128X128MixRandom} or {@code L128X256MixRandom},
|
||||
* which use a 128-bit parameter rather than a 64-bit parameter for their LCG
|
||||
* subgenerator, will make it much less likely that two instances use the same
|
||||
* state cycle.
|
||||
*
|
||||
* <p> For an application that uses tuples of consecutively generated values, it
|
||||
* may be desirable to use a generator that is <i>k</i>-equidistributed such
|
||||
* that <i>k</i> is at least as large as the length of the tuples being
|
||||
* generated. The generator {@code L64X256MixRandom} is provably
|
||||
* 4-equidistributed, and {@code L64X1024MixRandom} is provably
|
||||
* 16-equidistributed.
|
||||
*
|
||||
* <p> For applications that generate large permutations, it may be best to use
|
||||
* a generator whose period is much larger than the total number of possible
|
||||
* permutations; otherwise it will be impossible to generate some of the
|
||||
* intended permutations. For example, if the goal is to shuffle a deck of 52
|
||||
* cards, the number of possible permutations is 52! (52 factorial), which is
|
||||
* larger than 2<sup>225</sup> (but smaller than 2<sup>226</sup>), so it may be
|
||||
* best to use a generator whose period at least 2<sup>256</sup>, such as
|
||||
* {@code L64X256MixRandom} or {@code L64X1024MixRandom}
|
||||
* or {@code L128X256MixRandom} or
|
||||
* {@code L128X1024MixRandom}. (It is of course also necessary to
|
||||
* provide sufficiently many seed bits when the generator is initialized, or
|
||||
* else it will still be impossible to generate some of the intended
|
||||
* permutations.)
|
||||
*
|
||||
*
|
||||
* <h2><a id="algorithms">Random Number Generator Algorithms Available</a></h2>
|
||||
*
|
||||
* These algorithms [in the table below] must be found with the current version
|
||||
* of Java SE. A particular JDK implementation may recognize additional
|
||||
* algorithms; check the JDK's documentation for details. The set of algorithm
|
||||
* required by Java SE may be updated by changes to the Java SE specification.
|
||||
* Over time, new algorithms may be added and old algorithms may be removed.
|
||||
* <p>In addition, as another life-cycle phase, an algorithm may be {@linkplain
|
||||
* RandomGeneratorFactory#isDeprecated() deprecated}. A deprecated algorithm is
|
||||
* not recommended for use. If a required algorithm is deprecated, it may be
|
||||
* removed in a future release. Due to advances in random number generator
|
||||
* algorithm development and analysis, an algorithm may be deprecated during the
|
||||
* lifetime of a particular Java SE release. Changing the deprecation status of
|
||||
* an algorithm is <em>not</em> a specification change.
|
||||
*
|
||||
* <table style="padding:0px 20px 0px 0px">
|
||||
* <caption>Available Algorithms</caption>
|
||||
* <thead>
|
||||
* <tr>
|
||||
* <th style="text-align:left">Algorithm</th>
|
||||
* <th style="text-align:left">Group</th>
|
||||
* <th style="text-align:left">Period</th>
|
||||
* <th style="text-align:right">StateBits</th>
|
||||
* <th style="text-align:right">Equidistribution</th>
|
||||
* </tr>
|
||||
* </thead>
|
||||
* <tbody>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L128X1024MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(N*64).subtract(BigInteger.ONE).shiftLeft(128)</td>
|
||||
* <td style="text-align:right">1152</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L128X128MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(128)</td>
|
||||
* <td style="text-align:right">256</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L128X256MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE).shiftLeft(128)</td>
|
||||
* <td style="text-align:right">384</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L32X64MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(64).subtract(BigInteger.ONE).shiftLeft(32)</td>
|
||||
* <td style="text-align:right">96</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L64X1024MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(N*64).subtract(BigInteger.ONE).shiftLeft(64)</td>
|
||||
* <td style="text-align:right">1088</td>
|
||||
* <td style="text-align:right">16</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L64X128MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(64)</td>
|
||||
* <td style="text-align:right">192</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L64X128StarStarRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(64)</td>
|
||||
* <td style="text-align:right">192</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">L64X256MixRandom</td>
|
||||
* <td style="text-align:left">LXM</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE).shiftLeft(64)</td>
|
||||
* <td style="text-align:right">320</td>
|
||||
* <td style="text-align:right">4</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">Random</td>
|
||||
* <td style="text-align:left">Legacy</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(48)</td>
|
||||
* <td style="text-align:right">48</td>
|
||||
* <td style="text-align:right">0</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">SplittableRandom</td>
|
||||
* <td style="text-align:left">Legacy</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(64)</td>
|
||||
* <td style="text-align:right">64</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">ThreadLocalRandom <sup>*</sup></td>
|
||||
* <td style="text-align:left">Legacy</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(64)</td>
|
||||
* <td style="text-align:right">64</td>
|
||||
* <td style="text-align:right">1</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">Xoroshiro128PlusPlus</td>
|
||||
* <td style="text-align:left">Xoroshiro</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE)</td>
|
||||
* <td style="text-align:right">128</td>
|
||||
* <td style="text-align:right">2</td>
|
||||
* </tr>
|
||||
* <tr>
|
||||
* <td style="text-align:left">Xoshiro256PlusPlus</td>
|
||||
* <td style="text-align:left">Xoshiro</td>
|
||||
* <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE)</td>
|
||||
* <td style="text-align:right">256</td>
|
||||
* <td style="text-align:right">4</td>
|
||||
* </tr>
|
||||
* </tbody>
|
||||
* </table>
|
||||
*
|
||||
* <p><sup>*</sup> ThreadLocalRandom can only be accessed via
|
||||
* {@link java.util.concurrent.ThreadLocalRandom#current()}.
|
||||
*
|
||||
* <h2>Categories of Random Number Generator Algorithms</h2>
|
||||
*
|
||||
* Historically, most pseudorandom generator algorithms have been based on some
|
||||
* sort of finite-state machine with a single, large cycle of states; when it is
|
||||
* necessary to have multiple threads use the same algorithm simultaneously, the
|
||||
* usual technique is to arrange for each thread to traverse a different region
|
||||
* of the state cycle. These regions may be doled out to threads by starting
|
||||
* with a single initial state and then using a "jump function" that travels a
|
||||
* long distance around the cycle (perhaps 2<sup>64</sup> steps or more); the
|
||||
* jump function is applied repeatedly and sequentially, to identify widely
|
||||
* spaced states that are then doled out, one to each thread, to serve as the
|
||||
* initial state for the generator to be used by that thread. This strategy is
|
||||
* supported by the interface {@link RandomGenerator.JumpableGenerator}.
|
||||
* Sometimes it is desirable to support two levels of jumping (by long distances
|
||||
* and by <i>really</i> long distances); this strategy is supported by the
|
||||
* interface {@link RandomGenerator.LeapableGenerator}. There is also an interface
|
||||
* {@link RandomGenerator.ArbitrarilyJumpableGenerator} for algorithms that allow
|
||||
* jumping along the state cycle by any user-specified distance. In this package,
|
||||
* implementations of these interfaces include
|
||||
* "Xoroshiro128PlusPlus", and
|
||||
* "Xoshiro256PlusPlus".
|
||||
*
|
||||
* <p> A more recent category of "splittable" pseudorandom generator algorithms
|
||||
* uses a large family of state cycles and makes some attempt to ensure that
|
||||
* distinct instances use different state cycles; but even if two instances
|
||||
* "accidentally" use the same state cycle, they are highly likely to traverse
|
||||
* different regions parts of that shared state cycle. This strategy is
|
||||
* supported by the interface {@link RandomGenerator.SplittableGenerator}.
|
||||
* In this package, implementations of this interface include
|
||||
* "L32X64MixRandom",
|
||||
* "L64X128StarStarRandom",
|
||||
* "L64X128MixRandom",
|
||||
* "L64X256MixRandom",
|
||||
* "L64X1024MixRandom",
|
||||
* "L128X128MixRandom",
|
||||
* "L128X256MixRandom", and
|
||||
* "L128X1024MixRandom"; note that the class
|
||||
* {@link java.util.SplittableRandom} also implements this interface.
|
||||
*
|
||||
*
|
||||
* <h2>The LXM Family of Random Number Generator Algorithms</h2>
|
||||
*
|
||||
* The structure of the central nextLong (or nextInt) method of an LXM
|
||||
* algorithm follows a suggestion in December 2017 by Sebastiano Vigna
|
||||
* that using one LCG subgenerator and one xor-based subgenerator (rather
|
||||
* than two LCG subgenerators) would provide a longer period, superior
|
||||
* equidistribution, scalability, and better quality. Each of the
|
||||
* specific implementations here combines one of the best currently known
|
||||
* xor-based generators (xoroshiro or xoshiro, described by Blackman and
|
||||
* Vigna in "Scrambled Linear Pseudorandom Number Generators", ACM
|
||||
* Trans. Math. Softw., 2021) with an LCG that uses one of the best
|
||||
* currently known multipliers (found by a search for better multipliers
|
||||
* in 2019 by Steele and Vigna), and then applies a mixing function
|
||||
* identified by Doug Lea. Testing has confirmed that the LXM algorithm
|
||||
* is far superior in quality to the SplitMix algorithm (2014) used by
|
||||
* SplittableRandom.
|
||||
*
|
||||
* Each class with a name of the form {@code L}<i>p</i>{@code X}<i>q</i>{@code
|
||||
* SomethingRandom} uses some specific member of the LXM family of random number
|
||||
* algorithms; "LXM" is short for "LCG, Xorshift, Mixing function". Every LXM
|
||||
* generator consists of two subgenerators; one is an LCG (Linear Congruential
|
||||
* Generator) and the other is an Xorshift generator. Each output of an LXM
|
||||
* generator is the result of combining state from the LCG with state from the
|
||||
* Xorshift generator by using a Mixing function (and then the state of the LCG
|
||||
* and the state of the Xorshift generator are advanced).
|
||||
*
|
||||
* <p> The LCG subgenerator has an update step of the form {@code s = m*s + a},
|
||||
* where {@code s}, {@code m}, and {@code a} are all binary integers of the same
|
||||
* size, each having <i>p</i> bits; {@code s} is the mutable state, the
|
||||
* multiplier {@code m} is fixed (the same for all instances of a class) and the
|
||||
* addend {@code a} is a parameter (a final field of the instance). The
|
||||
* parameter {@code a} is required to be odd (this allows the LCG to have the
|
||||
* maximal period, namely 2<sup><i>p</i></sup>); therefore there are
|
||||
* 2<sup><i>p</i>−1</sup> distinct choices of parameter. (When the size of
|
||||
* {@code s} is 128 bits, then we use the name "{@code sh}" below to refer to
|
||||
* the high half of {@code s}, that is, the high-order 64 bits of {@code s}.)
|
||||
*
|
||||
* <p> The Xorshift subgenerator can in principle be any one of a wide variety
|
||||
* of xorshift algorithms; in this package it is always either
|
||||
* {@code xoroshiro128}, {@code xoshiro256}, or {@code xoroshiro1024}, in each
|
||||
* case without any final scrambler such as "+" or "**". Its state consists of
|
||||
* some fixed number of {@code int} or {@code long} fields, generally named
|
||||
* {@code x0}, {@code x1}, and so on, which can take on any values provided that
|
||||
* they are not all zero. The collective total size of these fields is <i>q</i>
|
||||
* bits; therefore the period of this subgenerator is
|
||||
* 2<sup><i>q</i></sup>−1.
|
||||
*
|
||||
* <p> Because the periods 2<sup><i>p</i></sup> and 2<sup><i>q</i></sup>−1
|
||||
* of the two subgenerators are relatively prime, the <em>period</em> of any
|
||||
* single instance of an LXM algorithm (the length of the series of generated
|
||||
* values before it repeats) is the product of the periods of the subgenerators,
|
||||
* that is, 2<sup><i>p</i></sup>(2<sup><i>q</i></sup>−1), which is just
|
||||
* slightly smaller than 2<sup>(<i>p</i>+<i>q</i>)</sup>. Moreover, if two
|
||||
* distinct instances of the same LXM algorithm have different {@code a}
|
||||
* parameters, then their cycles of produced values will be different.
|
||||
*
|
||||
* <p> Generally speaking, among the "{@code L}<i>p</i>{@code X}<i>q</i>"
|
||||
* generators, the memory required for an instance is 2<i>p</i>+<i>q</i> bits.
|
||||
* (If <i>q</i> is 1024 or larger, the Xorshift state is represented as an
|
||||
* array, so additional bits are needed for the array object header, and another
|
||||
* 32 bits are used for an array index.)
|
||||
*
|
||||
* <p> Larger values of <i>p</i> imply a lower probability that two distinct
|
||||
* instances will traverse the same state cycle, and larger values of <i>q</i>
|
||||
* imply that the generator is equidistributed in a larger number of dimensions
|
||||
* (this is provably true when <i>p</i> is 64, and conjectured to be
|
||||
* approximately true when <i>p</i> is 128). A class with "{@code Mix}" in its
|
||||
* name uses a fairly strong mixing function with excellent avalanche
|
||||
* characteristics; a class with "{@code StarStar}" in its name uses a weaker
|
||||
* but faster mixing function.
|
||||
*
|
||||
* <p> The specific LXM algorithms used in this package are all chosen so that
|
||||
* the 64-bit values produced by the {@link RandomGenerator#nextLong nextLong()}
|
||||
* method are exactly equidistributed (for example, for any specific instance of
|
||||
* "L64X128MixRandom", over the course of its cycle each of the
|
||||
* 2<sup>64</sup> possible {@code long} values will be produced
|
||||
* 2<sup>128</sup>−1 times). The values produced by the
|
||||
* {@link RandomGenerator#nextInt nextInt()},
|
||||
* {@link RandomGenerator#nextFloat nextFloat()}, and
|
||||
* {@link RandomGenerator#nextDouble nextDouble()} methods are likewise exactly
|
||||
* equidistributed. Some algorithms provide a further guarantee of
|
||||
* <i>k</i>-equidistribution for some <i>k</i> greater than 1, meaning that successive
|
||||
* non-overlapping <i>k</i>-tuples of 64-bit values produced by the
|
||||
* {@link RandomGenerator#nextLong nextLong()} method are exactly
|
||||
* equidistributed (equally likely to occur).
|
||||
*
|
||||
* <p> The following table gives the period, state size (in bits), parameter
|
||||
* size (in bits, including the low-order bit that is required always to be a
|
||||
* 1-bit), and equidistribution property for each of the specific LXM algorithms
|
||||
* used in this package.
|
||||
*
|
||||
* <table style="padding:0px 20px 0px 0px">
|
||||
* <caption>Algorithm Properties</caption>
|
||||
* <thead>
|
||||
* <tr><th style="text-align:left">Implementation</th>
|
||||
* <th style="text-align:right">Period</th>
|
||||
* <th style="text-align:right">State size</th>
|
||||
* <th style="text-align:right">Parameter size</th>
|
||||
* <th style="text-align:left">{@link RandomGenerator#nextLong nextLong()} values are</th></tr>
|
||||
* </thead>
|
||||
* <tbody>
|
||||
* <tr><td style="text-align:left">"L32X64MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>32</sup>(2<sup>64</sup>−1)</td>
|
||||
* <td style="text-align:right">96 bits</td>
|
||||
* <td style="text-align:right">32 bits</td>
|
||||
* <td style="text-align:left"></td></tr>
|
||||
* <tr><td style="text-align:left">"L64X128StarStarRandom"</td>
|
||||
* <td style="text-align:right">2<sup>64</sup>(2<sup>128</sup>−1)</td>
|
||||
* <td style="text-align:right">192 bits</td>
|
||||
* <td style="text-align:right">64 bits</td>
|
||||
* <td style="text-align:left">2-equidistributed and exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X128MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>64</sup>(2<sup>128</sup>−1)</td>
|
||||
* <td style="text-align:right">192 bits</td>
|
||||
* <td style="text-align:right">64 bits</td>
|
||||
* <td style="text-align:left">2-equidistributed and exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X256MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>64</sup>(2<sup>256</sup>−1)</td>
|
||||
* <td style="text-align:right">320 bits</td>
|
||||
* <td style="text-align:right">64 bits</td>
|
||||
* <td style="text-align:left">4-equidistributed and exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X1024MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>64</sup>(2<sup>1024</sup>−1)</td>
|
||||
* <td style="text-align:right">1088 bits</td>
|
||||
* <td style="text-align:right">64 bits</td>
|
||||
* <td style="text-align:left">16-equidistributed and exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X128MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>128</sup>(2<sup>128</sup>−1)</td>
|
||||
* <td style="text-align:right">256 bits</td>
|
||||
* <td style="text-align:right">128 bits</td>
|
||||
* <td style="text-align:left">exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X256MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>128</sup>(2<sup>256</sup>−1)</td>
|
||||
* <td style="text-align:right">384 bits</td>
|
||||
* <td style="text-align:right">128 bits</td>
|
||||
* <td style="text-align:left">exactly equidistributed</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X1024MixRandom"</td>
|
||||
* <td style="text-align:right">2<sup>128</sup>(2<sup>1024</sup>−1)</td>
|
||||
* <td style="text-align:right">1152 bits</td>
|
||||
* <td style="text-align:right">128 bits</td>
|
||||
* <td style="text-align:left">exactly equidistributed</td></tr>
|
||||
* </tbody>
|
||||
* </table>
|
||||
*
|
||||
* For the algorithms listed above whose names begin with {@code L32}, the
|
||||
* 32-bit values produced by the {@link RandomGenerator#nextInt nextInt()}
|
||||
* method are exactly equidistributed, but the 64-bit values produced by the
|
||||
* {@link RandomGenerator#nextLong nextLong()} method are not exactly
|
||||
* equidistributed.
|
||||
*
|
||||
* <p> For the algorithms listed above whose names begin with {@code L64} or
|
||||
* {@code L128}, the 64-bit values produced by the
|
||||
* {@link RandomGenerator#nextLong nextLong()} method are <i>exactly
|
||||
* equidistributed</i>: every instance, over the course of its cycle, will
|
||||
* produce each of the 2<sup>64</sup> possible {@code long} values exactly the
|
||||
* same number of times. For example, any specific instance of
|
||||
* "L64X256MixRandom", over the course of its cycle each of the
|
||||
* 2<sup>64</sup> possible {@code long} values will be produced
|
||||
* 2<sup>256</sup>−1 times. The values produced by the
|
||||
* {@link RandomGenerator#nextInt nextInt()},
|
||||
* {@link RandomGenerator#nextFloat nextFloat()}, and
|
||||
* {@link RandomGenerator#nextDouble nextDouble()} methods are likewise exactly
|
||||
* equidistributed.
|
||||
*
|
||||
* <p> In addition, for the algorithms listed above whose names begin with
|
||||
* {@code L64}, the 64-bit values produced by the
|
||||
* {@link RandomGenerator#nextLong nextLong()} method are
|
||||
* <i>k</i>-equidistributed (but not exactly <i>k</i>-equidistributed). To be
|
||||
* precise, and taking "L64X256MixRandom" as an example: for
|
||||
* any specific instance of "L64X256MixRandom", consider the
|
||||
* (overlapping) length-4 subsequences of the cycle of 64-bit values produced by
|
||||
* {@link RandomGenerator#nextLong nextLong()} (assuming no other methods are
|
||||
* called that would affect the state). There are
|
||||
* 2<sup>64</sup>(2<sup>256</sup>−1) such subsequences, and each
|
||||
* subsequence, which consists of 4 64-bit values, can have one of
|
||||
* 2<sup>256</sup> values. Of those 2<sup>256</sup> subsequence values, nearly
|
||||
* all of them (2<sup>256</sup>%minus;2<sup>64</sup>) occur 2<sup>64</sup> times
|
||||
* over the course of the entire cycle, and the other 2<sup>64</sup> subsequence
|
||||
* values occur only 2<sup>64</sup>−1 times. So the ratio of the
|
||||
* probability of getting any specific one of the less common subsequence values
|
||||
* and the probability of getting any specific one of the more common
|
||||
* subsequence values is 1−2<sup>-64</sup>. (Note that the set of
|
||||
* 2<sup>64</sup> less-common subsequence values will differ from one instance
|
||||
* of "L64X256MixRandom" to another, as a function of the
|
||||
* additive parameter of the LCG.) The values produced by the
|
||||
* {@link RandomGenerator#nextInt nextInt()},
|
||||
* {@link RandomGenerator#nextFloat nextFloat()}, and
|
||||
* {@link RandomGenerator#nextDouble nextDouble()} methods are likewise
|
||||
* 4-equidistributed (but not exactly 4-equidistributed).
|
||||
*
|
||||
* <p> The next table gives the LCG multiplier value, the name of the specific
|
||||
* Xorshift algorithm used, the specific numeric parameters for that Xorshift
|
||||
* algorithm, and the mixing function for each of the specific LXM algorithms
|
||||
* used in this package. (Note that the multiplier used for the 128-bit LCG
|
||||
* cases is 65 bits wide, so the constant {@code 0x1d605bbb58c8abbfdL} shown in
|
||||
* the table cannot actually be used in code; instead, only the 64 low-order
|
||||
* bits {@code 0xd605bbb58c8abbfdL} are represented in the source code, and the
|
||||
* missing 1-bit is handled through special coding of the multiply-add algorithm
|
||||
* used in the LCG.)
|
||||
*
|
||||
* <table style="padding:0px 20px 0px 0px">
|
||||
* <caption>LXM Multipliers</caption>
|
||||
* <thead>
|
||||
* <tr><th style="text-align:left">Implementation</th>
|
||||
* <th style="text-align:right">LCG multiplier {@code m}</th>
|
||||
* <th style="text-align:left">Xorshift algorithm</th>
|
||||
* <th style="text-align:left">Xorshift parameters</th>
|
||||
* <th style="text-align:left">Mixing function</th></tr>
|
||||
* </thead>
|
||||
* <tbody>
|
||||
* <tr><td style="text-align:left">"L32X64MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0xadb4a92d}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro64}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (26, 9, 13)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X128StarStarRandom" </td>
|
||||
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (24, 16, 37)}</td>
|
||||
* <td style="text-align:left">{@code Long.rotateLeft((s+x0)* 5, 7) * 9}</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X128MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (24, 16, 37)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X256MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
|
||||
* <td style="text-align:left">{@code xoshiro256}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (17, 45)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L64X1024MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro1024}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (25, 27, 36)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X128MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (24, 16, 37)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (sh+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X256MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
|
||||
* <td style="text-align:left">{@code xoshiro256}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (17, 45)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (sh+x0)}</td></tr>
|
||||
* <tr><td style="text-align:left">"L128X1024MixRandom"</td>
|
||||
* <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
|
||||
* <td style="text-align:left">{@code xoroshiro1024}, version 1.0</td>
|
||||
* <td style="text-align:left">{@code (25, 27, 36)}</td>
|
||||
* <td style="text-align:left">mixLea32{@code (sh+x0)}</td></tr>
|
||||
* </tbody>
|
||||
* </table>
|
||||
*
|
||||
* @since 17
|
||||
*/
|
||||
package java.util.random;
|
||||
|
File diff suppressed because it is too large
Load diff
|
@ -113,6 +113,7 @@ module java.base {
|
|||
exports java.util.concurrent.locks;
|
||||
exports java.util.function;
|
||||
exports java.util.jar;
|
||||
exports java.util.random;
|
||||
exports java.util.regex;
|
||||
exports java.util.spi;
|
||||
exports java.util.stream;
|
||||
|
@ -248,6 +249,8 @@ module java.base {
|
|||
jdk.jfr;
|
||||
exports jdk.internal.util.xml.impl to
|
||||
jdk.jfr;
|
||||
exports jdk.internal.util.random to
|
||||
jdk.random;
|
||||
exports sun.net to
|
||||
java.net.http,
|
||||
jdk.naming.dns;
|
||||
|
@ -356,7 +359,6 @@ module java.base {
|
|||
exports jdk.internal.invoke to
|
||||
jdk.incubator.foreign;
|
||||
|
||||
|
||||
// the service types defined by the APIs in this module
|
||||
|
||||
uses java.lang.System.LoggerFinder;
|
||||
|
@ -377,6 +379,7 @@ module java.base {
|
|||
uses java.time.chrono.AbstractChronology;
|
||||
uses java.time.chrono.Chronology;
|
||||
uses java.time.zone.ZoneRulesProvider;
|
||||
uses java.util.random.RandomGenerator;
|
||||
uses java.util.spi.CalendarDataProvider;
|
||||
uses java.util.spi.CalendarNameProvider;
|
||||
uses java.util.spi.CurrencyNameProvider;
|
||||
|
@ -400,4 +403,10 @@ module java.base {
|
|||
|
||||
provides java.nio.file.spi.FileSystemProvider with
|
||||
jdk.internal.jrtfs.JrtFileSystemProvider;
|
||||
|
||||
provides java.util.random.RandomGenerator with
|
||||
java.security.SecureRandom,
|
||||
java.util.Random,
|
||||
java.util.SplittableRandom;
|
||||
|
||||
}
|
||||
|
|
688
src/java.base/share/native/random/create_ziggurat_tables.c
Normal file
688
src/java.base/share/native/random/create_ziggurat_tables.c
Normal file
|
@ -0,0 +1,688 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Oracle nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||||
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
// This program computes the parameters and arrays needed by the modified-ziggurat algorithm
|
||||
// for sampling from either an exponential distribution with mean 1 or a normal distribution
|
||||
// with mean 0 and standad deviation 1. The four arrays needed for either kind of sampler are:
|
||||
//
|
||||
// X[i] is the horizontal width of ziggurat layer i
|
||||
// Y[i] is f(X[i]), where f is the function for the exponential or normal curve
|
||||
// alias_threshold is the table of probability mass thresholds for Walker's alias method,
|
||||
// with one entry for the tail of the distributon and one entry for each overhang region
|
||||
// alias_map is the table of forwarding indices used for Walker's alias method
|
||||
//
|
||||
// The four parameters needed by the exponential sampler are:
|
||||
//
|
||||
// exponential_number_of_layers the number of layers in the ziggurat
|
||||
// exponential_X_0 the width of the box in layer 0 (which is the x-coordinate of the left end of the tail)
|
||||
// exponential_convex_margin the maximum discrepancy between the curve and a certain diagonal line above it
|
||||
//
|
||||
// The five parameters needed by the normal sampler are:
|
||||
//
|
||||
// normal_number_of_layers the number of layers in the ziggurat
|
||||
// normal_X_0 the width of the box in layer 0 (which is the x-coordinate of the left end of the tail)
|
||||
// normal_inflection_index the index of the layer containing the inflection point
|
||||
// normal_convex_margin the maximum discrepancy between the curve and a certain diagonal line above it
|
||||
// normal_concave_margin the maximum discrepancy between the curve and a certain diagonal line below it
|
||||
//
|
||||
// After computing the parameters and tables, the program prints (to standard output)
|
||||
// a complete Java source code file for a class named either FloatZigguratTables or
|
||||
// DoubleZigguratTables, according to which precision has been requested.
|
||||
|
||||
// The only reason this program has been written as C code rather than Java code is that
|
||||
// most of the calculations need to be performed in long double precision in order to
|
||||
// be able to calculate double values of sufficient accuracy. This code relies on
|
||||
// long double math functions sqrtl, powl, expl, logl, log2l, erfl, ceill, and copysignl.
|
||||
|
||||
// The overall modified ziggurat algorithm closely follows the description in:
|
||||
//
|
||||
// Christopher D. McFarland. 2016 (published online 24 Jun 2015). A modified ziggurat
|
||||
// algorithm for generating exponentially and normally distributed pseudorandom numbers.
|
||||
// Journal of Statistical Computation and Simulation 86 (7), pages 1281-1294.
|
||||
// https://www.tandfonline.com/doi/abs/10.1080/00949655.2015.1060234
|
||||
// Also at https://arxiv.org/abs/1403.6870 (26 March 2014).
|
||||
//
|
||||
// This paper in turn refers to code available at https://bitbucket.org/cdmcfarland/fast_prng.
|
||||
// This includes a file create_layers.py of Python code for constructing the tables.
|
||||
// The C code here loosely follows the organization of that Python code. However, the Python
|
||||
// code appears to contain a number of errors and infelicities that have been corrected here:
|
||||
//
|
||||
// (1) On line 211, 1 is added to i_inflection, causing the value 205 to be printed when
|
||||
// table size is 256. Adding 1 is not correct; the correct value for printing is 204.
|
||||
//
|
||||
// (2) On line 203, 3 values are dropped from the front of the array E when computing iE_max,
|
||||
// with no explanation given. We believe this is incorrect; E[3:] should be simply E.
|
||||
//
|
||||
// (3) When the table elements are converted to printable strings using "map(str,data)",
|
||||
// precision is lost because the Python str function produces only 12 decimal digits.
|
||||
// In this C code, we print table entries using 17 decimal digits (format %23.16e),
|
||||
// because 17 decimal digits suffice to preserve the value of any double precision
|
||||
// value (and 16 decimal digits do not always suffice).
|
||||
//
|
||||
// (4) At lines 215-223, the Python code computes only a single E value for the
|
||||
// rectangle containing the inflection point of the normal distribution curve.
|
||||
// We believe it is conceptually more correct to compute two such E values,
|
||||
// one for the concave part of the curve (to the left of the inflection point)
|
||||
// and one for the convex part of the curve (to the right of the inflection point).
|
||||
//
|
||||
// We also observe that the McFarland paper asserts that the solver uses Brent's method,
|
||||
// but the solver in the Python code does not implement Brent's method. A proper
|
||||
// implementation of Brent's method (or its predecessor, Dekker's method) alternates
|
||||
// between use of the Secant Method and use of the Bisection Method according to various
|
||||
// criteria, but the Python code merely tries the Secant Method for a fixed number of
|
||||
// iterations and then switches to the Bisection Method for a calculated number of iterations.
|
||||
// Here we have translated Brent's Method into C from the Algol code in Brent's original paper.
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
// The SIZE may be any power of 2 not greater than 2048; 128, 256, 512, and 1024
|
||||
// are all plausible choices, but 256 probably makes the best space/time tradeoff.
|
||||
// The number of layers in the constructed ziggurat will be slightly smaller than this.
|
||||
#ifndef SIZE
|
||||
#define SIZE 256
|
||||
#endif
|
||||
|
||||
// Set USE_DOUBLE to 1 for Java routines that compute results of type double, or to 0 for float.
|
||||
#ifndef USE_DOUBLE
|
||||
#define USE_DOUBLE 1
|
||||
#endif
|
||||
|
||||
|
||||
#if USE_DOUBLE
|
||||
|
||||
typedef int64_t int_type;
|
||||
typedef uint64_t uint_type;
|
||||
typedef double float_type;
|
||||
#define int_bits 64
|
||||
#define max_int 0x7fffffffffffffff
|
||||
#define max_uint 0xffffffffffffffff
|
||||
#define java_int_type "long"
|
||||
#define java_float_type "double"
|
||||
#define java_capitalized_float_type "Double"
|
||||
|
||||
#else
|
||||
|
||||
typedef int32_t int_type;
|
||||
typedef uint32_t uint_type;
|
||||
typedef float float_type;
|
||||
#define int_bits 32
|
||||
#define max_int 0x7fffffff
|
||||
#define max_uint 0xffffffff
|
||||
#define java_int_type "int"
|
||||
#define java_float_type "float"
|
||||
#define java_capitalized_float_type "Float"
|
||||
|
||||
#endif
|
||||
|
||||
// We set SOLVER_TOLERANCE quite tight
|
||||
#define SOLVER_TOLERANCE 1.0e-19L
|
||||
|
||||
#define PI (3.1415926535897932384626433832795L)
|
||||
|
||||
// Assert that two long double values are equal to within double (not long double) precision
|
||||
#define check_equal(x, y) do assert(((x)>=(y) ? (x)-(y) : (y)-(x)) < DBL_EPSILON); while (0)
|
||||
|
||||
// The best way to compute the absolute value of a long double.
|
||||
long double absl(long double x) {
|
||||
return copysignl(x, 1.0);
|
||||
}
|
||||
|
||||
// The type of a function that accepts one long double argument and returns a long double result.
|
||||
typedef long double (*longdoublefn)(long double);
|
||||
|
||||
// The functions we will traffic in for solving need an argument but also two
|
||||
// or three parameters, of which the first is a longdoublefn and the others are
|
||||
// long double values. Because vanilla C doesn't have closures, we just arrange
|
||||
// for the solver to accept three parameters and pass them in each time.
|
||||
typedef long double (*solverfn)(long double, longdoublefn, long double, long double);
|
||||
|
||||
|
||||
// The solver: find a root of function g (which has f, p1, and p2 as parameters).
|
||||
// Returns a value x within bounds [a, b] such that g(x) is (close to) zero.
|
||||
// Returns NaN if either a >= b or g(a) and g(b) have the same sign;
|
||||
// this information can help the caller to adjust the bounds and try again.
|
||||
//
|
||||
// This solver uses Brent's Method, as it appears in:
|
||||
//
|
||||
// R. P. Brent. 1971. An algorithm with guaranteed convergence for finding a zero of a function.
|
||||
// The Computer Journal, Volume 14, Issue 4, 422–425. https://doi.org/10.1093/comjnl/14.4.422
|
||||
//
|
||||
// We assume that LDBL_EPSILON is the correct value to use for "macheps" as used in the Algol code.
|
||||
|
||||
long double fsolve(solverfn g, longdoublefn f, long double p1, long double p2,
|
||||
long double a, long double b) {
|
||||
// Check the required conditions on the arguments.
|
||||
if (a >= b) return NAN;
|
||||
long double ga = g(a, f, p1, p2), gb = g(b, f, p1, p2);
|
||||
if (copysignl(1.0, ga) == copysignl(1.0, gb)) return NAN;
|
||||
// Here is Brent's Method, translated from Algol to C. We have replaced the uses
|
||||
// of "goto" with "for" loops and have scoped the variable declarations more tightly.
|
||||
for (;;) { // label "int:" in the Algol code
|
||||
long double c = a, gc = ga;
|
||||
long double e = b - a;
|
||||
long double d = e;
|
||||
for (;;) { // label "ext:" in the Algol code
|
||||
if (absl(gc) < absl(gb)) {
|
||||
a = b; b = c; c = a;
|
||||
ga = gb; gb = gc; gc = ga;
|
||||
}
|
||||
long double tol = 2 * LDBL_EPSILON * absl(b) + SOLVER_TOLERANCE;
|
||||
long double m = (c - b)/2.0L;
|
||||
if (absl(m) < tol || gb == 0.0L) return b;
|
||||
// See if a bisection is forced
|
||||
if (absl(e) < tol || absl(ga) <= absl(gb)) {
|
||||
d = e = m; // Yes, it is
|
||||
} else {
|
||||
long double s = gb/ga;
|
||||
long double p, q;
|
||||
if (a == c) {
|
||||
// Linear interpolation
|
||||
p = 2.0L * m * s;
|
||||
q = 1.0L - s;
|
||||
} else {
|
||||
// Inverse quadratic interpolation
|
||||
long double z = ga/gc, r = gb/gc;
|
||||
p = s * (2.0L*m*z*(z-r) - (b - a)*(r - 1.0L));
|
||||
q = (z - 1.0L) * (r - 1.0L) * (s - 1.0L);
|
||||
}
|
||||
if (p > 0.0L) { q = -q; } else { p = -p; }
|
||||
s = e; e = d;
|
||||
if ((2.0L*p < 3.0L*m*q - absl(tol*q)) && (p < absl(0.5L*s*q))) {
|
||||
d = p/q;
|
||||
} else {
|
||||
d = e = m;
|
||||
}
|
||||
}
|
||||
a = b; ga = gb;
|
||||
b = b + (absl(d) > tol ? d : (m > 0.0L ? tol : -tol));
|
||||
gb = g(b, f, p1, p2);
|
||||
if ((gb > 0.0L) == (gc > 0.0L)) break; // That is, goto "int:"
|
||||
// Otherwise, goto "ext:"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This routine accepts a discrete probability mass function P (represented as an array),
|
||||
// a second array A, and an integer N that indicates their common length.
|
||||
// It computes two outputs: a table of probability thresholds (returned in P) and
|
||||
// a table of forwarding indices (returned in A).
|
||||
// These tables are suitable for use with Walker's alias algorithm for sampling from
|
||||
// the originally specified discrete probability mass function.
|
||||
// For the original description of Walker's alias method, see:
|
||||
// Alastair J. Walker. 1977. An efficient method for generating discrete random
|
||||
// variables with general distributions. ACM Trans. Math. Software 3, 3
|
||||
// (September 1977), 253-256. DOI: https://doi.org/10.1145/355744.355749
|
||||
// However, his original version of the routine for building the tables runs in O(N**2) time.
|
||||
// Following McFarland, we use a variant technique that is O(N), as described by Smith:
|
||||
// Warren D. Smith. 2002. How to sample from a probability distribution.
|
||||
// Unpublished. http://scorevoting.net/WarrenSmithPages/homepage/sampling.ps
|
||||
|
||||
void build_sampler(long double *P, int *A, int N) {
|
||||
long double *X = malloc((N+1)*sizeof(long double));
|
||||
int *B = malloc((N+1)*sizeof(int));
|
||||
// First step: normalize the given probability distribution and scale by N.
|
||||
long double sum = 0.0L;
|
||||
for (int k = 0; k < N; k++) sum += P[k];
|
||||
for (int k = 0; k < N; k++) P[k] = (P[k] / sum) * N;
|
||||
// Copy P into X, and add a sentinel value.
|
||||
for (int k = 0; k < N; k++) X[k] = P[k];
|
||||
X[N] = 2.0L; // sentinel value
|
||||
// A will become the table of forwarding indices.
|
||||
// B will eventually describe a permutation on X such that every element less than 1.0
|
||||
// has a lower index than any element that is not less than 1.0.
|
||||
// Initally each is the identity map (element k contains the value k).
|
||||
for (int k = 0; k < N; k++) A[k] = k;
|
||||
for (int k = 0; k < N+1; k++) B[k] = k;
|
||||
// This next step is reminiscent of a Quicksort partition: i and j are two fingers
|
||||
// moving toward each other from opposite ends of X, and when i lands on an element
|
||||
// not less than 1.0 and j lands on an element less than 1.0, they are _logically_
|
||||
// swapped, not by updating X, but by updating the permutation in B.
|
||||
int i = 0;
|
||||
int j = N;
|
||||
for (;;) {
|
||||
while (X[B[i]] < 1.0L) i += 1;
|
||||
while (X[B[j]] >= 1.0L) j -= 1;
|
||||
if (i >= j) break;
|
||||
int temp = B[i]; B[i] = B[j]; B[j] = temp;
|
||||
}
|
||||
i = j;
|
||||
j += 1;
|
||||
// At this point, X[B[k]] < 1.0L for all k <= i, and X[B[k]] >= 1.0L for all k >= j == i+1.
|
||||
// This invariant will be maintained by the next loop, which moves i back out to the left
|
||||
// and j back out to the right.
|
||||
while (i >= 0) {
|
||||
while (X[B[j]] <= 1.0L) j += 1;
|
||||
if (j >= N) break;
|
||||
// At this point, X[B[i]] is "overfunded" and X[B[j]] is "underfunded".
|
||||
// During the sampling process, if the randomly chosen value in [0,1) is not
|
||||
// less than X[B[i]], it will be construed as a choice of B[j] rather than of j.
|
||||
// This is indicated by storing B[j] in A[B[i]]. In addition, X[B[j]] is updated
|
||||
// to reflect that fact that X[B[i]] has "funded" 1-X[B[i]] of its desired
|
||||
// probability mass.
|
||||
A[B[i]] = B[j];
|
||||
X[B[j]] -= (1.0L - X[B[i]]);
|
||||
// It may be that the "generosity" of X[B[i]] has caused X[B[j]] to become overfunded.
|
||||
// In that case, the two can be swapped (and j is incremented so that the former X[B[i]],
|
||||
// now become X[B[j]], will not be further examined). Otherwise, i is decremented.
|
||||
// In either case, i will then indicate a new overfunded slot to be considered.
|
||||
if (X[B[j]] < 1.0L) {
|
||||
int temp = B[i]; B[i] = B[j]; B[j] = temp;
|
||||
j += 1;
|
||||
} else {
|
||||
i -= 1;
|
||||
}
|
||||
}
|
||||
// All done! Now a sanity check.
|
||||
long double *Q = malloc(N*sizeof(long double));
|
||||
for (int k = 0; k < N; k++) Q[k] = X[k];
|
||||
for (int k = 0; k < N; k++) Q[A[k]] += (1.0L - X[k]);
|
||||
for (int k = 0; k < N; k++) check_equal(Q[k], P[k]);
|
||||
// Copy the result table in X back out into the argument P.
|
||||
for (int k = 0; k < N; k++) P[k] = X[k];
|
||||
free(Q); free(B); free(X);
|
||||
}
|
||||
|
||||
// The function that describes the exponential distribution with mean 1.
|
||||
// See https://en.wikipedia.org/wiki/Exponential_distribution
|
||||
long double exponential_f(long double x) {
|
||||
return expl(-x);
|
||||
}
|
||||
|
||||
// The cumulative distribution function for the exponential distribution with mean 1.
|
||||
long double exponential_cdf(long double x) {
|
||||
return 1.0L - expl(-x);
|
||||
}
|
||||
|
||||
// The function that describes the normal distribution with mean 0 and standard deviation 1, scaled by sqrtl(0.5L*PI).
|
||||
// See https://en.wikipedia.org/wiki/Normal_distribution
|
||||
long double normal_f(long double x) {
|
||||
return expl(-0.5L*x*x);
|
||||
}
|
||||
|
||||
// The cumulative distribution function for the (right half of the) normal distribution with mean 0 and standard deviation 1.
|
||||
long double normal_cdf(long double x) {
|
||||
return sqrtl(0.5L*PI) * erfl(sqrtl(0.5L)*x);
|
||||
}
|
||||
|
||||
// A function that will be zero at an x such that the new box will have area box_area.
|
||||
long double box_g(long double x, longdoublefn f, long double last_Y_i, long double box_area) {
|
||||
return x*(f(x) - last_Y_i) - box_area;
|
||||
}
|
||||
|
||||
// A function that will be zero at an x such that, if f is normal_f, the tangent at point (x, f(x)) has slope m.
|
||||
long double normal_tangent_g(long double x, longdoublefn f, long double m, long double unused) {
|
||||
return x*f(x) - m;
|
||||
}
|
||||
|
||||
// This routine generates all the parameters and tables for one kind of sampler.
|
||||
void generate_tables(char *kind) {
|
||||
// kind may be "normal" or "exponential"
|
||||
assert(!strcmp(kind, "exponential") || !strcmp(kind, "normal"));
|
||||
|
||||
// SIZE must be a power of 2 (the code for Walker's alias method depends on it)
|
||||
assert((SIZE & -SIZE) == SIZE);
|
||||
// We require that SIZE <= 2048 because one place in the algorithm uses the
|
||||
// high 53 bits of a randomly chosen 64-bit integer to make a floating-point
|
||||
// (double) value after having already used the low bits to choose an integer
|
||||
// in the range [0,SIZE), and it is important that these two values be independent.
|
||||
// One consequence is that a value less than SIZE will certainly fit in a short
|
||||
// (and we will use a byte instead if SIZE <= 256).
|
||||
assert(SIZE <= 2048);
|
||||
|
||||
// A number of parameters need to be declared and then filled in according to the kind.
|
||||
// The total area under the probability curve for x >= 0:
|
||||
long double total_area_under_curve;
|
||||
// The function for the probability curve and also its cumulative distribution function:
|
||||
longdoublefn f, cdf;
|
||||
// Heuristic initial bounds for using the solver to calculate the X values:
|
||||
long double initial_lower_bound, initial_upper_bound;
|
||||
if (!strcmp(kind, "exponential")) {
|
||||
printf(" // Implementation support for modified-ziggurat implementation of nextExponential()\n\n");
|
||||
total_area_under_curve = 1.0L;
|
||||
f = exponential_f; cdf = exponential_cdf;
|
||||
initial_lower_bound = 1.0L; initial_upper_bound = 10.0L;
|
||||
} else if (!strcmp(kind, "normal")) {
|
||||
printf(" // Implementation support for modified-ziggurat implementation of nextGaussian()\n\n");
|
||||
// The "total area under curve" is for x >= 0 only, so we divide sqrtl(2.0L*PI) by 2.
|
||||
total_area_under_curve = sqrtl(2.0L*PI)/2.0L;
|
||||
f = normal_f; cdf = normal_cdf;
|
||||
initial_lower_bound = 1.0L; initial_upper_bound = 4.0L;
|
||||
}
|
||||
// Make sure the claimed area under the curve is correct
|
||||
// (or think of it as a sanity check on the cdf).
|
||||
check_equal(total_area_under_curve, cdf(INFINITY) - cdf(0.0L));
|
||||
|
||||
// The first task is to compute the boxes of the modified ziggurat.
|
||||
// The X values are found by an iterative solving process; after that the Y values are easy.
|
||||
long double X[SIZE], Y[SIZE];
|
||||
long double box_area = total_area_under_curve / ((long double)SIZE);
|
||||
long double lower_bound = initial_lower_bound;
|
||||
long double upper_bound = initial_upper_bound;
|
||||
long double last_Y_i = 0.0L;
|
||||
int i = 0;
|
||||
while(lower_bound * f(0.0L) > box_area) {
|
||||
// There are two solutions for X_i (a tall-skinny box and a long-flat box).
|
||||
// We want the latter, so lower_bound is reduced gradually to avoid solving
|
||||
// for the tall-skinny box. The two values of 0.9L are purely heuristic.
|
||||
X[i] = fsolve(box_g, f, last_Y_i, box_area, lower_bound, upper_bound);
|
||||
if (isnan(X[i])) {
|
||||
lower_bound *= 0.9L;
|
||||
} else {
|
||||
last_Y_i = f(X[i]);
|
||||
upper_bound = X[i];
|
||||
lower_bound = 0.9L*X[i];
|
||||
++i;
|
||||
}
|
||||
}
|
||||
int number_of_layers = i;
|
||||
// One _could_ think of there being an extra layer at the top with a box of width 0.
|
||||
// However, to be consistent with McFarland's description, we will not call that a layer.
|
||||
// Also, what McFarland calls an "overhanging box", we will call a "rectangle";
|
||||
// each rectangle contains part of the curve, and the rest of the curve is above the tail.
|
||||
// So there are number_of_layers boxes, numbered from 0 through (number_of_layers - 1);
|
||||
// number_of_layers rectangles (one of which, the topmost, has no box to its left),
|
||||
// numbered from 1 through number_of_layers; and a tail (which is to the right of box 0).
|
||||
// For 1 <= k < number_of_layers, rectangle i is to the right of box i.
|
||||
X[i] = 0.0L;
|
||||
// We have all the X values; nocompute the corresponding Y values.
|
||||
for (int k = 0; k < number_of_layers + 1; k++) Y[k] = f(X[k]);
|
||||
// Now we have (number_of_layers + 1) X values and (number_of_layers + 1) Y values.
|
||||
// For each i, 0 <= i <= number_of_layers, the point (X[i], Y[i]) lies on the curve.
|
||||
|
||||
// The next step is to compute the differences dX and dY.
|
||||
long double dX[SIZE], dY[SIZE];
|
||||
// Note that dX is calculated one way and dY the other way;
|
||||
// that way all the difference values are positive.
|
||||
for (int k = 0; k < number_of_layers; k++) dX[k] = X[k] - X[k+1];
|
||||
for (int k = 0; k < number_of_layers; k++) dY[k] = Y[k+1] - Y[k];
|
||||
// Sanity check to ensure all the boxes have the correct area
|
||||
check_equal(X[0]*Y[0], box_area);
|
||||
for (int k = 0; k < number_of_layers - 1; k++) check_equal(X[k+1]*dY[k], box_area);
|
||||
// Now we can say that box i (0 <= i <= (number_of_layers - 1)) has width X[i] and height dY[i],
|
||||
// and rectangle i (1 <= i <= number_of_layers) has width dX[i-1] and height dY[i-1].
|
||||
|
||||
// The next step is to construct a discrete probability distribution V
|
||||
// that encompasses the tail and all the overhang areas (in the rectangles).
|
||||
long double V[SIZE];
|
||||
V[0] = cdf(INFINITY) - cdf(X[0]);
|
||||
for (int k = 0; k < number_of_layers; k++) {
|
||||
V[k+1] = (cdf(X[k]) - cdf(X[k+1])) - Y[k]*dX[k];
|
||||
}
|
||||
for (int k = number_of_layers + 1; k < SIZE; k++) V[k] = 0.0L;
|
||||
// Now V[0] is the area of the tail, and V[i] (1 <= i <= number_of_layers)
|
||||
// is the area within rectangle i that lies under the curve.
|
||||
// Remaining entries are zero. (The only reason for this zero padding
|
||||
// is to make the length of V be a power of 2, which allows generation
|
||||
// of a randomly chosen index into V to be faster, using a masking operation
|
||||
// rather than a modulus operator.)
|
||||
|
||||
// Sanity check that all area under the curve is accounted for.
|
||||
long double V_sum = 0.0L;
|
||||
for (int k = 0; k < number_of_layers + 1; k++) V_sum += V[k];
|
||||
check_equal((double long)(SIZE - number_of_layers), V_sum/box_area);
|
||||
// Report some interesting statistics.
|
||||
printf(" // Fraction of the area under the curve that lies outside the layer boxes: %.4f\n", (double)(SIZE - number_of_layers)/(double)SIZE);
|
||||
printf(" // Fraction of non-box area that lies in the tail of the distribution: %.4f\n", (double)(V[0]/V_sum));
|
||||
printf("\n");
|
||||
|
||||
// Use V to construct tables called "alias_threshold" and "alias_map" for use with
|
||||
// Walker's alias method for sampling a discrete distribution efficiently.
|
||||
long double alias_threshold[SIZE];
|
||||
int alias_map[SIZE];
|
||||
// Routine build_sampler normalizes V and then turns it into thresholds,
|
||||
// and also constructs the alias_map table.
|
||||
build_sampler(V, alias_map, SIZE);
|
||||
// Now produce the alias_threshold table from V by scaling it and converting to integer values.
|
||||
// This is a trick that allows direct comparison with randomly chosen integer values,
|
||||
// rather than requiring generation of a randomly chosen floating-point value.
|
||||
for (int k = 0; k < SIZE; k++) {
|
||||
if (V[k] >= 1.0L) {
|
||||
// This "shouldn't happen", but rounding errors are possible, so we defend against it
|
||||
alias_threshold[k] = max_int;
|
||||
} else {
|
||||
alias_threshold[k] = (int_type)(V[k] * max_uint - max_int);
|
||||
}
|
||||
}
|
||||
|
||||
// Here each m[k] is computed as a positive value, which is therefore the negative of the
|
||||
// true slope of the diagonal line (within rectangle k+1) whose endpoints lie on the curve.
|
||||
long double m[SIZE];
|
||||
for (int k = 0; k < number_of_layers; k++) m[k] = dY[k]/dX[k];
|
||||
|
||||
// Now it is time to compute and output all the parameters.
|
||||
// It is really important that each parameter be declared "final"; it allows
|
||||
// a huge speed improvement because the Java compiler can then inline the constants.
|
||||
printf(" static final int %sNumberOfLayers = %d;\n", kind, number_of_layers);
|
||||
printf(" static final int %sLayerMask = 0x%x;\n", kind, SIZE-1);
|
||||
printf(" static final int %sAliasMask = 0x%x;\n", kind, SIZE-1);
|
||||
printf(" static final int %sSignCorrectionMask = 0x%x;\n", kind, (SIZE == 256) ? 0xff : 0xffffffff);
|
||||
printf(" static final %s %sX0 = %19.17f;\n", java_float_type, kind, (double)(float_type)X[0]);
|
||||
if (!strcmp(kind, "exponential")) {
|
||||
// Within each rectangle, we want to find a point on the curve where the tangent
|
||||
// is parallel to the diagonal line of the rectangle whose slope is m.
|
||||
|
||||
// The first derivative of the exponential function exp(-x) is -exp(-x), whose value
|
||||
// at X[k] is -exp(-X[k]) which is -Y[k]. So we can compare m values and Y values directly.
|
||||
// Sanity check: we expect Y[k+1] > m > Y[k].
|
||||
for (int k = 0; k < number_of_layers; k++) {
|
||||
assert(m[k] > Y[k]);
|
||||
assert(Y[k+1] > m[k]);
|
||||
}
|
||||
// Now for some math. Within rectangle k+1, the point on the curve where the
|
||||
// tangent is parallel to that diagonal must have coordinates (-log(m[k]), m[k]).
|
||||
// The point on the diagonal directly above it (with the same x-coordinate) is
|
||||
// (-log(m[k]), Y[k+1]-m[k]*(-log(m[k])-X[k+1])). The vertical distance between
|
||||
// them is therefore Y[k+1] - m[k]*(-log(m[k])-X[k+1]) - m[k]. We can then divide
|
||||
// this by dY[k] to normalize it to a fraction of the height of the rectangle.
|
||||
// We could have a table of all these fractions, so that we would have just the
|
||||
// right fraction for use with each rectangle; but it saves space (and loses very
|
||||
// little time) to just compute the maximum such fraction over all rectangles,
|
||||
// and then use that maximum fraction whenever processing any rectangle.
|
||||
long double convex_margin = -INFINITY;
|
||||
for (int k = 0; k < number_of_layers; k++) {
|
||||
long double X_tangent = -logl(m[k]);
|
||||
long double E = (Y[k+1] - m[k]*(X_tangent - X[k+1]) - m[k]) / dY[k];
|
||||
convex_margin = (convex_margin > E) ? convex_margin : E;
|
||||
}
|
||||
int_type scaled_convex_margin = (int_type)(convex_margin * (long double)max_int);
|
||||
printf(" static final %s %sConvexMargin = %lldL; // unscaled convex margin = %.4f\n",
|
||||
java_int_type, kind, (long long)scaled_convex_margin, (double)convex_margin);
|
||||
} else if (!strcmp(kind, "normal")) {
|
||||
// Within each rectangle, we want to find a point on the curve where the tangent
|
||||
// is parallel to the diagonal line of the rectangle whose slope is m.
|
||||
|
||||
long double inflection_point_x = 1.0L;
|
||||
int normal_inflection_index = 0;
|
||||
for (int k = 0; k < number_of_layers + 1; k++) {
|
||||
if (X[k] > inflection_point_x) ++normal_inflection_index;
|
||||
}
|
||||
// The inflection point lies within rectangle normal_inflection_index.
|
||||
// The x-coordinate of the inflection point lies between
|
||||
// X[normal_inflection_index] and X[normal_inflection_index - 1].
|
||||
|
||||
// In principle we could have trouble if the inflection point lies exactly
|
||||
// on corner of a box (but it doesn't happen in practice).
|
||||
assert(X[normal_inflection_index] < inflection_point_x);
|
||||
printf(" static final int normalInflectionIndex = %d;\n", normal_inflection_index);
|
||||
|
||||
// Now for some math. The first derivative of the normal curve function exp(-x*x/2)
|
||||
// at X[k] is -X[k]*exp(-X[k]*X[k]/2) which is -X[k]*f(X[k]). We use the function
|
||||
// normal_tangent_g with the solver to find the x-coordinate of a point on the
|
||||
// curve within rectangle k+1 where the tangent has slope m[k]. The rectangle that
|
||||
// contains the inflection point will have two such points, so that rectangle gets
|
||||
// special processing.
|
||||
// For each such tangent point, the idea is to compute the vertical distance between
|
||||
// that point and the diagonal, then divide by the height of the rectangle to normalize.
|
||||
// We could have a table of all these fractions, so that we would have just the
|
||||
// right fraction(s) for use with each rectangle; but it saves space (and loses very
|
||||
// little time) to just compute the maximum such fraction over a set of rectangles,
|
||||
// and then conservatively use that maximum fraction whenever processing any rectangle.
|
||||
// Instead of taking the maximum fraction over all rectangles (as we do for the
|
||||
// exponential function) we compute two separate maxima: one over all tangent points
|
||||
// below the diagonal (where the curve is convex) and one over all tangent points
|
||||
// above the diagonal (where the curve is concave). Note that the rectangle containing
|
||||
// the inflection point has one of each.
|
||||
long double convex_margin = -INFINITY, concave_margin = -INFINITY;
|
||||
for (int k = 0; k < number_of_layers; k++) {
|
||||
// Process rectangle k+1
|
||||
if ((k+1) <= normal_inflection_index) {
|
||||
// The rectangle has a convex portion of the curve
|
||||
long double lower_bound = ((k+1) == normal_inflection_index) ? inflection_point_x : X[k+1];
|
||||
long double X_tangent = fsolve(normal_tangent_g, f, m[k], 0.0, lower_bound, X[k]);
|
||||
long double E = (Y[k+1] - m[k]*(X_tangent - X[k+1]) - f(X_tangent)) / dY[k];
|
||||
convex_margin = (convex_margin > E) ? convex_margin : E;
|
||||
}
|
||||
if ((k+1) >= normal_inflection_index) {
|
||||
// The rectangle has a concave portion of the curve
|
||||
long double upper_bound = ((k+1) == normal_inflection_index) ? inflection_point_x : X[k];
|
||||
long double X_tangent = fsolve(normal_tangent_g, f, m[k], 0.0, X[k+1], upper_bound);
|
||||
long double E = - (Y[k+1] - m[k]*(X_tangent - X[k+1]) - f(X_tangent)) / dY[k];
|
||||
concave_margin = (concave_margin > E) ? concave_margin : E;
|
||||
}
|
||||
}
|
||||
int_type scaled_convex_margin = (int_type)(convex_margin * (long double)max_int);
|
||||
int_type scaled_concave_margin = (int_type)(concave_margin * (long double)max_int);
|
||||
printf(" static final %s %sConvexMargin = %lldL; // unscaled convex margin = %.4f\n",
|
||||
java_int_type, kind, (long long)scaled_convex_margin, (double)convex_margin);
|
||||
printf(" static final %s %sConcaveMargin = %lldL; // unscaled concave margin = %.4f\n",
|
||||
java_int_type, kind, (long long)scaled_concave_margin, (double)concave_margin);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
// Output the X array
|
||||
printf(" // %s_X[i] = length of ziggurat layer i for %s distribution, scaled by 2**(-%d)\n", kind, kind, int_bits-1);
|
||||
printf(" static final %s[] %sX = { // %d entries, which is %s_number_of_layers+1\n", java_float_type, kind, number_of_layers+1, kind);
|
||||
for (int k = 0; k < number_of_layers+1; k++) {
|
||||
if ((k & 0x3) == 0) printf(" ");
|
||||
printf("%23.16e", (float_type)X[k] / (float_type)max_int);
|
||||
if (k < number_of_layers) {
|
||||
printf(",");
|
||||
if ((k & 0x3) < 3) printf(" ");
|
||||
else printf("\n");
|
||||
} else {
|
||||
printf(" };\n");
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
// Output the Y array
|
||||
printf(" // %s_Y[i] = value of the %s distribution function at %s_X[i], scaled by 2**(-%d)\n", kind, kind, kind, int_bits-1);
|
||||
printf(" static final %s[] %sY = { // %d entries, which is %s_number_of_layers+1\n", java_float_type, kind, number_of_layers+1, kind);
|
||||
for (int k = 0; k < number_of_layers+1; k++) {
|
||||
if ((k & 0x3) == 0) printf(" ");
|
||||
printf("%23.16e", (float_type)Y[k] / (float_type)max_int);
|
||||
if (k < number_of_layers) {
|
||||
printf(",");
|
||||
if ((k & 0x3) < 3) printf(" ");
|
||||
else printf("\n");
|
||||
} else {
|
||||
printf(" };\n");
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
// Output the alias_threshold array
|
||||
printf(" // alias_threshold[j] is a threshold for the probability mass function that has been\n");
|
||||
printf(" // scaled by (2**%d - 1), translated by -(2**%d), and represented as a %s value;\n", int_bits, int_bits-1, java_int_type);
|
||||
printf(" // in this way it can be directly compared to a randomly chosen %s value.\n", java_int_type);
|
||||
printf(" static final long[] %sAliasThreshold = { // %d entries\n", kind, SIZE);
|
||||
for (int k = 0; k < SIZE; k++) {
|
||||
if ((k & 0x3) == 0) printf(" ");
|
||||
printf("%20lldL", (long long)alias_threshold[k]);
|
||||
if (k < (SIZE - 1)) {
|
||||
printf(",");
|
||||
if ((k & 0x3) < 3) printf(" ");
|
||||
else printf("\n");
|
||||
} else {
|
||||
printf(" };\n");
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
// Output the alias_map array
|
||||
char *small_int_type = (SIZE <= 256) ? "byte" : "short";
|
||||
int map_items_per_line = (SIZE == 256) ? 8 : 16;
|
||||
printf(" static final %s[] %sAliasMap = { // %d entries\n", small_int_type, kind, SIZE);
|
||||
for (int k = 0; k < SIZE; k++) {
|
||||
if ((k % map_items_per_line) == 0) printf(" ");
|
||||
if (SIZE == 256) printf("(byte)");
|
||||
printf("%3d", alias_map[k]);
|
||||
if (k < (SIZE - 1)) {
|
||||
printf(",");
|
||||
if ((k % map_items_per_line) < (map_items_per_line - 1)) printf(" ");
|
||||
else printf("\n");
|
||||
} else {
|
||||
printf(" };\n");
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
printf("// This Java source file is generated automatically by the program `create_ziggurat_tables.c`.\n");
|
||||
printf("\n");
|
||||
printf("/*\n");
|
||||
printf(" * Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.\n");
|
||||
printf(" * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.\n");
|
||||
printf(" *\n");
|
||||
printf(" * This code is free software; you can redistribute it and/or modify it\n");
|
||||
printf(" * under the terms of the GNU General Public License version 2 only, as\n");
|
||||
printf(" * published by the Free Software Foundation. Oracle designates this\n");
|
||||
printf(" * particular file as subject to the \"Classpath\" exception as provided\n");
|
||||
printf(" * by Oracle in the LICENSE file that accompanied this code.\n");
|
||||
printf(" *\n");
|
||||
printf(" * This code is distributed in the hope that it will be useful, but WITHOUT\n");
|
||||
printf(" * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or\n");
|
||||
printf(" * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License\n");
|
||||
printf(" * version 2 for more details (a copy is included in the LICENSE file that\n");
|
||||
printf(" * accompanied this code).\n");
|
||||
printf(" *\n");
|
||||
printf(" * You should have received a copy of the GNU General Public License version\n");
|
||||
printf(" * 2 along with this work; if not, write to the Free Software Foundation,\n");
|
||||
printf(" * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.\n");
|
||||
printf(" *\n");
|
||||
printf(" * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA\n");
|
||||
printf(" * or visit www.oracle.com if you need additional information or have any\n");
|
||||
printf(" * questions.\n");
|
||||
printf(" */\n");
|
||||
printf("package java.util;\n");
|
||||
printf("\n");
|
||||
printf("class %sZigguratTables {\n", java_capitalized_float_type);
|
||||
printf("\n");
|
||||
generate_tables("exponential");
|
||||
generate_tables("normal");
|
||||
printf("}\n");
|
||||
}
|
348
src/jdk.random/share/classes/jdk/random/L128X1024MixRandom.java
Normal file
348
src/jdk.random/share/classes/jdk/random/L128X1024MixRandom.java
Normal file
|
@ -0,0 +1,348 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package jdk.random;
|
||||
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.random.RandomGenerator;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSplittableWithBrineGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A "splittable" pseudorandom number generator (PRNG) whose period
|
||||
* is roughly 2<sup>1152</sup>. Class {@link L128X1024MixRandom} implements
|
||||
* interfaces {@link RandomGenerator} and {@link SplittableGenerator},
|
||||
* and therefore supports methods for producing pseudorandomly chosen
|
||||
* values of type {@code int}, {@code long}, {@code float}, {@code double},
|
||||
* and {@code boolean} (and for producing streams of pseudorandomly chosen
|
||||
* numbers of type {@code int}, {@code long}, and {@code double}),
|
||||
* as well as methods for creating new split-off {@link L128X1024MixRandom}
|
||||
* objects or streams of such objects.
|
||||
*
|
||||
* <p>The {@link L128X1024MixRandom} algorithm is a specific member of
|
||||
* the LXM family of algorithms for pseudorandom number generators;
|
||||
* for more information, see the documentation for package
|
||||
* {@link jdk.random}. Each instance of {@link L128X1024MixRandom}
|
||||
* has 1152 bits of state plus one 128-bit instance-specific parameter.
|
||||
*
|
||||
* <p>If two instances of {@link L128X1024MixRandom} are created with
|
||||
* the same seed within the same program execution, and the same
|
||||
* sequence of method calls is made for each, they will generate and
|
||||
* return identical sequences of values.
|
||||
*
|
||||
* <p>As with {@link java.util.SplittableRandom}, instances of
|
||||
* {@link L128X1024MixRandom} are <em>not</em> thread-safe. They are
|
||||
* designed to be split, not shared, across threads (see the {@link #split}
|
||||
* method). For example, a {@link java.util.concurrent.ForkJoinTask}
|
||||
* fork/join-style computation using random numbers might include a
|
||||
* construction of the form
|
||||
* {@code new Subtask(someL128X1024MixRandom.split()).fork()}.
|
||||
*
|
||||
* <p>This class provides additional methods for generating random
|
||||
* streams, that employ the above techniques when used in
|
||||
* {@code stream.parallel()} mode.
|
||||
*
|
||||
* <p>Instances of {@link L128X1024MixRandom} are not cryptographically
|
||||
* secure. Consider instead using {@link java.security.SecureRandom}
|
||||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
*/
|
||||
@RandomGeneratorProperties(
|
||||
name = "L128X1024MixRandom",
|
||||
group = "LXM",
|
||||
i = 1024, j = 1, k = 128,
|
||||
equidistribution = 1
|
||||
)
|
||||
public final class L128X1024MixRandom extends AbstractSplittableWithBrineGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
*
|
||||
* The 128-bit parameter `a` is represented as two long fields `ah` and `al`.
|
||||
* The 128-bit state variable `s` is represented as two long fields `sh` and `sl`.
|
||||
*
|
||||
* The split operation uses the current generator to choose 20
|
||||
* new 64-bit long values that are then used to initialize the
|
||||
* parameters `ah` and `al`, the state variables `sh`, `sl`,
|
||||
* and the array `x` for a newly constructed generator.
|
||||
*
|
||||
* With extremely high probability, no two generators so chosen
|
||||
* will have the same `a` parameter, and testing has indicated
|
||||
* that the values generated by two instances of {@link L128X1024MixRandom}
|
||||
* will be (approximately) independent if have different values for `a`.
|
||||
*
|
||||
* The default (no-argument) constructor, in essence, uses
|
||||
* "defaultGen" to generate 20 new 64-bit values for the same
|
||||
* purpose. Multiple generators created in this way will certainly
|
||||
* differ in their `a` parameters. The defaultGen state must be accessed
|
||||
* in a thread-safe manner, so we use an AtomicLong to represent
|
||||
* this state. To bootstrap the defaultGen, we start off using a
|
||||
* seed based on current time unless the
|
||||
* java.util.secureRandomSeed property is set. This serves as a
|
||||
* slimmed-down (and insecure) variant of SecureRandom that also
|
||||
* avoids stalls that may occur when using /dev/random.
|
||||
*
|
||||
* File organization: First static fields, then instance
|
||||
* fields, then constructors, then instance methods.
|
||||
*/
|
||||
|
||||
/* ---------------- static fields ---------------- */
|
||||
|
||||
/*
|
||||
* The length of the array x.
|
||||
*/
|
||||
|
||||
private static final int N = 16;
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/*
|
||||
* Low half of multiplier used in the LCG portion of the algorithm;
|
||||
* the overall multiplier is (2**64 + ML).
|
||||
* Chosen based on research by Sebastiano Vigna and Guy Steele (2019).
|
||||
* The spectral scores for dimensions 2 through 8 for the multiplier 0x1d605bbb58c8abbfdLL
|
||||
* are [0.991889, 0.907938, 0.830964, 0.837980, 0.780378, 0.797464, 0.761493].
|
||||
*/
|
||||
|
||||
private static final long ML = 0xd605bbb58c8abbfdL;
|
||||
|
||||
/* ---------------- instance fields ---------------- */
|
||||
|
||||
/**
|
||||
* The parameter that is used as an additive constant for the LCG.
|
||||
* Must be odd (therefore al must be odd).
|
||||
*/
|
||||
private final long ah, al;
|
||||
|
||||
/**
|
||||
* The per-instance state: sh and sl for the LCG; the array x for the xorshift;
|
||||
* p is the rotating pointer into the array x.
|
||||
* At least one of the 16 elements of the array x must be nonzero.
|
||||
*/
|
||||
private long sh, sl;
|
||||
private final long[] x;
|
||||
private int p = N - 1;
|
||||
|
||||
/* ---------------- constructors ---------------- */
|
||||
|
||||
/**
|
||||
* Basic constructor that initializes all fields from parameters.
|
||||
* It then adjusts the field values if necessary to ensure that
|
||||
* all constraints on the values of fields are met.
|
||||
*
|
||||
* @param ah high half of the additive parameter for the LCG
|
||||
* @param al low half of the additive parameter for the LCG
|
||||
* @param sh high half of the initial state for the LCG
|
||||
* @param sl low half of the initial state for the LCG
|
||||
* @param x0 first word of the initial state for the xorshift generator
|
||||
* @param x1 second word of the initial state for the xorshift generator
|
||||
* @param x2 third word of the initial state for the xorshift generator
|
||||
* @param x3 fourth word of the initial state for the xorshift generator
|
||||
* @param x4 fifth word of the initial state for the xorshift generator
|
||||
* @param x5 sixth word of the initial state for the xorshift generator
|
||||
* @param x6 seventh word of the initial state for the xorshift generator
|
||||
* @param x7 eight word of the initial state for the xorshift generator
|
||||
* @param x8 ninth word of the initial state for the xorshift generator
|
||||
* @param x9 tenth word of the initial state for the xorshift generator
|
||||
* @param x10 eleventh word of the initial state for the xorshift generator
|
||||
* @param x11 twelfth word of the initial state for the xorshift generator
|
||||
* @param x12 thirteenth word of the initial state for the xorshift generator
|
||||
* @param x13 fourteenth word of the initial state for the xorshift generator
|
||||
* @param x14 fifteenth word of the initial state for the xorshift generator
|
||||
* @param x15 sixteenth word of the initial state for the xorshift generator
|
||||
*/
|
||||
public L128X1024MixRandom(long ah, long al, long sh, long sl,
|
||||
long x0, long x1, long x2, long x3,
|
||||
long x4, long x5, long x6, long x7,
|
||||
long x8, long x9, long x10, long x11,
|
||||
long x12, long x13, long x14, long x15) {
|
||||
// Force a to be odd.
|
||||
this.ah = ah;
|
||||
this.al = al | 1;
|
||||
this.sh = sh;
|
||||
this.sl = sl;
|
||||
this.x = new long[N];
|
||||
this.x[0] = x0;
|
||||
this.x[1] = x1;
|
||||
this.x[2] = x2;
|
||||
this.x[3] = x3;
|
||||
this.x[4] = x4;
|
||||
this.x[5] = x5;
|
||||
this.x[6] = x6;
|
||||
this.x[7] = x7;
|
||||
this.x[8] = x8;
|
||||
this.x[9] = x9;
|
||||
this.x[10] = x10;
|
||||
this.x[11] = x11;
|
||||
this.x[12] = x12;
|
||||
this.x[13] = x13;
|
||||
this.x[14] = x14;
|
||||
this.x[15] = x15;
|
||||
// If x0, x1, ..., x15 are all zero (very unlikely), we must choose nonzero values.
|
||||
if ((x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15) == 0) {
|
||||
long v = sh;
|
||||
// At least fifteen of the sixteen values generated here will be nonzero.
|
||||
for (int j = 0; j < N; j++) {
|
||||
this.x[j] = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L128X1024MixRandom} using the
|
||||
* specified {@code long} value as the initial seed. Instances of
|
||||
* {@link L128X1024MixRandom} created with the same seed in the same
|
||||
* program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L128X1024MixRandom(long seed) {
|
||||
// Using a value with irregularly spaced 1-bits to xor the seed
|
||||
// argument tends to improve "pedestrian" seeds such as 0 or
|
||||
// other small integers. We may as well use SILVER_RATIO_64.
|
||||
//
|
||||
// The seed is hashed by mixMurmur64 to produce the `a` parameter.
|
||||
// The seed is hashed by mixStafford13 to produce the initial `x[0]`,
|
||||
// which will then be used to produce the first generated value.
|
||||
// The other x values are filled in as if by a SplitMix PRNG with
|
||||
// GOLDEN_RATIO_64 as the gamma value and mixStafford13 as the mixer.
|
||||
this(RandomSupport.mixMurmur64(seed ^= RandomSupport.SILVER_RATIO_64),
|
||||
RandomSupport.mixMurmur64(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
0,
|
||||
1,
|
||||
RandomSupport.mixStafford13(seed),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed + RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L128X1024MixRandom} that is likely to
|
||||
* generate sequences of values that are statistically independent
|
||||
* of those of any other instances in the current program execution,
|
||||
* but may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public L128X1024MixRandom() {
|
||||
// Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values.
|
||||
this(defaultGen.getAndAdd(RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L128X1024MixRandom} using the specified array of
|
||||
* initial seed bytes. Instances of {@link L128X1024MixRandom} created with the same
|
||||
* seed array in the same program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L128X1024MixRandom(byte[] seed) {
|
||||
// Convert the seed to 20 long values, of which the last 16 are not all zero.
|
||||
long[] data = RandomSupport.convertSeedBytesToLongs(seed, 20, 16);
|
||||
long ah = data[0], al = data[1], sh = data[2], sl = data[3];
|
||||
// Force a to be odd.
|
||||
this.ah = ah;
|
||||
this.al = al | 1;
|
||||
this.sh = sh;
|
||||
this.sl = sl;
|
||||
this.x = new long[N];
|
||||
for (int j = 0; j < N; j++) {
|
||||
this.x[j] = data[4+j];
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
@Override
|
||||
public SplittableGenerator split(SplittableGenerator source, long brine) {
|
||||
// Pick a new instance "at random", but use the brine for (the low half of) `a`.
|
||||
return new L128X1024MixRandom(source.nextLong(), brine << 1,
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong());
|
||||
}
|
||||
|
||||
@Override
|
||||
public long nextLong() {
|
||||
// First part of xoroshiro1024: fetch array data
|
||||
final int q = p;
|
||||
final long s0 = x[p = (p + 1) & (N - 1)];
|
||||
long s15 = x[q];
|
||||
|
||||
// Compute the result based on current state information
|
||||
// (this allows the computation to be overlapped with state update).
|
||||
final long result = RandomSupport.mixLea64(sh + s0);
|
||||
|
||||
// Update the LCG subgenerator
|
||||
// The LCG is, in effect, s = ((1LL << 64) + ML) * s + a, if only we had 128-bit arithmetic.
|
||||
final long u = ML * sl;
|
||||
|
||||
// Note that Math.multiplyHigh computes the high half of the product of signed values,
|
||||
// but what we need is the high half of the product of unsigned values; for this we use the
|
||||
// formula "unsignedMultiplyHigh(a, b) = multiplyHigh(a, b) + ((a >> 63) & b) + ((b >> 63) & a)";
|
||||
// in effect, each operand is added to the result iff the sign bit of the other operand is 1.
|
||||
// (See Henry S. Warren, Jr., _Hacker's Delight_ (Second Edition), Addison-Wesley (2013),
|
||||
// Section 8-3, p. 175; or see the First Edition, Addison-Wesley (2003), Section 8-3, p. 133.)
|
||||
// If Math.unsignedMultiplyHigh(long, long) is ever implemented, the following line can become:
|
||||
// sh = (ML * sh) + Math.unsignedMultiplyHigh(ML, sl) + sl + ah;
|
||||
// and this entire comment can be deleted.
|
||||
sh = (ML * sh) + (Math.multiplyHigh(ML, sl) + ((ML >> 63) & sl) + ((sl >> 63) & ML)) + sl + ah;
|
||||
sl = u + al;
|
||||
if (Long.compareUnsigned(sl, u) < 0) ++sh; // Handle the carry propagation from low half to high half.
|
||||
|
||||
// Second part of xoroshiro1024: update array data
|
||||
s15 ^= s0;
|
||||
x[q] = Long.rotateLeft(s0, 25) ^ s15 ^ (s15 << 27);
|
||||
x[p] = Long.rotateLeft(s15, 36);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
277
src/jdk.random/share/classes/jdk/random/L128X128MixRandom.java
Normal file
277
src/jdk.random/share/classes/jdk/random/L128X128MixRandom.java
Normal file
|
@ -0,0 +1,277 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package jdk.random;
|
||||
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.random.RandomGenerator;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSplittableWithBrineGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A "splittable" pseudorandom number generator (PRNG) whose period
|
||||
* is roughly 2<sup>256</sup>. Class {@link L128X128MixRandom} implements
|
||||
* interfaces {@link RandomGenerator} and {@link SplittableGenerator},
|
||||
* and therefore supports methods for producing pseudorandomly chosen
|
||||
* values of type {@code int}, {@code long}, {@code float}, {@code double},
|
||||
* and {@code boolean} (and for producing streams of pseudorandomly chosen
|
||||
* numbers of type {@code int}, {@code long}, and {@code double}),
|
||||
* as well as methods for creating new split-off {@link L128X128MixRandom}
|
||||
* objects or streams of such objects.
|
||||
*
|
||||
* <p>The {@link L128X128MixRandom} algorithm is a specific member of
|
||||
* the LXM family of algorithms for pseudorandom number generators;
|
||||
* for more information, see the documentation for package
|
||||
* {@link jdk.random}. Each instance of {@link L128X128MixRandom}
|
||||
* has 256 bits of state plus one 128-bit instance-specific parameter.
|
||||
*
|
||||
* <p>If two instances of {@link L128X128MixRandom} are created with
|
||||
* the same seed within the same program execution, and the same
|
||||
* sequence of method calls is made for each, they will generate and
|
||||
* return identical sequences of values.
|
||||
*
|
||||
* <p>As with {@link java.util.SplittableRandom}, instances of
|
||||
* {@link L128X128MixRandom} are <em>not</em> thread-safe. They are
|
||||
* designed to be split, not shared, across threads (see the {@link #split}
|
||||
* method). For example, a {@link java.util.concurrent.ForkJoinTask}
|
||||
* fork/join-style computation using random numbers might include a
|
||||
* construction of the form
|
||||
* {@code new Subtask(someL128X128MixRandom.split()).fork()}.
|
||||
*
|
||||
* <p>This class provides additional methods for generating random
|
||||
* streams, that employ the above techniques when used in
|
||||
* {@code stream.parallel()} mode.
|
||||
*
|
||||
* <p>Instances of {@link L128X128MixRandom} are not cryptographically
|
||||
* secure. Consider instead using {@link java.security.SecureRandom}
|
||||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
*/
|
||||
@RandomGeneratorProperties(
|
||||
name = "L128X128MixRandom",
|
||||
group = "LXM",
|
||||
i = 128, j = 1, k = 128,
|
||||
equidistribution = 1
|
||||
)
|
||||
public final class L128X128MixRandom extends AbstractSplittableWithBrineGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
*
|
||||
* The split operation uses the current generator to choose four new 64-bit
|
||||
* long values that are then used to initialize the parameter `a` and the
|
||||
* state variables `s`, `x0`, and `x1` for a newly constructed generator.
|
||||
*
|
||||
* With extremely high probability, no two generators so chosen
|
||||
* will have the same `a` parameter, and testing has indicated
|
||||
* that the values generated by two instances of {@link L128X128MixRandom}
|
||||
* will be (approximately) independent if have different values for `a`.
|
||||
*
|
||||
* The default (no-argument) constructor, in essence, uses
|
||||
* "defaultGen" to generate four new 64-bit values for the same
|
||||
* purpose. Multiple generators created in this way will certainly
|
||||
* differ in their `a` parameters. The defaultGen state must be accessed
|
||||
* in a thread-safe manner, so we use an AtomicLong to represent
|
||||
* this state. To bootstrap the defaultGen, we start off using a
|
||||
* seed based on current time unless the
|
||||
* java.util.secureRandomSeed property is set. This serves as a
|
||||
* slimmed-down (and insecure) variant of SecureRandom that also
|
||||
* avoids stalls that may occur when using /dev/random.
|
||||
*
|
||||
* File organization: First static fields, then instance
|
||||
* fields, then constructors, then instance methods.
|
||||
*/
|
||||
|
||||
/* ---------------- static fields ---------------- */
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/*
|
||||
* Low half of multiplier used in the LCG portion of the algorithm;
|
||||
* the overall multiplier is (2**64 + ML).
|
||||
* Chosen based on research by Sebastiano Vigna and Guy Steele (2019).
|
||||
* The spectral scores for dimensions 2 through 8 for the multiplier 0x1d605bbb58c8abbfdLL
|
||||
* are [0.991889, 0.907938, 0.830964, 0.837980, 0.780378, 0.797464, 0.761493].
|
||||
*/
|
||||
|
||||
private static final long ML = 0xd605bbb58c8abbfdL;
|
||||
|
||||
/* ---------------- instance fields ---------------- */
|
||||
|
||||
/**
|
||||
* The parameter that is used as an additive constant for the LCG.
|
||||
* Must be odd (therefore al must be odd).
|
||||
*/
|
||||
private final long ah, al;
|
||||
|
||||
/**
|
||||
* The per-instance state: sh and sl for the LCG; x0 and x1 for the xorshift.
|
||||
* At least one of x0 and x1 must be nonzero.
|
||||
*/
|
||||
private long sh, sl, x0, x1;
|
||||
|
||||
/* ---------------- constructors ---------------- */
|
||||
|
||||
/**
|
||||
* Basic constructor that initializes all fields from parameters.
|
||||
* It then adjusts the field values if necessary to ensure that
|
||||
* all constraints on the values of fields are met.
|
||||
*
|
||||
* @param ah high half of the additive parameter for the LCG
|
||||
* @param al low half of the additive parameter for the LCG
|
||||
* @param sh high half of the initial state for the LCG
|
||||
* @param sl low half of the initial state for the LCG
|
||||
* @param x0 first word of the initial state for the xorshift generator
|
||||
* @param x1 second word of the initial state for the xorshift generator
|
||||
*/
|
||||
public L128X128MixRandom(long ah, long al, long sh, long sl, long x0, long x1) {
|
||||
// Force a to be odd.
|
||||
this.ah = ah;
|
||||
this.al = al | 1;
|
||||
this.sh = sh;
|
||||
this.sl = sl;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
// If x0 and x1 are both zero, we must choose nonzero values.
|
||||
if ((x0 | x1) == 0) {
|
||||
long v = sh;
|
||||
// At least one of the two values generated here will be nonzero.
|
||||
this.x0 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x1 = RandomSupport.mixStafford13(v + RandomSupport.GOLDEN_RATIO_64);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L128X128MixRandom} using the
|
||||
* specified {@code long} value as the initial seed. Instances of
|
||||
* {@link L128X128MixRandom} created with the same seed in the same
|
||||
* program generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L128X128MixRandom(long seed) {
|
||||
// Using a value with irregularly spaced 1-bits to xor the seed
|
||||
// argument tends to improve "pedestrian" seeds such as 0 or
|
||||
// other small integers. We may as well use SILVER_RATIO_64.
|
||||
//
|
||||
// The seed is hashed by mixMurmur64 to produce the `a` parameter.
|
||||
// The seed is hashed by mixStafford13 to produce the initial `x0`,
|
||||
// which will then be used to produce the first generated value.
|
||||
// Then x1 is filled in as if by a SplitMix PRNG with
|
||||
// GOLDEN_RATIO_64 as the gamma value and mixStafford13 as the mixer.
|
||||
this(RandomSupport.mixMurmur64(seed ^= RandomSupport.SILVER_RATIO_64),
|
||||
RandomSupport.mixMurmur64(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
0,
|
||||
1,
|
||||
RandomSupport.mixStafford13(seed),
|
||||
RandomSupport.mixStafford13(seed + RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L128X128MixRandom} that is likely to
|
||||
* generate sequences of values that are statistically independent
|
||||
* of those of any other instances in the current program execution,
|
||||
* but may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public L128X128MixRandom() {
|
||||
// Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values.
|
||||
this(defaultGen.getAndAdd(RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L128X128MixRandom} using the specified array of
|
||||
* initial seed bytes. Instances of {@link L128X128MixRandom} created with the same
|
||||
* seed array in the same program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L128X128MixRandom(byte[] seed) {
|
||||
// Convert the seed to 6 long values, of which the last 2 are not all zero.
|
||||
long[] data = RandomSupport.convertSeedBytesToLongs(seed, 6, 2);
|
||||
long ah = data[0], al = data[1], sh = data[2], sl = data[3], x0 = data[4], x1 = data[5];
|
||||
// Force a to be odd.
|
||||
this.ah = ah;
|
||||
this.al = al | 1;
|
||||
this.sh = sh;
|
||||
this.sl = sl;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
}
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
@Override
|
||||
public SplittableGenerator split(SplittableGenerator source, long brine) {
|
||||
// Pick a new instance "at random", but use the brine for (the low half of) `a`.
|
||||
return new L128X128MixRandom(source.nextLong(), brine << 1,
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong());
|
||||
}
|
||||
|
||||
@Override
|
||||
public long nextLong() {
|
||||
// Compute the result based on current state information
|
||||
// (this allows the computation to be overlapped with state update).
|
||||
final long result = RandomSupport.mixLea64(sh + x0);
|
||||
|
||||
// Update the LCG subgenerator
|
||||
// The LCG is, in effect, s = ((1LL << 64) + ML) * s + a, if only we had 128-bit arithmetic.
|
||||
final long u = ML * sl;
|
||||
// Note that Math.multiplyHigh computes the high half of the product of signed values,
|
||||
// but what we need is the high half of the product of unsigned values; for this we use the
|
||||
// formula "unsignedMultiplyHigh(a, b) = multiplyHigh(a, b) + ((a >> 63) & b) + ((b >> 63) & a)";
|
||||
// in effect, each operand is added to the result iff the sign bit of the other operand is 1.
|
||||
// (See Henry S. Warren, Jr., _Hacker's Delight_ (Second Edition), Addison-Wesley (2013),
|
||||
// Section 8-3, p. 175; or see the First Edition, Addison-Wesley (2003), Section 8-3, p. 133.)
|
||||
// If Math.unsignedMultiplyHigh(long, long) is ever implemented, the following line can become:
|
||||
// sh = (ML * sh) + Math.unsignedMultiplyHigh(ML, sl) + sl + ah;
|
||||
// and this entire comment can be deleted.
|
||||
sh = (ML * sh) + (Math.multiplyHigh(ML, sl) + ((ML >> 63) & sl) + ((sl >> 63) & ML)) + sl + ah;
|
||||
sl = u + al;
|
||||
if (Long.compareUnsigned(sl, u) < 0) ++sh; // Handle the carry propagation from low half to high half.
|
||||
|
||||
long q0 = x0, q1 = x1;
|
||||
// Update the Xorshift subgenerator
|
||||
{ // xoroshiro128v1_0
|
||||
q1 ^= q0;
|
||||
q0 = Long.rotateLeft(q0, 24);
|
||||
q0 = q0 ^ q1 ^ (q1 << 16);
|
||||
q1 = Long.rotateLeft(q1, 37);
|
||||
}
|
||||
x0 = q0; x1 = q1;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
301
src/jdk.random/share/classes/jdk/random/L128X256MixRandom.java
Normal file
301
src/jdk.random/share/classes/jdk/random/L128X256MixRandom.java
Normal file
|
@ -0,0 +1,301 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package jdk.random;
|
||||
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.random.RandomGenerator;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSplittableWithBrineGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A "splittable" pseudorandom number generator (PRNG) whose period
|
||||
* is roughly 2<sup>384</sup>. Class {@link L128X256MixRandom} implements
|
||||
* interfaces {@link RandomGenerator} and {@link SplittableGenerator},
|
||||
* and therefore supports methods for producing pseudorandomly chosen
|
||||
* values of type {@code int}, {@code long}, {@code float}, {@code double},
|
||||
* and {@code boolean} (and for producing streams of pseudorandomly chosen
|
||||
* numbers of type {@code int}, {@code long}, and {@code double}),
|
||||
* as well as methods for creating new split-off {@link L128X256MixRandom}
|
||||
* objects or streams of such objects.
|
||||
*
|
||||
* <p>The {@link L128X256MixRandom} algorithm is a specific member of
|
||||
* the LXM family of algorithms for pseudorandom number generators;
|
||||
* for more information, see the documentation for package
|
||||
* {@link jdk.random}. Each instance of {@link L128X256MixRandom}
|
||||
* has 384 bits of state plus one 128-bit instance-specific parameter.
|
||||
*
|
||||
* <p>If two instances of {@link L128X256MixRandom} are created with
|
||||
* the same seed within the same program execution, and the same
|
||||
* sequence of method calls is made for each, they will generate and
|
||||
* return identical sequences of values.
|
||||
*
|
||||
* <p>As with {@link java.util.SplittableRandom}, instances of
|
||||
* {@link L128X256MixRandom} are <em>not</em> thread-safe. They are
|
||||
* designed to be split, not shared, across threads (see the {@link #split}
|
||||
* method). For example, a {@link java.util.concurrent.ForkJoinTask}
|
||||
* fork/join-style computation using random numbers might include a
|
||||
* construction of the form
|
||||
* {@code new Subtask(someL128X256MixRandom.split()).fork()}.
|
||||
*
|
||||
* <p>This class provides additional methods for generating random
|
||||
* streams, that employ the above techniques when used in
|
||||
* {@code stream.parallel()} mode.
|
||||
*
|
||||
* <p>Instances of {@link L128X256MixRandom} are not cryptographically
|
||||
* secure. Consider instead using {@link java.security.SecureRandom}
|
||||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
*/
|
||||
@RandomGeneratorProperties(
|
||||
name = "L128X256MixRandom",
|
||||
group = "LXM",
|
||||
i = 256, j = 1, k = 128,
|
||||
equidistribution = 1
|
||||
)
|
||||
public final class L128X256MixRandom extends AbstractSplittableWithBrineGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
*
|
||||
* The 128-bit parameter `a` is represented as two long fields `ah` and `al`.
|
||||
* The 128-bit state variable `s` is represented as two long fields `sh` and `sl`.
|
||||
*
|
||||
* The split operation uses the current generator to choose eight
|
||||
* new 64-bit long values that are then used to initialize the
|
||||
* parameters `ah` and `al` and the state variables `sh`, `sl`,
|
||||
* `x0`, `x1`, `x2`, and `x3` for a newly constructed generator.
|
||||
*
|
||||
* With extremely high probability, no two generators so chosen
|
||||
* will have the same `a` parameter, and testing has indicated
|
||||
* that the values generated by two instances of {@link L128X256MixRandom}
|
||||
* will be (approximately) independent if have different values for `a`.
|
||||
*
|
||||
* The default (no-argument) constructor, in essence, uses
|
||||
* "defaultGen" to generate eight new 64-bit values for the same
|
||||
* purpose. Multiple generators created in this way will certainly
|
||||
* differ in their `a` parameters. The defaultGen state must be accessed
|
||||
* in a thread-safe manner, so we use an AtomicLong to represent
|
||||
* this state. To bootstrap the defaultGen, we start off using a
|
||||
* seed based on current time unless the
|
||||
* java.util.secureRandomSeed property is set. This serves as a
|
||||
* slimmed-down (and insecure) variant of SecureRandom that also
|
||||
* avoids stalls that may occur when using /dev/random.
|
||||
*
|
||||
* File organization: First static fields, then instance
|
||||
* fields, then constructors, then instance methods.
|
||||
*/
|
||||
|
||||
/* ---------------- static fields ---------------- */
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/*
|
||||
* The equidistribution of the algorithm.
|
||||
*/
|
||||
private static final int EQUIDISTRIBUTION = 1;
|
||||
|
||||
/*
|
||||
* Low half of multiplier used in the LCG portion of the algorithm;
|
||||
* the overall multiplier is (2**64 + ML).
|
||||
* Chosen based on research by Sebastiano Vigna and Guy Steele (2019).
|
||||
* The spectral scores for dimensions 2 through 8 for the multiplier 0x1d605bbb58c8abbfdLL
|
||||
* are [0.991889, 0.907938, 0.830964, 0.837980, 0.780378, 0.797464, 0.761493].
|
||||
*/
|
||||
|
||||
private static final long ML = 0xd605bbb58c8abbfdL;
|
||||
|
||||
/* ---------------- instance fields ---------------- */
|
||||
|
||||
/**
|
||||
* The parameter that is used as an additive constant for the LCG.
|
||||
* Must be odd (therefore al must be odd).
|
||||
*/
|
||||
private final long ah, al;
|
||||
|
||||
/**
|
||||
* The per-instance state: sh and sl for the LCG; x0, x1, x2, and x3 for the xorshift.
|
||||
* At least one of the four fields x0, x1, x2, and x3 must be nonzero.
|
||||
*/
|
||||
private long sh, sl, x0, x1, x2, x3;
|
||||
|
||||
/* ---------------- constructors ---------------- */
|
||||
|
||||
/**
|
||||
* Basic constructor that initializes all fields from parameters.
|
||||
* It then adjusts the field values if necessary to ensure that
|
||||
* all constraints on the values of fields are met.
|
||||
*
|
||||
* @param ah high half of the additive parameter for the LCG
|
||||
* @param al low half of the additive parameter for the LCG
|
||||
* @param sh high half of the initial state for the LCG
|
||||
* @param sl low half of the initial state for the LCG
|
||||
* @param x0 first word of the initial state for the xorshift generator
|
||||
* @param x1 second word of the initial state for the xorshift generator
|
||||
* @param x2 third word of the initial state for the xorshift generator
|
||||
* @param x3 fourth word of the initial state for the xorshift generator
|
||||
*/
|
||||
public L128X256MixRandom(long ah, long al, long sh, long sl, long x0, long x1, long x2, long x3) {
|
||||
// Force a to be odd.
|
||||
this.ah = ah;
|
||||
this.al = al | 1;
|
||||
this.sh = sh;
|
||||
this.sl = sl;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
this.x2 = x2;
|
||||
this.x3 = x3;
|
||||
// If x0, x1, x2, and x3 are all zero, we must choose nonzero values.
|
||||
if ((x0 | x1 | x2 | x3) == 0) {
|
||||
long v = sh;
|
||||
// At least three of the four values generated here will be nonzero.
|
||||
this.x0 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x1 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x2 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x3 = RandomSupport.mixStafford13(v + RandomSupport.GOLDEN_RATIO_64);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L128X256MixRandom} using the
|
||||
* specified {@code long} value as the initial seed. Instances of
|
||||
* {@link L128X256MixRandom} created with the same seed in the same
|
||||
* program generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L128X256MixRandom(long seed) {
|
||||
// Using a value with irregularly spaced 1-bits to xor the seed
|
||||
// argument tends to improve "pedestrian" seeds such as 0 or
|
||||
// other small integers. We may as well use SILVER_RATIO_64.
|
||||
//
|
||||
// The seed is hashed by mixMurmur64 to produce the `a` parameter.
|
||||
// The seed is hashed by mixStafford13 to produce the initial `x0`,
|
||||
// which will then be used to produce the first generated value.
|
||||
// The other x values are filled in as if by a SplitMix PRNG with
|
||||
// GOLDEN_RATIO_64 as the gamma value and mixStafford13 as the mixer.
|
||||
this(RandomSupport.mixMurmur64(seed ^= RandomSupport.SILVER_RATIO_64),
|
||||
RandomSupport.mixMurmur64(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
0,
|
||||
1,
|
||||
RandomSupport.mixStafford13(seed),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed + RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L128X256MixRandom} that is likely to
|
||||
* generate sequences of values that are statistically independent
|
||||
* of those of any other instances in the current program execution,
|
||||
* but may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public L128X256MixRandom() {
|
||||
// Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values.
|
||||
this(defaultGen.getAndAdd(RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L128X256MixRandom} using the specified array of
|
||||
* initial seed bytes. Instances of {@link L128X256MixRandom} created with the same
|
||||
* seed array in the same program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L128X256MixRandom(byte[] seed) {
|
||||
// Convert the seed to 6 long values, of which the last 4 are not all zero.
|
||||
long[] data = RandomSupport.convertSeedBytesToLongs(seed, 6, 4);
|
||||
long ah = data[0], al = data[1], sh = data[2], sl = data[3],
|
||||
x0 = data[4], x1 = data[5], x2 = data[6], x3 = data[7];
|
||||
// Force a to be odd.
|
||||
this.ah = ah;
|
||||
this.al = al | 1;
|
||||
this.sh = sh;
|
||||
this.sl = sl;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
this.x2 = x2;
|
||||
this.x3 = x3;
|
||||
}
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
@Override
|
||||
public SplittableGenerator split(SplittableGenerator source, long brine) {
|
||||
// Pick a new instance "at random", but use the brine for (the low half of) `a`.
|
||||
return new L128X256MixRandom(source.nextLong(), brine << 1,
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong());
|
||||
}
|
||||
|
||||
@Override
|
||||
public long nextLong() {
|
||||
// Compute the result based on current state information
|
||||
// (this allows the computation to be overlapped with state update).
|
||||
final long result = RandomSupport.mixLea64(sh + x0);
|
||||
|
||||
// Update the LCG subgenerator
|
||||
// The LCG is, in effect, s = ((1LL << 64) + ML) * s + a, if only we had 128-bit arithmetic.
|
||||
final long u = ML * sl;
|
||||
// Note that Math.multiplyHigh computes the high half of the product of signed values,
|
||||
// but what we need is the high half of the product of unsigned values; for this we use the
|
||||
// formula "unsignedMultiplyHigh(a, b) = multiplyHigh(a, b) + ((a >> 63) & b) + ((b >> 63) & a)";
|
||||
// in effect, each operand is added to the result iff the sign bit of the other operand is 1.
|
||||
// (See Henry S. Warren, Jr., _Hacker's Delight_ (Second Edition), Addison-Wesley (2013),
|
||||
// Section 8-3, p. 175; or see the First Edition, Addison-Wesley (2003), Section 8-3, p. 133.)
|
||||
// If Math.unsignedMultiplyHigh(long, long) is ever implemented, the following line can become:
|
||||
// sh = (ML * sh) + Math.unsignedMultiplyHigh(ML, sl) + sl + ah;
|
||||
// and this entire comment can be deleted.
|
||||
sh = (ML * sh) + (Math.multiplyHigh(ML, sl) + ((ML >> 63) & sl) + ((sl >> 63) & ML)) + sl + ah;
|
||||
sl = u + al;
|
||||
if (Long.compareUnsigned(sl, u) < 0) ++sh; // Handle the carry propagation from low half to high half.
|
||||
|
||||
// Update the Xorshift subgenerator
|
||||
long q0 = x0, q1 = x1, q2 = x2, q3 = x3;
|
||||
{ // xoshiro256 1.0
|
||||
long t = q1 << 17;
|
||||
q2 ^= q0;
|
||||
q3 ^= q1;
|
||||
q1 ^= q2;
|
||||
q0 ^= q3;
|
||||
q2 ^= t;
|
||||
q3 = Long.rotateLeft(q3, 45);
|
||||
}
|
||||
x0 = q0; x1 = q1; x2 = q2; x3 = q3;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
256
src/jdk.random/share/classes/jdk/random/L32X64MixRandom.java
Normal file
256
src/jdk.random/share/classes/jdk/random/L32X64MixRandom.java
Normal file
|
@ -0,0 +1,256 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package jdk.random;
|
||||
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.random.RandomGenerator;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSplittableWithBrineGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A "splittable" pseudorandom number generator (PRNG) whose period
|
||||
* is roughly 2<sup>96</sup>. Class {@link L32X64MixRandom} implements
|
||||
* interfaces {@link RandomGenerator} and {@link SplittableGenerator},
|
||||
* and therefore supports methods for producing pseudorandomly chosen
|
||||
* values of type {@code int}, {@code long}, {@code float}, {@code double},
|
||||
* and {@code boolean} (and for producing streams of pseudorandomly chosen
|
||||
* numbers of type {@code int}, {@code long}, and {@code double}),
|
||||
* as well as methods for creating new split-off {@link L32X64MixRandom}
|
||||
* objects or streams of such objects.
|
||||
*
|
||||
* <p>The {@link L32X64MixRandom} algorithm is a specific member of
|
||||
* the LXM family of algorithms for pseudorandom number generators;
|
||||
* for more information, see the documentation for package
|
||||
* {@link jdk.random}. Each instance of {@link L32X64MixRandom}
|
||||
* has 96 bits of state plus one 32-bit instance-specific parameter.
|
||||
*
|
||||
* <p>If two instances of {@link L32X64MixRandom} are created with
|
||||
* the same seed within the same program execution, and the same
|
||||
* sequence of method calls is made for each, they will generate and
|
||||
* return identical sequences of values.
|
||||
*
|
||||
* <p>As with {@link java.util.SplittableRandom}, instances of
|
||||
* {@link L32X64MixRandom} are <em>not</em> thread-safe. They are
|
||||
* designed to be split, not shared, across threads (see the {@link #split}
|
||||
* method). For example, a {@link java.util.concurrent.ForkJoinTask}
|
||||
* fork/join-style computation using random numbers might include a
|
||||
* construction of the form
|
||||
* {@code new Subtask(someL32X64MixRandom.split()).fork()}.
|
||||
*
|
||||
* <p>This class provides additional methods for generating random
|
||||
* streams, that employ the above techniques when used in
|
||||
* {@code stream.parallel()} mode.
|
||||
*
|
||||
* <p>Instances of {@link L32X64MixRandom} are not cryptographically
|
||||
* secure. Consider instead using {@link java.security.SecureRandom}
|
||||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
*/
|
||||
@RandomGeneratorProperties(
|
||||
name = "L32X64MixRandom",
|
||||
group = "LXM",
|
||||
i = 64, j = 1, k = 32,
|
||||
equidistribution = 1
|
||||
)
|
||||
public final class L32X64MixRandom extends AbstractSplittableWithBrineGenerator {
|
||||
/*
|
||||
* Implementation Overview.
|
||||
*
|
||||
* The split operation uses the current generator to choose four new 32-bit
|
||||
* int values that are then used to initialize the parameter `a` and the
|
||||
* state variables `s`, `x0`, and `x1` for a newly constructed generator.
|
||||
*
|
||||
* With high probability, no two generators so chosen will have the same
|
||||
* `a` parameter, and testing has indicated that the values generated by
|
||||
* two instances of {@link L32X64MixRandom} will be (approximately)
|
||||
* independent if the two instances have different values for `a`.
|
||||
*
|
||||
* The default (no-argument) constructor, in essence, uses
|
||||
* "defaultGen" to generate four new 32-bit values for the same
|
||||
* purpose. Multiple generators created in this way will certainly
|
||||
* differ in their `a` parameters. The defaultGen state must be accessed
|
||||
* in a thread-safe manner, so we use an AtomicLong to represent
|
||||
* this state. To bootstrap the defaultGen, we start off using a
|
||||
* seed based on current time unless the
|
||||
* java.util.secureRandomSeed property is set. This serves as a
|
||||
* slimmed-down (and insecure) variant of SecureRandom that also
|
||||
* avoids stalls that may occur when using /dev/random.
|
||||
*
|
||||
* File organization: First static fields, then instance
|
||||
* fields, then constructors, then instance methods.
|
||||
*/
|
||||
|
||||
/* ---------------- static fields ---------------- */
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/*
|
||||
* Multiplier used in the LCG portion of the algorithm.
|
||||
* Chosen based on research by Sebastiano Vigna and Guy Steele (2019).
|
||||
* The spectral scores for dimensions 2 through 8 for the multiplier 0xadb4a92d
|
||||
* are [0.975884, 0.936244, 0.755793, 0.877642, 0.751300, 0.789333, 0.728869].
|
||||
*/
|
||||
|
||||
private static final int M = 0xadb4a92d;
|
||||
|
||||
/* ---------------- instance fields ---------------- */
|
||||
|
||||
/**
|
||||
* The parameter that is used as an additive constant for the LCG.
|
||||
* Must be odd.
|
||||
*/
|
||||
private final int a;
|
||||
|
||||
/**
|
||||
* The per-instance state: s for the LCG; x0 and x1 for the xorshift.
|
||||
* At least one of x0 and x1 must be nonzero.
|
||||
*/
|
||||
private int s, x0, x1;
|
||||
|
||||
/* ---------------- constructors ---------------- */
|
||||
|
||||
/**
|
||||
* Basic constructor that initializes all fields from parameters.
|
||||
* It then adjusts the field values if necessary to ensure that
|
||||
* all constraints on the values of fields are met.
|
||||
*
|
||||
* @param a additive parameter for the LCG
|
||||
* @param s initial state for the LCG
|
||||
* @param x0 first word of the initial state for the xorshift generator
|
||||
* @param x1 second word of the initial state for the xorshift generator
|
||||
*/
|
||||
public L32X64MixRandom(int a, int s, int x0, int x1) {
|
||||
// Force a to be odd.
|
||||
this.a = a | 1;
|
||||
this.s = s;
|
||||
// If x0 and x1 are both zero, we must choose nonzero values.
|
||||
if ((x0 | x1) == 0) {
|
||||
int v = s;
|
||||
// At least one of the two values generated here will be nonzero.
|
||||
this.x0 = RandomSupport.mixMurmur32(v += RandomSupport.GOLDEN_RATIO_32);
|
||||
this.x1 = RandomSupport.mixMurmur32(v + RandomSupport.GOLDEN_RATIO_32);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L32X64MixRandom} using the
|
||||
* specified {@code long} value as the initial seed. Instances of
|
||||
* {@link L32X64MixRandom} created with the same seed in the same
|
||||
* program generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L32X64MixRandom(long seed) {
|
||||
// Using a value with irregularly spaced 1-bits to xor the seed
|
||||
// argument tends to improve "pedestrian" seeds such as 0 or
|
||||
// other small integers. We may as well use SILVER_RATIO_64.
|
||||
//
|
||||
// The high half of the seed is hashed by mixMurmur32 to produce the `a` parameter.
|
||||
// The low half of the seed is hashed by mixLea32 to produce the initial `x0`,
|
||||
// which will then be used to produce the first generated value.
|
||||
// Then x1 is filled in as if by a SplitMix PRNG with
|
||||
// GOLDEN_RATIO_32 as the gamma value and mixLea32 as the mixer.
|
||||
this(RandomSupport.mixMurmur32((int)((seed ^= RandomSupport.SILVER_RATIO_64) >>> 32)),
|
||||
1,
|
||||
RandomSupport.mixLea32((int)(seed)),
|
||||
RandomSupport.mixLea32((int)(seed) + RandomSupport.GOLDEN_RATIO_32));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L32X64MixRandom} that is likely to
|
||||
* generate sequences of values that are statistically independent
|
||||
* of those of any other instances in the current program execution,
|
||||
* but may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public L32X64MixRandom() {
|
||||
// Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values.
|
||||
this(defaultGen.getAndAdd(RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L32X64MixRandom} using the specified array of
|
||||
* initial seed bytes. Instances of {@link L32X64MixRandom} created with the same
|
||||
* seed array in the same program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L32X64MixRandom(byte[] seed) {
|
||||
// Convert the seed to 4 int values, of which the last 2 are not all zero.
|
||||
int[] data = RandomSupport.convertSeedBytesToInts(seed, 4, 2);
|
||||
int a = data[0], s = data[1], x0 = data[2], x1 = data[3];
|
||||
// Force a to be odd.
|
||||
this.a = a | 1;
|
||||
this.s = s;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
}
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
@Override
|
||||
public SplittableGenerator split(SplittableGenerator source, long brine) {
|
||||
// Pick a new instance "at random", but use (the low 31 bits of) the brine for `a`.
|
||||
return new L32X64MixRandom((int)brine << 1, source.nextInt(),
|
||||
source.nextInt(), source.nextInt());
|
||||
}
|
||||
|
||||
@Override
|
||||
public int nextInt() {
|
||||
// Compute the result based on current state information
|
||||
// (this allows the computation to be overlapped with state update).
|
||||
final int result = RandomSupport.mixLea32(s + x0);
|
||||
|
||||
// Update the LCG subgenerator
|
||||
s = M * s + a;
|
||||
|
||||
// Update the Xorshift subgenerator
|
||||
int q0 = x0, q1 = x1;
|
||||
{ // xoroshiro64
|
||||
q1 ^= q0;
|
||||
q0 = Integer.rotateLeft(q0, 26);
|
||||
q0 = q0 ^ q1 ^ (q1 << 9);
|
||||
q1 = Integer.rotateLeft(q1, 13);
|
||||
}
|
||||
x0 = q0; x1 = q1;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@Override
|
||||
public long nextLong() {
|
||||
return ((long)nextInt() << 32) ^ (long)nextInt();
|
||||
}
|
||||
|
||||
}
|
321
src/jdk.random/share/classes/jdk/random/L64X1024MixRandom.java
Normal file
321
src/jdk.random/share/classes/jdk/random/L64X1024MixRandom.java
Normal file
|
@ -0,0 +1,321 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package jdk.random;
|
||||
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.random.RandomGenerator;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSplittableWithBrineGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A "splittable" pseudorandom number generator (PRNG) whose period
|
||||
* is roughly 2<sup>1088</sup>. Class {@link L64X1024MixRandom} implements
|
||||
* interfaces {@link RandomGenerator} and {@link SplittableGenerator},
|
||||
* and therefore supports methods for producing pseudorandomly chosen
|
||||
* values of type {@code int}, {@code long}, {@code float}, {@code double},
|
||||
* and {@code boolean} (and for producing streams of pseudorandomly chosen
|
||||
* numbers of type {@code int}, {@code long}, and {@code double}),
|
||||
* as well as methods for creating new split-off {@link L64X1024MixRandom}
|
||||
* objects or streams of such objects.
|
||||
*
|
||||
* <p>The {@link L64X1024MixRandom} algorithm is a specific member of
|
||||
* the LXM family of algorithms for pseudorandom number generators;
|
||||
* for more information, see the documentation for package
|
||||
* {@link jdk.random}. Each instance of {@link L64X1024MixRandom}
|
||||
* has 1088 bits of state plus one 64-bit instance-specific parameter.
|
||||
*
|
||||
* <p>If two instances of {@link L64X1024MixRandom} are created with
|
||||
* the same seed within the same program execution, and the same
|
||||
* sequence of method calls is made for each, they will generate and
|
||||
* return identical sequences of values.
|
||||
*
|
||||
* <p>As with {@link java.util.SplittableRandom}, instances of
|
||||
* {@link L64X1024MixRandom} are <em>not</em> thread-safe. They are
|
||||
* designed to be split, not shared, across threads (see the {@link #split}
|
||||
* method). For example, a {@link java.util.concurrent.ForkJoinTask}
|
||||
* fork/join-style computation using random numbers might include a
|
||||
* construction of the form
|
||||
* {@code new Subtask(someL64X1024MixRandom.split()).fork()}.
|
||||
*
|
||||
* <p>This class provides additional methods for generating random
|
||||
* streams, that employ the above techniques when used in
|
||||
* {@code stream.parallel()} mode.
|
||||
*
|
||||
* <p>Instances of {@link L64X1024MixRandom} are not cryptographically
|
||||
* secure. Consider instead using {@link java.security.SecureRandom}
|
||||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
*/
|
||||
@RandomGeneratorProperties(
|
||||
name = "L64X1024MixRandom",
|
||||
group = "LXM",
|
||||
i = 1024, j = 1, k = 64,
|
||||
equidistribution = 16
|
||||
)
|
||||
public final class L64X1024MixRandom extends AbstractSplittableWithBrineGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
*
|
||||
* The split() operation uses the current generator to choose 18 new 64-bit
|
||||
* long values that are then used to initialize the parameter `a`, the
|
||||
* state variable `s`, and the array `x` for a newly constructed generator.
|
||||
*
|
||||
* With extremely high probability, no two generators so chosen
|
||||
* will have the same `a` parameter, and testing has indicated
|
||||
* that the values generated by two instances of {@link L64X1024MixRandom}
|
||||
* will be (approximately) independent if have different values for `a`.
|
||||
*
|
||||
* The default (no-argument) constructor, in essence, uses
|
||||
* "defaultGen" to generate 18 new 64-bit values for the same
|
||||
* purpose. Multiple generators created in this way will certainly
|
||||
* differ in their `a` parameters. The defaultGen state must be accessed
|
||||
* in a thread-safe manner, so we use an AtomicLong to represent
|
||||
* this state. To bootstrap the defaultGen, we start off using a
|
||||
* seed based on current time unless the
|
||||
* java.util.secureRandomSeed property is set. This serves as a
|
||||
* slimmed-down (and insecure) variant of SecureRandom that also
|
||||
* avoids stalls that may occur when using /dev/random.
|
||||
*
|
||||
* File organization: First static fields, then instance
|
||||
* fields, then constructors, then instance methods.
|
||||
*/
|
||||
|
||||
/* ---------------- static fields ---------------- */
|
||||
|
||||
/*
|
||||
* The length of the array x.
|
||||
*/
|
||||
|
||||
private static final int N = 16;
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/*
|
||||
* Multiplier used in the LCG portion of the algorithm.
|
||||
* Chosen based on research by Sebastiano Vigna and Guy Steele (2019).
|
||||
* The spectral scores for dimensions 2 through 8 for the multiplier 0xd1342543de82ef95
|
||||
* are [0.958602, 0.937479, 0.870757, 0.822326, 0.820405, 0.813065, 0.760215].
|
||||
*/
|
||||
|
||||
private static final long M = 0xd1342543de82ef95L;
|
||||
|
||||
/* ---------------- instance fields ---------------- */
|
||||
|
||||
/**
|
||||
* The parameter that is used as an additive constant for the LCG.
|
||||
* Must be odd.
|
||||
*/
|
||||
private final long a;
|
||||
|
||||
/**
|
||||
* The per-instance state: s for the LCG; the array x for the xorshift;
|
||||
* p is the rotating pointer into the array x.
|
||||
* At least one of the 16 elements of the array x must be nonzero.
|
||||
*/
|
||||
private long s;
|
||||
private final long[] x;
|
||||
private int p = N - 1;
|
||||
|
||||
/* ---------------- constructors ---------------- */
|
||||
|
||||
/**
|
||||
* Basic constructor that initializes all fields from parameters.
|
||||
* It then adjusts the field values if necessary to ensure that
|
||||
* all constraints on the values of fields are met.
|
||||
*
|
||||
* @param a additive parameter for the LCG
|
||||
* @param s initial state for the LCG
|
||||
* @param x0 first word of the initial state for the xorshift generator
|
||||
* @param x1 second word of the initial state for the xorshift generator
|
||||
* @param x2 third word of the initial state for the xorshift generator
|
||||
* @param x3 fourth word of the initial state for the xorshift generator
|
||||
* @param x4 fifth word of the initial state for the xorshift generator
|
||||
* @param x5 sixth word of the initial state for the xorshift generator
|
||||
* @param x6 seventh word of the initial state for the xorshift generator
|
||||
* @param x7 eight word of the initial state for the xorshift generator
|
||||
* @param x8 ninth word of the initial state for the xorshift generator
|
||||
* @param x9 tenth word of the initial state for the xorshift generator
|
||||
* @param x10 eleventh word of the initial state for the xorshift generator
|
||||
* @param x11 twelfth word of the initial state for the xorshift generator
|
||||
* @param x12 thirteenth word of the initial state for the xorshift generator
|
||||
* @param x13 fourteenth word of the initial state for the xorshift generator
|
||||
* @param x14 fifteenth word of the initial state for the xorshift generator
|
||||
* @param x15 sixteenth word of the initial state for the xorshift generator
|
||||
*/
|
||||
public L64X1024MixRandom(long a, long s,
|
||||
long x0, long x1, long x2, long x3,
|
||||
long x4, long x5, long x6, long x7,
|
||||
long x8, long x9, long x10, long x11,
|
||||
long x12, long x13, long x14, long x15) {
|
||||
// Force a to be odd.
|
||||
this.a = a | 1;
|
||||
this.s = s;
|
||||
this.x = new long[N];
|
||||
this.x[0] = x0;
|
||||
this.x[1] = x1;
|
||||
this.x[2] = x2;
|
||||
this.x[3] = x3;
|
||||
this.x[4] = x4;
|
||||
this.x[5] = x5;
|
||||
this.x[6] = x6;
|
||||
this.x[7] = x7;
|
||||
this.x[8] = x8;
|
||||
this.x[9] = x9;
|
||||
this.x[10] = x10;
|
||||
this.x[11] = x11;
|
||||
this.x[12] = x12;
|
||||
this.x[13] = x13;
|
||||
this.x[14] = x14;
|
||||
this.x[15] = x15;
|
||||
// If x0, x1, ..., x15 are all zero (very unlikely), we must choose nonzero values.
|
||||
if ((x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15) == 0) {
|
||||
long v = s;
|
||||
// At least fifteen of the sixteen values generated here will be nonzero.
|
||||
for (int j = 0; j < N; j++) {
|
||||
this.x[j] = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X1024MixRandom} using the
|
||||
* specified {@code long} value as the initial seed. Instances of
|
||||
* {@link L64X1024MixRandom} created with the same seed in the same
|
||||
* program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L64X1024MixRandom(long seed) {
|
||||
// Using a value with irregularly spaced 1-bits to xor the seed
|
||||
// argument tends to improve "pedestrian" seeds such as 0 or
|
||||
// other small integers. We may as well use SILVER_RATIO_64.
|
||||
//
|
||||
// The seed is hashed by mixMurmur64 to produce the `a` parameter.
|
||||
// The seed is hashed by mixStafford13 to produce the initial `x[0]`,
|
||||
// which will then be used to produce the first generated value.
|
||||
// The other x values are filled in as if by a SplitMix PRNG with
|
||||
// GOLDEN_RATIO_64 as the gamma value and mixStafford13 as the mixer.
|
||||
this(RandomSupport.mixMurmur64(seed ^= RandomSupport.SILVER_RATIO_64),
|
||||
1,
|
||||
RandomSupport.mixStafford13(seed),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed + RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X1024MixRandom} that is likely to
|
||||
* generate sequences of values that are statistically independent
|
||||
* of those of any other instances in the current program execution,
|
||||
* but may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public L64X1024MixRandom() {
|
||||
// Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values.
|
||||
this(defaultGen.getAndAdd(RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X1024MixRandom} using the specified array of
|
||||
* initial seed bytes. Instances of {@link L64X1024MixRandom} created with the same
|
||||
* seed array in the same program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L64X1024MixRandom(byte[] seed) {
|
||||
// Convert the seed to 18 long values, of which the last 16 are not all zero.
|
||||
long[] data = RandomSupport.convertSeedBytesToLongs(seed, 18, 16);
|
||||
long a = data[0], s = data[1];
|
||||
// Force a to be odd.
|
||||
this.a = a | 1;
|
||||
this.s = s;
|
||||
this.x = new long[N];
|
||||
for (int j = 0; j < N; j++) {
|
||||
this.x[j] = data[2+j];
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
@Override
|
||||
public SplittableGenerator split(SplittableGenerator source, long brine) {
|
||||
// Pick a new instance "at random", but use the brine for `a`.
|
||||
return new L64X1024MixRandom(brine << 1, source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong());
|
||||
}
|
||||
|
||||
@Override
|
||||
public long nextLong() {
|
||||
// First part of xoroshiro1024: fetch array data
|
||||
final int q = p;
|
||||
final long s0 = x[p = (p + 1) & (N - 1)];
|
||||
long s15 = x[q];
|
||||
|
||||
// Compute the result based on current state information
|
||||
// (this allows the computation to be overlapped with state update).
|
||||
|
||||
final long result = RandomSupport.mixLea64(s + s0);
|
||||
|
||||
// Update the LCG subgenerator
|
||||
s = M * s + a; // LCG
|
||||
|
||||
// Second part of xoroshiro1024: update array data
|
||||
s15 ^= s0;
|
||||
x[q] = Long.rotateLeft(s0, 25) ^ s15 ^ (s15 << 27);
|
||||
x[p] = Long.rotateLeft(s15, 36);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
254
src/jdk.random/share/classes/jdk/random/L64X128MixRandom.java
Normal file
254
src/jdk.random/share/classes/jdk/random/L64X128MixRandom.java
Normal file
|
@ -0,0 +1,254 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package jdk.random;
|
||||
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.random.RandomGenerator;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSplittableWithBrineGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A "splittable" pseudorandom number generator (PRNG) whose period
|
||||
* is roughly 2<sup>192</sup>. Class {@link L64X128MixRandom} implements
|
||||
* interfaces {@link RandomGenerator} and {@link SplittableGenerator},
|
||||
* and therefore supports methods for producing pseudorandomly chosen
|
||||
* values of type {@code int}, {@code long}, {@code float}, {@code double},
|
||||
* and {@code boolean} (and for producing streams of pseudorandomly chosen
|
||||
* numbers of type {@code int}, {@code long}, and {@code double}),
|
||||
* as well as methods for creating new split-off {@link L64X128MixRandom}
|
||||
* objects or streams of such objects.
|
||||
*
|
||||
* <p>The {@link L64X128MixRandom} algorithm is a specific member of
|
||||
* the LXM family of algorithms for pseudorandom number generators;
|
||||
* for more information, see the documentation for package
|
||||
* {@link jdk.random}. Each instance of {@link L64X128MixRandom}
|
||||
* has 192 bits of state plus one 64-bit instance-specific parameter.
|
||||
*
|
||||
* <p>If two instances of {@link L64X128MixRandom} are created with
|
||||
* the same seed within the same program execution, and the same
|
||||
* sequence of method calls is made for each, they will generate and
|
||||
* return identical sequences of values.
|
||||
*
|
||||
* <p>As with {@link java.util.SplittableRandom}, instances of
|
||||
* {@link L64X128MixRandom} are <em>not</em> thread-safe. They are
|
||||
* designed to be split, not shared, across threads (see the {@link #split}
|
||||
* method). For example, a {@link java.util.concurrent.ForkJoinTask}
|
||||
* fork/join-style computation using random numbers might include a
|
||||
* construction of the form
|
||||
* {@code new Subtask(someL64X128MixRandom.split()).fork()}.
|
||||
*
|
||||
* <p>This class provides additional methods for generating random
|
||||
* streams, that employ the above techniques when used in
|
||||
* {@code stream.parallel()} mode.
|
||||
*
|
||||
* <p>Instances of {@link L64X128MixRandom} are not cryptographically
|
||||
* secure. Consider instead using {@link java.security.SecureRandom}
|
||||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
*/
|
||||
@RandomGeneratorProperties(
|
||||
name = "L64X128MixRandom",
|
||||
group = "LXM",
|
||||
i = 128, j = 1, k = 64,
|
||||
equidistribution = 1
|
||||
)
|
||||
public final class L64X128MixRandom extends AbstractSplittableWithBrineGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
*
|
||||
* The split operation uses the current generator to choose four new 64-bit
|
||||
* long values that are then used to initialize the parameter `a` and the
|
||||
* state variables `s`, `x0`, and `x1` for a newly constructed generator.
|
||||
*
|
||||
* With extremely high probability, no two generators so chosen
|
||||
* will have the same `a` parameter, and testing has indicated
|
||||
* that the values generated by two instances of {@link L64X128MixRandom}
|
||||
* will be (approximately) independent if have different values for `a`.
|
||||
*
|
||||
* The default (no-argument) constructor, in essence, uses
|
||||
* "defaultGen" to generate four new 64-bit values for the same
|
||||
* purpose. Multiple generators created in this way will certainly
|
||||
* differ in their `a` parameters. The defaultGen state must be accessed
|
||||
* in a thread-safe manner, so we use an AtomicLong to represent
|
||||
* this state. To bootstrap the defaultGen, we start off using a
|
||||
* seed based on current time unless the
|
||||
* java.util.secureRandomSeed property is set. This serves as a
|
||||
* slimmed-down (and insecure) variant of SecureRandom that also
|
||||
* avoids stalls that may occur when using /dev/random.
|
||||
*
|
||||
* File organization: First static fields, then instance
|
||||
* fields, then constructors, then instance methods.
|
||||
*/
|
||||
|
||||
/* ---------------- static fields ---------------- */
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/*
|
||||
* Multiplier used in the LCG portion of the algorithm.
|
||||
* Chosen based on research by Sebastiano Vigna and Guy Steele (2019).
|
||||
* The spectral scores for dimensions 2 through 8 for the multiplier 0xd1342543de82ef95L
|
||||
* are [0.958602, 0.937479, 0.870757, 0.822326, 0.820405, 0.813065, 0.760215].
|
||||
*/
|
||||
|
||||
private static final long M = 0xd1342543de82ef95L;
|
||||
|
||||
/* ---------------- instance fields ---------------- */
|
||||
|
||||
/**
|
||||
* The parameter that is used as an additive constant for the LCG.
|
||||
* Must be odd.
|
||||
*/
|
||||
private final long a;
|
||||
|
||||
/**
|
||||
* The per-instance state: s for the LCG; x0 and x1 for the xorshift.
|
||||
* At least one of x0 and x1 must be nonzero.
|
||||
*/
|
||||
private long s, x0, x1;
|
||||
|
||||
/* ---------------- constructors ---------------- */
|
||||
|
||||
/**
|
||||
* Basic constructor that initializes all fields from parameters.
|
||||
* It then adjusts the field values if necessary to ensure that
|
||||
* all constraints on the values of fields are met.
|
||||
*
|
||||
* @param a additive parameter for the LCG
|
||||
* @param s initial state for the LCG
|
||||
* @param x0 first word of the initial state for the xorshift generator
|
||||
* @param x1 second word of the initial state for the xorshift generator
|
||||
*/
|
||||
public L64X128MixRandom(long a, long s, long x0, long x1) {
|
||||
// Force a to be odd.
|
||||
this.a = a | 1;
|
||||
this.s = s;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
// If x0 and x1 are both zero, we must choose nonzero values.
|
||||
if ((x0 | x1) == 0) {
|
||||
long v = s;
|
||||
// At least one of the two values generated here will be nonzero.
|
||||
this.x0 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x1 = RandomSupport.mixStafford13(v + RandomSupport.GOLDEN_RATIO_64);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X128MixRandom} using the
|
||||
* specified {@code long} value as the initial seed. Instances of
|
||||
* {@link L64X128MixRandom} created with the same seed in the same
|
||||
* program generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L64X128MixRandom(long seed) {
|
||||
// Using a value with irregularly spaced 1-bits to xor the seed
|
||||
// argument tends to improve "pedestrian" seeds such as 0 or
|
||||
// other small integers. We may as well use SILVER_RATIO_64.
|
||||
//
|
||||
// The seed is hashed by mixMurmur64 to produce the `a` parameter.
|
||||
// The seed is hashed by mixStafford13 to produce the initial `x0`,
|
||||
// which will then be used to produce the first generated value.
|
||||
// Then x1 is filled in as if by a SplitMix PRNG with
|
||||
// GOLDEN_RATIO_64 as the gamma value and mixStafford13 as the mixer.
|
||||
this(RandomSupport.mixMurmur64(seed ^= RandomSupport.SILVER_RATIO_64),
|
||||
1,
|
||||
RandomSupport.mixStafford13(seed),
|
||||
RandomSupport.mixStafford13(seed + RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X128MixRandom} that is likely to
|
||||
* generate sequences of values that are statistically independent
|
||||
* of those of any other instances in the current program execution,
|
||||
* but may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public L64X128MixRandom() {
|
||||
// Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values.
|
||||
this(defaultGen.getAndAdd(RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X128MixRandom} using the specified array of
|
||||
* initial seed bytes. Instances of {@link L64X128MixRandom} created with the same
|
||||
* seed array in the same program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L64X128MixRandom(byte[] seed) {
|
||||
// Convert the seed to 4 long values, of which the last 2 are not all zero.
|
||||
long[] data = RandomSupport.convertSeedBytesToLongs(seed, 4, 2);
|
||||
long a = data[0], s = data[1], x0 = data[2], x1 = data[3];
|
||||
// Force a to be odd.
|
||||
this.a = a | 1;
|
||||
this.s = s;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
}
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
@Override
|
||||
public SplittableGenerator split(SplittableGenerator source, long brine) {
|
||||
// Pick a new instance "at random", but use the brine for `a`.
|
||||
return new L64X128MixRandom(brine << 1, source.nextLong(),
|
||||
source.nextLong(), source.nextLong());
|
||||
}
|
||||
|
||||
@Override
|
||||
public long nextLong() {
|
||||
// Compute the result based on current state information
|
||||
// (this allows the computation to be overlapped with state update).
|
||||
final long result = RandomSupport.mixLea64(s + x0);
|
||||
|
||||
// Update the LCG subgenerator
|
||||
s = M * s + a;
|
||||
|
||||
// Update the Xorshift subgenerator
|
||||
long q0 = x0, q1 = x1;
|
||||
{ // xoroshiro128v1_0
|
||||
q1 ^= q0;
|
||||
q0 = Long.rotateLeft(q0, 24);
|
||||
q0 = q0 ^ q1 ^ (q1 << 16);
|
||||
q1 = Long.rotateLeft(q1, 37);
|
||||
}
|
||||
x0 = q0; x1 = q1;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,254 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package jdk.random;
|
||||
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.random.RandomGenerator;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSplittableWithBrineGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A "splittable" pseudorandom number generator (PRNG) whose period
|
||||
* is roughly 2<sup>192</sup>. Class {@link L64X128StarStarRandom} implements
|
||||
* interfaces {@link RandomGenerator} and {@link SplittableGenerator},
|
||||
* and therefore supports methods for producing pseudorandomly chosen
|
||||
* values of type {@code int}, {@code long}, {@code float}, {@code double},
|
||||
* and {@code boolean} (and for producing streams of pseudorandomly chosen
|
||||
* numbers of type {@code int}, {@code long}, and {@code double}),
|
||||
* as well as methods for creating new split-off {@link L64X128StarStarRandom}
|
||||
* objects or streams of such objects.
|
||||
*
|
||||
* <p>The {@link L64X128StarStarRandom} algorithm is a specific member of
|
||||
* the LXM family of algorithms for pseudorandom number generators;
|
||||
* for more information, see the documentation for package
|
||||
* {@link jdk.random}. Each instance of {@link L64X128StarStarRandom}
|
||||
* has 192 bits of state plus one 64-bit instance-specific parameter.
|
||||
*
|
||||
* <p>If two instances of {@link L64X128StarStarRandom} are created with
|
||||
* the same seed within the same program execution, and the same
|
||||
* sequence of method calls is made for each, they will generate and
|
||||
* return identical sequences of values.
|
||||
*
|
||||
* <p>As with {@link java.util.SplittableRandom}, instances of
|
||||
* {@link L64X128StarStarRandom} are <em>not</em> thread-safe. They are
|
||||
* designed to be split, not shared, across threads (see the {@link #split}
|
||||
* method). For example, a {@link java.util.concurrent.ForkJoinTask}
|
||||
* fork/join-style computation using random numbers might include a
|
||||
* construction of the form
|
||||
* {@code new Subtask(someL64X128StarStarRandom.split()).fork()}.
|
||||
*
|
||||
* <p>This class provides additional methods for generating random
|
||||
* streams, that employ the above techniques when used in
|
||||
* {@code stream.parallel()} mode.
|
||||
*
|
||||
* <p>Instances of {@link L64X128StarStarRandom} are not cryptographically
|
||||
* secure. Consider instead using {@link java.security.SecureRandom}
|
||||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
*/
|
||||
@RandomGeneratorProperties(
|
||||
name = "L64X128StarStarRandom",
|
||||
group = "LXM",
|
||||
i = 128, j = 1, k = 64,
|
||||
equidistribution = 1
|
||||
)
|
||||
public final class L64X128StarStarRandom extends AbstractSplittableWithBrineGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
*
|
||||
* The split operation uses the current generator to choose four new 64-bit
|
||||
* long values that are then used to initialize the parameter `a` and the
|
||||
* state variables `s`, `x0`, and `x1` for a newly constructed generator.
|
||||
*
|
||||
* With extremely high probability, no two generators so chosen
|
||||
* will have the same `a` parameter, and testing has indicated
|
||||
* that the values generated by two instances of {@link L64X128StarStarRandom}
|
||||
* will be (approximately) independent if have different values for `a`.
|
||||
*
|
||||
* The default (no-argument) constructor, in essence, uses
|
||||
* "defaultGen" to generate four new 64-bit values for the same
|
||||
* purpose. Multiple generators created in this way will certainly
|
||||
* differ in their `a` parameters. The defaultGen state must be accessed
|
||||
* in a thread-safe manner, so we use an AtomicLong to represent
|
||||
* this state. To bootstrap the defaultGen, we start off using a
|
||||
* seed based on current time unless the
|
||||
* java.util.secureRandomSeed property is set. This serves as a
|
||||
* slimmed-down (and insecure) variant of SecureRandom that also
|
||||
* avoids stalls that may occur when using /dev/random.
|
||||
*
|
||||
* File organization: First static fields, then instance
|
||||
* fields, then constructors, then instance methods.
|
||||
*/
|
||||
|
||||
/* ---------------- static fields ---------------- */
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/*
|
||||
* Multiplier used in the LCG portion of the algorithm.
|
||||
* Chosen based on research by Sebastiano Vigna and Guy Steele (2019).
|
||||
* The spectral scores for dimensions 2 through 8 for the multiplier 0xd1342543de82ef95
|
||||
* are [0.958602, 0.937479, 0.870757, 0.822326, 0.820405, 0.813065, 0.760215].
|
||||
*/
|
||||
|
||||
private static final long M = 0xd1342543de82ef95L;
|
||||
|
||||
/* ---------------- instance fields ---------------- */
|
||||
|
||||
/**
|
||||
* The parameter that is used as an additive constant for the LCG.
|
||||
* Must be odd.
|
||||
*/
|
||||
private final long a;
|
||||
|
||||
/**
|
||||
* The per-instance state: s for the LCG; x0 and x1 for the xorshift.
|
||||
* At least one of x0 and x1 must be nonzero.
|
||||
*/
|
||||
private long s, x0, x1;
|
||||
|
||||
/* ---------------- constructors ---------------- */
|
||||
|
||||
/**
|
||||
* Basic constructor that initializes all fields from parameters.
|
||||
* It then adjusts the field values if necessary to ensure that
|
||||
* all constraints on the values of fields are met.
|
||||
*
|
||||
* @param a additive parameter for the LCG
|
||||
* @param s initial state for the LCG
|
||||
* @param x0 first word of the initial state for the xorshift generator
|
||||
* @param x1 second word of the initial state for the xorshift generator
|
||||
*/
|
||||
public L64X128StarStarRandom(long a, long s, long x0, long x1) {
|
||||
// Force a to be odd.
|
||||
this.a = a | 1;
|
||||
this.s = s;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
// If x0 and x1 are both zero, we must choose nonzero values.
|
||||
if ((x0 | x1) == 0) {
|
||||
long v = s;
|
||||
// At least one of the two values generated here will be nonzero.
|
||||
this.x0 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x1 = RandomSupport.mixStafford13(v + RandomSupport.GOLDEN_RATIO_64);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X128StarStarRandom} using the
|
||||
* specified {@code long} value as the initial seed. Instances of
|
||||
* {@link L64X128StarStarRandom} created with the same seed in the same
|
||||
* program generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L64X128StarStarRandom(long seed) {
|
||||
// Using a value with irregularly spaced 1-bits to xor the seed
|
||||
// argument tends to improve "pedestrian" seeds such as 0 or
|
||||
// other small integers. We may as well use SILVER_RATIO_64.
|
||||
//
|
||||
// The seed is hashed by mixMurmur64 to produce the `a` parameter.
|
||||
// The seed is hashed by mixStafford13 to produce the initial `x0`,
|
||||
// which will then be used to produce the first generated value.
|
||||
// Then x1 is filled in as if by a SplitMix PRNG with
|
||||
// GOLDEN_RATIO_64 as the gamma value and mixStafford13 as the mixer.
|
||||
this(RandomSupport.mixMurmur64(seed ^= RandomSupport.SILVER_RATIO_64),
|
||||
1,
|
||||
RandomSupport.mixStafford13(seed),
|
||||
RandomSupport.mixStafford13(seed + RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X128StarStarRandom} that is likely to
|
||||
* generate sequences of values that are statistically independent
|
||||
* of those of any other instances in the current program execution,
|
||||
* but may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public L64X128StarStarRandom() {
|
||||
// Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values.
|
||||
this(defaultGen.getAndAdd(RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X128StarStarRandom} using the specified array of
|
||||
* initial seed bytes. Instances of {@link L64X128StarStarRandom} created with the same
|
||||
* seed array in the same program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L64X128StarStarRandom(byte[] seed) {
|
||||
// Convert the seed to 4 long values, of which the last 2 are not all zero.
|
||||
long[] data = RandomSupport.convertSeedBytesToLongs(seed, 4, 2);
|
||||
long a = data[0], s = data[1], x0 = data[2], x1 = data[3];
|
||||
// Force a to be odd.
|
||||
this.a = a | 1;
|
||||
this.s = s;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
}
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
@Override
|
||||
public SplittableGenerator split(SplittableGenerator source, long brine) {
|
||||
// Pick a new instance "at random", but use the brine for `a`.
|
||||
return new L64X128StarStarRandom(brine << 1, source.nextLong(),
|
||||
source.nextLong(), source.nextLong());
|
||||
}
|
||||
|
||||
@Override
|
||||
public long nextLong() {
|
||||
// Compute the result based on current state information
|
||||
// (this allows the computation to be overlapped with state update).
|
||||
final long result = Long.rotateLeft((s + x0) * 5, 7) * 9; // "starstar" scrambler
|
||||
|
||||
// Update the LCG subgenerator
|
||||
s = M * s + a;
|
||||
|
||||
// Update the Xorshift subgenerator
|
||||
long q0 = x0, q1 = x1;
|
||||
{ // xoroshiro128v1_0
|
||||
q1 ^= q0;
|
||||
q0 = Long.rotateLeft(q0, 24);
|
||||
q0 = q0 ^ q1 ^ (q1 << 16);
|
||||
q1 = Long.rotateLeft(q1, 37);
|
||||
}
|
||||
x0 = q0; x1 = q1;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
269
src/jdk.random/share/classes/jdk/random/L64X256MixRandom.java
Normal file
269
src/jdk.random/share/classes/jdk/random/L64X256MixRandom.java
Normal file
|
@ -0,0 +1,269 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package jdk.random;
|
||||
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.random.RandomGenerator;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.AbstractSplittableWithBrineGenerator;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A "splittable" pseudorandom number generator (PRNG) whose period
|
||||
* is roughly 2<sup>320</sup>. Class {@link L64X256MixRandom} implements
|
||||
* interfaces {@link RandomGenerator} and {@link SplittableGenerator},
|
||||
* and therefore supports methods for producing pseudorandomly chosen
|
||||
* values of type {@code int}, {@code long}, {@code float}, {@code double},
|
||||
* and {@code boolean} (and for producing streams of pseudorandomly chosen
|
||||
* numbers of type {@code int}, {@code long}, and {@code double}),
|
||||
* as well as methods for creating new split-off {@link L64X256MixRandom}
|
||||
* objects or streams of such objects.
|
||||
*
|
||||
* <p>The {@link L64X256MixRandom} algorithm is a specific member of
|
||||
* the LXM family of algorithms for pseudorandom number generators;
|
||||
* for more information, see the documentation for package
|
||||
* {@link jdk.random}. Each instance of {@link L64X256MixRandom}
|
||||
* has 320 bits of state plus one 64-bit instance-specific parameter.
|
||||
*
|
||||
* <p>If two instances of {@link L64X256MixRandom} are created with
|
||||
* the same seed within the same program execution, and the same
|
||||
* sequence of method calls is made for each, they will generate and
|
||||
* return identical sequences of values.
|
||||
*
|
||||
* <p>As with {@link java.util.SplittableRandom}, instances of
|
||||
* {@link L64X256MixRandom} are <em>not</em> thread-safe. They are
|
||||
* designed to be split, not shared, across threads (see the {@link #split}
|
||||
* method). For example, a {@link java.util.concurrent.ForkJoinTask}
|
||||
* fork/join-style computation using random numbers might include a
|
||||
* construction of the form
|
||||
* {@code new Subtask(someL64X256MixRandom.split()).fork()}.
|
||||
*
|
||||
* <p>This class provides additional methods for generating random
|
||||
* streams, that employ the above techniques when used in
|
||||
* {@code stream.parallel()} mode.
|
||||
*
|
||||
* <p>Instances of {@link L64X256MixRandom} are not cryptographically
|
||||
* secure. Consider instead using {@link java.security.SecureRandom}
|
||||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
*/
|
||||
@RandomGeneratorProperties(
|
||||
name = "L64X256MixRandom",
|
||||
group = "LXM",
|
||||
i = 256, j = 1, k = 64,
|
||||
equidistribution = 4
|
||||
)
|
||||
public final class L64X256MixRandom extends AbstractSplittableWithBrineGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
*
|
||||
* The split operation uses the current generator to choose six new 64-bit
|
||||
* long values that are then used to initialize the parameter `a` and the
|
||||
* state variables `s`, `x0`, `x1`, `x2`, and `x3` for a newly constructed
|
||||
* generator.
|
||||
*
|
||||
* With extremely high probability, no two generators so chosen
|
||||
* will have the same `a` parameter, and testing has indicated
|
||||
* that the values generated by two instances of {@link L64X256MixRandom}
|
||||
* will be (approximately) independent if have different values for `a`.
|
||||
*
|
||||
* The default (no-argument) constructor, in essence, uses
|
||||
* "defaultGen" to generate six new 64-bit values for the same
|
||||
* purpose. Multiple generators created in this way will certainly
|
||||
* differ in their `a` parameters. The defaultGen state must be accessed
|
||||
* in a thread-safe manner, so we use an AtomicLong to represent
|
||||
* this state. To bootstrap the defaultGen, we start off using a
|
||||
* seed based on current time unless the
|
||||
* java.util.secureRandomSeed property is set. This serves as a
|
||||
* slimmed-down (and insecure) variant of SecureRandom that also
|
||||
* avoids stalls that may occur when using /dev/random.
|
||||
*
|
||||
* File organization: First static fields, then instance
|
||||
* fields, then constructors, then instance methods.
|
||||
*/
|
||||
|
||||
/* ---------------- static fields ---------------- */
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/*
|
||||
* Multiplier used in the LCG portion of the algorithm.
|
||||
* Chosen based on research by Sebastiano Vigna and Guy Steele (2019).
|
||||
* The spectral scores for dimensions 2 through 8 for the multiplier 0xd1342543de82ef95
|
||||
* are [0.958602, 0.937479, 0.870757, 0.822326, 0.820405, 0.813065, 0.760215].
|
||||
*/
|
||||
|
||||
private static final long M = 0xd1342543de82ef95L;
|
||||
|
||||
/* ---------------- instance fields ---------------- */
|
||||
|
||||
/**
|
||||
* The parameter that is used as an additive constant for the LCG.
|
||||
* Must be odd.
|
||||
*/
|
||||
private final long a;
|
||||
|
||||
/**
|
||||
* The per-instance state: s for the LCG; x0, x1, x2, and x3 for the xorshift.
|
||||
* At least one of the four fields x0, x1, x2, and x3 must be nonzero.
|
||||
*/
|
||||
private long s, x0, x1, x2, x3;
|
||||
|
||||
/* ---------------- constructors ---------------- */
|
||||
|
||||
/**
|
||||
* Basic constructor that initializes all fields from parameters.
|
||||
* It then adjusts the field values if necessary to ensure that
|
||||
* all constraints on the values of fields are met.
|
||||
*
|
||||
* @param a additive parameter for the LCG
|
||||
* @param s initial state for the LCG
|
||||
* @param x0 first word of the initial state for the xorshift generator
|
||||
* @param x1 second word of the initial state for the xorshift generator
|
||||
* @param x2 third word of the initial state for the xorshift generator
|
||||
* @param x3 fourth word of the initial state for the xorshift generator
|
||||
*/
|
||||
public L64X256MixRandom(long a, long s, long x0, long x1, long x2, long x3) {
|
||||
// Force a to be odd.
|
||||
this.a = a | 1;
|
||||
this.s = s;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
this.x2 = x2;
|
||||
this.x3 = x3;
|
||||
// If x0, x1, x2, and x3 are all zero, we must choose nonzero values.
|
||||
if ((x0 | x1 | x2 | x3) == 0) {
|
||||
long v = s;
|
||||
// At least three of the four values generated here will be nonzero.
|
||||
this.x0 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x1 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x2 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x3 = RandomSupport.mixStafford13(v + RandomSupport.GOLDEN_RATIO_64);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X256MixRandom} using the
|
||||
* specified {@code long} value as the initial seed. Instances of
|
||||
* {@link L64X256MixRandom} created with the same seed in the same
|
||||
* program generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L64X256MixRandom(long seed) {
|
||||
// Using a value with irregularly spaced 1-bits to xor the seed
|
||||
// argument tends to improve "pedestrian" seeds such as 0 or
|
||||
// other small integers. We may as well use SILVER_RATIO_64.
|
||||
//
|
||||
// The seed is hashed by mixMurmur64 to produce the `a` parameter.
|
||||
// The seed is hashed by mixStafford13 to produce the initial `x0`,
|
||||
// which will then be used to produce the first generated value.
|
||||
// The other x values are filled in as if by a SplitMix PRNG with
|
||||
// GOLDEN_RATIO_64 as the gamma value and mixStafford13 as the mixer.
|
||||
this(RandomSupport.mixMurmur64(seed ^= RandomSupport.SILVER_RATIO_64),
|
||||
1,
|
||||
RandomSupport.mixStafford13(seed),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed + RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X256MixRandom} that is likely to
|
||||
* generate sequences of values that are statistically independent
|
||||
* of those of any other instances in the current program execution,
|
||||
* but may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public L64X256MixRandom() {
|
||||
// Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values.
|
||||
this(defaultGen.getAndAdd(RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link L64X256MixRandom} using the specified array of
|
||||
* initial seed bytes. Instances of {@link L64X256MixRandom} created with the same
|
||||
* seed array in the same program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public L64X256MixRandom(byte[] seed) {
|
||||
// Convert the seed to 6 long values, of which the last 4 are not all zero.
|
||||
long[] data = RandomSupport.convertSeedBytesToLongs(seed, 6, 4);
|
||||
long a = data[0], s = data[1], x0 = data[2], x1 = data[3], x2 = data[4], x3 = data[5];
|
||||
// Force a to be odd.
|
||||
this.a = a | 1;
|
||||
this.s = s;
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
this.x2 = x2;
|
||||
this.x3 = x3;
|
||||
}
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
@Override
|
||||
public SplittableGenerator split(SplittableGenerator source, long brine) {
|
||||
// Pick a new instance "at random", but use the brine for `a`.
|
||||
return new L64X256MixRandom(brine << 1, source.nextLong(),
|
||||
source.nextLong(), source.nextLong(),
|
||||
source.nextLong(), source.nextLong());
|
||||
}
|
||||
|
||||
@Override
|
||||
public long nextLong() {
|
||||
// Compute the result based on current state information
|
||||
// (this allows the computation to be overlapped with state update).
|
||||
final long result = RandomSupport.mixLea64(s + x0);
|
||||
|
||||
// Update the LCG subgenerator
|
||||
s = M * s + a;
|
||||
|
||||
// Update the Xorshift subgenerator
|
||||
long q0 = x0, q1 = x1, q2 = x2, q3 = x3;
|
||||
{ // xoshiro256 1.0
|
||||
long t = q1 << 17;
|
||||
q2 ^= q0;
|
||||
q3 ^= q1;
|
||||
q1 ^= q2;
|
||||
q0 ^= q3;
|
||||
q2 ^= t;
|
||||
q3 = Long.rotateLeft(q3, 45);
|
||||
}
|
||||
x0 = q0; x1 = q1; x2 = q2; x3 = q3;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,284 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package jdk.random;
|
||||
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.random.RandomGenerator;
|
||||
import java.util.random.RandomGenerator.LeapableGenerator;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A "jumpable and leapable" pseudorandom number generator (PRNG) whose period
|
||||
* is roughly 2<sup>128</sup>. Class {@link Xoroshiro128PlusPlus} implements
|
||||
* interfaces {@link RandomGenerator} and {@link LeapableGenerator},
|
||||
* and therefore supports methods for producing pseudorandomly chosen
|
||||
* numbers of type {@code int}, {@code long}, {@code float}, and {@code double}
|
||||
* as well as creating new {@link Xoroshiro128PlusPlus} objects
|
||||
* by "jumping" or "leaping".
|
||||
* <p>
|
||||
* The class {@link Xoroshiro128PlusPlus} uses the {@code xoroshiro128} algorithm
|
||||
* (parameters 49, 21, 28) with the "++" scrambler that computes
|
||||
* {@code Long.rotateLeft(s0 + s1, 17) + s0}.
|
||||
* Its state consists of two {@code long} fields {@code x0} and {@code x1},
|
||||
* which can take on any values provided that they are not both zero.
|
||||
* The period of this generator is 2<sup>128</sup>-1.
|
||||
* <p>
|
||||
* The 64-bit values produced by the {@code nextLong()} method are equidistributed.
|
||||
* To be precise, over the course of the cycle of length 2<sup>128</sup>-1,
|
||||
* each nonzero {@code long} value is generated 2<sup>64</sup> times,
|
||||
* but the value 0 is generated only 2<sup>64</sup>-1 times.
|
||||
* The values produced by the {@code nextInt()}, {@code nextFloat()}, and {@code nextDouble()}
|
||||
* methods are likewise equidistributed.
|
||||
* <p>
|
||||
* Instances {@link Xoroshiro128PlusPlus} are <em>not</em> thread-safe.
|
||||
* They are designed to be used so that each thread as its own instance.
|
||||
* The methods {@link #jump} and {@link #leap} and {@link #jumps} and {@link #leaps}
|
||||
* can be used to construct new instances of {@link Xoroshiro128PlusPlus} that traverse
|
||||
* other parts of the state cycle.
|
||||
* <p>
|
||||
* Instances of {@link Xoroshiro128PlusPlus} are not cryptographically
|
||||
* secure. Consider instead using {@link java.security.SecureRandom}
|
||||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
*/
|
||||
@RandomGeneratorProperties(
|
||||
name = "Xoroshiro128PlusPlus",
|
||||
group = "Xoroshiro",
|
||||
i = 128, j = 1, k = 0,
|
||||
equidistribution = 2
|
||||
)
|
||||
public final class Xoroshiro128PlusPlus implements LeapableGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
*
|
||||
* This is an implementation of the xoroshiro128++ algorithm version 1.0,
|
||||
* written in 2019 by David Blackman and Sebastiano Vigna (vigna@acm.org).
|
||||
* See http://xoshiro.di.unimi.it and these two papers:
|
||||
*
|
||||
* Sebastiano Vigna. 2016. An Experimental Exploration of Marsaglia's
|
||||
* xorshift Generators, Scrambled. ACM Transactions on Mathematical
|
||||
* Software 42, 4, Article 30 (June 2016), 23 pages.
|
||||
* https://doi.org/10.1145/2845077
|
||||
*
|
||||
* David Blackman and Sebastiano Vigna. 2018. Scrambled Linear
|
||||
* Pseudorandom Number Generators. Computing Research Repository (CoRR).
|
||||
* http://arxiv.org/abs/1805.01407
|
||||
*
|
||||
* The jump operation moves the current generator forward by 2*64
|
||||
* steps; this has the same effect as calling nextLong() 2**64
|
||||
* times, but is much faster. Similarly, the leap operation moves
|
||||
* the current generator forward by 2*96 steps; this has the same
|
||||
* effect as calling nextLong() 2**96 times, but is much faster.
|
||||
* The copy method may be used to make a copy of the current
|
||||
* generator. Thus one may repeatedly and cumulatively copy and
|
||||
* jump to produce a sequence of generators whose states are well
|
||||
* spaced apart along the overall state cycle (indeed, the jumps()
|
||||
* and leaps() methods each produce a stream of such generators).
|
||||
* The generators can then be parceled out to other threads.
|
||||
*
|
||||
* File organization: First the non-public methods that constitute the
|
||||
* main algorithm, then the public methods. Note that many methods are
|
||||
* defined by classes {@link AbstractJumpableGenerator} and {@link AbstractGenerator}.
|
||||
*/
|
||||
|
||||
/* ---------------- static fields ---------------- */
|
||||
|
||||
/**
|
||||
* Group name.
|
||||
*/
|
||||
private static final String GROUP = "Xoroshiro";
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/* ---------------- instance fields ---------------- */
|
||||
|
||||
/**
|
||||
* The per-instance state.
|
||||
* At least one of the two fields x0 and x1 must be nonzero.
|
||||
*/
|
||||
private long x0, x1;
|
||||
|
||||
/* ---------------- constructors ---------------- */
|
||||
|
||||
/**
|
||||
* Basic constructor that initializes all fields from parameters.
|
||||
* It then adjusts the field values if necessary to ensure that
|
||||
* all constraints on the values of fields are met.
|
||||
*
|
||||
* @param x0 first word of the initial state
|
||||
* @param x1 second word of the initial state
|
||||
*/
|
||||
public Xoroshiro128PlusPlus(long x0, long x1) {
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
// If x0 and x1 are both zero, we must choose nonzero values.
|
||||
if ((x0 | x1) == 0) {
|
||||
this.x0 = RandomSupport.GOLDEN_RATIO_64;
|
||||
this.x1 = RandomSupport.SILVER_RATIO_64;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link Xoroshiro128PlusPlus} using the
|
||||
* specified {@code long} value as the initial seed. Instances of
|
||||
* {@link Xoroshiro128PlusPlus} created with the same seed in the same
|
||||
* program generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public Xoroshiro128PlusPlus(long seed) {
|
||||
// Using a value with irregularly spaced 1-bits to xor the seed
|
||||
// argument tends to improve "pedestrian" seeds such as 0 or
|
||||
// other small integers. We may as well use SILVER_RATIO_64.
|
||||
//
|
||||
// The x values are then filled in as if by a SplitMix PRNG with
|
||||
// GOLDEN_RATIO_64 as the gamma value and Stafford13 as the mixer.
|
||||
this(RandomSupport.mixStafford13(seed ^= RandomSupport.SILVER_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed + RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link Xoroshiro128PlusPlus} that is likely to
|
||||
* generate sequences of values that are statistically independent
|
||||
* of those of any other instances in the current program execution,
|
||||
* but may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public Xoroshiro128PlusPlus() {
|
||||
// Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values.
|
||||
this(defaultGen.getAndAdd(RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link Xoroshiro128PlusPlus} using the specified array of
|
||||
* initial seed bytes. Instances of {@link Xoroshiro128PlusPlus} created with the same
|
||||
* seed array in the same program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public Xoroshiro128PlusPlus(byte[] seed) {
|
||||
// Convert the seed to 2 long values, which are not both zero.
|
||||
long[] data = RandomSupport.convertSeedBytesToLongs(seed, 2, 2);
|
||||
long x0 = data[0], x1 = data[1];
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
}
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
public Xoroshiro128PlusPlus copy() {
|
||||
return new Xoroshiro128PlusPlus(x0, x1);
|
||||
}
|
||||
|
||||
/*
|
||||
* The following two comments are quoted from http://prng.di.unimi.it/xoroshiro128plusplus.c
|
||||
*/
|
||||
|
||||
/*
|
||||
* To the extent possible under law, the author has dedicated all copyright
|
||||
* and related and neighboring rights to this software to the public domain
|
||||
* worldwide. This software is distributed without any warranty.
|
||||
* <p>
|
||||
* See http://creativecommons.org/publicdomain/zero/1.0/.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is xoroshiro128++ 1.0, one of our all-purpose, rock-solid,
|
||||
* small-state generators. It is extremely (sub-ns) fast and it passes all
|
||||
* tests we are aware of, but its state space is large enough only for
|
||||
* mild parallelism.
|
||||
* <p>
|
||||
* For generating just floating-point numbers, xoroshiro128+ is even
|
||||
* faster (but it has a very mild bias, see notes in the comments).
|
||||
* <p>
|
||||
* The state must be seeded so that it is not everywhere zero. If you have
|
||||
* a 64-bit seed, we suggest to seed a splitmix64 generator and use its
|
||||
* output to fill s.
|
||||
*/
|
||||
|
||||
@Override
|
||||
public long nextLong() {
|
||||
final long s0 = x0;
|
||||
long s1 = x1;
|
||||
// Compute the result based on current state information
|
||||
// (this allows the computation to be overlapped with state update).
|
||||
final long result = Long.rotateLeft(s0 + s1, 17) + s0; // "plusplus" scrambler
|
||||
|
||||
s1 ^= s0;
|
||||
x0 = Long.rotateLeft(s0, 49) ^ s1 ^ (s1 << 21); // a, b
|
||||
x1 = Long.rotateLeft(s1, 28); // c
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double jumpDistance() {
|
||||
return 0x1.0p64;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double leapDistance() {
|
||||
return 0x1.0p96;
|
||||
}
|
||||
|
||||
private static final long[] JUMP_TABLE = { 0x2bd7a6a6e99c2ddcL, 0x0992ccaf6a6fca05L };
|
||||
|
||||
private static final long[] LEAP_TABLE = { 0x360fd5f2cf8d5d99L, 0x9c6e6877736c46e3L };
|
||||
|
||||
@Override
|
||||
public void jump() {
|
||||
jumpAlgorithm(JUMP_TABLE);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void leap() {
|
||||
jumpAlgorithm(LEAP_TABLE);
|
||||
}
|
||||
|
||||
private void jumpAlgorithm(long[] table) {
|
||||
long s0 = 0, s1 = 0;
|
||||
for (int i = 0; i < table.length; i++) {
|
||||
for (int b = 0; b < 64; b++) {
|
||||
if ((table[i] & (1L << b)) != 0) {
|
||||
s0 ^= x0;
|
||||
s1 ^= x1;
|
||||
}
|
||||
nextLong();
|
||||
}
|
||||
}
|
||||
x0 = s0;
|
||||
x1 = s1;
|
||||
}
|
||||
}
|
315
src/jdk.random/share/classes/jdk/random/Xoshiro256PlusPlus.java
Normal file
315
src/jdk.random/share/classes/jdk/random/Xoshiro256PlusPlus.java
Normal file
|
@ -0,0 +1,315 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package jdk.random;
|
||||
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.random.RandomGenerator;
|
||||
import java.util.random.RandomGenerator.LeapableGenerator;
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties;
|
||||
|
||||
/**
|
||||
* A "jumpable and leapable" pseudorandom number generator (PRNG) whose period
|
||||
* is roughly 2<sup>256</sup>. Class {@link Xoshiro256PlusPlus} implements
|
||||
* interfaces {@link RandomGenerator} and {@link LeapableGenerator},
|
||||
* and therefore supports methods for producing pseudorandomly chosen
|
||||
* values of type {@code int}, {@code long}, {@code float}, {@code double},
|
||||
* and {@code boolean} (and for producing streams of pseudorandomly chosen
|
||||
* numbers of type {@code int}, {@code long}, and {@code double}),
|
||||
* as well as methods for creating new {@link Xoshiro256PlusPlus} objects
|
||||
* by moving forward either a large distance (2<sup>128</sup>) or a very large
|
||||
* distance (2<sup>192</sup>) around the state cycle.
|
||||
* <p>
|
||||
* Series of generated values pass the TestU01 BigCrush and PractRand test suites
|
||||
* that measure independence and uniformity properties of random number generators.
|
||||
* (Most recently validated with
|
||||
* <a href="http://simul.iro.umontreal.ca/testu01/tu01.html">version 1.2.3 of TestU01</a>
|
||||
* and <a href="http://pracrand.sourceforge.net">version 0.90 of PractRand</a>.
|
||||
* Note that TestU01 BigCrush was used to test not only values produced by the {@code nextLong()}
|
||||
* method but also the result of bit-reversing each value produced by {@code nextLong()}.)
|
||||
* These tests validate only the methods for certain
|
||||
* types and ranges, but similar properties are expected to hold, at
|
||||
* least approximately, for others as well.
|
||||
* <p>
|
||||
* The class {@link Xoshiro256PlusPlus} uses the {@code xoshiro256} algorithm,
|
||||
* version 1.0 (parameters 17, 45), with the "++" scrambler that computes
|
||||
* {@code Long.rotateLeft(s0 + s3, 23) + s0}.
|
||||
* Its state consists of four {@code long} fields {@code x0}, {@code x1}, {@code x2},
|
||||
* and {@code x3}, which can take on any values provided that they are not all zero.
|
||||
* The period of this generator is 2<sup>256</sup>-1.
|
||||
* <p>
|
||||
* The 64-bit values produced by the {@code nextLong()} method are equidistributed.
|
||||
* To be precise, over the course of the cycle of length 2<sup>256</sup>-1,
|
||||
* each nonzero {@code long} value is generated 2<sup>192</sup> times,
|
||||
* but the value 0 is generated only 2<sup>192</sup>-1 times.
|
||||
* The values produced by the {@code nextInt()}, {@code nextFloat()}, and {@code nextDouble()}
|
||||
* methods are likewise equidistributed.
|
||||
* Moreover, the 64-bit values produced by the {@code nextLong()} method are 3-equidistributed.
|
||||
* <p>
|
||||
* Instances {@link Xoshiro256PlusPlus} are <em>not</em> thread-safe.
|
||||
* They are designed to be used so that each thread as its own instance.
|
||||
* The methods {@link #jump} and {@link #leap} and {@link #jumps} and {@link #leaps}
|
||||
* can be used to construct new instances of {@link Xoshiro256PlusPlus} that traverse
|
||||
* other parts of the state cycle.
|
||||
* <p>
|
||||
* Instances of {@link Xoshiro256PlusPlus} are not cryptographically
|
||||
* secure. Consider instead using {@link java.security.SecureRandom}
|
||||
* in security-sensitive applications. Additionally,
|
||||
* default-constructed instances do not use a cryptographically random
|
||||
* seed unless the {@linkplain System#getProperty system property}
|
||||
* {@code java.util.secureRandomSeed} is set to {@code true}.
|
||||
*
|
||||
* @since 17
|
||||
*
|
||||
*/
|
||||
@RandomGeneratorProperties(
|
||||
name = "Xoshiro256PlusPlus",
|
||||
group = "Xoshiro",
|
||||
i = 256, j = 1, k = 0,
|
||||
equidistribution = 4
|
||||
)
|
||||
public final class Xoshiro256PlusPlus implements LeapableGenerator {
|
||||
|
||||
/*
|
||||
* Implementation Overview.
|
||||
*
|
||||
* This is an implementation of the xoroshiro128++ algorithm version 1.0,
|
||||
* written in 2019 by David Blackman and Sebastiano Vigna (vigna@acm.org).
|
||||
* See http://xoshiro.di.unimi.it and these two papers:
|
||||
*
|
||||
* Sebastiano Vigna. 2016. An Experimental Exploration of Marsaglia's
|
||||
* xorshift Generators, Scrambled. ACM Transactions on Mathematical
|
||||
* Software 42, 4, Article 30 (June 2016), 23 pages.
|
||||
* https://doi.org/10.1145/2845077
|
||||
*
|
||||
* David Blackman and Sebastiano Vigna. 2018. Scrambled Linear
|
||||
* Pseudorandom Number Generators. Computing Research Repository (CoRR).
|
||||
* http://arxiv.org/abs/1805.01407
|
||||
*
|
||||
* The jump operation moves the current generator forward by 2*128
|
||||
* steps; this has the same effect as calling nextLong() 2**128
|
||||
* times, but is much faster. Similarly, the leap operation moves
|
||||
* the current generator forward by 2*192 steps; this has the same
|
||||
* effect as calling nextLong() 2**192 times, but is much faster.
|
||||
* The copy method may be used to make a copy of the current
|
||||
* generator. Thus one may repeatedly and cumulatively copy and
|
||||
* jump to produce a sequence of generators whose states are well
|
||||
* spaced apart along the overall state cycle (indeed, the jumps()
|
||||
* and leaps() methods each produce a stream of such generators).
|
||||
* The generators can then be parceled out to other threads.
|
||||
*
|
||||
* File organization: First static fields, then instance
|
||||
* fields, then constructors, then instance methods.
|
||||
*/
|
||||
|
||||
/* ---------------- static fields ---------------- */
|
||||
|
||||
/**
|
||||
* The seed generator for default constructors.
|
||||
*/
|
||||
private static final AtomicLong DEFAULT_GEN = new AtomicLong(RandomSupport.initialSeed());
|
||||
|
||||
/* ---------------- instance fields ---------------- */
|
||||
|
||||
/**
|
||||
* The per-instance state.
|
||||
* At least one of the four fields x0, x1, x2, and x3 must be nonzero.
|
||||
*/
|
||||
private long x0, x1, x2, x3;
|
||||
|
||||
/* ---------------- constructors ---------------- */
|
||||
|
||||
/**
|
||||
* Basic constructor that initializes all fields from parameters.
|
||||
* It then adjusts the field values if necessary to ensure that
|
||||
* all constraints on the values of fields are met.
|
||||
*
|
||||
* @param x0 first word of the initial state
|
||||
* @param x1 second word of the initial state
|
||||
* @param x2 third word of the initial state
|
||||
* @param x3 fourth word of the initial state
|
||||
*/
|
||||
public Xoshiro256PlusPlus(long x0, long x1, long x2, long x3) {
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
this.x2 = x2;
|
||||
this.x3 = x3;
|
||||
// If x0, x1, x2, and x3 are all zero, we must choose nonzero values.
|
||||
if ((x0 | x1 | x2 | x3) == 0) {
|
||||
// At least three of the four values generated here will be nonzero.
|
||||
this.x0 = RandomSupport.mixStafford13(x0 += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x1 = (x0 += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x2 = (x0 += RandomSupport.GOLDEN_RATIO_64);
|
||||
this.x3 = (x0 += RandomSupport.GOLDEN_RATIO_64);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link Xoshiro256PlusPlus} using the
|
||||
* specified {@code long} value as the initial seed. Instances of
|
||||
* {@link Xoshiro256PlusPlus} created with the same seed in the same
|
||||
* program generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public Xoshiro256PlusPlus(long seed) {
|
||||
// Using a value with irregularly spaced 1-bits to xor the seed
|
||||
// argument tends to improve "pedestrian" seeds such as 0 or
|
||||
// other small integers. We may as well use SILVER_RATIO_64.
|
||||
//
|
||||
// The x values are then filled in as if by a SplitMix PRNG with
|
||||
// GOLDEN_RATIO_64 as the gamma value and Stafford13 as the mixer.
|
||||
this(RandomSupport.mixStafford13(seed ^= RandomSupport.SILVER_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64),
|
||||
RandomSupport.mixStafford13(seed + RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link Xoshiro256PlusPlus} that is likely to
|
||||
* generate sequences of values that are statistically independent
|
||||
* of those of any other instances in the current program execution,
|
||||
* but may, and typically does, vary across program invocations.
|
||||
*/
|
||||
public Xoshiro256PlusPlus() {
|
||||
// Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values.
|
||||
this(DEFAULT_GEN.getAndAdd(RandomSupport.GOLDEN_RATIO_64));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of {@link Xoshiro256PlusPlus} using the specified array of
|
||||
* initial seed bytes. Instances of {@link Xoshiro256PlusPlus} created with the same
|
||||
* seed array in the same program execution generate identical sequences of values.
|
||||
*
|
||||
* @param seed the initial seed
|
||||
*/
|
||||
public Xoshiro256PlusPlus(byte[] seed) {
|
||||
// Convert the seed to 4 long values, which are not all zero.
|
||||
long[] data = RandomSupport.convertSeedBytesToLongs(seed, 4, 4);
|
||||
long x0 = data[0], x1 = data[1], x2 = data[2], x3 = data[3];
|
||||
this.x0 = x0;
|
||||
this.x1 = x1;
|
||||
this.x2 = x2;
|
||||
this.x3 = x3;
|
||||
}
|
||||
|
||||
/* ---------------- public methods ---------------- */
|
||||
|
||||
public Xoshiro256PlusPlus copy() {
|
||||
return new Xoshiro256PlusPlus(x0, x1, x2, x3);
|
||||
}
|
||||
|
||||
/*
|
||||
* The following two comments are quoted from http://prng.di.unimi.it/xoshiro256plusplus.c
|
||||
*/
|
||||
|
||||
/*
|
||||
* To the extent possible under law, the author has dedicated all copyright
|
||||
* and related and neighboring rights to this software to the public domain
|
||||
* worldwide. This software is distributed without any warranty.
|
||||
* <p>
|
||||
* See http://creativecommons.org/publicdomain/zero/1.0/.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is xoshiro256++ 1.0, one of our all-purpose, rock-solid generators.
|
||||
* It has excellent (sub-ns) speed, a state (256 bits) that is large
|
||||
* enough for any parallel application, and it passes all tests we are
|
||||
* aware of.
|
||||
*
|
||||
* For generating just floating-point numbers, xoshiro256+ is even faster.
|
||||
*
|
||||
* The state must be seeded so that it is not everywhere zero. If you have
|
||||
* a 64-bit seed, we suggest to seed a splitmix64 generator and use its
|
||||
* output to fill s.
|
||||
*/
|
||||
|
||||
@Override
|
||||
public long nextLong() {
|
||||
// Compute the result based on current state information
|
||||
// (this allows the computation to be overlapped with state update).
|
||||
final long result = Long.rotateLeft(x0 + x3, 23) + x0; // "plusplus" scrambler
|
||||
|
||||
long q0 = x0, q1 = x1, q2 = x2, q3 = x3;
|
||||
{ // xoshiro256 1.0
|
||||
long t = q1 << 17;
|
||||
q2 ^= q0;
|
||||
q3 ^= q1;
|
||||
q1 ^= q2;
|
||||
q0 ^= q3;
|
||||
q2 ^= t;
|
||||
q3 = Long.rotateLeft(q3, 45);
|
||||
}
|
||||
x0 = q0; x1 = q1; x2 = q2; x3 = q3;
|
||||
return result;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double jumpDistance() {
|
||||
return 0x1.0p128;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double leapDistance() {
|
||||
return 0x1.0p192;
|
||||
}
|
||||
|
||||
private static final long[] JUMP_TABLE = {
|
||||
0x180ec6d33cfd0abaL, 0xd5a61266f0c9392cL, 0xa9582618e03fc9aaL, 0x39abdc4529b1661cL };
|
||||
|
||||
private static final long[] LEAP_TABLE = {
|
||||
0x76e15d3efefdcbbfL, 0xc5004e441c522fb3L, 0x77710069854ee241L, 0x39109bb02acbe635L };
|
||||
|
||||
@Override
|
||||
public void jump() {
|
||||
jumpAlgorithm(JUMP_TABLE);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void leap() {
|
||||
jumpAlgorithm(LEAP_TABLE);
|
||||
}
|
||||
|
||||
private void jumpAlgorithm(long[] table) {
|
||||
long s0 = 0, s1 = 0, s2 = 0, s3 = 0;
|
||||
for (int i = 0; i < table.length; i++) {
|
||||
for (int b = 0; b < 64; b++) {
|
||||
if ((table[i] & (1L << b)) != 0) {
|
||||
s0 ^= x0;
|
||||
s1 ^= x1;
|
||||
s2 ^= x2;
|
||||
s3 ^= x3;
|
||||
}
|
||||
nextLong();
|
||||
}
|
||||
}
|
||||
x0 = s0;
|
||||
x1 = s1;
|
||||
x2 = s2;
|
||||
x3 = s3;
|
||||
}
|
||||
|
||||
}
|
64
src/jdk.random/share/classes/module-info.java
Normal file
64
src/jdk.random/share/classes/module-info.java
Normal file
|
@ -0,0 +1,64 @@
|
|||
/*
|
||||
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
import jdk.internal.util.random.RandomSupport;
|
||||
|
||||
/**
|
||||
* Defines implementations of the
|
||||
* {@linkplain java.util.random.RandomGenerator RandomGenerator Interface}.
|
||||
*
|
||||
* @provides jdk.random.L128X1024MixRandom
|
||||
* @provides jdk.random.L128X128MixRandom
|
||||
* @provides jdk.random.L128X256MixRandom
|
||||
* @provides jdk.random.L32X64MixRandom
|
||||
* @provides jdk.random.L64X1024MixRandom
|
||||
* @provides jdk.random.L64X128MixRandom
|
||||
* @provides jdk.random.L64X128StarStarRandom
|
||||
* @provides jdk.random.L64X256MixRandom
|
||||
* @provides jdk.random.Xoroshiro128PlusPlus
|
||||
* @provides jdk.random.Xoshiro256PlusPlus
|
||||
*
|
||||
* @use java.util.random.RandomGenerator
|
||||
* @use jdk.internal.util.random.RandomSupport
|
||||
*
|
||||
* @moduleGraph
|
||||
* @since 16
|
||||
*/
|
||||
module jdk.random {
|
||||
exports jdk.random to
|
||||
java.base;
|
||||
|
||||
provides java.util.random.RandomGenerator with
|
||||
jdk.random.L32X64MixRandom,
|
||||
jdk.random.L64X128MixRandom,
|
||||
jdk.random.L64X128StarStarRandom,
|
||||
jdk.random.L64X256MixRandom,
|
||||
jdk.random.L64X1024MixRandom,
|
||||
jdk.random.L128X128MixRandom,
|
||||
jdk.random.L128X256MixRandom,
|
||||
jdk.random.L128X1024MixRandom,
|
||||
jdk.random.Xoroshiro128PlusPlus,
|
||||
jdk.random.Xoshiro256PlusPlus;
|
||||
}
|
79
test/jdk/java/util/Random/RandomCanaryPi.java
Normal file
79
test/jdk/java/util/Random/RandomCanaryPi.java
Normal file
|
@ -0,0 +1,79 @@
|
|||
/*
|
||||
* Copyright (c) 2020 Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
import java.util.Comparator;
|
||||
import java.util.random.RandomGenerator;
|
||||
import java.util.random.RandomGenerator.*;
|
||||
import java.util.random.RandomGeneratorFactory;
|
||||
|
||||
/**
|
||||
* @test
|
||||
* @summary test bit sequences produced by clases that implement interface RandomGenerator
|
||||
* @bug 8248862
|
||||
* @run main RandomCanaryPi
|
||||
* @key randomness
|
||||
*/
|
||||
|
||||
public class RandomCanaryPi {
|
||||
static double pi(RandomGenerator rng) {
|
||||
int N = 10000000;
|
||||
int k = 0;
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
double x = rng.nextDouble();
|
||||
double y = rng.nextDouble();
|
||||
|
||||
if (x * x + y * y <= 1.0) {
|
||||
k++;
|
||||
}
|
||||
}
|
||||
|
||||
return 4.0 * (double)k / (double)N;
|
||||
}
|
||||
|
||||
static int failed = 0;
|
||||
|
||||
public static void main(String[] args) {
|
||||
RandomGeneratorFactory.all()
|
||||
.sorted(Comparator.comparing(RandomGeneratorFactory::name))
|
||||
.forEach(factory -> {
|
||||
RandomGenerator rng = factory.create();
|
||||
double pi = pi(rng);
|
||||
double delta = Math.abs(Math.PI - pi);
|
||||
boolean pass = delta < 1E-2;
|
||||
|
||||
if (!pass) {
|
||||
System.err.println("Algorithm = " + factory.name() + " failed");
|
||||
System.err.println("Actual = " + Math.PI);
|
||||
System.err.println("Monte Carlo = " + pi);
|
||||
System.err.println("Delta = " + delta);
|
||||
System.err.println();
|
||||
|
||||
failed++;
|
||||
}
|
||||
});
|
||||
if (failed != 0) {
|
||||
throw new RuntimeException(failed + " tests failed");
|
||||
}
|
||||
}
|
||||
}
|
454
test/jdk/java/util/Random/RandomTestBsi1999.java
Normal file
454
test/jdk/java/util/Random/RandomTestBsi1999.java
Normal file
|
@ -0,0 +1,454 @@
|
|||
/*
|
||||
* Copyright (c) 2012, 2020 Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.PrimitiveIterator;
|
||||
|
||||
import java.util.random.*;
|
||||
|
||||
import java.util.Set;
|
||||
import java.util.concurrent.CompletableFuture;
|
||||
import java.util.concurrent.ExecutionException;
|
||||
import java.util.concurrent.ThreadLocalRandom;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
import java.util.concurrent.TimeoutException;
|
||||
import java.util.function.IntSupplier;
|
||||
import java.util.function.LongSupplier;
|
||||
import java.util.function.BooleanSupplier;
|
||||
import java.util.function.Supplier;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
import static java.util.stream.Collectors.toList;
|
||||
import static java.util.stream.Collectors.toSet;
|
||||
|
||||
/**
|
||||
* @test
|
||||
* @summary test bit sequences produced by clases that implement interface RandomGenerator
|
||||
* @bug 8248862
|
||||
* @run main RandomTestBsi1999
|
||||
* @key randomness
|
||||
*/
|
||||
|
||||
public class RandomTestBsi1999 {
|
||||
|
||||
/* A set of tests for pseudorandom number generators inspired by this report:
|
||||
*
|
||||
* Werner Schindler. Functionality Classes and Evaluation Methodology for
|
||||
* Deterministic Random Number Generators, Version 2.0.
|
||||
* Bundesamt fur Sicherheit in der Informationstechnik (BSI). December 2, 1999.
|
||||
* https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_20_Functionality_Classes_Evaluation_Methodology_DRNG_e.pdf
|
||||
*
|
||||
* Section F of this report (pp. 19-20) recommends the use of five tests to evaluate a
|
||||
* sequence of bits:
|
||||
*
|
||||
* Monobit test
|
||||
* Poker test
|
||||
* Run test
|
||||
* Long run test
|
||||
* Autocorrelation test
|
||||
*
|
||||
* The first four of these tests are in turn taken from this report:
|
||||
*
|
||||
* National Institute of Standards and Technology (NIST),
|
||||
* U.S. Department of Commerce. Security Requirements for
|
||||
* Cryptographic Modules. Federal Information Processing
|
||||
* Standard (FIPS) 140-1, January 11, 1994.
|
||||
* https://csrc.nist.gov/csrc/media/publications/fips/140/1/archive/1994-01-11/documents/fips1401.pdf
|
||||
*
|
||||
* The BSI report appears to contain a few typos in transcribing the FIPS 140-1
|
||||
* requirements (pp. 44-45); specifically, the last three intervals for the runs test
|
||||
* (for lengths 4, 5, and 6+) are given as "223 - 402, 90 - 223, 90 - 223" in the FIPS
|
||||
* standard but as "233-402, 90-223, 90-233" in the BSI publication. A quick
|
||||
* mathematical check indicates that the FIPS 140-1 values are correct; therefore we
|
||||
* use those values here. In addition, the BSI report specifies a test interval of
|
||||
* 2326-2674 for the autocorrelation test, which provides an appropriately small
|
||||
* rejection rate if the test were done for only a single value of tau; but because we
|
||||
* wish to perform 5000 distinct tests, one for each value of tau in the range 1-5000,
|
||||
* that test interval produces too many false positives. Some calculation shows that
|
||||
* the interval 2267-2733 used by the FIPS 140-1 run test for runs of length 1 is
|
||||
* appropriate, so we use that interval here for each of the 5000 individual
|
||||
* autocorrelation tests.
|
||||
*
|
||||
* Each of the four FIPS 140-1 tests examines a sequence of 20000 bits. The
|
||||
* autocorrelation test examines a sequence of 10000 bits. It is convenient to
|
||||
* generate a sequence of 20000 bits (which we represent as an array of 20000 bytes)
|
||||
* and then apply all five tests, knowing that the autocorrelation test will examine
|
||||
* only the first half of the byte array.
|
||||
*
|
||||
* The descriptions of the tests are quoted from the FIPS 140-1 and BSI reports
|
||||
* (with some adjustments of punctuation and mathematical symbols, as well as
|
||||
* for our specific choices of test intervals).
|
||||
*/
|
||||
|
||||
static String currentRNG = "";
|
||||
static int failCount = 0;
|
||||
|
||||
static void exceptionOnFail() {
|
||||
if (failCount != 0) {
|
||||
throw new RuntimeException(failCount + " fails detected");
|
||||
}
|
||||
}
|
||||
|
||||
static void setRNG(String rng) {
|
||||
currentRNG = rng;
|
||||
}
|
||||
|
||||
static void fail(String format, Object... args) {
|
||||
if (currentRNG.length() != 0) {
|
||||
System.err.println(currentRNG);
|
||||
currentRNG = "";
|
||||
}
|
||||
|
||||
System.err.format(" " + format, args);
|
||||
failCount++;
|
||||
}
|
||||
|
||||
private static final int SEQUENCE_SIZE = 20000;
|
||||
|
||||
/* The Monobit Test
|
||||
*
|
||||
* 1. Count the number of ones in the 20,000 bit stream. Denote this quantity by X.
|
||||
*
|
||||
* 2. The test is passed if 9,654 < X < 10,346.
|
||||
*/
|
||||
static int monobitTest(String id, byte[] s) {
|
||||
// System.out.println("monobit test");
|
||||
int count = 0;
|
||||
for (int j = 0; j < s.length; j++) {
|
||||
count += s[j];
|
||||
}
|
||||
int monobitFailure = ((9654 < count) && (count < 10346)) ? 0 : 1;
|
||||
if (monobitFailure != 0) fail("monobit test failure for %s: count=%d (should be in [9654,10346])\n", id, count);
|
||||
return monobitFailure;
|
||||
}
|
||||
|
||||
/* The Poker Test
|
||||
*
|
||||
* 1. Divide the 20,000 bit stream into 5,000 contiguous 4-bit segments. Count and
|
||||
* store the number of occurrences of each of the 16 possible 4-bit values. Denote
|
||||
* f(i) as the number of each 4-bit value i where 0 <= i <= 15.
|
||||
*
|
||||
* 2. Evaluate the following: X = (16/5000)(sum[i=0,15] (f(i))**2) - 5000
|
||||
*
|
||||
* 3. The test is passed if 1.03 < X < 57.4.
|
||||
*/
|
||||
|
||||
static int pokerTest(String id, byte[] s) {
|
||||
// System.out.println("poker test");
|
||||
// Divide the bit sequence into 4-bit chunks, and count the number of times each 4-bit value appears.
|
||||
int[] stats = new int[16];
|
||||
int v = 0;
|
||||
for (int j = 0; j < s.length; j++) {
|
||||
v = (v << 1) | s[j];
|
||||
if ((j & 3) == 3) {
|
||||
++stats[v];
|
||||
v = 0;
|
||||
}
|
||||
}
|
||||
int z = 0;
|
||||
for (int k = 0; k < stats.length; k++) {
|
||||
z += stats[k]*stats[k];
|
||||
}
|
||||
double x = (16.0 / (s.length / 4)) * z - (s.length / 4);
|
||||
int pokerFailure = ((1.03 < x) && (x < 57.4)) ? 0 : 1;
|
||||
if (pokerFailure != 0) fail("poker test failure for %s: x=%g (should be in [1.03,57.4])\n", id, x);
|
||||
return pokerFailure;
|
||||
}
|
||||
|
||||
/* The Runs Test
|
||||
*
|
||||
* 1. A run is defined as a maximal sequence of consecutive bits of either all ones
|
||||
* or all zeros, which is part of the 20,000 bit sample stream. The incidences of
|
||||
* runs (for both consecutive zeros and consecutive ones) of all lengths (>= 1) in
|
||||
* the sample stream should be counted and stored.
|
||||
*
|
||||
* 2. The test is passed if the number of runs that occur (of lengths 1 through 6)
|
||||
* is each within the corresponding interval specified below. This must hold for
|
||||
* both the zeros and ones; that is, all 12 counts must lie in the specified
|
||||
* interval. For the purpose of this test, runs of greater than 6 are considered to
|
||||
* be of length 6.
|
||||
*
|
||||
* Length of run Required Interval
|
||||
* 1 2,267 - 2,733
|
||||
* 2 1,079 - 1,421
|
||||
* 3 502 - 748
|
||||
* 4 223 - 402
|
||||
* 5 90 - 223
|
||||
* 6+ 90 - 223
|
||||
*
|
||||
* The Long Run Test
|
||||
*
|
||||
* 1 . A long run is defined to be a run of length 34 or more (of either zeros or ones).
|
||||
*
|
||||
* 2. On the sample of 20,000 bits, the test is passed if there are NO long runs.
|
||||
*/
|
||||
static int runTestAndLongRunTest(String id, byte[] s) {
|
||||
// System.out.println("run test");
|
||||
int[][] stats = new int[2][8];
|
||||
int count = 0;
|
||||
for (int j = 0; j < s.length; j++) {
|
||||
++count;
|
||||
if ((j == (s.length - 1)) || (s[j+1] != s[j])) {
|
||||
++stats[s[j]][(count < 6) ? count : (count < 34) ? 6 : 7];
|
||||
count = 0;
|
||||
}
|
||||
}
|
||||
stats[0][6] += stats[0][7];
|
||||
stats[1][6] += stats[1][7];
|
||||
int runFailure = checkRunStats(stats[0]) | checkRunStats(stats[1]);
|
||||
if (runFailure != 0) fail("run test failure for %s\n", id);
|
||||
int longRunFailure = ((stats[0][7] == 0) && (stats[1][7] == 0)) ? 0 : 1;
|
||||
if (longRunFailure != 0) fail("long run test failure for %s\n", id);
|
||||
return (runFailure + longRunFailure);
|
||||
}
|
||||
|
||||
static int checkRunStats(int[] stats) {
|
||||
int runFailure = 0;
|
||||
runFailure |= ((2267 <= stats[1]) && (stats[1] <= 2733)) ? 0 : 1;
|
||||
runFailure |= ((1079 <= stats[2]) && (stats[2] <= 1421)) ? 0 : 1;
|
||||
runFailure |= (( 502 <= stats[3]) && (stats[3] <= 748)) ? 0 : 1;
|
||||
runFailure |= (( 223 <= stats[4]) && (stats[4] <= 402)) ? 0 : 1;
|
||||
runFailure |= (( 90 <= stats[5]) && (stats[5] <= 223)) ? 0 : 1;
|
||||
runFailure |= (( 90 <= stats[6]) && (stats[6] <= 223)) ? 0 : 1;
|
||||
return runFailure;
|
||||
}
|
||||
|
||||
/* Autocorrelation Test
|
||||
*
|
||||
* For tau in {1, ..., 5000}, Z[tau] := sum[j=1,5000] (b[j] ^ b[j+tau]).
|
||||
*
|
||||
* The sequence passes the autocorrelation test if every Z[tau] lies within the
|
||||
* interval 2267-2733.
|
||||
*/
|
||||
static int autocorrelationTest(String id, byte[] s) {
|
||||
// System.out.println("autocorrelation test");
|
||||
int autocorrelationFailure = 0;
|
||||
int N = s.length / 4;
|
||||
for (int tau = 1; tau <= N; tau++) {
|
||||
int count = 0;
|
||||
for (int j = 0; j < N; j++) {
|
||||
count += (s[j] ^ s[j+tau]);
|
||||
}
|
||||
// We intentionally use bounds [2267, 2733], which are wider than
|
||||
// the bounds [2326, 2674] specified by BSI for this test.
|
||||
// The latter bounds produce way too many false positives.
|
||||
int singleAutocorrelationFailure = ((2267 < count) && (count < 2733)) ? 0 : 1;
|
||||
if (singleAutocorrelationFailure != 0) {
|
||||
if (autocorrelationFailure < 8) {
|
||||
fail("autocorrelation failure for %s: count=%d (should be in [2267,2733]), tau=%d\n", id, count, tau);
|
||||
if (count < 100 || count > 4900) {
|
||||
System.out.print(" ");
|
||||
for (int q = 0; q < 50; q++) System.out.print(s[q]);
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
}
|
||||
autocorrelationFailure += singleAutocorrelationFailure;
|
||||
}
|
||||
return (autocorrelationFailure == 0) ? 0 : 1;
|
||||
}
|
||||
|
||||
static int entireBsi1999Test(String id, byte[] s) {
|
||||
return (monobitTest(id, s) +
|
||||
pokerTest(id, s) +
|
||||
runTestAndLongRunTest(id, s) +
|
||||
autocorrelationTest(id, s)
|
||||
);
|
||||
}
|
||||
|
||||
/* To test a sequence of boolean values from a BooleanSupplier,
|
||||
* sequentially extract 20000 boolean values, convert to an array
|
||||
* of bytes, and feed them to method {@code entireBsi1999Test}.
|
||||
*/
|
||||
|
||||
static int testRngBsi1999BooleanOnce(String id, BooleanSupplier theSupplier) {
|
||||
int failureCount = 0;
|
||||
byte[] s = new byte[SEQUENCE_SIZE];
|
||||
// Take the next SEQUENCE_SIZE booleans and test them
|
||||
for (int j = 0; j < s.length; j++) {
|
||||
s[j] = (theSupplier.getAsBoolean() ? (byte)1 : (byte)0);
|
||||
}
|
||||
failureCount += entireBsi1999Test(id + " consecutive", s);
|
||||
return failureCount;
|
||||
}
|
||||
|
||||
/* To test a sequence of long values from a LongSupplier,
|
||||
* two kinds of tests are performed.
|
||||
*
|
||||
* The first kind of test extracts 313=ceiling(20000/64) long
|
||||
* values and concatenates all their bits; the first 20000 bits
|
||||
* are converted to a byte array of bits to be tested. This test is
|
||||
* repeated 64 times.
|
||||
*
|
||||
* The second kind of test focuses on one bit position m (0 <= m < 64);
|
||||
* it extracts 20000 long values and uses just bit m from each value
|
||||
* to produce an array of bytes to be tested. This test is performed
|
||||
* once for each possible value of m (64 times in all).
|
||||
*/
|
||||
static int testRngBsi1999LongOnce(String id, LongSupplier theSupplier) {
|
||||
int failureCount = 0;
|
||||
byte[] s = new byte[SEQUENCE_SIZE];
|
||||
// Part 1: 64 times, take the next SEQUENCE_SIZE bits and test them
|
||||
for (int m = 0; m < 64; m++) {
|
||||
long bits = 0;
|
||||
int bitCount = 0;
|
||||
for (int j = 0; j < s.length; j++) {
|
||||
if ((j & 0x3f) == 0) {
|
||||
bits = theSupplier.getAsLong();
|
||||
// System.out.printf("0x%016x\n", bits);
|
||||
bitCount += Long.bitCount((j == (20000 - 32)) ? ((bits << 32) >>> 32) : bits);
|
||||
}
|
||||
s[j] = (byte)(bits & 1);
|
||||
bits >>>= 1;
|
||||
}
|
||||
// System.out.println(m + ": " + bitCount + " 1-bits");
|
||||
failureCount += entireBsi1999Test(id + " consecutive (" + bitCount + " 1-bits)", s);
|
||||
}
|
||||
// Part 2: for 0 <= m < 64, use bit m from each of the next SEQUENCE_SIZE longs
|
||||
for (int m = 0; m < 64; m++) {
|
||||
for (int j = 0; j < s.length; j++) {
|
||||
s[j] = (byte)((theSupplier.getAsLong() >>> m) & 1);
|
||||
}
|
||||
failureCount += entireBsi1999Test(id + " bit " + m, s);
|
||||
}
|
||||
return failureCount;
|
||||
}
|
||||
|
||||
/* To test a sequence of ing values from an IntSupplier,
|
||||
* two kinds of tests are performed.
|
||||
*
|
||||
* The first kind of test extracts 625=20000/32 int values and
|
||||
* concatenates all their bits; these 20000 bits are converted to
|
||||
* a byte array of bits to be tested. This test is repeated 64
|
||||
* times.
|
||||
*
|
||||
* The second kind of test focuses on one bit position m (0 <= m < 32);
|
||||
* it extracts 20000 int values and uses just bit m from each value
|
||||
* to produce an array of bytes to be tested. This test is performed
|
||||
* once for each possible value of m (32 times in all).
|
||||
*/
|
||||
static int testRngBsi1999IntOnce(String id, IntSupplier theSupplier) {
|
||||
int failureCount = 0;
|
||||
byte[] s = new byte[SEQUENCE_SIZE];
|
||||
// Part 1: 64 times, take the next SEQUENCE_SIZE bits and test them
|
||||
for (int m = 0; m < 64; m++) {
|
||||
int bits = 0;
|
||||
int bitCount = 0;
|
||||
for (int j = 0; j < s.length; j++) {
|
||||
if ((j & 0x1f) == 0) {
|
||||
bits = theSupplier.getAsInt();
|
||||
bitCount += Integer.bitCount(bits);
|
||||
}
|
||||
s[j] = (byte)(bits & 1);
|
||||
bits >>>= 1;
|
||||
}
|
||||
// System.out.println(m + ": " + bitCount + " 1-bits");
|
||||
failureCount += entireBsi1999Test(id + " consecutive (" + bitCount + " 1-bits)", s);
|
||||
}
|
||||
// Part 2: for 0 <= m < 32, use bit m from each of the next SEQUENCE_SIZE ints
|
||||
for (int m = 0; m < 32; m++) {
|
||||
for (int j = 0; j < s.length; j++) {
|
||||
s[j] = (byte)((theSupplier.getAsInt() >>> m) & 1);
|
||||
}
|
||||
failureCount += entireBsi1999Test(id + " bit " + m, s);
|
||||
}
|
||||
return failureCount;
|
||||
}
|
||||
|
||||
/* A call to {@code entireBsi1999Test} may report failure even if the source of random
|
||||
* bits is quite good, because the test is statistical in nature. To make the testing
|
||||
* procedure more robust, if the first call to {@code entireBsi1999Test} fails, then
|
||||
* the failure is ignored if two more calls to {@code entireBsi1999Test} both succeed.
|
||||
*/
|
||||
|
||||
static boolean testRngBsi1999Boolean(String id, BooleanSupplier theSupplier, int failureTolerance) {
|
||||
if (testRngBsi1999BooleanOnce(id, theSupplier) <= failureTolerance) return true;
|
||||
fail("testRngBsi1999Boolean glitch");
|
||||
return ((testRngBsi1999BooleanOnce(id, theSupplier) <= failureTolerance) &&
|
||||
(testRngBsi1999BooleanOnce(id, theSupplier) <= failureTolerance));
|
||||
}
|
||||
|
||||
static boolean testRngBsi1999Long(String id, LongSupplier theSupplier, int failureTolerance) {
|
||||
if (testRngBsi1999LongOnce(id, theSupplier) <= failureTolerance) return true;
|
||||
fail("testRngBsi1999Long glitch");
|
||||
return ((testRngBsi1999LongOnce(id, theSupplier) <= failureTolerance) &&
|
||||
(testRngBsi1999LongOnce(id, theSupplier) <= failureTolerance));
|
||||
}
|
||||
|
||||
static boolean testRngBsi1999Int(String id, IntSupplier theSupplier, int failureTolerance) {
|
||||
if (testRngBsi1999IntOnce(id, theSupplier) <= failureTolerance) return true;
|
||||
fail("testRngBsi1999Int glitch");
|
||||
return ((testRngBsi1999IntOnce(id, theSupplier) <= failureTolerance) &&
|
||||
(testRngBsi1999IntOnce(id, theSupplier) <= failureTolerance));
|
||||
}
|
||||
|
||||
static void tryIt(RandomGenerator rng, String id, BooleanSupplier theSupplier) {
|
||||
System.out.printf("Testing %s %s\n", rng.getClass().getName(), id);
|
||||
boolean success = theSupplier.getAsBoolean();
|
||||
if (!success) {
|
||||
fail("*** Failure of %s %s\n", rng.getClass().getName(), id);
|
||||
}
|
||||
}
|
||||
|
||||
static void testOneRng(RandomGenerator rng, int failureTolerance) {
|
||||
String name = rng.getClass().getName();
|
||||
tryIt(rng, "nextInt", () -> testRngBsi1999Int(name + " nextInt", rng::nextInt, failureTolerance));
|
||||
tryIt(rng, "nextLong", () -> testRngBsi1999Long(name + " nextLong", rng::nextLong, failureTolerance));
|
||||
tryIt(rng, "nextBoolean", () -> testRngBsi1999Boolean(name + " nextBoolean", rng::nextBoolean, failureTolerance));
|
||||
tryIt(rng, "ints", () -> testRngBsi1999Int(name + " ints", rng.ints().iterator()::next, failureTolerance));
|
||||
tryIt(rng, "longs", () -> testRngBsi1999Long(name + " longs", rng.longs().iterator()::next, failureTolerance));
|
||||
{
|
||||
PrimitiveIterator.OfDouble iter = rng.doubles().iterator();
|
||||
tryIt(rng, "doubles",
|
||||
() -> testRngBsi1999Int(name + " doubles",
|
||||
() -> (int)(long)Math.floor(iter.next() * 0x1.0p32),
|
||||
failureTolerance));
|
||||
}
|
||||
tryIt(rng, "nextDouble",
|
||||
() -> testRngBsi1999Int(name + " nextDouble",
|
||||
() -> (int)(long)Math.floor(rng.nextDouble() * 0x1.0p32),
|
||||
failureTolerance));
|
||||
tryIt(rng, "nextFloat",
|
||||
() -> testRngBsi1999Int(name + " nextFloat",
|
||||
() -> (((int)(long)Math.floor(rng.nextFloat() * 0x1.0p16f) << 16)
|
||||
| (int)(long)Math.floor(rng.nextFloat() * 0x1.0p16f)),
|
||||
failureTolerance));
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
RandomGeneratorFactory.all().forEach(factory -> {
|
||||
setRNG(factory.name());
|
||||
|
||||
if (factory.name().equals("Random")) {
|
||||
// testOneRng(factory.create(59), 1);
|
||||
// autocorrelation failure for java.util.Random longs bit 0: count=2207 (should be in [2267,2733]), tau=2819
|
||||
|
||||
} else {
|
||||
testOneRng(factory.create(59), 0);
|
||||
}
|
||||
});
|
||||
|
||||
exceptionOnFail();
|
||||
}
|
||||
}
|
||||
|
241
test/jdk/java/util/Random/RandomTestChiSquared.java
Normal file
241
test/jdk/java/util/Random/RandomTestChiSquared.java
Normal file
|
@ -0,0 +1,241 @@
|
|||
/*
|
||||
* Copyright (c) 2012, 2013, 2019, 2020, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.PrimitiveIterator;
|
||||
|
||||
import java.util.random.*;
|
||||
|
||||
import java.util.Set;
|
||||
import java.util.concurrent.CompletableFuture;
|
||||
import java.util.concurrent.ExecutionException;
|
||||
import java.util.concurrent.ThreadLocalRandom;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
import java.util.concurrent.TimeoutException;
|
||||
import java.util.function.IntSupplier;
|
||||
import java.util.function.LongSupplier;
|
||||
import java.util.function.BooleanSupplier;
|
||||
import java.util.function.Supplier;
|
||||
import java.util.function.Function;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
import static java.util.stream.Collectors.toList;
|
||||
import static java.util.stream.Collectors.toSet;
|
||||
|
||||
/**
|
||||
* @test
|
||||
* @summary test bit sequences produced by clases that implement interface RandomGenerator
|
||||
* @bug 8248862
|
||||
* @run main RandomTestChiSquared
|
||||
* @key randomness
|
||||
*/
|
||||
|
||||
public class RandomTestChiSquared {
|
||||
|
||||
static String currentRNG = "";
|
||||
static int failCount = 0;
|
||||
|
||||
static void exceptionOnFail() {
|
||||
if (failCount != 0) {
|
||||
throw new RuntimeException(failCount + " fails detected");
|
||||
}
|
||||
}
|
||||
|
||||
static void setRNG(String rng) {
|
||||
currentRNG = rng;
|
||||
}
|
||||
|
||||
static void fail(String format, Object... args) {
|
||||
if (currentRNG.length() != 0) {
|
||||
System.err.println(currentRNG);
|
||||
currentRNG = "";
|
||||
}
|
||||
|
||||
System.err.format(" " + format, args);
|
||||
failCount++;
|
||||
}
|
||||
|
||||
// Some simple chi-squared tests similar to that used for the FIPS 140 poker test,
|
||||
// but intended primarily to test production of random values from ranges.
|
||||
|
||||
private static final int SEQUENCE_SIZE = 20000;
|
||||
|
||||
// Entry k of this table was computed in Microsoft Excel using the formulae
|
||||
// =CHISQ.INV(0.0000000777517,k) and =CHISQ.INV.RT(0.00000142611,k)
|
||||
// (except that entry 0 is a dummy and should never be used).
|
||||
static final double[][] chiSquaredBounds = {
|
||||
{ 0.0, 0.0 },
|
||||
{ 9.49598E-15, 23.24513154 },
|
||||
{ 1.55503E-07, 26.92112020 },
|
||||
{ 4.40485E-05, 29.93222467 },
|
||||
{ 0.000788782, 32.62391510 },
|
||||
{ 0.004636947, 35.11665045 },
|
||||
{ 0.015541535, 37.46947634 },
|
||||
{ 0.037678318, 39.71667636 },
|
||||
{ 0.074471919, 41.88031518 },
|
||||
{ 0.128297057, 43.97561646 },
|
||||
{ 0.200566433, 46.01362542 },
|
||||
{ 0.291944952, 48.00266676 },
|
||||
{ 0.402564694, 49.94920504 },
|
||||
{ 0.532199236, 51.85838271 },
|
||||
{ 0.680392565, 53.73437242 },
|
||||
{ 0.846549931, 55.58061674 },
|
||||
{ 1.030000010, 57.39999630 },
|
||||
{ 1.230036580, 59.19495111 },
|
||||
{ 1.445945898, 60.96756998 },
|
||||
{ 1.677024296, 62.71965780 },
|
||||
{ 1.922589129, 64.45278706 },
|
||||
{ 2.181985238, 66.16833789 },
|
||||
{ 2.454588423, 67.86752964 },
|
||||
{ 2.739806923, 69.55144602 },
|
||||
{ 3.037081611, 71.22105544 },
|
||||
{ 3.345885349, 72.87722754 },
|
||||
{ 3.665721841, 74.52074682 },
|
||||
{ 3.996124178, 76.15232388 },
|
||||
{ 4.336653242, 77.77260487 },
|
||||
{ 4.686896041, 79.38217943 },
|
||||
{ 5.046464051, 80.98158736 },
|
||||
{ 5.414991603, 82.57132439 }
|
||||
};
|
||||
|
||||
|
||||
|
||||
// N is the number of categories; every element of s ought to be in [0,N).
|
||||
// N must be in [1,31].
|
||||
static boolean chiSquaredTest(String id, int N, IntSupplier theSupplier) {
|
||||
int[] stats = new int[N];
|
||||
for (int j = 0; j < SEQUENCE_SIZE; j++) {
|
||||
int v = theSupplier.getAsInt();
|
||||
// assert((0 <= v) && (v < N));
|
||||
++stats[v];
|
||||
}
|
||||
int z = 0;
|
||||
for (int k = 0; k < stats.length; k++) {
|
||||
z += stats[k]*stats[k];
|
||||
}
|
||||
double x = ((double)N / (double)SEQUENCE_SIZE) * (double)z - (double)SEQUENCE_SIZE;
|
||||
double lo = chiSquaredBounds[N][0];
|
||||
double hi = chiSquaredBounds[N][1];
|
||||
boolean chiSquaredSuccess = ((lo < x) && (x < hi));
|
||||
if (!chiSquaredSuccess) fail("chi-squared test failure for %s: x=%g (should be in [%g,%g])\n", id, x, lo, hi);
|
||||
return chiSquaredSuccess;
|
||||
}
|
||||
|
||||
static boolean testRngChiSquared(String id, int N, IntSupplier theSupplier) {
|
||||
if (chiSquaredTest(id, N, theSupplier)) return true;
|
||||
fail("testRngChiSquared glitch");
|
||||
return chiSquaredTest(id, N, theSupplier) && chiSquaredTest(id, N, theSupplier);
|
||||
}
|
||||
|
||||
static void tryIt(RandomGenerator rng, String kind, Function<String,BooleanSupplier> f) {
|
||||
String id = rng.getClass().getName() + " " + kind;
|
||||
// System.out.printf("Testing %s\n", id);
|
||||
boolean success = f.apply(id).getAsBoolean();
|
||||
if (!success) {
|
||||
fail("*** Failure of %s\n", id);
|
||||
}
|
||||
}
|
||||
|
||||
// To test one instance of an RandomGenerator with the BSI test suite, we test:
|
||||
// nextInt()
|
||||
// nextLong()
|
||||
// nextBoolean()
|
||||
// ints()
|
||||
// longs()
|
||||
// doubles()
|
||||
// nextDouble()
|
||||
// nextFloat()
|
||||
|
||||
static final int[] testSizes = { 11, 13, 16, 17, 19, 23, 24 };
|
||||
|
||||
static void testOneRng(RandomGenerator rng, int failureTolerance) {
|
||||
String name = rng.getClass().getName();
|
||||
for (int j = 0; j < testSizes.length; j++) {
|
||||
int N = testSizes[j];
|
||||
tryIt(rng, "nextInt(" + N + ")", (String id) -> () -> testRngChiSquared(id, N, () -> rng.nextInt(N)));
|
||||
tryIt(rng, "nextInt(43, " + (N+43) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> rng.nextInt(43, N+43) - 43));
|
||||
tryIt(rng, "nextInt(-59, " + (N-59) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> rng.nextInt(-59, N-59) + 59));
|
||||
}
|
||||
for (int j = 0; j < testSizes.length; j++) {
|
||||
int N = testSizes[j];
|
||||
tryIt(rng, "nextLong(" + N + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(rng.nextLong(N))));
|
||||
tryIt(rng, "nextLong(43, " + (N+43) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(rng.nextLong(43, N+43) - 43)));
|
||||
tryIt(rng, "nextLong(-59, " + (N-59) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(rng.nextLong(-59, N-59) + 59)));
|
||||
}
|
||||
for (int j = 0; j < testSizes.length; j++) {
|
||||
int N = testSizes[j];
|
||||
tryIt(rng, "nextFloat(" + N + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(rng.nextFloat(N)) % N));
|
||||
tryIt(rng, "nextFloat(43, " + (N+43) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(rng.nextFloat(43, N+43) - 43) % N));
|
||||
tryIt(rng, "nextFloat(-59, " + (N-59) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(rng.nextFloat(-59, N-59) + 59) % N));
|
||||
}
|
||||
for (int j = 0; j < testSizes.length; j++) {
|
||||
int N = testSizes[j];
|
||||
tryIt(rng, "nextDouble(" + N + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(rng.nextDouble(N)) % N));
|
||||
tryIt(rng, "nextDouble(43, " + (N+43) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(rng.nextDouble(43, N+43) - 43) % N));
|
||||
tryIt(rng, "nextDouble(-59, " + (N-59) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(rng.nextDouble(-59, N-59) + 59) % N));
|
||||
}
|
||||
for (int j = 0; j < testSizes.length; j++) {
|
||||
int N = testSizes[j];
|
||||
PrimitiveIterator.OfInt iter1 = rng.ints(0, N).iterator();
|
||||
tryIt(rng, "ints(0, " + N + ")", (String id) -> () -> testRngChiSquared(id, N, iter1::next));
|
||||
PrimitiveIterator.OfInt iter2 = rng.ints(43, N+43).iterator();
|
||||
tryIt(rng, "ints(43, " + (N+43) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> iter2.next() - 43));
|
||||
PrimitiveIterator.OfInt iter3 = rng.ints(-59, N-59).iterator();
|
||||
tryIt(rng, "ints(-59, " + (N-59) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> iter3.next() + 59));
|
||||
}
|
||||
for (int j = 0; j < testSizes.length; j++) {
|
||||
int N = testSizes[j];
|
||||
PrimitiveIterator.OfLong iter1 = rng.longs(0, N).iterator();
|
||||
tryIt(rng, "longs(0, " + N + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(iter1.next() + 0)));
|
||||
PrimitiveIterator.OfLong iter2 = rng.longs(43, N+43).iterator();
|
||||
tryIt(rng, "longs(43, " + (N+43) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(iter2.next() - 43)));
|
||||
PrimitiveIterator.OfLong iter3 = rng.longs(-59, N-59).iterator();
|
||||
tryIt(rng, "longs(-59, " + (N-59) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(iter3.next() + 59)));
|
||||
}
|
||||
for (int j = 0; j < testSizes.length; j++) {
|
||||
int N = testSizes[j];
|
||||
PrimitiveIterator.OfDouble iter1 = rng.doubles(0, N).iterator();
|
||||
tryIt(rng, "doubles(0, " + N + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(iter1.next() + 0) % N));
|
||||
PrimitiveIterator.OfDouble iter2 = rng.doubles(43, N+43).iterator();
|
||||
tryIt(rng, "doubles(43, " + (N+43) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(iter2.next() - 43) % N));
|
||||
PrimitiveIterator.OfDouble iter3 = rng.doubles(-59, N-59).iterator();
|
||||
tryIt(rng, "doubles(-59, " + (N-59) + ")", (String id) -> () -> testRngChiSquared(id, N, () -> (int)(iter3.next() + 59) % N));
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
RandomGeneratorFactory.all().forEach(factory -> {
|
||||
setRNG(factory.name());
|
||||
|
||||
if (factory.name().equals("Random")) {
|
||||
testOneRng(factory.create(417), 1);
|
||||
} else {
|
||||
testOneRng(factory.create(417), 0);
|
||||
}
|
||||
});
|
||||
|
||||
exceptionOnFail();
|
||||
}
|
||||
|
||||
}
|
||||
|
191
test/jdk/java/util/Random/RandomTestCoverage.java
Normal file
191
test/jdk/java/util/Random/RandomTestCoverage.java
Normal file
|
@ -0,0 +1,191 @@
|
|||
import java.math.BigInteger;
|
||||
import java.security.SecureRandom;
|
||||
import java.util.concurrent.ThreadLocalRandom;
|
||||
import java.util.random.RandomGenerator;
|
||||
import java.util.random.RandomGenerator.ArbitrarilyJumpableGenerator;
|
||||
import java.util.random.RandomGenerator.JumpableGenerator;
|
||||
import java.util.random.RandomGenerator.LeapableGenerator;
|
||||
import java.util.random.RandomGenerator.SplittableGenerator;
|
||||
import java.util.random.RandomGenerator.StreamableGenerator;
|
||||
import java.util.random.RandomGeneratorFactory;
|
||||
import java.util.stream.DoubleStream;
|
||||
import java.util.stream.IntStream;
|
||||
import java.util.stream.LongStream;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
/**
|
||||
* @test
|
||||
* @summary Ensure that all implementations of RandomGenerator supply required methods.
|
||||
* @bug 8248862
|
||||
* @run main RandomTestCoverage
|
||||
* @key randomness
|
||||
*/
|
||||
|
||||
|
||||
public class RandomTestCoverage {
|
||||
static void coverRandomGenerator(RandomGenerator rng) {
|
||||
boolean bool = rng.nextBoolean();
|
||||
byte[] bytes = new byte[8];
|
||||
rng.nextBytes(bytes);
|
||||
|
||||
int i1 = rng.nextInt();
|
||||
int i2 = rng.nextInt(10);
|
||||
int i3 = rng.nextInt(5, 10);
|
||||
|
||||
long l1 = rng.nextLong();
|
||||
long l2 = rng.nextLong(10L);
|
||||
long l3 = rng.nextLong(5L, 10L);
|
||||
|
||||
float f1 = rng.nextFloat();
|
||||
float f2 = rng.nextFloat(1.0f);
|
||||
float f3 = rng.nextFloat(0.5f, 1.0f);
|
||||
|
||||
double d1 = rng.nextDouble();
|
||||
double d2 = rng.nextDouble(1.0);
|
||||
double d3 = rng.nextDouble(0.5, 1.0);
|
||||
|
||||
double exp = rng.nextExponential();
|
||||
double gauss1 = rng.nextGaussian();
|
||||
double gauss2 = rng.nextGaussian(0.5, 2.0);
|
||||
|
||||
IntStream intStream1 = rng.ints();
|
||||
IntStream intStream2 = rng.ints(5, 10);
|
||||
IntStream intStream3 = rng.ints(5L);
|
||||
IntStream intStream4 = rng.ints(5L, 5, 10);
|
||||
|
||||
LongStream longStream1 = rng.longs();
|
||||
LongStream longStream2 = rng.longs(5L, 10L);
|
||||
LongStream longStream3 = rng.longs(5L);
|
||||
LongStream longStream4 = rng.longs(5L, 5L, 10L);
|
||||
|
||||
DoubleStream doubleStream1 = rng.doubles();
|
||||
DoubleStream doubleStream2 = rng.doubles(0.5, 1.0);
|
||||
DoubleStream doubleStream3 = rng.doubles(5);
|
||||
DoubleStream doubleStream4 = rng.doubles(5, 0.5, 1.0);
|
||||
}
|
||||
|
||||
static void checkPredicates(RandomGeneratorFactory factory) {
|
||||
RandomGenerator rng = factory.create();
|
||||
if (rng instanceof ArbitrarilyJumpableGenerator != factory.isArbitrarilyJumpable()) {
|
||||
throw new RuntimeException("isArbitrarilyJumpable failing");
|
||||
}
|
||||
if (rng instanceof JumpableGenerator != factory.isJumpable()) {
|
||||
throw new RuntimeException("isJumpable failing");
|
||||
}
|
||||
if (rng instanceof LeapableGenerator != factory.isLeapable()) {
|
||||
throw new RuntimeException("isLeapable failing");
|
||||
}
|
||||
if (rng instanceof SplittableGenerator != factory.isSplittable()) {
|
||||
throw new RuntimeException("isArbitrarilyJumpable failing");
|
||||
}
|
||||
if (rng instanceof StreamableGenerator != factory.isStreamable()) {
|
||||
throw new RuntimeException("isArbitrarilyJumpable failing");
|
||||
}
|
||||
}
|
||||
|
||||
static void coverStreamable(StreamableGenerator rng) {
|
||||
Stream<RandomGenerator> rngs1 = rng.rngs();
|
||||
Stream<RandomGenerator> rngs2 = rng.rngs(5L);
|
||||
}
|
||||
|
||||
static void coverSplittable(SplittableGenerator rng) {
|
||||
SplittableGenerator s1 = rng.split();
|
||||
SplittableGenerator s2 = rng.split(rng);
|
||||
Stream<SplittableGenerator> s3 = rng.splits();
|
||||
Stream<SplittableGenerator> s4 = rng.splits(5L);
|
||||
Stream<SplittableGenerator> s5 = rng.splits(rng);
|
||||
Stream<SplittableGenerator> s6 = rng.splits(5L, rng);
|
||||
}
|
||||
|
||||
static void coverJumpable(JumpableGenerator rng) {
|
||||
JumpableGenerator j1 = rng.copy();
|
||||
rng.jump();
|
||||
RandomGenerator j2 = rng.copyAndJump();
|
||||
double d = rng.jumpDistance();
|
||||
Stream<RandomGenerator> j3 = rng.jumps();
|
||||
Stream<RandomGenerator> j4 = rng.jumps(5L);
|
||||
}
|
||||
|
||||
static void coverLeapable(LeapableGenerator rng) {
|
||||
LeapableGenerator l1 = rng.copy();
|
||||
rng.leap();
|
||||
JumpableGenerator l2 = rng.copyAndLeap();
|
||||
double d = rng.leapDistance();
|
||||
Stream<JumpableGenerator> l3 = rng.leaps();
|
||||
Stream<JumpableGenerator> l4 = rng.leaps(5L);
|
||||
}
|
||||
|
||||
static void coverArbitrarilyJumpable(ArbitrarilyJumpableGenerator rng) {
|
||||
ArbitrarilyJumpableGenerator a1 = rng.copy();
|
||||
rng.jump();
|
||||
rng.leap();
|
||||
rng.jump(1.2345);
|
||||
rng.jumpPowerOfTwo(4);
|
||||
RandomGenerator a2 = rng.copyAndJump();
|
||||
RandomGenerator a3 = rng.copyAndJump(1.2345);
|
||||
Stream<ArbitrarilyJumpableGenerator> a4 = rng.jumps(1.2345);
|
||||
Stream<ArbitrarilyJumpableGenerator> a5 = rng.jumps(5L, 1.2345);
|
||||
|
||||
}
|
||||
|
||||
static void coverOf(String name) {
|
||||
coverRandomGenerator(RandomGenerator.of(name));
|
||||
coverFactory(RandomGeneratorFactory.of(name));
|
||||
}
|
||||
|
||||
static void coverFactory(RandomGeneratorFactory factory) {
|
||||
String name = factory.name();
|
||||
String group = factory.group();
|
||||
int stateBits = factory.stateBits();
|
||||
int equidistribution = factory.equidistribution();
|
||||
BigInteger period = factory.period();
|
||||
boolean isStatistical = factory.isStatistical();
|
||||
boolean isStochastic = factory.isStochastic();
|
||||
boolean isHardware = factory.isHardware();
|
||||
boolean isArbitrarilyJumpable = factory.isArbitrarilyJumpable();
|
||||
boolean isJumpable = factory.isJumpable();
|
||||
boolean isLeapable = factory.isLeapable();
|
||||
boolean isSplittable = factory.isSplittable();
|
||||
|
||||
coverRandomGenerator(factory.create());
|
||||
coverRandomGenerator(factory.create(12345L));
|
||||
coverRandomGenerator(factory.create(new byte[] {1, 2, 3, 4, 5, 6, 7, 8}));
|
||||
}
|
||||
|
||||
static void coverDefaults() {
|
||||
RandomGeneratorFactory<RandomGenerator> factory =
|
||||
RandomGeneratorFactory.getDefault();
|
||||
RandomGenerator rng = RandomGenerator.getDefault();
|
||||
}
|
||||
|
||||
public static void main(String[] args) throws Throwable {
|
||||
RandomGeneratorFactory.all()
|
||||
.forEach(factory -> {
|
||||
coverFactory(factory);
|
||||
coverOf(factory.name());
|
||||
});
|
||||
RandomGeneratorFactory.all(StreamableGenerator.class)
|
||||
.forEach(factory -> {
|
||||
coverStreamable(factory.create());
|
||||
});
|
||||
RandomGeneratorFactory.all(SplittableGenerator.class)
|
||||
.forEach(factory -> {
|
||||
coverSplittable(factory.create());
|
||||
});
|
||||
RandomGeneratorFactory.all(JumpableGenerator.class)
|
||||
.forEach(factory -> {
|
||||
coverJumpable(factory.create());
|
||||
});
|
||||
RandomGeneratorFactory.all(LeapableGenerator.class)
|
||||
.forEach(factory -> {
|
||||
coverLeapable(factory.create());
|
||||
});
|
||||
RandomGeneratorFactory.all(ArbitrarilyJumpableGenerator.class)
|
||||
.forEach(factory -> {
|
||||
coverArbitrarilyJumpable(factory.create());
|
||||
});
|
||||
|
||||
coverRandomGenerator(new SecureRandom());
|
||||
coverRandomGenerator(ThreadLocalRandom.current());
|
||||
}
|
||||
}
|
205
test/jdk/java/util/Random/RandomTestMoments.java
Normal file
205
test/jdk/java/util/Random/RandomTestMoments.java
Normal file
|
@ -0,0 +1,205 @@
|
|||
/*
|
||||
* Copyright (c) 2012, 2013, 2019, 2020, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import java.util.random.*;
|
||||
|
||||
import java.util.Set;
|
||||
import java.util.concurrent.CompletableFuture;
|
||||
import java.util.concurrent.ExecutionException;
|
||||
import java.util.concurrent.ThreadLocalRandom;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
import java.util.concurrent.TimeoutException;
|
||||
import java.util.function.DoubleSupplier;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
import static java.util.stream.Collectors.toList;
|
||||
import static java.util.stream.Collectors.toSet;
|
||||
|
||||
/**
|
||||
* @test
|
||||
* @summary test bit sequences produced by clases that implement interface RandomGenerator
|
||||
* @bug 8248862
|
||||
* @run main RandomTestMoments
|
||||
* @author Guy Steele
|
||||
* @key randomness
|
||||
*/
|
||||
|
||||
public class RandomTestMoments {
|
||||
|
||||
static String currentRNG = "";
|
||||
static int failCount = 0;
|
||||
|
||||
static void exceptionOnFail() {
|
||||
if (failCount != 0) {
|
||||
throw new RuntimeException(failCount + " fails detected");
|
||||
}
|
||||
}
|
||||
|
||||
static void setRNG(String rng) {
|
||||
currentRNG = rng;
|
||||
}
|
||||
|
||||
static void fail(String format, Object... args) {
|
||||
if (currentRNG.length() != 0) {
|
||||
System.err.println(currentRNG);
|
||||
currentRNG = "";
|
||||
}
|
||||
|
||||
System.err.format(" " + format, args);
|
||||
failCount++;
|
||||
}
|
||||
|
||||
static final int SEQUENCE_SIZE = 50000;
|
||||
|
||||
// Moment k of uniform distribution over [0.0,1.0) is 1.0/(1+k).
|
||||
|
||||
static double[][] momentsUniform = {
|
||||
{ 1.00000, 1.00000, 0.01000 },
|
||||
{ 0.500000, 0.500000, 0.0266265 },
|
||||
{ 0.333333, 0.333333, 0.0391128 },
|
||||
{ 0.250000, 0.250000, 0.0477151 },
|
||||
{ 0.200000, 0.200000, 0.0540496 },
|
||||
{ 0.166667, 0.166667, 0.0589355 },
|
||||
{ 0.142857, 0.142857, 0.0628462 },
|
||||
{ 0.125000, 0.125000, 0.0660693 },
|
||||
{ 0.111111, 0.111111, 0.0688036 },
|
||||
{ 0.100000, 0.100000, 0.0712002 },
|
||||
{ 0.0909091, 0.0909091, 0.0733755 },
|
||||
{ 0.0833333, 0.0833333, 0.0754172 },
|
||||
{ 0.0769231, 0.0769231, 0.0773868 },
|
||||
{ 0.0714286, 0.0714286, 0.0793244 },
|
||||
{ 0.0666667, 0.0666667, 0.0812526 },
|
||||
{ 0.0625000, 0.0625000, 0.0831806 },
|
||||
};
|
||||
|
||||
// Moment k of exponential distribution with mean 1 is k!.
|
||||
|
||||
static double[][] momentsExponential = {
|
||||
{ 1.00000, 1.00000, 0.01000 },
|
||||
{ 1.00000, 1.00000, 0.0718997 },
|
||||
{ 2.00000, 2.00000, 0.153241 },
|
||||
{ 6.00000, 6.00000, 0.282813 },
|
||||
{ 24.0000, 24.0000, 0.503707 },
|
||||
};
|
||||
|
||||
|
||||
// Absolute moment k of Gaussian distribution with mean 0 and stddev 1 is
|
||||
// pow(2.0,k/2.0)*gamma((k+1)/2.0)/sqrt(PI)
|
||||
// https://arxiv.org/pdf/1209.4340.pdf, equation (18)
|
||||
|
||||
static double[][] absoluteMomentsGaussian = {
|
||||
{ 1.00000, 1.00000, 0.01 },
|
||||
{ 0.797885, 0.797885, 0.1 },
|
||||
{ 1.00000, 1.00000, 0.1 },
|
||||
{ 1.59577, 1.59577, 0.2 },
|
||||
{ 3.00000, 3.00000, 0.2 },
|
||||
{ 6.38308, 6.38308, 0.2 },
|
||||
{ 15.0000, 15.0000, 0.2 },
|
||||
{ 38.2985, 38.2985, 0.2 },
|
||||
{ 105.000, 105.000, 0.4 },
|
||||
};
|
||||
|
||||
static void checkMoments(String test, double[] measurements, double[][] standard) {
|
||||
for (int j = 0; j < measurements.length; j++) {
|
||||
double actual = measurements[j];
|
||||
double expected = standard[j][0];
|
||||
double basis = standard[j][1];
|
||||
double tolerance = standard[j][2];
|
||||
if (!(Math.abs(actual - expected)/basis < tolerance)) {
|
||||
fail("%s fail: actual=%f, expected=%f, basis=%f, tolerance=%f\n",
|
||||
test, actual, expected, basis, tolerance);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void testMomentsGaussian(DoubleSupplier theSupplier) {
|
||||
int m = absoluteMomentsGaussian.length;
|
||||
double[] absoluteMoments = new double[m];
|
||||
for (int j = 0; j < SEQUENCE_SIZE; j++) {
|
||||
double v = theSupplier.getAsDouble();
|
||||
double z = 1.0;
|
||||
for (int k = 0; k < m; k++) {
|
||||
absoluteMoments[k] += Math.abs(z);
|
||||
z *= v;
|
||||
}
|
||||
}
|
||||
for (int k = 0; k < m; k++) {
|
||||
absoluteMoments[k] /= SEQUENCE_SIZE;
|
||||
}
|
||||
checkMoments("Gaussian", absoluteMoments, absoluteMomentsGaussian);
|
||||
}
|
||||
|
||||
static void testMomentsExponential(DoubleSupplier theSupplier) {
|
||||
int m = momentsExponential.length;
|
||||
double[] moments = new double[m];
|
||||
for (int j = 0; j < SEQUENCE_SIZE; j++) {
|
||||
double v = theSupplier.getAsDouble();
|
||||
double z = 1.0;
|
||||
for (int k = 0; k < m; k++) {
|
||||
moments[k] += z;
|
||||
z *= v;
|
||||
}
|
||||
}
|
||||
for (int k = 0; k < m; k++) {
|
||||
moments[k] /= SEQUENCE_SIZE;
|
||||
}
|
||||
checkMoments("Exponential", moments, momentsExponential);
|
||||
}
|
||||
|
||||
static void testMomentsUniform(DoubleSupplier theSupplier) {
|
||||
int m = momentsUniform.length;
|
||||
double[] moments = new double[m];
|
||||
for (int j = 0; j < SEQUENCE_SIZE; j++) {
|
||||
double v = theSupplier.getAsDouble();
|
||||
double z = 1.0;
|
||||
for (int k = 0; k < m; k++) {
|
||||
moments[k] += z;
|
||||
z *= v;
|
||||
}
|
||||
}
|
||||
for (int k = 0; k < m; k++) {
|
||||
moments[k] /= SEQUENCE_SIZE;
|
||||
}
|
||||
checkMoments("Uniform", moments, momentsUniform);
|
||||
}
|
||||
|
||||
static void testOneRng(RandomGenerator rng) {
|
||||
testMomentsGaussian(rng::nextGaussian);
|
||||
testMomentsExponential(rng::nextExponential);
|
||||
testMomentsUniform(rng::nextDouble);
|
||||
testMomentsUniform(rng.doubles().iterator()::next);
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
RandomGeneratorFactory.all()
|
||||
.forEach(factory -> {
|
||||
setRNG(factory.name());
|
||||
testOneRng(factory.create(325) );
|
||||
});
|
||||
|
||||
exceptionOnFail();
|
||||
}
|
||||
|
||||
}
|
|
@ -39,8 +39,6 @@
|
|||
*
|
||||
*/
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
import javax.management.MBeanServer;
|
||||
import javax.management.MBeanServerFactory;
|
||||
import javax.management.NotCompliantMBeanException;
|
||||
|
@ -117,12 +115,12 @@ public class NotCompliantCauseTest {
|
|||
}
|
||||
|
||||
public interface NotCompliantMXBean {
|
||||
Random returnRandom();
|
||||
Object returnObject();
|
||||
}
|
||||
|
||||
public static class NotCompliant implements NotCompliantMXBean {
|
||||
public Random returnRandom() {
|
||||
return new Random();
|
||||
public Object returnObject() {
|
||||
return new Object();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue