This commit is contained in:
John Cuthbertson 2011-01-13 17:19:21 -08:00
commit a484211e0b
10 changed files with 512 additions and 339 deletions

View file

@ -7879,25 +7879,23 @@ SweepClosure::SweepClosure(CMSCollector* collector,
}
// We need this destructor to reclaim any space at the end
// of the space, which do_blk below may not have added back to
// the free lists. [basically dealing with the "fringe effect"]
// of the space, which do_blk below may not yet have added back to
// the free lists.
SweepClosure::~SweepClosure() {
assert_lock_strong(_freelistLock);
// this should be treated as the end of a free run if any
// The current free range should be returned to the free lists
// as one coalesced chunk.
assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
"sweep _limit out of bounds");
// Flush any remaining coterminal free run as a single
// coalesced chunk to the appropriate free list.
if (inFreeRange()) {
flushCurFreeChunk(freeFinger(),
pointer_delta(_limit, freeFinger()));
assert(freeFinger() < _limit, "the finger pointeth off base");
assert(freeFinger() < _limit, "freeFinger points too high");
flush_cur_free_chunk(freeFinger(), pointer_delta(_limit, freeFinger()));
if (CMSTraceSweeper) {
gclog_or_tty->print("destructor:");
gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
"[coalesced:"SIZE_FORMAT"]\n",
freeFinger(), pointer_delta(_limit, freeFinger()),
lastFreeRangeCoalesced());
gclog_or_tty->print("Sweep: last chunk: ");
gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") [coalesced:"SIZE_FORMAT"]\n",
freeFinger(), pointer_delta(_limit, freeFinger()), lastFreeRangeCoalesced());
}
}
} // else nothing to flush
NOT_PRODUCT(
if (Verbose && PrintGC) {
gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
@ -7934,9 +7932,8 @@ SweepClosure::~SweepClosure() {
void SweepClosure::initialize_free_range(HeapWord* freeFinger,
bool freeRangeInFreeLists) {
if (CMSTraceSweeper) {
gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
freeFinger, _sp->block_size(freeFinger),
freeRangeInFreeLists);
gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
freeFinger, freeRangeInFreeLists);
}
assert(!inFreeRange(), "Trampling existing free range");
set_inFreeRange(true);
@ -7991,21 +7988,36 @@ size_t SweepClosure::do_blk_careful(HeapWord* addr) {
// may have caused us to coalesce the block ending at the address _limit
// with a newly expanded chunk (this happens when _limit was set to the
// previous _end of the space), so we may have stepped past _limit; see CR 6977970.
if (addr >= _limit) { // we have swept up to or past the limit, do nothing more
if (addr >= _limit) { // we have swept up to or past the limit: finish up
assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
"sweep _limit out of bounds");
assert(addr < _sp->end(), "addr out of bounds");
// help the closure application finish
// Flush any remaining coterminal free run as a single
// coalesced chunk to the appropriate free list.
if (inFreeRange()) {
assert(freeFinger() < _limit, "finger points too high");
flush_cur_free_chunk(freeFinger(),
pointer_delta(addr, freeFinger()));
if (CMSTraceSweeper) {
gclog_or_tty->print("Sweep: last chunk: ");
gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
"[coalesced:"SIZE_FORMAT"]\n",
freeFinger(), pointer_delta(addr, freeFinger()),
lastFreeRangeCoalesced());
}
}
// help the iterator loop finish
return pointer_delta(_sp->end(), addr);
}
assert(addr < _limit, "sweep invariant");
assert(addr < _limit, "sweep invariant");
// check if we should yield
do_yield_check(addr);
if (fc->isFree()) {
// Chunk that is already free
res = fc->size();
doAlreadyFreeChunk(fc);
do_already_free_chunk(fc);
debug_only(_sp->verifyFreeLists());
assert(res == fc->size(), "Don't expect the size to change");
NOT_PRODUCT(
@ -8015,7 +8027,7 @@ size_t SweepClosure::do_blk_careful(HeapWord* addr) {
NOT_PRODUCT(_last_fc = fc;)
} else if (!_bitMap->isMarked(addr)) {
// Chunk is fresh garbage
res = doGarbageChunk(fc);
res = do_garbage_chunk(fc);
debug_only(_sp->verifyFreeLists());
NOT_PRODUCT(
_numObjectsFreed++;
@ -8023,7 +8035,7 @@ size_t SweepClosure::do_blk_careful(HeapWord* addr) {
)
} else {
// Chunk that is alive.
res = doLiveChunk(fc);
res = do_live_chunk(fc);
debug_only(_sp->verifyFreeLists());
NOT_PRODUCT(
_numObjectsLive++;
@ -8076,7 +8088,7 @@ size_t SweepClosure::do_blk_careful(HeapWord* addr) {
// to a free list which may be overpopulated.
//
void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
size_t size = fc->size();
// Chunks that cannot be coalesced are not in the
// free lists.
@ -8092,23 +8104,23 @@ void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
// addr and purported end of this block.
_bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
// Some chunks cannot be coalesced in under any circumstances.
// Some chunks cannot be coalesced under any circumstances.
// See the definition of cantCoalesce().
if (!fc->cantCoalesce()) {
// This chunk can potentially be coalesced.
if (_sp->adaptive_freelists()) {
// All the work is done in
doPostIsFreeOrGarbageChunk(fc, size);
do_post_free_or_garbage_chunk(fc, size);
} else { // Not adaptive free lists
// this is a free chunk that can potentially be coalesced by the sweeper;
if (!inFreeRange()) {
// if the next chunk is a free block that can't be coalesced
// it doesn't make sense to remove this chunk from the free lists
FreeChunk* nextChunk = (FreeChunk*)(addr + size);
assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
if ((HeapWord*)nextChunk < _limit && // there's a next chunk...
nextChunk->isFree() && // which is free...
nextChunk->cantCoalesce()) { // ... but cant be coalesced
assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
if ((HeapWord*)nextChunk < _sp->end() && // There is another free chunk to the right ...
nextChunk->isFree() && // ... which is free...
nextChunk->cantCoalesce()) { // ... but can't be coalesced
// nothing to do
} else {
// Potentially the start of a new free range:
@ -8154,14 +8166,14 @@ void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
// as the end of a free run if any
if (inFreeRange()) {
// we kicked some butt; time to pick up the garbage
assert(freeFinger() < addr, "the finger pointeth off base");
flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
assert(freeFinger() < addr, "freeFinger points too high");
flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
}
// else, nothing to do, just continue
}
}
size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
// This is a chunk of garbage. It is not in any free list.
// Add it to a free list or let it possibly be coalesced into
// a larger chunk.
@ -8173,7 +8185,7 @@ size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
// addr and purported end of just dead object.
_bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
doPostIsFreeOrGarbageChunk(fc, size);
do_post_free_or_garbage_chunk(fc, size);
} else {
if (!inFreeRange()) {
// start of a new free range
@ -8212,35 +8224,16 @@ size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
return size;
}
size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
HeapWord* addr = (HeapWord*) fc;
// The sweeper has just found a live object. Return any accumulated
// left hand chunk to the free lists.
if (inFreeRange()) {
if (_sp->adaptive_freelists()) {
flushCurFreeChunk(freeFinger(),
pointer_delta(addr, freeFinger()));
} else { // not adaptive freelists
set_inFreeRange(false);
// Add the free range back to the free list if it is not already
// there.
if (!freeRangeInFreeLists()) {
assert(freeFinger() < addr, "the finger pointeth off base");
if (CMSTraceSweeper) {
gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
"[coalesced:%d]\n",
freeFinger(), pointer_delta(addr, freeFinger()),
lastFreeRangeCoalesced());
}
_sp->addChunkAndRepairOffsetTable(freeFinger(),
pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
}
}
assert(freeFinger() < addr, "freeFinger points too high");
flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
}
// Common code path for original and adaptive free lists.
// this object is live: we'd normally expect this to be
// This object is live: we'd normally expect this to be
// an oop, and like to assert the following:
// assert(oop(addr)->is_oop(), "live block should be an oop");
// However, as we commented above, this may be an object whose
@ -8255,7 +8248,7 @@ size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
"alignment problem");
#ifdef DEBUG
#ifdef DEBUG
if (oop(addr)->klass_or_null() != NULL &&
( !_collector->should_unload_classes()
|| (oop(addr)->is_parsable()) &&
@ -8269,7 +8262,7 @@ size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
"P-mark and computed size do not agree");
}
#endif
#endif
} else {
// This should be an initialized object that's alive.
@ -8296,19 +8289,17 @@ size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
return size;
}
void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
size_t chunkSize) {
// doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
// scheme.
void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
size_t chunkSize) {
// do_post_free_or_garbage_chunk() should only be called in the case
// of the adaptive free list allocator.
bool fcInFreeLists = fc->isFree();
assert(_sp->adaptive_freelists(), "Should only be used in this case.");
assert((HeapWord*)fc <= _limit, "sweep invariant");
if (CMSTestInFreeList && fcInFreeLists) {
assert(_sp->verifyChunkInFreeLists(fc),
"free chunk is not in free lists");
assert(_sp->verifyChunkInFreeLists(fc), "free chunk is not in free lists");
}
if (CMSTraceSweeper) {
gclog_or_tty->print_cr(" -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
}
@ -8380,20 +8371,21 @@ void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
if (inFreeRange()) {
// In a free range but cannot coalesce with the right hand chunk.
// Put the current free range into the free lists.
flushCurFreeChunk(freeFinger(),
pointer_delta(addr, freeFinger()));
flush_cur_free_chunk(freeFinger(),
pointer_delta(addr, freeFinger()));
}
// Set up for new free range. Pass along whether the right hand
// chunk is in the free lists.
initialize_free_range((HeapWord*)fc, fcInFreeLists);
}
}
void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
assert(inFreeRange(), "Should only be called if currently in a free range.");
assert(size > 0,
"A zero sized chunk cannot be added to the free lists.");
if (!freeRangeInFreeLists()) {
if(CMSTestInFreeList) {
if (CMSTestInFreeList) {
FreeChunk* fc = (FreeChunk*) chunk;
fc->setSize(size);
assert(!_sp->verifyChunkInFreeLists(fc),
@ -8428,7 +8420,7 @@ void SweepClosure::do_yield_work(HeapWord* addr) {
// chunk just flushed, they will need to wait for the next
// sweep to be coalesced.
if (inFreeRange()) {
flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
}
// First give up the locks, then yield, then re-lock.

View file

@ -1701,7 +1701,9 @@ class SweepClosure: public BlkClosureCareful {
CMSCollector* _collector; // collector doing the work
ConcurrentMarkSweepGeneration* _g; // Generation being swept
CompactibleFreeListSpace* _sp; // Space being swept
HeapWord* _limit;
HeapWord* _limit;// the address at which the sweep should stop because
// we do not expect blocks eligible for sweeping past
// that address.
Mutex* _freelistLock; // Free list lock (in space)
CMSBitMap* _bitMap; // Marking bit map (in
// generation)
@ -1745,14 +1747,13 @@ class SweepClosure: public BlkClosureCareful {
private:
// Code that is common to a free chunk or garbage when
// encountered during sweeping.
void doPostIsFreeOrGarbageChunk(FreeChunk *fc,
size_t chunkSize);
void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
// Process a free chunk during sweeping.
void doAlreadyFreeChunk(FreeChunk *fc);
void do_already_free_chunk(FreeChunk *fc);
// Process a garbage chunk during sweeping.
size_t doGarbageChunk(FreeChunk *fc);
size_t do_garbage_chunk(FreeChunk *fc);
// Process a live chunk during sweeping.
size_t doLiveChunk(FreeChunk* fc);
size_t do_live_chunk(FreeChunk* fc);
// Accessors.
HeapWord* freeFinger() const { return _freeFinger; }
@ -1769,7 +1770,7 @@ class SweepClosure: public BlkClosureCareful {
// Initialize a free range.
void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
// Return this chunk to the free lists.
void flushCurFreeChunk(HeapWord* chunk, size_t size);
void flush_cur_free_chunk(HeapWord* chunk, size_t size);
// Check if we should yield and do so when necessary.
inline void do_yield_check(HeapWord* addr);

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -222,7 +222,7 @@ void G1BlockOffsetArray::split_block(HeapWord* blk, size_t blk_size,
// Action_mark - update the BOT for the block [blk_start, blk_end).
// Current typical use is for splitting a block.
// Action_single - udpate the BOT for an allocation.
// Action_single - update the BOT for an allocation.
// Action_verify - BOT verification.
void G1BlockOffsetArray::do_block_internal(HeapWord* blk_start,
HeapWord* blk_end,
@ -331,47 +331,6 @@ G1BlockOffsetArray::mark_block(HeapWord* blk_start, HeapWord* blk_end) {
do_block_internal(blk_start, blk_end, Action_mark);
}
void G1BlockOffsetArray::join_blocks(HeapWord* blk1, HeapWord* blk2) {
HeapWord* blk1_start = Universe::heap()->block_start(blk1);
HeapWord* blk2_start = Universe::heap()->block_start(blk2);
assert(blk1 == blk1_start && blk2 == blk2_start,
"Must be block starts.");
assert(blk1 + _sp->block_size(blk1) == blk2, "Must be contiguous.");
size_t blk1_start_index = _array->index_for(blk1);
size_t blk2_start_index = _array->index_for(blk2);
assert(blk1_start_index <= blk2_start_index, "sanity");
HeapWord* blk2_card_start = _array->address_for_index(blk2_start_index);
if (blk2 == blk2_card_start) {
// blk2 starts a card. Does blk1 start on the prevous card, or futher
// back?
assert(blk1_start_index < blk2_start_index, "must be lower card.");
if (blk1_start_index + 1 == blk2_start_index) {
// previous card; new value for blk2 card is size of blk1.
_array->set_offset_array(blk2_start_index, (u_char) _sp->block_size(blk1));
} else {
// Earlier card; go back a card.
_array->set_offset_array(blk2_start_index, N_words);
}
} else {
// blk2 does not start a card. Does it cross a card? If not, nothing
// to do.
size_t blk2_end_index =
_array->index_for(blk2 + _sp->block_size(blk2) - 1);
assert(blk2_end_index >= blk2_start_index, "sanity");
if (blk2_end_index > blk2_start_index) {
// Yes, it crosses a card. The value for the next card must change.
if (blk1_start_index + 1 == blk2_start_index) {
// previous card; new value for second blk2 card is size of blk1.
_array->set_offset_array(blk2_start_index + 1,
(u_char) _sp->block_size(blk1));
} else {
// Earlier card; go back a card.
_array->set_offset_array(blk2_start_index + 1, N_words);
}
}
}
}
HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
assert(_bottom <= addr && addr < _end,
"addr must be covered by this Array");
@ -580,16 +539,51 @@ void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_
#endif
}
void
G1BlockOffsetArray::set_for_starts_humongous(HeapWord* new_end) {
assert(_end == new_end, "_end should have already been updated");
// The first BOT entry should have offset 0.
_array->set_offset_array(_array->index_for(_bottom), 0);
// The rest should point to the first one.
set_remainder_to_point_to_start(_bottom + N_words, new_end);
bool
G1BlockOffsetArray::verify_for_object(HeapWord* obj_start,
size_t word_size) const {
size_t first_card = _array->index_for(obj_start);
size_t last_card = _array->index_for(obj_start + word_size - 1);
if (!_array->is_card_boundary(obj_start)) {
// If the object is not on a card boundary the BOT entry of the
// first card should point to another object so we should not
// check that one.
first_card += 1;
}
for (size_t card = first_card; card <= last_card; card += 1) {
HeapWord* card_addr = _array->address_for_index(card);
HeapWord* block_start = block_start_const(card_addr);
if (block_start != obj_start) {
gclog_or_tty->print_cr("block start: "PTR_FORMAT" is incorrect - "
"card index: "SIZE_FORMAT" "
"card addr: "PTR_FORMAT" BOT entry: %u "
"obj: "PTR_FORMAT" word size: "SIZE_FORMAT" "
"cards: ["SIZE_FORMAT","SIZE_FORMAT"]",
block_start, card, card_addr,
_array->offset_array(card),
obj_start, word_size, first_card, last_card);
return false;
}
}
return true;
}
#ifndef PRODUCT
void
G1BlockOffsetArray::print_on(outputStream* out) {
size_t from_index = _array->index_for(_bottom);
size_t to_index = _array->index_for(_end);
out->print_cr(">> BOT for area ["PTR_FORMAT","PTR_FORMAT") "
"cards ["SIZE_FORMAT","SIZE_FORMAT")",
_bottom, _end, from_index, to_index);
for (size_t i = from_index; i < to_index; ++i) {
out->print_cr(" entry "SIZE_FORMAT_W(8)" | "PTR_FORMAT" : %3u",
i, _array->address_for_index(i),
(uint) _array->offset_array(i));
}
}
#endif // !PRODUCT
//////////////////////////////////////////////////////////////////////
// G1BlockOffsetArrayContigSpace
//////////////////////////////////////////////////////////////////////
@ -641,10 +635,20 @@ void G1BlockOffsetArrayContigSpace::zero_bottom_entry() {
}
void
G1BlockOffsetArrayContigSpace::set_for_starts_humongous(HeapWord* new_end) {
G1BlockOffsetArray::set_for_starts_humongous(new_end);
G1BlockOffsetArrayContigSpace::set_for_starts_humongous(HeapWord* new_top) {
assert(new_top <= _end, "_end should have already been updated");
// Make sure _next_offset_threshold and _next_offset_index point to new_end.
_next_offset_threshold = new_end;
_next_offset_index = _array->index_for(new_end);
// The first BOT entry should have offset 0.
zero_bottom_entry();
initialize_threshold();
alloc_block(_bottom, new_top);
}
#ifndef PRODUCT
void
G1BlockOffsetArrayContigSpace::print_on(outputStream* out) {
G1BlockOffsetArray::print_on(out);
out->print_cr(" next offset threshold: "PTR_FORMAT, _next_offset_threshold);
out->print_cr(" next offset index: "SIZE_FORMAT, _next_offset_index);
}
#endif // !PRODUCT

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -352,11 +352,6 @@ public:
// The following methods are useful and optimized for a
// general, non-contiguous space.
// The given arguments are required to be the starts of adjacent ("blk1"
// before "blk2") well-formed blocks covered by "this". After this call,
// they should be considered to form one block.
virtual void join_blocks(HeapWord* blk1, HeapWord* blk2);
// Given a block [blk_start, blk_start + full_blk_size), and
// a left_blk_size < full_blk_size, adjust the BOT to show two
// blocks [blk_start, blk_start + left_blk_size) and
@ -429,6 +424,12 @@ public:
verify_single_block(blk, blk + size);
}
// Used by region verification. Checks that the contents of the
// BOT reflect that there's a single object that spans the address
// range [obj_start, obj_start + word_size); returns true if this is
// the case, returns false if it's not.
bool verify_for_object(HeapWord* obj_start, size_t word_size) const;
// Verify that the given block is before _unallocated_block
inline void verify_not_unallocated(HeapWord* blk_start,
HeapWord* blk_end) const {
@ -444,7 +445,7 @@ public:
void check_all_cards(size_t left_card, size_t right_card) const;
virtual void set_for_starts_humongous(HeapWord* new_end);
virtual void print_on(outputStream* out) PRODUCT_RETURN;
};
// A subtype of BlockOffsetArray that takes advantage of the fact
@ -494,7 +495,9 @@ class G1BlockOffsetArrayContigSpace: public G1BlockOffsetArray {
HeapWord* block_start_unsafe(const void* addr);
HeapWord* block_start_unsafe_const(const void* addr) const;
virtual void set_for_starts_humongous(HeapWord* new_end);
void set_for_starts_humongous(HeapWord* new_top);
virtual void print_on(outputStream* out) PRODUCT_RETURN;
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -610,6 +610,39 @@ G1CollectedHeap::retire_cur_alloc_region(HeapRegion* cur_alloc_region) {
// of the free region list is revamped as part of CR 6977804.
wait_for_cleanup_complete();
// Other threads might still be trying to allocate using CASes out
// of the region we are retiring, as they can do so without holding
// the Heap_lock. So we first have to make sure that noone else can
// allocate in it by doing a maximal allocation. Even if our CAS
// attempt fails a few times, we'll succeed sooner or later given
// that a failed CAS attempt mean that the region is getting closed
// to being full (someone else succeeded in allocating into it).
size_t free_word_size = cur_alloc_region->free() / HeapWordSize;
// This is the minimum free chunk we can turn into a dummy
// object. If the free space falls below this, then noone can
// allocate in this region anyway (all allocation requests will be
// of a size larger than this) so we won't have to perform the dummy
// allocation.
size_t min_word_size_to_fill = CollectedHeap::min_fill_size();
while (free_word_size >= min_word_size_to_fill) {
HeapWord* dummy =
cur_alloc_region->par_allocate_no_bot_updates(free_word_size);
if (dummy != NULL) {
// If the allocation was successful we should fill in the space.
CollectedHeap::fill_with_object(dummy, free_word_size);
break;
}
free_word_size = cur_alloc_region->free() / HeapWordSize;
// It's also possible that someone else beats us to the
// allocation and they fill up the region. In that case, we can
// just get out of the loop
}
assert(cur_alloc_region->free() / HeapWordSize < min_word_size_to_fill,
"sanity");
retire_cur_alloc_region_common(cur_alloc_region);
assert(_cur_alloc_region == NULL, "post-condition");
}
@ -661,27 +694,29 @@ G1CollectedHeap::replace_cur_alloc_region_and_allocate(size_t word_size,
// young type.
OrderAccess::storestore();
// Now allocate out of the new current alloc region. We could
// have re-used allocate_from_cur_alloc_region() but its
// operation is slightly different to what we need here. First,
// allocate_from_cur_alloc_region() is only called outside a
// safepoint and will always unlock the Heap_lock if it returns
// a non-NULL result. Second, it assumes that the current alloc
// region is what's already assigned in _cur_alloc_region. What
// we want here is to actually do the allocation first before we
// assign the new region to _cur_alloc_region. This ordering is
// not currently important, but it will be essential when we
// change the code to support CAS allocation in the future (see
// CR 6994297).
//
// This allocate method does BOT updates and we don't need them in
// the young generation. This will be fixed in the near future by
// CR 6994297.
HeapWord* result = new_cur_alloc_region->allocate(word_size);
// Now, perform the allocation out of the region we just
// allocated. Note that noone else can access that region at
// this point (as _cur_alloc_region has not been updated yet),
// so we can just go ahead and do the allocation without any
// atomics (and we expect this allocation attempt to
// suceeded). Given that other threads can attempt an allocation
// with a CAS and without needing the Heap_lock, if we assigned
// the new region to _cur_alloc_region before first allocating
// into it other threads might have filled up the new region
// before we got a chance to do the allocation ourselves. In
// that case, we would have needed to retire the region, grab a
// new one, and go through all this again. Allocating out of the
// new region before assigning it to _cur_alloc_region avoids
// all this.
HeapWord* result =
new_cur_alloc_region->allocate_no_bot_updates(word_size);
assert(result != NULL, "we just allocate out of an empty region "
"so allocation should have been successful");
assert(is_in(result), "result should be in the heap");
// Now make sure that the store to _cur_alloc_region does not
// float above the store to top.
OrderAccess::storestore();
_cur_alloc_region = new_cur_alloc_region;
if (!at_safepoint) {
@ -718,6 +753,9 @@ G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
for (int try_count = 1; /* we'll return or break */; try_count += 1) {
bool succeeded = true;
// Every time we go round the loop we should be holding the Heap_lock.
assert_heap_locked();
{
// We may have concurrent cleanup working at the time. Wait for
// it to complete. In the future we would probably want to make
@ -734,7 +772,8 @@ G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
// attempt as it's redundant (we only reach here after an
// allocation attempt has been unsuccessful).
wait_for_cleanup_complete();
HeapWord* result = attempt_allocation(word_size);
HeapWord* result = attempt_allocation_locked(word_size);
if (result != NULL) {
assert_heap_not_locked();
return result;
@ -748,7 +787,6 @@ G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
if (g1_policy()->can_expand_young_list()) {
// Yes, we are allowed to expand the young gen. Let's try to
// allocate a new current alloc region.
HeapWord* result =
replace_cur_alloc_region_and_allocate(word_size,
false, /* at_safepoint */
@ -771,20 +809,23 @@ G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
// rather than causing more, now probably unnecessary, GC attempts.
JavaThread* jthr = JavaThread::current();
assert(jthr != NULL, "sanity");
if (!jthr->in_critical()) {
MutexUnlocker mul(Heap_lock);
GC_locker::stall_until_clear();
// We'll then fall off the end of the ("if GC locker active")
// if-statement and retry the allocation further down in the
// loop.
} else {
if (jthr->in_critical()) {
if (CheckJNICalls) {
fatal("Possible deadlock due to allocating while"
" in jni critical section");
}
// We are returning NULL so the protocol is that we're still
// holding the Heap_lock.
assert_heap_locked();
return NULL;
}
Heap_lock->unlock();
GC_locker::stall_until_clear();
// No need to relock the Heap_lock. We'll fall off to the code
// below the else-statement which assumes that we are not
// holding the Heap_lock.
} else {
// We are not locked out. So, let's try to do a GC. The VM op
// will retry the allocation before it completes.
@ -805,11 +846,10 @@ G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
dirty_young_block(result, word_size);
return result;
}
Heap_lock->lock();
}
assert_heap_locked();
// Both paths that get us here from above unlock the Heap_lock.
assert_heap_not_locked();
// We can reach here when we were unsuccessful in doing a GC,
// because another thread beat us to it, or because we were locked
@ -948,10 +988,8 @@ HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
if (!expect_null_cur_alloc_region) {
HeapRegion* cur_alloc_region = _cur_alloc_region;
if (cur_alloc_region != NULL) {
// This allocate method does BOT updates and we don't need them in
// the young generation. This will be fixed in the near future by
// CR 6994297.
HeapWord* result = cur_alloc_region->allocate(word_size);
// We are at a safepoint so no reason to use the MT-safe version.
HeapWord* result = cur_alloc_region->allocate_no_bot_updates(word_size);
if (result != NULL) {
assert(is_in(result), "result should be in the heap");
@ -983,20 +1021,17 @@ HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
assert_heap_not_locked_and_not_at_safepoint();
assert(!isHumongous(word_size), "we do not allow TLABs of humongous size");
Heap_lock->lock();
// First attempt: try allocating out of the current alloc region or
// after replacing the current alloc region.
// First attempt: Try allocating out of the current alloc region
// using a CAS. If that fails, take the Heap_lock and retry the
// allocation, potentially replacing the current alloc region.
HeapWord* result = attempt_allocation(word_size);
if (result != NULL) {
assert_heap_not_locked();
return result;
}
assert_heap_locked();
// Second attempt: go into the even slower path where we might
// try to schedule a collection.
// Second attempt: Go to the slower path where we might try to
// schedule a collection.
result = attempt_allocation_slow(word_size);
if (result != NULL) {
assert_heap_not_locked();
@ -1004,6 +1039,7 @@ HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
}
assert_heap_locked();
// Need to unlock the Heap_lock before returning.
Heap_lock->unlock();
return NULL;
}
@ -1022,11 +1058,10 @@ G1CollectedHeap::mem_allocate(size_t word_size,
for (int try_count = 1; /* we'll return */; try_count += 1) {
unsigned int gc_count_before;
{
Heap_lock->lock();
if (!isHumongous(word_size)) {
// First attempt: try allocating out of the current alloc
// region or after replacing the current alloc region.
// First attempt: Try allocating out of the current alloc region
// using a CAS. If that fails, take the Heap_lock and retry the
// allocation, potentially replacing the current alloc region.
HeapWord* result = attempt_allocation(word_size);
if (result != NULL) {
assert_heap_not_locked();
@ -1035,14 +1070,17 @@ G1CollectedHeap::mem_allocate(size_t word_size,
assert_heap_locked();
// Second attempt: go into the even slower path where we might
// try to schedule a collection.
// Second attempt: Go to the slower path where we might try to
// schedule a collection.
result = attempt_allocation_slow(word_size);
if (result != NULL) {
assert_heap_not_locked();
return result;
}
} else {
// attempt_allocation_humongous() requires the Heap_lock to be held.
Heap_lock->lock();
HeapWord* result = attempt_allocation_humongous(word_size,
false /* at_safepoint */);
if (result != NULL) {
@ -1054,7 +1092,8 @@ G1CollectedHeap::mem_allocate(size_t word_size,
assert_heap_locked();
// Read the gc count while the heap lock is held.
gc_count_before = SharedHeap::heap()->total_collections();
// We cannot be at a safepoint, so it is safe to unlock the Heap_lock
// Release the Heap_lock before attempting the collection.
Heap_lock->unlock();
}
@ -1868,7 +1907,7 @@ jint G1CollectedHeap::initialize() {
ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
HeapRegion::GrainBytes,
false /*ism*/, addr);
UseLargePages, addr);
if (UseCompressedOops) {
if (addr != NULL && !heap_rs.is_reserved()) {
@ -1877,13 +1916,13 @@ jint G1CollectedHeap::initialize() {
// Try again to reserver heap higher.
addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
false /*ism*/, addr);
UseLargePages, addr);
if (addr != NULL && !heap_rs0.is_reserved()) {
// Failed to reserve at specified address again - give up.
addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
assert(addr == NULL, "");
ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
false /*ism*/, addr);
UseLargePages, addr);
heap_rs = heap_rs1;
} else {
heap_rs = heap_rs0;
@ -3856,13 +3895,15 @@ private:
size_t _next_marked_bytes;
OopsInHeapRegionClosure *_cl;
public:
RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
_g1(g1), _cm(_g1->concurrent_mark()), _prev_marked_bytes(0),
RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
OopsInHeapRegionClosure* cl) :
_g1(g1), _hr(hr), _cm(_g1->concurrent_mark()), _prev_marked_bytes(0),
_next_marked_bytes(0), _cl(cl) {}
size_t prev_marked_bytes() { return _prev_marked_bytes; }
size_t next_marked_bytes() { return _next_marked_bytes; }
// <original comment>
// The original idea here was to coalesce evacuated and dead objects.
// However that caused complications with the block offset table (BOT).
// In particular if there were two TLABs, one of them partially refined.
@ -3871,15 +3912,24 @@ public:
// of TLAB_2. If the last object of the TLAB_1 and the first object
// of TLAB_2 are coalesced, then the cards of the unrefined part
// would point into middle of the filler object.
//
// The current approach is to not coalesce and leave the BOT contents intact.
// </original comment>
//
// We now reset the BOT when we start the object iteration over the
// region and refine its entries for every object we come across. So
// the above comment is not really relevant and we should be able
// to coalesce dead objects if we want to.
void do_object(oop obj) {
HeapWord* obj_addr = (HeapWord*) obj;
assert(_hr->is_in(obj_addr), "sanity");
size_t obj_size = obj->size();
_hr->update_bot_for_object(obj_addr, obj_size);
if (obj->is_forwarded() && obj->forwardee() == obj) {
// The object failed to move.
assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
_cm->markPrev(obj);
assert(_cm->isPrevMarked(obj), "Should be marked!");
_prev_marked_bytes += (obj->size() * HeapWordSize);
_prev_marked_bytes += (obj_size * HeapWordSize);
if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
_cm->markAndGrayObjectIfNecessary(obj);
}
@ -3901,7 +3951,7 @@ public:
} else {
// The object has been either evacuated or is dead. Fill it with a
// dummy object.
MemRegion mr((HeapWord*)obj, obj->size());
MemRegion mr((HeapWord*)obj, obj_size);
CollectedHeap::fill_with_object(mr);
_cm->clearRangeBothMaps(mr);
}
@ -3921,10 +3971,13 @@ void G1CollectedHeap::remove_self_forwarding_pointers() {
HeapRegion* cur = g1_policy()->collection_set();
while (cur != NULL) {
assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
assert(!cur->isHumongous(), "sanity");
RemoveSelfPointerClosure rspc(_g1h, cl);
if (cur->evacuation_failed()) {
assert(cur->in_collection_set(), "bad CS");
RemoveSelfPointerClosure rspc(_g1h, cur, cl);
cur->reset_bot();
cl->set_region(cur);
cur->object_iterate(&rspc);
@ -3989,15 +4042,6 @@ void G1CollectedHeap::drain_evac_failure_scan_stack() {
}
}
void G1CollectedHeap::handle_evacuation_failure(oop old) {
markOop m = old->mark();
// forward to self
assert(!old->is_forwarded(), "precondition");
old->forward_to(old);
handle_evacuation_failure_common(old, m);
}
oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
oop old) {

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -430,7 +430,8 @@ protected:
bool* gc_overhead_limit_was_exceeded);
// The following methods, allocate_from_cur_allocation_region(),
// attempt_allocation(), replace_cur_alloc_region_and_allocate(),
// attempt_allocation(), attempt_allocation_locked(),
// replace_cur_alloc_region_and_allocate(),
// attempt_allocation_slow(), and attempt_allocation_humongous()
// have very awkward pre- and post-conditions with respect to
// locking:
@ -481,20 +482,30 @@ protected:
// successfully manage to allocate it, or NULL.
// It tries to satisfy an allocation request out of the current
// allocating region, which is passed as a parameter. It assumes
// that the caller has checked that the current allocating region is
// not NULL. Given that the caller has to check the current
// allocating region for at least NULL, it might as well pass it as
// the first parameter so that the method doesn't have to read it
// from the _cur_alloc_region field again.
// alloc region, which is passed as a parameter. It assumes that the
// caller has checked that the current alloc region is not NULL.
// Given that the caller has to check the current alloc region for
// at least NULL, it might as well pass it as the first parameter so
// that the method doesn't have to read it from the
// _cur_alloc_region field again. It is called from both
// attempt_allocation() and attempt_allocation_locked() and the
// with_heap_lock parameter indicates whether the caller was holding
// the heap lock when it called it or not.
inline HeapWord* allocate_from_cur_alloc_region(HeapRegion* cur_alloc_region,
size_t word_size);
size_t word_size,
bool with_heap_lock);
// It attempts to allocate out of the current alloc region. If that
// fails, it retires the current alloc region (if there is one),
// tries to get a new one and retries the allocation.
// First-level of allocation slow path: it attempts to allocate out
// of the current alloc region in a lock-free manner using a CAS. If
// that fails it takes the Heap_lock and calls
// attempt_allocation_locked() for the second-level slow path.
inline HeapWord* attempt_allocation(size_t word_size);
// Second-level of allocation slow path: while holding the Heap_lock
// it tries to allocate out of the current alloc region and, if that
// fails, tries to allocate out of a new current alloc region.
inline HeapWord* attempt_allocation_locked(size_t word_size);
// It assumes that the current alloc region has been retired and
// tries to allocate a new one. If it's successful, it performs the
// allocation out of the new current alloc region and updates
@ -506,11 +517,11 @@ protected:
bool do_dirtying,
bool can_expand);
// The slow path when we are unable to allocate a new current alloc
// region to satisfy an allocation request (i.e., when
// attempt_allocation() fails). It will try to do an evacuation
// pause, which might stall due to the GC locker, and retry the
// allocation attempt when appropriate.
// Third-level of allocation slow path: when we are unable to
// allocate a new current alloc region to satisfy an allocation
// request (i.e., when attempt_allocation_locked() fails). It will
// try to do an evacuation pause, which might stall due to the GC
// locker, and retry the allocation attempt when appropriate.
HeapWord* attempt_allocation_slow(size_t word_size);
// The method that tries to satisfy a humongous allocation
@ -826,7 +837,6 @@ protected:
void finalize_for_evac_failure();
// An attempt to evacuate "obj" has failed; take necessary steps.
void handle_evacuation_failure(oop obj);
oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
void handle_evacuation_failure_common(oop obj, markOop m);

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -63,10 +63,12 @@ inline bool G1CollectedHeap::obj_in_cs(oop obj) {
// assumptions of this method (and other related ones).
inline HeapWord*
G1CollectedHeap::allocate_from_cur_alloc_region(HeapRegion* cur_alloc_region,
size_t word_size) {
assert_heap_locked_and_not_at_safepoint();
size_t word_size,
bool with_heap_lock) {
assert_not_at_safepoint();
assert(with_heap_lock == Heap_lock->owned_by_self(),
"with_heap_lock and Heap_lock->owned_by_self() should be a tautology");
assert(cur_alloc_region != NULL, "pre-condition of the method");
assert(cur_alloc_region == _cur_alloc_region, "pre-condition of the method");
assert(cur_alloc_region->is_young(),
"we only support young current alloc regions");
assert(!isHumongous(word_size), "allocate_from_cur_alloc_region() "
@ -76,20 +78,24 @@ G1CollectedHeap::allocate_from_cur_alloc_region(HeapRegion* cur_alloc_region,
assert(!cur_alloc_region->is_empty(),
err_msg("region ["PTR_FORMAT","PTR_FORMAT"] should not be empty",
cur_alloc_region->bottom(), cur_alloc_region->end()));
// This allocate method does BOT updates and we don't need them in
// the young generation. This will be fixed in the near future by
// CR 6994297.
HeapWord* result = cur_alloc_region->allocate(word_size);
HeapWord* result = cur_alloc_region->par_allocate_no_bot_updates(word_size);
if (result != NULL) {
assert(is_in(result), "result should be in the heap");
Heap_lock->unlock();
if (with_heap_lock) {
Heap_lock->unlock();
}
assert_heap_not_locked();
// Do the dirtying after we release the Heap_lock.
dirty_young_block(result, word_size);
return result;
}
assert_heap_locked();
if (with_heap_lock) {
assert_heap_locked();
} else {
assert_heap_not_locked();
}
return NULL;
}
@ -97,31 +103,27 @@ G1CollectedHeap::allocate_from_cur_alloc_region(HeapRegion* cur_alloc_region,
// assumptions of this method (and other related ones).
inline HeapWord*
G1CollectedHeap::attempt_allocation(size_t word_size) {
assert_heap_locked_and_not_at_safepoint();
assert_heap_not_locked_and_not_at_safepoint();
assert(!isHumongous(word_size), "attempt_allocation() should not be called "
"for humongous allocation requests");
HeapRegion* cur_alloc_region = _cur_alloc_region;
if (cur_alloc_region != NULL) {
HeapWord* result = allocate_from_cur_alloc_region(cur_alloc_region,
word_size);
word_size,
false /* with_heap_lock */);
assert_heap_not_locked();
if (result != NULL) {
assert_heap_not_locked();
return result;
}
assert_heap_locked();
// Since we couldn't successfully allocate into it, retire the
// current alloc region.
retire_cur_alloc_region(cur_alloc_region);
}
// Try to get a new region and allocate out of it
HeapWord* result = replace_cur_alloc_region_and_allocate(word_size,
false, /* at_safepoint */
true, /* do_dirtying */
false /* can_expand */);
// Our attempt to allocate lock-free failed as the current
// allocation region is either NULL or full. So, we'll now take the
// Heap_lock and retry.
Heap_lock->lock();
HeapWord* result = attempt_allocation_locked(word_size);
if (result != NULL) {
assert_heap_not_locked();
return result;
@ -145,6 +147,45 @@ G1CollectedHeap::retire_cur_alloc_region_common(HeapRegion* cur_alloc_region) {
_cur_alloc_region = NULL;
}
inline HeapWord*
G1CollectedHeap::attempt_allocation_locked(size_t word_size) {
assert_heap_locked_and_not_at_safepoint();
assert(!isHumongous(word_size), "attempt_allocation_locked() "
"should not be called for humongous allocation requests");
// First, reread the current alloc region and retry the allocation
// in case somebody replaced it while we were waiting to get the
// Heap_lock.
HeapRegion* cur_alloc_region = _cur_alloc_region;
if (cur_alloc_region != NULL) {
HeapWord* result = allocate_from_cur_alloc_region(
cur_alloc_region, word_size,
true /* with_heap_lock */);
if (result != NULL) {
assert_heap_not_locked();
return result;
}
// We failed to allocate out of the current alloc region, so let's
// retire it before getting a new one.
retire_cur_alloc_region(cur_alloc_region);
}
assert_heap_locked();
// Try to get a new region and allocate out of it
HeapWord* result = replace_cur_alloc_region_and_allocate(word_size,
false, /* at_safepoint */
true, /* do_dirtying */
false /* can_expand */);
if (result != NULL) {
assert_heap_not_locked();
return result;
}
assert_heap_locked();
return NULL;
}
// It dirties the cards that cover the block so that so that the post
// write barrier never queues anything when updating objects on this
// block. It is assumed (and in fact we assert) that the block

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -386,26 +386,27 @@ void HeapRegion::calc_gc_efficiency() {
}
// </PREDICTION>
void HeapRegion::set_startsHumongous(HeapWord* new_end) {
void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
assert(end() == _orig_end,
"Should be normal before the humongous object allocation");
assert(top() == bottom(), "should be empty");
assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
_humongous_type = StartsHumongous;
_humongous_start_region = this;
set_end(new_end);
_offsets.set_for_starts_humongous(new_end);
_offsets.set_for_starts_humongous(new_top);
}
void HeapRegion::set_continuesHumongous(HeapRegion* start) {
void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
assert(end() == _orig_end,
"Should be normal before the humongous object allocation");
assert(top() == bottom(), "should be empty");
assert(start->startsHumongous(), "pre-condition");
assert(first_hr->startsHumongous(), "pre-condition");
_humongous_type = ContinuesHumongous;
_humongous_start_region = start;
_humongous_start_region = first_hr;
}
bool HeapRegion::claimHeapRegion(jint claimValue) {
@ -782,9 +783,6 @@ void HeapRegion::verify(bool allow_dirty) const {
verify(allow_dirty, /* use_prev_marking */ true, /* failures */ &dummy);
}
#define OBJ_SAMPLE_INTERVAL 0
#define BLOCK_SAMPLE_INTERVAL 100
// This really ought to be commoned up into OffsetTableContigSpace somehow.
// We would need a mechanism to make that code skip dead objects.
@ -795,83 +793,125 @@ void HeapRegion::verify(bool allow_dirty,
*failures = false;
HeapWord* p = bottom();
HeapWord* prev_p = NULL;
int objs = 0;
int blocks = 0;
VerifyLiveClosure vl_cl(g1, use_prev_marking);
bool is_humongous = isHumongous();
bool do_bot_verify = !is_young();
size_t object_num = 0;
while (p < top()) {
size_t size = oop(p)->size();
if (is_humongous != g1->isHumongous(size)) {
oop obj = oop(p);
size_t obj_size = obj->size();
object_num += 1;
if (is_humongous != g1->isHumongous(obj_size)) {
gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
SIZE_FORMAT" words) in a %shumongous region",
p, g1->isHumongous(size) ? "" : "non-",
size, is_humongous ? "" : "non-");
p, g1->isHumongous(obj_size) ? "" : "non-",
obj_size, is_humongous ? "" : "non-");
*failures = true;
return;
}
object_num += 1;
if (blocks == BLOCK_SAMPLE_INTERVAL) {
HeapWord* res = block_start_const(p + (size/2));
if (p != res) {
gclog_or_tty->print_cr("offset computation 1 for "PTR_FORMAT" and "
SIZE_FORMAT" returned "PTR_FORMAT,
p, size, res);
*failures = true;
return;
}
blocks = 0;
} else {
blocks++;
// If it returns false, verify_for_object() will output the
// appropriate messasge.
if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
*failures = true;
return;
}
if (objs == OBJ_SAMPLE_INTERVAL) {
oop obj = oop(p);
if (!g1->is_obj_dead_cond(obj, this, use_prev_marking)) {
if (obj->is_oop()) {
klassOop klass = obj->klass();
if (!klass->is_perm()) {
gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
"not in perm", klass, obj);
*failures = true;
return;
} else if (!klass->is_klass()) {
gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
"not a klass", klass, obj);
*failures = true;
return;
} else {
vl_cl.set_containing_obj(obj);
obj->oop_iterate(&vl_cl);
if (vl_cl.failures()) {
*failures = true;
}
if (G1MaxVerifyFailures >= 0 &&
vl_cl.n_failures() >= G1MaxVerifyFailures) {
return;
}
}
} else {
gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
if (!g1->is_obj_dead_cond(obj, this, use_prev_marking)) {
if (obj->is_oop()) {
klassOop klass = obj->klass();
if (!klass->is_perm()) {
gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
"not in perm", klass, obj);
*failures = true;
return;
} else if (!klass->is_klass()) {
gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
"not a klass", klass, obj);
*failures = true;
return;
} else {
vl_cl.set_containing_obj(obj);
obj->oop_iterate(&vl_cl);
if (vl_cl.failures()) {
*failures = true;
}
if (G1MaxVerifyFailures >= 0 &&
vl_cl.n_failures() >= G1MaxVerifyFailures) {
return;
}
}
}
objs = 0;
} else {
objs++;
}
prev_p = p;
p += size;
}
HeapWord* rend = end();
HeapWord* rtop = top();
if (rtop < rend) {
HeapWord* res = block_start_const(rtop + (rend - rtop) / 2);
if (res != rtop) {
gclog_or_tty->print_cr("offset computation 2 for "PTR_FORMAT" and "
PTR_FORMAT" returned "PTR_FORMAT,
rtop, rend, res);
} else {
gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
*failures = true;
return;
}
}
prev_p = p;
p += obj_size;
}
if (p != top()) {
gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
"does not match top "PTR_FORMAT, p, top());
*failures = true;
return;
}
HeapWord* the_end = end();
assert(p == top(), "it should still hold");
// Do some extra BOT consistency checking for addresses in the
// range [top, end). BOT look-ups in this range should yield
// top. No point in doing that if top == end (there's nothing there).
if (p < the_end) {
// Look up top
HeapWord* addr_1 = p;
HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
if (b_start_1 != p) {
gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
" yielded "PTR_FORMAT", expecting "PTR_FORMAT,
addr_1, b_start_1, p);
*failures = true;
return;
}
// Look up top + 1
HeapWord* addr_2 = p + 1;
if (addr_2 < the_end) {
HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
if (b_start_2 != p) {
gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
" yielded "PTR_FORMAT", expecting "PTR_FORMAT,
addr_2, b_start_2, p);
*failures = true;
return;
}
}
// Look up an address between top and end
size_t diff = pointer_delta(the_end, p) / 2;
HeapWord* addr_3 = p + diff;
if (addr_3 < the_end) {
HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
if (b_start_3 != p) {
gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
" yielded "PTR_FORMAT", expecting "PTR_FORMAT,
addr_3, b_start_3, p);
*failures = true;
return;
}
}
// Loook up end - 1
HeapWord* addr_4 = the_end - 1;
HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
if (b_start_4 != p) {
gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
" yielded "PTR_FORMAT", expecting "PTR_FORMAT,
addr_4, b_start_4, p);
*failures = true;
return;
}
}
@ -880,12 +920,6 @@ void HeapRegion::verify(bool allow_dirty,
"but has "SIZE_FORMAT", objects",
bottom(), end(), object_num);
*failures = true;
}
if (p != top()) {
gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
"does not match top "PTR_FORMAT, p, top());
*failures = true;
return;
}
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -173,6 +173,19 @@ class G1OffsetTableContigSpace: public ContiguousSpace {
virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
virtual void print() const;
void reset_bot() {
_offsets.zero_bottom_entry();
_offsets.initialize_threshold();
}
void update_bot_for_object(HeapWord* start, size_t word_size) {
_offsets.alloc_block(start, word_size);
}
void print_bot_on(outputStream* out) {
_offsets.print_on(out);
}
};
class HeapRegion: public G1OffsetTableContigSpace {
@ -359,6 +372,15 @@ class HeapRegion: public G1OffsetTableContigSpace {
Allocated
};
inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
assert(is_young(), "we can only skip BOT updates on young regions");
return ContiguousSpace::par_allocate(word_size);
}
inline HeapWord* allocate_no_bot_updates(size_t word_size) {
assert(is_young(), "we can only skip BOT updates on young regions");
return ContiguousSpace::allocate(word_size);
}
// If this region is a member of a HeapRegionSeq, the index in that
// sequence, otherwise -1.
int hrs_index() const { return _hrs_index; }
@ -404,13 +426,35 @@ class HeapRegion: public G1OffsetTableContigSpace {
return _humongous_start_region;
}
// Causes the current region to represent a humongous object spanning "n"
// regions.
void set_startsHumongous(HeapWord* new_end);
// Makes the current region be a "starts humongous" region, i.e.,
// the first region in a series of one or more contiguous regions
// that will contain a single "humongous" object. The two parameters
// are as follows:
//
// new_top : The new value of the top field of this region which
// points to the end of the humongous object that's being
// allocated. If there is more than one region in the series, top
// will lie beyond this region's original end field and on the last
// region in the series.
//
// new_end : The new value of the end field of this region which
// points to the end of the last region in the series. If there is
// one region in the series (namely: this one) end will be the same
// as the original end of this region.
//
// Updating top and end as described above makes this region look as
// if it spans the entire space taken up by all the regions in the
// series and an single allocation moved its top to new_top. This
// ensures that the space (capacity / allocated) taken up by all
// humongous regions can be calculated by just looking at the
// "starts humongous" regions and by ignoring the "continues
// humongous" regions.
void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
// The regions that continue a humongous sequence should be added using
// this method, in increasing address order.
void set_continuesHumongous(HeapRegion* start);
// Makes the current region be a "continues humongous'
// region. first_hr is the "start humongous" region of the series
// which this region will be part of.
void set_continuesHumongous(HeapRegion* first_hr);
// If the region has a remembered set, return a pointer to it.
HeapRegionRemSet* rem_set() const {

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -144,7 +144,7 @@ HeapRegionSeq::alloc_obj_from_region_index(int ind, size_t word_size) {
// will also update the BOT covering all the regions to reflect
// that there is a single object that starts at the bottom of the
// first region.
first_hr->set_startsHumongous(new_end);
first_hr->set_startsHumongous(new_top, new_end);
// Then, if there are any, we will set up the "continues
// humongous" regions.