mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-28 15:24:43 +02:00
8196083: Avoid locking in OopStorage::release
Defer release list updates to later allocate/delete operations. Reviewed-by: coleenp, eosterlund
This commit is contained in:
parent
789e827f1a
commit
a25a95120e
5 changed files with 311 additions and 246 deletions
|
@ -26,7 +26,9 @@
|
||||||
#include "gc/shared/oopStorage.inline.hpp"
|
#include "gc/shared/oopStorage.inline.hpp"
|
||||||
#include "gc/shared/oopStorageParState.inline.hpp"
|
#include "gc/shared/oopStorageParState.inline.hpp"
|
||||||
#include "logging/log.hpp"
|
#include "logging/log.hpp"
|
||||||
|
#include "logging/logStream.hpp"
|
||||||
#include "memory/allocation.inline.hpp"
|
#include "memory/allocation.inline.hpp"
|
||||||
|
#include "memory/resourceArea.hpp"
|
||||||
#include "runtime/atomic.hpp"
|
#include "runtime/atomic.hpp"
|
||||||
#include "runtime/handles.inline.hpp"
|
#include "runtime/handles.inline.hpp"
|
||||||
#include "runtime/mutex.hpp"
|
#include "runtime/mutex.hpp"
|
||||||
|
@ -107,7 +109,7 @@ void OopStorage::BlockList::unlink(const Block& block) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// Blocks start with an array of BitsPerWord oop entries. That array
|
// Blocks start with an array of BitsPerWord oop entries. That array
|
||||||
// is divided into conceptual BytesPerWord sections of BitsPerWord
|
// is divided into conceptual BytesPerWord sections of BitsPerByte
|
||||||
// entries. Blocks are allocated aligned on section boundaries, for
|
// entries. Blocks are allocated aligned on section boundaries, for
|
||||||
// the convenience of mapping from an entry to the containing block;
|
// the convenience of mapping from an entry to the containing block;
|
||||||
// see block_for_ptr(). Aligning on section boundary rather than on
|
// see block_for_ptr(). Aligning on section boundary rather than on
|
||||||
|
@ -130,7 +132,9 @@ OopStorage::Block::Block(const OopStorage* owner, void* memory) :
|
||||||
_owner(owner),
|
_owner(owner),
|
||||||
_memory(memory),
|
_memory(memory),
|
||||||
_active_entry(),
|
_active_entry(),
|
||||||
_allocate_entry()
|
_allocate_entry(),
|
||||||
|
_deferred_updates_next(NULL),
|
||||||
|
_release_refcount(0)
|
||||||
{
|
{
|
||||||
STATIC_ASSERT(_data_pos == 0);
|
STATIC_ASSERT(_data_pos == 0);
|
||||||
STATIC_ASSERT(section_size * section_count == ARRAY_SIZE(_data));
|
STATIC_ASSERT(section_size * section_count == ARRAY_SIZE(_data));
|
||||||
|
@ -143,6 +147,8 @@ OopStorage::Block::Block(const OopStorage* owner, void* memory) :
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
OopStorage::Block::~Block() {
|
OopStorage::Block::~Block() {
|
||||||
|
assert(_release_refcount == 0, "deleting block while releasing");
|
||||||
|
assert(_deferred_updates_next == NULL, "deleting block with deferred update");
|
||||||
// Clear fields used by block_for_ptr and entry validation, which
|
// Clear fields used by block_for_ptr and entry validation, which
|
||||||
// might help catch bugs. Volatile to prevent dead-store elimination.
|
// might help catch bugs. Volatile to prevent dead-store elimination.
|
||||||
const_cast<uintx volatile&>(_allocated_bitmask) = 0;
|
const_cast<uintx volatile&>(_allocated_bitmask) = 0;
|
||||||
|
@ -182,8 +188,24 @@ uintx OopStorage::Block::bitmask_for_entry(const oop* ptr) const {
|
||||||
return bitmask_for_index(get_index(ptr));
|
return bitmask_for_index(get_index(ptr));
|
||||||
}
|
}
|
||||||
|
|
||||||
uintx OopStorage::Block::cmpxchg_allocated_bitmask(uintx new_value, uintx compare_value) {
|
// A block is deletable if
|
||||||
return Atomic::cmpxchg(new_value, &_allocated_bitmask, compare_value);
|
// (1) It is empty.
|
||||||
|
// (2) There is not a release() operation currently operating on it.
|
||||||
|
// (3) It is not in the deferred updates list.
|
||||||
|
// The order of tests is important for proper interaction between release()
|
||||||
|
// and concurrent deletion.
|
||||||
|
bool OopStorage::Block::is_deletable() const {
|
||||||
|
return (OrderAccess::load_acquire(&_allocated_bitmask) == 0) &&
|
||||||
|
(OrderAccess::load_acquire(&_release_refcount) == 0) &&
|
||||||
|
(OrderAccess::load_acquire(&_deferred_updates_next) == NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
OopStorage::Block* OopStorage::Block::deferred_updates_next() const {
|
||||||
|
return _deferred_updates_next;
|
||||||
|
}
|
||||||
|
|
||||||
|
void OopStorage::Block::set_deferred_updates_next(Block* block) {
|
||||||
|
_deferred_updates_next = block;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool OopStorage::Block::contains(const oop* ptr) const {
|
bool OopStorage::Block::contains(const oop* ptr) const {
|
||||||
|
@ -203,7 +225,7 @@ oop* OopStorage::Block::allocate() {
|
||||||
assert(!is_full_bitmask(allocated), "attempt to allocate from full block");
|
assert(!is_full_bitmask(allocated), "attempt to allocate from full block");
|
||||||
unsigned index = count_trailing_zeros(~allocated);
|
unsigned index = count_trailing_zeros(~allocated);
|
||||||
uintx new_value = allocated | bitmask_for_index(index);
|
uintx new_value = allocated | bitmask_for_index(index);
|
||||||
uintx fetched = cmpxchg_allocated_bitmask(new_value, allocated);
|
uintx fetched = Atomic::cmpxchg(new_value, &_allocated_bitmask, allocated);
|
||||||
if (fetched == allocated) {
|
if (fetched == allocated) {
|
||||||
return get_pointer(index); // CAS succeeded; return entry for index.
|
return get_pointer(index); // CAS succeeded; return entry for index.
|
||||||
}
|
}
|
||||||
|
@ -261,20 +283,6 @@ OopStorage::Block::block_for_ptr(const OopStorage* owner, const oop* ptr) {
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool OopStorage::is_valid_block_locked_or_safepoint(const Block* check_block) const {
|
|
||||||
assert_locked_or_safepoint(_allocate_mutex);
|
|
||||||
// For now, simple linear search. Do something more clever if this
|
|
||||||
// is a performance bottleneck, particularly for allocation_status.
|
|
||||||
for (const Block* block = _active_list.chead();
|
|
||||||
block != NULL;
|
|
||||||
block = _active_list.next(*block)) {
|
|
||||||
if (check_block == block) {
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef ASSERT
|
#ifdef ASSERT
|
||||||
void OopStorage::assert_at_safepoint() {
|
void OopStorage::assert_at_safepoint() {
|
||||||
assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
|
assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
|
||||||
|
@ -291,39 +299,49 @@ void OopStorage::assert_at_safepoint() {
|
||||||
// kept at the end of the _allocate_list, to make it easy for empty block
|
// kept at the end of the _allocate_list, to make it easy for empty block
|
||||||
// deletion to find them.
|
// deletion to find them.
|
||||||
//
|
//
|
||||||
// allocate(), release(), and delete_empty_blocks_concurrent() all lock the
|
// allocate(), and delete_empty_blocks_concurrent() lock the
|
||||||
// _allocate_mutex while performing any list modifications.
|
// _allocate_mutex while performing any list modifications.
|
||||||
//
|
//
|
||||||
// allocate() and release() update a block's _allocated_bitmask using CAS
|
// allocate() and release() update a block's _allocated_bitmask using CAS
|
||||||
// loops. This prevents loss of updates even though release() may perform
|
// loops. This prevents loss of updates even though release() performs
|
||||||
// some updates without any locking.
|
// its updates without any locking.
|
||||||
//
|
//
|
||||||
// allocate() obtains the entry from the first block in the _allocate_list,
|
// allocate() obtains the entry from the first block in the _allocate_list,
|
||||||
// and updates that block's _allocated_bitmask to indicate the entry is in
|
// and updates that block's _allocated_bitmask to indicate the entry is in
|
||||||
// use. If this makes the block full (all entries in use), the block is
|
// use. If this makes the block full (all entries in use), the block is
|
||||||
// removed from the _allocate_list so it won't be considered by future
|
// removed from the _allocate_list so it won't be considered by future
|
||||||
// allocations until some entries in it are relased.
|
// allocations until some entries in it are released.
|
||||||
//
|
//
|
||||||
// release() looks up the block for the entry without locking. Once the block
|
// release() is performed lock-free. release() first looks up the block for
|
||||||
// has been determined, its _allocated_bitmask needs to be updated, and its
|
// the entry, using address alignment to find the enclosing block (thereby
|
||||||
// position in the _allocate_list may need to be updated. There are two
|
// avoiding iteration over the _active_list). Once the block has been
|
||||||
// cases:
|
// determined, its _allocated_bitmask needs to be updated, and its position in
|
||||||
|
// the _allocate_list may need to be updated. There are two cases:
|
||||||
//
|
//
|
||||||
// (a) If the block is neither full nor would become empty with the release of
|
// (a) If the block is neither full nor would become empty with the release of
|
||||||
// the entry, only its _allocated_bitmask needs to be updated. But if the CAS
|
// the entry, only its _allocated_bitmask needs to be updated. But if the CAS
|
||||||
// update fails, the applicable case may change for the retry.
|
// update fails, the applicable case may change for the retry.
|
||||||
//
|
//
|
||||||
// (b) Otherwise, the _allocate_list will also need to be modified. This
|
// (b) Otherwise, the _allocate_list also needs to be modified. This requires
|
||||||
// requires locking the _allocate_mutex, and then attempting to CAS the
|
// locking the _allocate_mutex. To keep the release() operation lock-free,
|
||||||
// _allocated_bitmask. If the CAS fails, the applicable case may change for
|
// rather than updating the _allocate_list itself, it instead performs a
|
||||||
// the retry. If the CAS succeeds, then update the _allocate_list according
|
// lock-free push of the block onto the _deferred_updates list. Entries on
|
||||||
// to the the state changes. If the block changed from full to not full, then
|
// that list are processed by allocate() and delete_empty_blocks_XXX(), while
|
||||||
// it needs to be added to the _allocate_list, for use in future allocations.
|
// they already hold the necessary lock. That processing makes the block's
|
||||||
// If the block changed from not empty to empty, then it is moved to the end
|
// list state consistent with its current _allocated_bitmask. The block is
|
||||||
// of the _allocate_list, for ease of empty block deletion processing.
|
// added to the _allocate_list if not already present and the bitmask is not
|
||||||
|
// full. The block is moved to the end of the _allocated_list if the bitmask
|
||||||
|
// is empty, for ease of empty block deletion processing.
|
||||||
|
|
||||||
oop* OopStorage::allocate() {
|
oop* OopStorage::allocate() {
|
||||||
MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
||||||
|
// Do some deferred update processing every time we allocate.
|
||||||
|
// Continue processing deferred updates if _allocate_list is empty,
|
||||||
|
// in the hope that we'll get a block from that, rather than
|
||||||
|
// allocating a new block.
|
||||||
|
while (reduce_deferred_updates() && (_allocate_list.head() == NULL)) {}
|
||||||
|
|
||||||
|
// Use the first block in _allocate_list for the allocation.
|
||||||
Block* block = _allocate_list.head();
|
Block* block = _allocate_list.head();
|
||||||
if (block == NULL) {
|
if (block == NULL) {
|
||||||
// No available blocks; make a new one, and add to storage.
|
// No available blocks; make a new one, and add to storage.
|
||||||
|
@ -331,7 +349,17 @@ oop* OopStorage::allocate() {
|
||||||
MutexUnlockerEx mul(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
MutexUnlockerEx mul(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
||||||
block = Block::new_block(this);
|
block = Block::new_block(this);
|
||||||
}
|
}
|
||||||
if (block != NULL) {
|
if (block == NULL) {
|
||||||
|
while (_allocate_list.head() == NULL) {
|
||||||
|
if (!reduce_deferred_updates()) {
|
||||||
|
// Failed to make new block, no other thread made a block
|
||||||
|
// available while the mutex was released, and didn't get
|
||||||
|
// one from a deferred update either, so return failure.
|
||||||
|
log_info(oopstorage, ref)("%s: failed allocation", name());
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
// Add new block to storage.
|
// Add new block to storage.
|
||||||
log_info(oopstorage, blocks)("%s: new block " PTR_FORMAT, name(), p2i(block));
|
log_info(oopstorage, blocks)("%s: new block " PTR_FORMAT, name(), p2i(block));
|
||||||
|
|
||||||
|
@ -340,22 +368,14 @@ oop* OopStorage::allocate() {
|
||||||
// to allocate from non-empty blocks, to allow empty blocks to
|
// to allocate from non-empty blocks, to allow empty blocks to
|
||||||
// be deleted.
|
// be deleted.
|
||||||
_allocate_list.push_back(*block);
|
_allocate_list.push_back(*block);
|
||||||
++_empty_block_count;
|
|
||||||
// Add to front of _active_list, and then record as the head
|
// Add to front of _active_list, and then record as the head
|
||||||
// block, for concurrent iteration protocol.
|
// block, for concurrent iteration protocol.
|
||||||
_active_list.push_front(*block);
|
_active_list.push_front(*block);
|
||||||
++_block_count;
|
++_block_count;
|
||||||
// Ensure all setup of block is complete before making it visible.
|
// Ensure all setup of block is complete before making it visible.
|
||||||
OrderAccess::release_store(&_active_head, block);
|
OrderAccess::release_store(&_active_head, block);
|
||||||
} else {
|
|
||||||
log_info(oopstorage, blocks)("%s: failed new block allocation", name());
|
|
||||||
}
|
}
|
||||||
block = _allocate_list.head();
|
block = _allocate_list.head();
|
||||||
if (block == NULL) {
|
|
||||||
// Failed to make new block, and no other thread made a block
|
|
||||||
// available while the mutex was released, so return failure.
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
// Allocate from first block.
|
// Allocate from first block.
|
||||||
assert(block != NULL, "invariant");
|
assert(block != NULL, "invariant");
|
||||||
|
@ -363,7 +383,6 @@ oop* OopStorage::allocate() {
|
||||||
if (block->is_empty()) {
|
if (block->is_empty()) {
|
||||||
// Transitioning from empty to not empty.
|
// Transitioning from empty to not empty.
|
||||||
log_debug(oopstorage, blocks)("%s: block not empty " PTR_FORMAT, name(), p2i(block));
|
log_debug(oopstorage, blocks)("%s: block not empty " PTR_FORMAT, name(), p2i(block));
|
||||||
--_empty_block_count;
|
|
||||||
}
|
}
|
||||||
oop* result = block->allocate();
|
oop* result = block->allocate();
|
||||||
assert(result != NULL, "allocation failed");
|
assert(result != NULL, "allocation failed");
|
||||||
|
@ -384,72 +403,115 @@ OopStorage::Block* OopStorage::find_block_or_null(const oop* ptr) const {
|
||||||
return Block::block_for_ptr(this, ptr);
|
return Block::block_for_ptr(this, ptr);
|
||||||
}
|
}
|
||||||
|
|
||||||
void OopStorage::release_from_block(Block& block, uintx releasing) {
|
static void log_release_transitions(uintx releasing,
|
||||||
assert(releasing != 0, "invariant");
|
uintx old_allocated,
|
||||||
uintx allocated = block.allocated_bitmask();
|
const OopStorage* owner,
|
||||||
|
const void* block) {
|
||||||
|
ResourceMark rm;
|
||||||
|
Log(oopstorage, blocks) log;
|
||||||
|
LogStream ls(log.debug());
|
||||||
|
if (is_full_bitmask(old_allocated)) {
|
||||||
|
ls.print_cr("%s: block not full " PTR_FORMAT, owner->name(), p2i(block));
|
||||||
|
}
|
||||||
|
if (releasing == old_allocated) {
|
||||||
|
ls.print_cr("%s: block empty " PTR_FORMAT, owner->name(), p2i(block));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void OopStorage::Block::release_entries(uintx releasing, Block* volatile* deferred_list) {
|
||||||
|
assert(releasing != 0, "preconditon");
|
||||||
|
// Prevent empty block deletion when transitioning to empty.
|
||||||
|
Atomic::inc(&_release_refcount);
|
||||||
|
|
||||||
|
// Atomically update allocated bitmask.
|
||||||
|
uintx old_allocated = _allocated_bitmask;
|
||||||
while (true) {
|
while (true) {
|
||||||
assert(releasing == (allocated & releasing), "invariant");
|
assert((releasing & ~old_allocated) == 0, "releasing unallocated entries");
|
||||||
uintx new_value = allocated ^ releasing;
|
uintx new_value = old_allocated ^ releasing;
|
||||||
// CAS new_value into block's allocated bitmask, retrying with
|
uintx fetched = Atomic::cmpxchg(new_value, &_allocated_bitmask, old_allocated);
|
||||||
// updated allocated bitmask until the CAS succeeds.
|
if (fetched == old_allocated) break; // Successful update.
|
||||||
uintx fetched;
|
old_allocated = fetched; // Retry with updated bitmask.
|
||||||
if (!is_full_bitmask(allocated) && !is_empty_bitmask(new_value)) {
|
}
|
||||||
fetched = block.cmpxchg_allocated_bitmask(new_value, allocated);
|
|
||||||
if (fetched == allocated) return;
|
// Now that the bitmask has been updated, if we have a state transition
|
||||||
} else {
|
// (updated bitmask is empty or old bitmask was full), atomically push
|
||||||
// Need special handling if transitioning from full to not full,
|
// this block onto the deferred updates list. Some future call to
|
||||||
// or from not empty to empty. For those cases, must hold the
|
// reduce_deferred_updates will make any needed changes related to this
|
||||||
// _allocation_mutex when updating the allocated bitmask, to
|
// block and _allocate_list. This deferral avoids list updates and the
|
||||||
// ensure the associated list manipulations will be consistent
|
// associated locking here.
|
||||||
// with the allocation bitmask that is visible to other threads
|
if ((releasing == old_allocated) || is_full_bitmask(old_allocated)) {
|
||||||
// in allocate() or deleting empty blocks.
|
// Log transitions. Both transitions are possible in a single update.
|
||||||
MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
if (log_is_enabled(Debug, oopstorage, blocks)) {
|
||||||
fetched = block.cmpxchg_allocated_bitmask(new_value, allocated);
|
log_release_transitions(releasing, old_allocated, _owner, this);
|
||||||
if (fetched == allocated) {
|
}
|
||||||
// CAS succeeded; handle special cases, which might no longer apply.
|
// Attempt to claim responsibility for adding this block to the deferred
|
||||||
if (is_full_bitmask(allocated)) {
|
// list, by setting the link to non-NULL by self-looping. If this fails,
|
||||||
// Transitioning from full to not-full; add to _allocate_list.
|
// then someone else has made such a claim and the deferred update has not
|
||||||
log_debug(oopstorage, blocks)("%s: block not full " PTR_FORMAT, name(), p2i(&block));
|
// yet been processed and will include our change, so we don't need to do
|
||||||
_allocate_list.push_front(block);
|
// anything further.
|
||||||
assert(!block.is_full(), "invariant"); // Still not full.
|
if (Atomic::replace_if_null(this, &_deferred_updates_next)) {
|
||||||
}
|
// Successfully claimed. Push, with self-loop for end-of-list.
|
||||||
if (is_empty_bitmask(new_value)) {
|
Block* head = *deferred_list;
|
||||||
// Transitioning from not-empty to empty; move to end of
|
while (true) {
|
||||||
// _allocate_list, to make it a deletion candidate.
|
_deferred_updates_next = (head == NULL) ? this : head;
|
||||||
log_debug(oopstorage, blocks)("%s: block empty " PTR_FORMAT, name(), p2i(&block));
|
Block* fetched = Atomic::cmpxchg(this, deferred_list, head);
|
||||||
_allocate_list.unlink(block);
|
if (fetched == head) break; // Successful update.
|
||||||
_allocate_list.push_back(block);
|
head = fetched; // Retry with updated head.
|
||||||
++_empty_block_count;
|
}
|
||||||
assert(block.is_empty(), "invariant"); // Still empty.
|
log_debug(oopstorage, blocks)("%s: deferred update " PTR_FORMAT,
|
||||||
}
|
_owner->name(), p2i(this));
|
||||||
return; // Successful CAS and transitions handled.
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
// CAS failed; retry with latest value.
|
|
||||||
allocated = fetched;
|
|
||||||
}
|
}
|
||||||
|
// Release hold on empty block deletion.
|
||||||
|
Atomic::dec(&_release_refcount);
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef ASSERT
|
// Process one available deferred update. Returns true if one was processed.
|
||||||
void OopStorage::check_release(const Block* block, const oop* ptr) const {
|
bool OopStorage::reduce_deferred_updates() {
|
||||||
switch (allocation_status_validating_block(block, ptr)) {
|
assert_locked_or_safepoint(_allocate_mutex);
|
||||||
case INVALID_ENTRY:
|
// Atomically pop a block off the list, if any available.
|
||||||
fatal("Releasing invalid entry: " PTR_FORMAT, p2i(ptr));
|
// No ABA issue because this is only called by one thread at a time.
|
||||||
break;
|
// The atomicity is wrto pushes by release().
|
||||||
|
Block* block = OrderAccess::load_acquire(&_deferred_updates);
|
||||||
case UNALLOCATED_ENTRY:
|
while (true) {
|
||||||
fatal("Releasing unallocated entry: " PTR_FORMAT, p2i(ptr));
|
if (block == NULL) return false;
|
||||||
break;
|
// Try atomic pop of block from list.
|
||||||
|
Block* tail = block->deferred_updates_next();
|
||||||
case ALLOCATED_ENTRY:
|
if (block == tail) tail = NULL; // Handle self-loop end marker.
|
||||||
assert(block->contains(ptr), "invariant");
|
Block* fetched = Atomic::cmpxchg(tail, &_deferred_updates, block);
|
||||||
break;
|
if (fetched == block) break; // Update successful.
|
||||||
|
block = fetched; // Retry with updated block.
|
||||||
default:
|
|
||||||
ShouldNotReachHere();
|
|
||||||
}
|
}
|
||||||
|
block->set_deferred_updates_next(NULL); // Clear tail after updating head.
|
||||||
|
// Ensure bitmask read after pop is complete, including clearing tail, for
|
||||||
|
// ordering with release(). Without this, we may be processing a stale
|
||||||
|
// bitmask state here while blocking a release() operation from recording
|
||||||
|
// the deferred update needed for its bitmask change.
|
||||||
|
OrderAccess::storeload();
|
||||||
|
// Process popped block.
|
||||||
|
uintx allocated = block->allocated_bitmask();
|
||||||
|
|
||||||
|
// Make membership in list consistent with bitmask state.
|
||||||
|
if ((_allocate_list.ctail() != NULL) &&
|
||||||
|
((_allocate_list.ctail() == block) ||
|
||||||
|
(_allocate_list.next(*block) != NULL))) {
|
||||||
|
// Block is in the allocate list.
|
||||||
|
assert(!is_full_bitmask(allocated), "invariant");
|
||||||
|
} else if (!is_full_bitmask(allocated)) {
|
||||||
|
// Block is not in the allocate list, but now should be.
|
||||||
|
_allocate_list.push_front(*block);
|
||||||
|
} // Else block is full and not in list, which is correct.
|
||||||
|
|
||||||
|
// Move empty block to end of list, for possible deletion.
|
||||||
|
if (is_empty_bitmask(allocated)) {
|
||||||
|
_allocate_list.unlink(*block);
|
||||||
|
_allocate_list.push_back(*block);
|
||||||
|
}
|
||||||
|
|
||||||
|
log_debug(oopstorage, blocks)("%s: processed deferred update " PTR_FORMAT,
|
||||||
|
name(), p2i(block));
|
||||||
|
return true; // Processed one pending update.
|
||||||
}
|
}
|
||||||
#endif // ASSERT
|
|
||||||
|
|
||||||
inline void check_release_entry(const oop* entry) {
|
inline void check_release_entry(const oop* entry) {
|
||||||
assert(entry != NULL, "Releasing NULL");
|
assert(entry != NULL, "Releasing NULL");
|
||||||
|
@ -459,9 +521,9 @@ inline void check_release_entry(const oop* entry) {
|
||||||
void OopStorage::release(const oop* ptr) {
|
void OopStorage::release(const oop* ptr) {
|
||||||
check_release_entry(ptr);
|
check_release_entry(ptr);
|
||||||
Block* block = find_block_or_null(ptr);
|
Block* block = find_block_or_null(ptr);
|
||||||
check_release(block, ptr);
|
assert(block != NULL, "%s: invalid release " PTR_FORMAT, name(), p2i(ptr));
|
||||||
log_info(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptr));
|
log_info(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptr));
|
||||||
release_from_block(*block, block->bitmask_for_entry(ptr));
|
block->release_entries(block->bitmask_for_entry(ptr), &_deferred_updates);
|
||||||
Atomic::dec(&_allocation_count);
|
Atomic::dec(&_allocation_count);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -470,15 +532,15 @@ void OopStorage::release(const oop* const* ptrs, size_t size) {
|
||||||
while (i < size) {
|
while (i < size) {
|
||||||
check_release_entry(ptrs[i]);
|
check_release_entry(ptrs[i]);
|
||||||
Block* block = find_block_or_null(ptrs[i]);
|
Block* block = find_block_or_null(ptrs[i]);
|
||||||
check_release(block, ptrs[i]);
|
assert(block != NULL, "%s: invalid release " PTR_FORMAT, name(), p2i(ptrs[i]));
|
||||||
log_info(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptrs[i]));
|
log_info(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptrs[i]));
|
||||||
size_t count = 0;
|
size_t count = 0;
|
||||||
uintx releasing = 0;
|
uintx releasing = 0;
|
||||||
for ( ; i < size; ++i) {
|
for ( ; i < size; ++i) {
|
||||||
const oop* entry = ptrs[i];
|
const oop* entry = ptrs[i];
|
||||||
|
check_release_entry(entry);
|
||||||
// If entry not in block, finish block and resume outer loop with entry.
|
// If entry not in block, finish block and resume outer loop with entry.
|
||||||
if (!block->contains(entry)) break;
|
if (!block->contains(entry)) break;
|
||||||
check_release_entry(entry);
|
|
||||||
// Add entry to releasing bitmap.
|
// Add entry to releasing bitmap.
|
||||||
log_info(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(entry));
|
log_info(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(entry));
|
||||||
uintx entry_bitmask = block->bitmask_for_entry(entry);
|
uintx entry_bitmask = block->bitmask_for_entry(entry);
|
||||||
|
@ -488,7 +550,7 @@ void OopStorage::release(const oop* const* ptrs, size_t size) {
|
||||||
++count;
|
++count;
|
||||||
}
|
}
|
||||||
// Release the contiguous entries that are in block.
|
// Release the contiguous entries that are in block.
|
||||||
release_from_block(*block, releasing);
|
block->release_entries(releasing, &_deferred_updates);
|
||||||
Atomic::sub(count, &_allocation_count);
|
Atomic::sub(count, &_allocation_count);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -506,11 +568,11 @@ OopStorage::OopStorage(const char* name,
|
||||||
_active_list(&Block::get_active_entry),
|
_active_list(&Block::get_active_entry),
|
||||||
_allocate_list(&Block::get_allocate_entry),
|
_allocate_list(&Block::get_allocate_entry),
|
||||||
_active_head(NULL),
|
_active_head(NULL),
|
||||||
|
_deferred_updates(NULL),
|
||||||
_allocate_mutex(allocate_mutex),
|
_allocate_mutex(allocate_mutex),
|
||||||
_active_mutex(active_mutex),
|
_active_mutex(active_mutex),
|
||||||
_allocation_count(0),
|
_allocation_count(0),
|
||||||
_block_count(0),
|
_block_count(0),
|
||||||
_empty_block_count(0),
|
|
||||||
_concurrent_iteration_active(false)
|
_concurrent_iteration_active(false)
|
||||||
{
|
{
|
||||||
assert(_active_mutex->rank() < _allocate_mutex->rank(),
|
assert(_active_mutex->rank() < _allocate_mutex->rank(),
|
||||||
|
@ -529,6 +591,10 @@ void OopStorage::delete_empty_block(const Block& block) {
|
||||||
|
|
||||||
OopStorage::~OopStorage() {
|
OopStorage::~OopStorage() {
|
||||||
Block* block;
|
Block* block;
|
||||||
|
while ((block = _deferred_updates) != NULL) {
|
||||||
|
_deferred_updates = block->deferred_updates_next();
|
||||||
|
block->set_deferred_updates_next(NULL);
|
||||||
|
}
|
||||||
while ((block = _allocate_list.head()) != NULL) {
|
while ((block = _allocate_list.head()) != NULL) {
|
||||||
_allocate_list.unlink(*block);
|
_allocate_list.unlink(*block);
|
||||||
}
|
}
|
||||||
|
@ -539,43 +605,47 @@ OopStorage::~OopStorage() {
|
||||||
FREE_C_HEAP_ARRAY(char, _name);
|
FREE_C_HEAP_ARRAY(char, _name);
|
||||||
}
|
}
|
||||||
|
|
||||||
void OopStorage::delete_empty_blocks_safepoint(size_t retain) {
|
void OopStorage::delete_empty_blocks_safepoint() {
|
||||||
assert_at_safepoint();
|
assert_at_safepoint();
|
||||||
|
// Process any pending release updates, which may make more empty
|
||||||
|
// blocks available for deletion.
|
||||||
|
while (reduce_deferred_updates()) {}
|
||||||
// Don't interfere with a concurrent iteration.
|
// Don't interfere with a concurrent iteration.
|
||||||
if (_concurrent_iteration_active) return;
|
if (_concurrent_iteration_active) return;
|
||||||
// Compute the number of blocks to remove, to minimize volatile accesses.
|
// Delete empty (and otherwise deletable) blocks from end of _allocate_list.
|
||||||
size_t empty_blocks = _empty_block_count;
|
for (const Block* block = _allocate_list.ctail();
|
||||||
if (retain < empty_blocks) {
|
(block != NULL) && block->is_deletable();
|
||||||
size_t remove_count = empty_blocks - retain;
|
block = _allocate_list.ctail()) {
|
||||||
// Update volatile counters once.
|
_active_list.unlink(*block);
|
||||||
_block_count -= remove_count;
|
_allocate_list.unlink(*block);
|
||||||
_empty_block_count -= remove_count;
|
delete_empty_block(*block);
|
||||||
do {
|
--_block_count;
|
||||||
const Block* block = _allocate_list.ctail();
|
|
||||||
assert(block != NULL, "invariant");
|
|
||||||
assert(block->is_empty(), "invariant");
|
|
||||||
// Remove block from lists, and delete it.
|
|
||||||
_active_list.unlink(*block);
|
|
||||||
_allocate_list.unlink(*block);
|
|
||||||
delete_empty_block(*block);
|
|
||||||
} while (--remove_count > 0);
|
|
||||||
// Update _active_head, in case current value was in deleted set.
|
|
||||||
_active_head = _active_list.head();
|
|
||||||
}
|
}
|
||||||
|
// Update _active_head, in case current value was in deleted set.
|
||||||
|
_active_head = _active_list.head();
|
||||||
}
|
}
|
||||||
|
|
||||||
void OopStorage::delete_empty_blocks_concurrent(size_t retain) {
|
void OopStorage::delete_empty_blocks_concurrent() {
|
||||||
MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
||||||
// Other threads could be adding to the empty block count while we
|
// Other threads could be adding to the empty block count while we
|
||||||
// release the mutex across the block deletions. Set an upper bound
|
// release the mutex across the block deletions. Set an upper bound
|
||||||
// on how many blocks we'll try to release, so other threads can't
|
// on how many blocks we'll try to release, so other threads can't
|
||||||
// cause an unbounded stay in this function.
|
// cause an unbounded stay in this function.
|
||||||
if (_empty_block_count <= retain) return;
|
size_t limit = _block_count;
|
||||||
size_t limit = _empty_block_count - retain;
|
|
||||||
for (size_t i = 0; (i < limit) && (retain < _empty_block_count); ++i) {
|
for (size_t i = 0; i < limit; ++i) {
|
||||||
|
// Additional updates might become available while we dropped the
|
||||||
|
// lock. But limit number processed to limit lock duration.
|
||||||
|
reduce_deferred_updates();
|
||||||
|
|
||||||
const Block* block = _allocate_list.ctail();
|
const Block* block = _allocate_list.ctail();
|
||||||
assert(block != NULL, "invariant");
|
if ((block == NULL) || !block->is_deletable()) {
|
||||||
assert(block->is_empty(), "invariant");
|
// No block to delete, so done. There could be more pending
|
||||||
|
// deferred updates that could give us more work to do; deal with
|
||||||
|
// that in some later call, to limit lock duration here.
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
MutexLockerEx aml(_active_mutex, Mutex::_no_safepoint_check_flag);
|
MutexLockerEx aml(_active_mutex, Mutex::_no_safepoint_check_flag);
|
||||||
// Don't interfere with a concurrent iteration.
|
// Don't interfere with a concurrent iteration.
|
||||||
|
@ -589,28 +659,31 @@ void OopStorage::delete_empty_blocks_concurrent(size_t retain) {
|
||||||
}
|
}
|
||||||
// Remove block from _allocate_list and delete it.
|
// Remove block from _allocate_list and delete it.
|
||||||
_allocate_list.unlink(*block);
|
_allocate_list.unlink(*block);
|
||||||
--_empty_block_count;
|
|
||||||
// Release mutex while deleting block.
|
// Release mutex while deleting block.
|
||||||
MutexUnlockerEx ul(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
MutexUnlockerEx ul(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
||||||
delete_empty_block(*block);
|
delete_empty_block(*block);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
OopStorage::EntryStatus
|
|
||||||
OopStorage::allocation_status_validating_block(const Block* block,
|
|
||||||
const oop* ptr) const {
|
|
||||||
MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
|
||||||
if ((block == NULL) || !is_valid_block_locked_or_safepoint(block)) {
|
|
||||||
return INVALID_ENTRY;
|
|
||||||
} else if ((block->allocated_bitmask() & block->bitmask_for_entry(ptr)) != 0) {
|
|
||||||
return ALLOCATED_ENTRY;
|
|
||||||
} else {
|
|
||||||
return UNALLOCATED_ENTRY;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
OopStorage::EntryStatus OopStorage::allocation_status(const oop* ptr) const {
|
OopStorage::EntryStatus OopStorage::allocation_status(const oop* ptr) const {
|
||||||
return allocation_status_validating_block(find_block_or_null(ptr), ptr);
|
const Block* block = find_block_or_null(ptr);
|
||||||
|
if (block != NULL) {
|
||||||
|
// Verify block is a real block. For now, simple linear search.
|
||||||
|
// Do something more clever if this is a performance bottleneck.
|
||||||
|
MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
|
||||||
|
for (const Block* check_block = _active_list.chead();
|
||||||
|
check_block != NULL;
|
||||||
|
check_block = _active_list.next(*check_block)) {
|
||||||
|
if (check_block == block) {
|
||||||
|
if ((block->allocated_bitmask() & block->bitmask_for_entry(ptr)) != 0) {
|
||||||
|
return ALLOCATED_ENTRY;
|
||||||
|
} else {
|
||||||
|
return UNALLOCATED_ENTRY;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return INVALID_ENTRY;
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t OopStorage::allocation_count() const {
|
size_t OopStorage::allocation_count() const {
|
||||||
|
@ -621,10 +694,6 @@ size_t OopStorage::block_count() const {
|
||||||
return _block_count;
|
return _block_count;
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t OopStorage::empty_block_count() const {
|
|
||||||
return _empty_block_count;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t OopStorage::total_memory_usage() const {
|
size_t OopStorage::total_memory_usage() const {
|
||||||
size_t total_size = sizeof(OopStorage);
|
size_t total_size = sizeof(OopStorage);
|
||||||
total_size += strlen(name()) + 1;
|
total_size += strlen(name()) + 1;
|
||||||
|
@ -690,17 +759,12 @@ const char* OopStorage::name() const { return _name; }
|
||||||
void OopStorage::print_on(outputStream* st) const {
|
void OopStorage::print_on(outputStream* st) const {
|
||||||
size_t allocations = _allocation_count;
|
size_t allocations = _allocation_count;
|
||||||
size_t blocks = _block_count;
|
size_t blocks = _block_count;
|
||||||
size_t empties = _empty_block_count;
|
|
||||||
// Comparison is being careful about racy accesses.
|
|
||||||
size_t used = (blocks < empties) ? 0 : (blocks - empties);
|
|
||||||
|
|
||||||
double data_size = section_size * section_count;
|
double data_size = section_size * section_count;
|
||||||
double alloc_percentage = percent_of((double)allocations, used * data_size);
|
double alloc_percentage = percent_of((double)allocations, blocks * data_size);
|
||||||
|
|
||||||
st->print("%s: " SIZE_FORMAT " entries in " SIZE_FORMAT " blocks (%.F%%), "
|
st->print("%s: " SIZE_FORMAT " entries in " SIZE_FORMAT " blocks (%.F%%), " SIZE_FORMAT " bytes",
|
||||||
SIZE_FORMAT " empties, " SIZE_FORMAT " bytes",
|
name(), allocations, blocks, alloc_percentage, total_memory_usage());
|
||||||
name(), allocations, used, alloc_percentage,
|
|
||||||
empties, total_memory_usage());
|
|
||||||
if (_concurrent_iteration_active) {
|
if (_concurrent_iteration_active) {
|
||||||
st->print(", concurrent iteration active");
|
st->print(", concurrent iteration active");
|
||||||
}
|
}
|
||||||
|
|
|
@ -84,10 +84,6 @@ public:
|
||||||
// The number of blocks of entries. Useful for sizing parallel iteration.
|
// The number of blocks of entries. Useful for sizing parallel iteration.
|
||||||
size_t block_count() const;
|
size_t block_count() const;
|
||||||
|
|
||||||
// The number of blocks with no allocated entries. Useful for sizing
|
|
||||||
// parallel iteration and scheduling block deletion.
|
|
||||||
size_t empty_block_count() const;
|
|
||||||
|
|
||||||
// Total number of blocks * memory allocation per block, plus
|
// Total number of blocks * memory allocation per block, plus
|
||||||
// bookkeeping overhead, including this storage object.
|
// bookkeeping overhead, including this storage object.
|
||||||
size_t total_memory_usage() const;
|
size_t total_memory_usage() const;
|
||||||
|
@ -107,14 +103,13 @@ public:
|
||||||
// postcondition: *result == NULL.
|
// postcondition: *result == NULL.
|
||||||
oop* allocate();
|
oop* allocate();
|
||||||
|
|
||||||
// Deallocates ptr, after setting its value to NULL. Locks _allocate_mutex.
|
// Deallocates ptr. No locking.
|
||||||
// precondition: ptr is a valid allocated entry.
|
// precondition: ptr is a valid allocated entry.
|
||||||
// precondition: *ptr == NULL.
|
// precondition: *ptr == NULL.
|
||||||
void release(const oop* ptr);
|
void release(const oop* ptr);
|
||||||
|
|
||||||
// Releases all the ptrs. Possibly faster than individual calls to
|
// Releases all the ptrs. Possibly faster than individual calls to
|
||||||
// release(oop*). Best if ptrs is sorted by address. Locks
|
// release(oop*). Best if ptrs is sorted by address. No locking.
|
||||||
// _allocate_mutex.
|
|
||||||
// precondition: All elements of ptrs are valid allocated entries.
|
// precondition: All elements of ptrs are valid allocated entries.
|
||||||
// precondition: *ptrs[i] == NULL, for i in [0,size).
|
// precondition: *ptrs[i] == NULL, for i in [0,size).
|
||||||
void release(const oop* const* ptrs, size_t size);
|
void release(const oop* const* ptrs, size_t size);
|
||||||
|
@ -160,8 +155,8 @@ public:
|
||||||
// Block cleanup functions are for the exclusive use of the GC.
|
// Block cleanup functions are for the exclusive use of the GC.
|
||||||
// Both stop deleting if there is an in-progress concurrent iteration.
|
// Both stop deleting if there is an in-progress concurrent iteration.
|
||||||
// Concurrent deletion locks both the allocate_mutex and the active_mutex.
|
// Concurrent deletion locks both the allocate_mutex and the active_mutex.
|
||||||
void delete_empty_blocks_safepoint(size_t retain = 1);
|
void delete_empty_blocks_safepoint();
|
||||||
void delete_empty_blocks_concurrent(size_t retain = 1);
|
void delete_empty_blocks_concurrent();
|
||||||
|
|
||||||
// Debugging and logging support.
|
// Debugging and logging support.
|
||||||
const char* name() const;
|
const char* name() const;
|
||||||
|
@ -231,6 +226,7 @@ private:
|
||||||
BlockList _active_list;
|
BlockList _active_list;
|
||||||
BlockList _allocate_list;
|
BlockList _allocate_list;
|
||||||
Block* volatile _active_head;
|
Block* volatile _active_head;
|
||||||
|
Block* volatile _deferred_updates;
|
||||||
|
|
||||||
Mutex* _allocate_mutex;
|
Mutex* _allocate_mutex;
|
||||||
Mutex* _active_mutex;
|
Mutex* _active_mutex;
|
||||||
|
@ -238,16 +234,12 @@ private:
|
||||||
// Counts are volatile for racy unlocked accesses.
|
// Counts are volatile for racy unlocked accesses.
|
||||||
volatile size_t _allocation_count;
|
volatile size_t _allocation_count;
|
||||||
volatile size_t _block_count;
|
volatile size_t _block_count;
|
||||||
volatile size_t _empty_block_count;
|
|
||||||
// mutable because this gets set even for const iteration.
|
// mutable because this gets set even for const iteration.
|
||||||
mutable bool _concurrent_iteration_active;
|
mutable bool _concurrent_iteration_active;
|
||||||
|
|
||||||
Block* find_block_or_null(const oop* ptr) const;
|
Block* find_block_or_null(const oop* ptr) const;
|
||||||
bool is_valid_block_locked_or_safepoint(const Block* block) const;
|
|
||||||
EntryStatus allocation_status_validating_block(const Block* block, const oop* ptr) const;
|
|
||||||
void check_release(const Block* block, const oop* ptr) const NOT_DEBUG_RETURN;
|
|
||||||
void release_from_block(Block& block, uintx release_bitmask);
|
|
||||||
void delete_empty_block(const Block& block);
|
void delete_empty_block(const Block& block);
|
||||||
|
bool reduce_deferred_updates();
|
||||||
|
|
||||||
static void assert_at_safepoint() NOT_DEBUG_RETURN;
|
static void assert_at_safepoint() NOT_DEBUG_RETURN;
|
||||||
|
|
||||||
|
|
|
@ -44,6 +44,8 @@ class OopStorage::Block /* No base class, to avoid messing up alignment. */ {
|
||||||
void* _memory; // Unaligned storage containing block.
|
void* _memory; // Unaligned storage containing block.
|
||||||
BlockEntry _active_entry;
|
BlockEntry _active_entry;
|
||||||
BlockEntry _allocate_entry;
|
BlockEntry _allocate_entry;
|
||||||
|
Block* volatile _deferred_updates_next;
|
||||||
|
volatile uintx _release_refcount;
|
||||||
|
|
||||||
Block(const OopStorage* owner, void* memory);
|
Block(const OopStorage* owner, void* memory);
|
||||||
~Block();
|
~Block();
|
||||||
|
@ -75,7 +77,10 @@ public:
|
||||||
bool is_full() const;
|
bool is_full() const;
|
||||||
bool is_empty() const;
|
bool is_empty() const;
|
||||||
uintx allocated_bitmask() const;
|
uintx allocated_bitmask() const;
|
||||||
uintx cmpxchg_allocated_bitmask(uintx new_value, uintx compare_value);
|
bool is_deletable() const;
|
||||||
|
|
||||||
|
Block* deferred_updates_next() const;
|
||||||
|
void set_deferred_updates_next(Block* new_next);
|
||||||
|
|
||||||
bool contains(const oop* ptr) const;
|
bool contains(const oop* ptr) const;
|
||||||
|
|
||||||
|
@ -86,6 +91,8 @@ public:
|
||||||
static Block* new_block(const OopStorage* owner);
|
static Block* new_block(const OopStorage* owner);
|
||||||
static void delete_block(const Block& block);
|
static void delete_block(const Block& block);
|
||||||
|
|
||||||
|
void release_entries(uintx releasing, Block* volatile* deferred_list);
|
||||||
|
|
||||||
template<typename F> bool iterate(F f);
|
template<typename F> bool iterate(F f);
|
||||||
template<typename F> bool iterate(F f) const;
|
template<typename F> bool iterate(F f) const;
|
||||||
}; // class Block
|
}; // class Block
|
||||||
|
|
|
@ -253,10 +253,10 @@ void mutex_init() {
|
||||||
// of some places which hold other locks while releasing a handle, including
|
// of some places which hold other locks while releasing a handle, including
|
||||||
// the Patching_lock, which is of "special" rank. As a temporary workaround,
|
// the Patching_lock, which is of "special" rank. As a temporary workaround,
|
||||||
// lower the JNI oopstorage lock ranks to make them super-special.
|
// lower the JNI oopstorage lock ranks to make them super-special.
|
||||||
def(JNIGlobalAlloc_lock , PaddedMutex , special-1, true, Monitor::_safepoint_check_never);
|
def(JNIGlobalAlloc_lock , PaddedMutex , nonleaf, true, Monitor::_safepoint_check_never);
|
||||||
def(JNIGlobalActive_lock , PaddedMutex , special-2, true, Monitor::_safepoint_check_never);
|
def(JNIGlobalActive_lock , PaddedMutex , nonleaf-1, true, Monitor::_safepoint_check_never);
|
||||||
def(JNIWeakAlloc_lock , PaddedMutex , special-1, true, Monitor::_safepoint_check_never);
|
def(JNIWeakAlloc_lock , PaddedMutex , nonleaf, true, Monitor::_safepoint_check_never);
|
||||||
def(JNIWeakActive_lock , PaddedMutex , special-2, true, Monitor::_safepoint_check_never);
|
def(JNIWeakActive_lock , PaddedMutex , nonleaf-1, true, Monitor::_safepoint_check_never);
|
||||||
def(JNICritical_lock , PaddedMonitor, nonleaf, true, Monitor::_safepoint_check_always); // used for JNI critical regions
|
def(JNICritical_lock , PaddedMonitor, nonleaf, true, Monitor::_safepoint_check_always); // used for JNI critical regions
|
||||||
def(AdapterHandlerLibrary_lock , PaddedMutex , nonleaf, true, Monitor::_safepoint_check_always);
|
def(AdapterHandlerLibrary_lock , PaddedMutex , nonleaf, true, Monitor::_safepoint_check_always);
|
||||||
|
|
||||||
|
|
|
@ -70,6 +70,10 @@ public:
|
||||||
return storage._allocate_mutex;
|
return storage._allocate_mutex;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static bool reduce_deferred_updates(OopStorage& storage) {
|
||||||
|
return storage.reduce_deferred_updates();
|
||||||
|
}
|
||||||
|
|
||||||
static bool block_is_empty(const Block& block) {
|
static bool block_is_empty(const Block& block) {
|
||||||
return block.is_empty();
|
return block.is_empty();
|
||||||
}
|
}
|
||||||
|
@ -127,9 +131,31 @@ static bool is_list_empty(const TestAccess::BlockList& list) {
|
||||||
return list.chead() == NULL;
|
return list.chead() == NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void release_entry(OopStorage& storage, oop* entry) {
|
static bool process_deferred_updates(OopStorage& storage) {
|
||||||
|
MutexLockerEx ml(TestAccess::allocate_mutex(storage), Mutex::_no_safepoint_check_flag);
|
||||||
|
bool result = false;
|
||||||
|
while (TestAccess::reduce_deferred_updates(storage)) {
|
||||||
|
result = true;
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void release_entry(OopStorage& storage, oop* entry, bool process_deferred = true) {
|
||||||
*entry = NULL;
|
*entry = NULL;
|
||||||
storage.release(entry);
|
storage.release(entry);
|
||||||
|
if (process_deferred) {
|
||||||
|
process_deferred_updates(storage);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static size_t empty_block_count(const OopStorage& storage) {
|
||||||
|
const TestAccess::BlockList& list = TestAccess::allocate_list(storage);
|
||||||
|
size_t count = 0;
|
||||||
|
for (const OopBlock* block = list.ctail();
|
||||||
|
(block != NULL) && block->is_empty();
|
||||||
|
++count, block = list.prev(*block))
|
||||||
|
{}
|
||||||
|
return count;
|
||||||
}
|
}
|
||||||
|
|
||||||
class OopStorageTest : public ::testing::Test {
|
class OopStorageTest : public ::testing::Test {
|
||||||
|
@ -188,31 +214,22 @@ const size_t OopStorageTestWithAllocation::_max_entries;
|
||||||
class OopStorageTestWithAllocation::VM_DeleteBlocksAtSafepoint
|
class OopStorageTestWithAllocation::VM_DeleteBlocksAtSafepoint
|
||||||
: public VM_GTestExecuteAtSafepoint {
|
: public VM_GTestExecuteAtSafepoint {
|
||||||
public:
|
public:
|
||||||
VM_DeleteBlocksAtSafepoint(OopStorage* storage, size_t retain) :
|
VM_DeleteBlocksAtSafepoint(OopStorage* storage) : _storage(storage) {}
|
||||||
_storage(storage), _retain(retain)
|
|
||||||
{}
|
|
||||||
|
|
||||||
void doit() {
|
void doit() {
|
||||||
_storage->delete_empty_blocks_safepoint(_retain);
|
_storage->delete_empty_blocks_safepoint();
|
||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
OopStorage* _storage;
|
OopStorage* _storage;
|
||||||
size_t _retain;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
static bool is_allocate_list_sorted(const OopStorage& storage) {
|
static bool is_allocate_list_sorted(const OopStorage& storage) {
|
||||||
// The allocate_list isn't strictly sorted. Rather, all empty
|
// The allocate_list isn't strictly sorted. Rather, all empty
|
||||||
// blocks are segregated to the end of the list. And the number of
|
// blocks are segregated to the end of the list.
|
||||||
// empty blocks should match empty_block_count().
|
|
||||||
size_t expected_empty = storage.empty_block_count();
|
|
||||||
const TestAccess::BlockList& list = TestAccess::allocate_list(storage);
|
const TestAccess::BlockList& list = TestAccess::allocate_list(storage);
|
||||||
const OopBlock* block = list.ctail();
|
const OopBlock* block = list.ctail();
|
||||||
for (size_t i = 0; i < expected_empty; ++i, block = list.prev(*block)) {
|
for ( ; (block != NULL) && block->is_empty(); block = list.prev(*block)) {}
|
||||||
if ((block == NULL) || !block->is_empty()) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
for ( ; block != NULL; block = list.prev(*block)) {
|
for ( ; block != NULL; block = list.prev(*block)) {
|
||||||
if (block->is_empty()) {
|
if (block->is_empty()) {
|
||||||
return false;
|
return false;
|
||||||
|
@ -243,7 +260,7 @@ TEST_VM_F(OopStorageTest, allocate_one) {
|
||||||
EXPECT_EQ(1u, _storage.block_count());
|
EXPECT_EQ(1u, _storage.block_count());
|
||||||
EXPECT_EQ(1u, list_length(TestAccess::allocate_list(_storage)));
|
EXPECT_EQ(1u, list_length(TestAccess::allocate_list(_storage)));
|
||||||
|
|
||||||
EXPECT_EQ(0u, _storage.empty_block_count());
|
EXPECT_EQ(0u, empty_block_count(_storage));
|
||||||
|
|
||||||
const OopBlock* block = TestAccess::allocate_list(_storage).chead();
|
const OopBlock* block = TestAccess::allocate_list(_storage).chead();
|
||||||
EXPECT_NE(block, (OopBlock*)NULL);
|
EXPECT_NE(block, (OopBlock*)NULL);
|
||||||
|
@ -259,7 +276,7 @@ TEST_VM_F(OopStorageTest, allocate_one) {
|
||||||
EXPECT_EQ(1u, _storage.block_count());
|
EXPECT_EQ(1u, _storage.block_count());
|
||||||
EXPECT_EQ(1u, list_length(TestAccess::allocate_list(_storage)));
|
EXPECT_EQ(1u, list_length(TestAccess::allocate_list(_storage)));
|
||||||
|
|
||||||
EXPECT_EQ(1u, _storage.empty_block_count());
|
EXPECT_EQ(1u, empty_block_count(_storage));
|
||||||
|
|
||||||
const OopBlock* new_block = TestAccess::allocate_list(_storage).chead();
|
const OopBlock* new_block = TestAccess::allocate_list(_storage).chead();
|
||||||
EXPECT_EQ(block, new_block);
|
EXPECT_EQ(block, new_block);
|
||||||
|
@ -322,14 +339,14 @@ TEST_VM_F(OopStorageTest, allocate_many) {
|
||||||
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
|
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
|
||||||
TestAccess::BlockList& allocate_list = TestAccess::allocate_list(_storage);
|
TestAccess::BlockList& allocate_list = TestAccess::allocate_list(_storage);
|
||||||
|
|
||||||
EXPECT_EQ(0u, _storage.empty_block_count());
|
EXPECT_EQ(0u, empty_block_count(_storage));
|
||||||
|
|
||||||
entries[0] = _storage.allocate();
|
entries[0] = _storage.allocate();
|
||||||
ASSERT_TRUE(entries[0] != NULL);
|
ASSERT_TRUE(entries[0] != NULL);
|
||||||
EXPECT_EQ(1u, list_length(active_list));
|
EXPECT_EQ(1u, list_length(active_list));
|
||||||
EXPECT_EQ(1u, _storage.block_count());
|
EXPECT_EQ(1u, _storage.block_count());
|
||||||
EXPECT_EQ(1u, list_length(allocate_list));
|
EXPECT_EQ(1u, list_length(allocate_list));
|
||||||
EXPECT_EQ(0u, _storage.empty_block_count());
|
EXPECT_EQ(0u, empty_block_count(_storage));
|
||||||
|
|
||||||
const OopBlock* block = active_list.chead();
|
const OopBlock* block = active_list.chead();
|
||||||
EXPECT_EQ(1u, TestAccess::block_allocation_count(*block));
|
EXPECT_EQ(1u, TestAccess::block_allocation_count(*block));
|
||||||
|
@ -339,7 +356,7 @@ TEST_VM_F(OopStorageTest, allocate_many) {
|
||||||
entries[i] = _storage.allocate();
|
entries[i] = _storage.allocate();
|
||||||
EXPECT_EQ(i + 1, _storage.allocation_count());
|
EXPECT_EQ(i + 1, _storage.allocation_count());
|
||||||
ASSERT_TRUE(entries[i] != NULL);
|
ASSERT_TRUE(entries[i] != NULL);
|
||||||
EXPECT_EQ(0u, _storage.empty_block_count());
|
EXPECT_EQ(0u, empty_block_count(_storage));
|
||||||
|
|
||||||
if (block == NULL) {
|
if (block == NULL) {
|
||||||
ASSERT_FALSE(is_list_empty(allocate_list));
|
ASSERT_FALSE(is_list_empty(allocate_list));
|
||||||
|
@ -374,7 +391,7 @@ TEST_VM_F(OopStorageTest, allocate_many) {
|
||||||
|
|
||||||
EXPECT_EQ(list_length(active_list), list_length(allocate_list));
|
EXPECT_EQ(list_length(active_list), list_length(allocate_list));
|
||||||
EXPECT_EQ(list_length(active_list), _storage.block_count());
|
EXPECT_EQ(list_length(active_list), _storage.block_count());
|
||||||
EXPECT_EQ(list_length(active_list), _storage.empty_block_count());
|
EXPECT_EQ(list_length(active_list), empty_block_count(_storage));
|
||||||
for (const OopBlock* block = allocate_list.chead();
|
for (const OopBlock* block = allocate_list.chead();
|
||||||
block != NULL;
|
block != NULL;
|
||||||
block = allocate_list.next(*block)) {
|
block = allocate_list.next(*block)) {
|
||||||
|
@ -386,7 +403,7 @@ TEST_VM_F(OopStorageTestWithAllocation, random_release) {
|
||||||
static const size_t step = 11;
|
static const size_t step = 11;
|
||||||
ASSERT_NE(0u, _max_entries % step); // max_entries and step are mutually prime
|
ASSERT_NE(0u, _max_entries % step); // max_entries and step are mutually prime
|
||||||
|
|
||||||
EXPECT_EQ(0u, _storage.empty_block_count());
|
EXPECT_EQ(0u, empty_block_count(_storage));
|
||||||
|
|
||||||
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
|
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
|
||||||
TestAccess::BlockList& allocate_list = TestAccess::allocate_list(_storage);
|
TestAccess::BlockList& allocate_list = TestAccess::allocate_list(_storage);
|
||||||
|
@ -409,7 +426,7 @@ TEST_VM_F(OopStorageTestWithAllocation, random_release) {
|
||||||
EXPECT_EQ(list_length(active_list), list_length(allocate_list));
|
EXPECT_EQ(list_length(active_list), list_length(allocate_list));
|
||||||
EXPECT_EQ(list_length(active_list), _storage.block_count());
|
EXPECT_EQ(list_length(active_list), _storage.block_count());
|
||||||
EXPECT_EQ(0u, total_allocation_count(active_list));
|
EXPECT_EQ(0u, total_allocation_count(active_list));
|
||||||
EXPECT_EQ(list_length(allocate_list), _storage.empty_block_count());
|
EXPECT_EQ(list_length(allocate_list), empty_block_count(_storage));
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST_VM_F(OopStorageTestWithAllocation, random_allocate_release) {
|
TEST_VM_F(OopStorageTestWithAllocation, random_allocate_release) {
|
||||||
|
@ -417,7 +434,7 @@ TEST_VM_F(OopStorageTestWithAllocation, random_allocate_release) {
|
||||||
static const size_t allocate_step = 5;
|
static const size_t allocate_step = 5;
|
||||||
ASSERT_NE(0u, _max_entries % release_step); // max_entries and step are mutually prime
|
ASSERT_NE(0u, _max_entries % release_step); // max_entries and step are mutually prime
|
||||||
|
|
||||||
EXPECT_EQ(0u, _storage.empty_block_count());
|
EXPECT_EQ(0u, empty_block_count(_storage));
|
||||||
|
|
||||||
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
|
TestAccess::BlockList& active_list = TestAccess::active_list(_storage);
|
||||||
TestAccess::BlockList& allocate_list = TestAccess::allocate_list(_storage);
|
TestAccess::BlockList& allocate_list = TestAccess::allocate_list(_storage);
|
||||||
|
@ -449,7 +466,7 @@ TEST_VM_F(OopStorageTestWithAllocation, random_allocate_release) {
|
||||||
EXPECT_EQ(list_length(active_list), list_length(allocate_list));
|
EXPECT_EQ(list_length(active_list), list_length(allocate_list));
|
||||||
EXPECT_EQ(list_length(active_list), _storage.block_count());
|
EXPECT_EQ(list_length(active_list), _storage.block_count());
|
||||||
EXPECT_EQ(0u, total_allocation_count(active_list));
|
EXPECT_EQ(0u, total_allocation_count(active_list));
|
||||||
EXPECT_EQ(list_length(allocate_list), _storage.empty_block_count());
|
EXPECT_EQ(list_length(allocate_list), empty_block_count(_storage));
|
||||||
}
|
}
|
||||||
|
|
||||||
template<bool sorted>
|
template<bool sorted>
|
||||||
|
@ -471,11 +488,12 @@ public:
|
||||||
EXPECT_EQ(_max_entries - nrelease, _storage.allocation_count());
|
EXPECT_EQ(_max_entries - nrelease, _storage.allocation_count());
|
||||||
|
|
||||||
for (size_t i = 0; i < nrelease; ++i) {
|
for (size_t i = 0; i < nrelease; ++i) {
|
||||||
release_entry(_storage, _entries[2 * i + 1]);
|
release_entry(_storage, _entries[2 * i + 1], false);
|
||||||
EXPECT_EQ(_max_entries - nrelease - (i + 1), _storage.allocation_count());
|
EXPECT_EQ(_max_entries - nrelease - (i + 1), _storage.allocation_count());
|
||||||
}
|
}
|
||||||
|
EXPECT_TRUE(process_deferred_updates(_storage));
|
||||||
|
|
||||||
EXPECT_EQ(_storage.block_count(), _storage.empty_block_count());
|
EXPECT_EQ(_storage.block_count(), empty_block_count(_storage));
|
||||||
|
|
||||||
FREE_C_HEAP_ARRAY(oop*, to_release);
|
FREE_C_HEAP_ARRAY(oop*, to_release);
|
||||||
}
|
}
|
||||||
|
@ -607,8 +625,9 @@ TEST_VM_F(OopStorageTest, simple_iterate) {
|
||||||
}
|
}
|
||||||
|
|
||||||
while (allocated > 0) {
|
while (allocated > 0) {
|
||||||
release_entry(_storage, entries[--allocated]);
|
release_entry(_storage, entries[--allocated], false);
|
||||||
}
|
}
|
||||||
|
process_deferred_updates(_storage);
|
||||||
}
|
}
|
||||||
|
|
||||||
class OopStorageTestIteration : public OopStorageTestWithAllocation {
|
class OopStorageTestIteration : public OopStorageTestWithAllocation {
|
||||||
|
@ -627,16 +646,17 @@ public:
|
||||||
memset(_states, 0, sizeof(_states));
|
memset(_states, 0, sizeof(_states));
|
||||||
|
|
||||||
size_t initial_release = 0;
|
size_t initial_release = 0;
|
||||||
for ( ; _storage.empty_block_count() < 2; ++initial_release) {
|
for ( ; empty_block_count(_storage) < 2; ++initial_release) {
|
||||||
ASSERT_GT(_max_entries, initial_release);
|
ASSERT_GT(_max_entries, initial_release);
|
||||||
release_entry(_storage, _entries[initial_release]);
|
release_entry(_storage, _entries[initial_release]);
|
||||||
_states[0][initial_release] = mark_released;
|
_states[0][initial_release] = mark_released;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (size_t i = initial_release; i < _max_entries; i += 3) {
|
for (size_t i = initial_release; i < _max_entries; i += 3) {
|
||||||
release_entry(_storage, _entries[i]);
|
release_entry(_storage, _entries[i], false);
|
||||||
_states[0][i] = mark_released;
|
_states[0][i] = mark_released;
|
||||||
}
|
}
|
||||||
|
process_deferred_updates(_storage);
|
||||||
}
|
}
|
||||||
|
|
||||||
class VerifyState;
|
class VerifyState;
|
||||||
|
@ -1006,30 +1026,21 @@ TEST_VM_F(OopStorageTestWithAllocation, delete_empty_blocks_safepoint) {
|
||||||
EXPECT_EQ(initial_active_size, _storage.block_count());
|
EXPECT_EQ(initial_active_size, _storage.block_count());
|
||||||
ASSERT_LE(3u, initial_active_size); // Need at least 3 blocks for test
|
ASSERT_LE(3u, initial_active_size); // Need at least 3 blocks for test
|
||||||
|
|
||||||
for (size_t i = 0; _storage.empty_block_count() < 3; ++i) {
|
for (size_t i = 0; empty_block_count(_storage) < 3; ++i) {
|
||||||
ASSERT_GT(_max_entries, i);
|
ASSERT_GT(_max_entries, i);
|
||||||
release_entry(_storage, _entries[i]);
|
release_entry(_storage, _entries[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
EXPECT_EQ(initial_active_size, list_length(active_list));
|
EXPECT_EQ(initial_active_size, list_length(active_list));
|
||||||
EXPECT_EQ(initial_active_size, _storage.block_count());
|
EXPECT_EQ(initial_active_size, _storage.block_count());
|
||||||
EXPECT_EQ(3u, _storage.empty_block_count());
|
EXPECT_EQ(3u, empty_block_count(_storage));
|
||||||
|
|
||||||
{
|
{
|
||||||
ThreadInVMfromNative invm(JavaThread::current());
|
ThreadInVMfromNative invm(JavaThread::current());
|
||||||
VM_DeleteBlocksAtSafepoint op(&_storage, 2);
|
VM_DeleteBlocksAtSafepoint op(&_storage);
|
||||||
VMThread::execute(&op);
|
VMThread::execute(&op);
|
||||||
}
|
}
|
||||||
EXPECT_EQ(2u, _storage.empty_block_count());
|
EXPECT_EQ(0u, empty_block_count(_storage));
|
||||||
EXPECT_EQ(initial_active_size - 1, list_length(active_list));
|
|
||||||
EXPECT_EQ(initial_active_size - 1, _storage.block_count());
|
|
||||||
|
|
||||||
{
|
|
||||||
ThreadInVMfromNative invm(JavaThread::current());
|
|
||||||
VM_DeleteBlocksAtSafepoint op(&_storage, 0);
|
|
||||||
VMThread::execute(&op);
|
|
||||||
}
|
|
||||||
EXPECT_EQ(0u, _storage.empty_block_count());
|
|
||||||
EXPECT_EQ(initial_active_size - 3, list_length(active_list));
|
EXPECT_EQ(initial_active_size - 3, list_length(active_list));
|
||||||
EXPECT_EQ(initial_active_size - 3, _storage.block_count());
|
EXPECT_EQ(initial_active_size - 3, _storage.block_count());
|
||||||
}
|
}
|
||||||
|
@ -1041,22 +1052,17 @@ TEST_VM_F(OopStorageTestWithAllocation, delete_empty_blocks_concurrent) {
|
||||||
EXPECT_EQ(initial_active_size, _storage.block_count());
|
EXPECT_EQ(initial_active_size, _storage.block_count());
|
||||||
ASSERT_LE(3u, initial_active_size); // Need at least 3 blocks for test
|
ASSERT_LE(3u, initial_active_size); // Need at least 3 blocks for test
|
||||||
|
|
||||||
for (size_t i = 0; _storage.empty_block_count() < 3; ++i) {
|
for (size_t i = 0; empty_block_count(_storage) < 3; ++i) {
|
||||||
ASSERT_GT(_max_entries, i);
|
ASSERT_GT(_max_entries, i);
|
||||||
release_entry(_storage, _entries[i]);
|
release_entry(_storage, _entries[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
EXPECT_EQ(initial_active_size, list_length(active_list));
|
EXPECT_EQ(initial_active_size, list_length(active_list));
|
||||||
EXPECT_EQ(initial_active_size, _storage.block_count());
|
EXPECT_EQ(initial_active_size, _storage.block_count());
|
||||||
EXPECT_EQ(3u, _storage.empty_block_count());
|
EXPECT_EQ(3u, empty_block_count(_storage));
|
||||||
|
|
||||||
_storage.delete_empty_blocks_concurrent(2);
|
_storage.delete_empty_blocks_concurrent();
|
||||||
EXPECT_EQ(2u, _storage.empty_block_count());
|
EXPECT_EQ(0u, empty_block_count(_storage));
|
||||||
EXPECT_EQ(initial_active_size - 1, list_length(active_list));
|
|
||||||
EXPECT_EQ(initial_active_size - 1, _storage.block_count());
|
|
||||||
|
|
||||||
_storage.delete_empty_blocks_concurrent(0);
|
|
||||||
EXPECT_EQ(0u, _storage.empty_block_count());
|
|
||||||
EXPECT_EQ(initial_active_size - 3, list_length(active_list));
|
EXPECT_EQ(initial_active_size - 3, list_length(active_list));
|
||||||
EXPECT_EQ(initial_active_size - 3, _storage.block_count());
|
EXPECT_EQ(initial_active_size - 3, _storage.block_count());
|
||||||
}
|
}
|
||||||
|
@ -1075,13 +1081,14 @@ TEST_VM_F(OopStorageTestWithAllocation, allocation_status) {
|
||||||
|
|
||||||
for (size_t i = 0; i < _max_entries; ++i) {
|
for (size_t i = 0; i < _max_entries; ++i) {
|
||||||
if ((_entries[i] != retained) && (_entries[i] != released)) {
|
if ((_entries[i] != retained) && (_entries[i] != released)) {
|
||||||
release_entry(_storage, _entries[i]);
|
// Leave deferred release updates to block deletion.
|
||||||
|
release_entry(_storage, _entries[i], false);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
ThreadInVMfromNative invm(JavaThread::current());
|
ThreadInVMfromNative invm(JavaThread::current());
|
||||||
VM_DeleteBlocksAtSafepoint op(&_storage, 0);
|
VM_DeleteBlocksAtSafepoint op(&_storage);
|
||||||
VMThread::execute(&op);
|
VMThread::execute(&op);
|
||||||
}
|
}
|
||||||
EXPECT_EQ(OopStorage::ALLOCATED_ENTRY, _storage.allocation_status(retained));
|
EXPECT_EQ(OopStorage::ALLOCATED_ENTRY, _storage.allocation_status(retained));
|
||||||
|
@ -1121,12 +1128,14 @@ TEST_VM_F(OopStorageTest, usage_info) {
|
||||||
TEST_VM_F(OopStorageTestWithAllocation, print_storage) {
|
TEST_VM_F(OopStorageTestWithAllocation, print_storage) {
|
||||||
// Release the first 1/2
|
// Release the first 1/2
|
||||||
for (size_t i = 0; i < (_max_entries / 2); ++i) {
|
for (size_t i = 0; i < (_max_entries / 2); ++i) {
|
||||||
release_entry(_storage, _entries[i]);
|
// Deferred updates don't affect print output.
|
||||||
|
release_entry(_storage, _entries[i], false);
|
||||||
_entries[i] = NULL;
|
_entries[i] = NULL;
|
||||||
}
|
}
|
||||||
// Release every other remaining
|
// Release every other remaining
|
||||||
for (size_t i = _max_entries / 2; i < _max_entries; i += 2) {
|
for (size_t i = _max_entries / 2; i < _max_entries; i += 2) {
|
||||||
release_entry(_storage, _entries[i]);
|
// Deferred updates don't affect print output.
|
||||||
|
release_entry(_storage, _entries[i], false);
|
||||||
_entries[i] = NULL;
|
_entries[i] = NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1137,24 +1146,17 @@ TEST_VM_F(OopStorageTestWithAllocation, print_storage) {
|
||||||
size_t expected_blocks = (_max_entries + entries_per_block - 1) / entries_per_block;
|
size_t expected_blocks = (_max_entries + entries_per_block - 1) / entries_per_block;
|
||||||
EXPECT_EQ(expected_blocks, _storage.block_count());
|
EXPECT_EQ(expected_blocks, _storage.block_count());
|
||||||
|
|
||||||
size_t expected_empties = (_max_entries / 2) / entries_per_block;
|
double expected_usage = (100.0 * expected_entries) / (expected_blocks * entries_per_block);
|
||||||
EXPECT_EQ(expected_empties, _storage.empty_block_count());
|
|
||||||
|
|
||||||
size_t expected_used = expected_blocks - expected_empties;
|
|
||||||
|
|
||||||
double expected_usage = (100.0 * expected_entries) / (expected_used * entries_per_block);
|
|
||||||
|
|
||||||
{
|
{
|
||||||
ResourceMark rm;
|
ResourceMark rm;
|
||||||
stringStream expected_st;
|
stringStream expected_st;
|
||||||
expected_st.print("Test Storage: " SIZE_FORMAT
|
expected_st.print("Test Storage: " SIZE_FORMAT
|
||||||
" entries in " SIZE_FORMAT
|
" entries in " SIZE_FORMAT
|
||||||
" blocks (%.F%%), " SIZE_FORMAT
|
" blocks (%.F%%), " SIZE_FORMAT " bytes",
|
||||||
" empties, " SIZE_FORMAT " bytes",
|
|
||||||
expected_entries,
|
expected_entries,
|
||||||
expected_used,
|
expected_blocks,
|
||||||
expected_usage,
|
expected_usage,
|
||||||
expected_empties,
|
|
||||||
_storage.total_memory_usage());
|
_storage.total_memory_usage());
|
||||||
stringStream st;
|
stringStream st;
|
||||||
_storage.print_on(&st);
|
_storage.print_on(&st);
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue