8309130: x86_64 AVX512 intrinsics for Arrays.sort methods (int, long, float and double arrays)

Reviewed-by: jbhateja, sviswanathan, psandoz, kvn
This commit is contained in:
vamsi-parasa 2023-10-06 20:15:30 +00:00 committed by Sandhya Viswanathan
parent 6c6beba256
commit a4e9168bab
22 changed files with 3122 additions and 512 deletions

View file

@ -0,0 +1,441 @@
/*
* Copyright (c) 2021, 2023, Intel Corporation. All rights reserved.
* Copyright (c) 2021 Serge Sans Paille. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// This implementation is based on x86-simd-sort(https://github.com/intel/x86-simd-sort)
#ifndef AVX512_QSORT_32BIT
#define AVX512_QSORT_32BIT
#include "avx512-common-qsort.h"
/*
* Constants used in sorting 16 elements in a ZMM registers. Based on Bitonic
* sorting network (see
* https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg)
*/
#define NETWORK_32BIT_1 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1
#define NETWORK_32BIT_2 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3
#define NETWORK_32BIT_3 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7
#define NETWORK_32BIT_4 13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2
#define NETWORK_32BIT_5 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
#define NETWORK_32BIT_6 11, 10, 9, 8, 15, 14, 13, 12, 3, 2, 1, 0, 7, 6, 5, 4
#define NETWORK_32BIT_7 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
template <>
struct zmm_vector<int32_t> {
using type_t = int32_t;
using zmm_t = __m512i;
using ymm_t = __m256i;
using opmask_t = __mmask16;
static const uint8_t numlanes = 16;
static type_t type_max() { return X86_SIMD_SORT_MAX_INT32; }
static type_t type_min() { return X86_SIMD_SORT_MIN_INT32; }
static zmm_t zmm_max() { return _mm512_set1_epi32(type_max()); }
static opmask_t knot_opmask(opmask_t x) { return _mm512_knot(x); }
static opmask_t ge(zmm_t x, zmm_t y) {
return _mm512_cmp_epi32_mask(x, y, _MM_CMPINT_NLT);
}
static opmask_t gt(zmm_t x, zmm_t y) {
return _mm512_cmp_epi32_mask(x, y, _MM_CMPINT_GT);
}
template <int scale>
static ymm_t i64gather(__m512i index, void const *base) {
return _mm512_i64gather_epi32(index, base, scale);
}
static zmm_t merge(ymm_t y1, ymm_t y2) {
zmm_t z1 = _mm512_castsi256_si512(y1);
return _mm512_inserti32x8(z1, y2, 1);
}
static zmm_t loadu(void const *mem) { return _mm512_loadu_si512(mem); }
static void mask_compressstoreu(void *mem, opmask_t mask, zmm_t x) {
return _mm512_mask_compressstoreu_epi32(mem, mask, x);
}
static zmm_t mask_loadu(zmm_t x, opmask_t mask, void const *mem) {
return _mm512_mask_loadu_epi32(x, mask, mem);
}
static zmm_t mask_mov(zmm_t x, opmask_t mask, zmm_t y) {
return _mm512_mask_mov_epi32(x, mask, y);
}
static void mask_storeu(void *mem, opmask_t mask, zmm_t x) {
return _mm512_mask_storeu_epi32(mem, mask, x);
}
static zmm_t min(zmm_t x, zmm_t y) { return _mm512_min_epi32(x, y); }
static zmm_t max(zmm_t x, zmm_t y) { return _mm512_max_epi32(x, y); }
static zmm_t permutexvar(__m512i idx, zmm_t zmm) {
return _mm512_permutexvar_epi32(idx, zmm);
}
static type_t reducemax(zmm_t v) { return _mm512_reduce_max_epi32(v); }
static type_t reducemin(zmm_t v) { return _mm512_reduce_min_epi32(v); }
static zmm_t set1(type_t v) { return _mm512_set1_epi32(v); }
template <uint8_t mask>
static zmm_t shuffle(zmm_t zmm) {
return _mm512_shuffle_epi32(zmm, (_MM_PERM_ENUM)mask);
}
static void storeu(void *mem, zmm_t x) {
return _mm512_storeu_si512(mem, x);
}
static ymm_t max(ymm_t x, ymm_t y) { return _mm256_max_epi32(x, y); }
static ymm_t min(ymm_t x, ymm_t y) { return _mm256_min_epi32(x, y); }
};
template <>
struct zmm_vector<float> {
using type_t = float;
using zmm_t = __m512;
using ymm_t = __m256;
using opmask_t = __mmask16;
static const uint8_t numlanes = 16;
static type_t type_max() { return X86_SIMD_SORT_INFINITYF; }
static type_t type_min() { return -X86_SIMD_SORT_INFINITYF; }
static zmm_t zmm_max() { return _mm512_set1_ps(type_max()); }
static opmask_t knot_opmask(opmask_t x) { return _mm512_knot(x); }
static opmask_t ge(zmm_t x, zmm_t y) {
return _mm512_cmp_ps_mask(x, y, _CMP_GE_OQ);
}
static opmask_t gt(zmm_t x, zmm_t y) {
return _mm512_cmp_ps_mask(x, y, _CMP_GT_OQ);
}
template <int scale>
static ymm_t i64gather(__m512i index, void const *base) {
return _mm512_i64gather_ps(index, base, scale);
}
static zmm_t merge(ymm_t y1, ymm_t y2) {
zmm_t z1 = _mm512_castsi512_ps(
_mm512_castsi256_si512(_mm256_castps_si256(y1)));
return _mm512_insertf32x8(z1, y2, 1);
}
static zmm_t loadu(void const *mem) { return _mm512_loadu_ps(mem); }
static zmm_t max(zmm_t x, zmm_t y) { return _mm512_max_ps(x, y); }
static void mask_compressstoreu(void *mem, opmask_t mask, zmm_t x) {
return _mm512_mask_compressstoreu_ps(mem, mask, x);
}
static zmm_t mask_loadu(zmm_t x, opmask_t mask, void const *mem) {
return _mm512_mask_loadu_ps(x, mask, mem);
}
static zmm_t mask_mov(zmm_t x, opmask_t mask, zmm_t y) {
return _mm512_mask_mov_ps(x, mask, y);
}
static void mask_storeu(void *mem, opmask_t mask, zmm_t x) {
return _mm512_mask_storeu_ps(mem, mask, x);
}
static zmm_t min(zmm_t x, zmm_t y) { return _mm512_min_ps(x, y); }
static zmm_t permutexvar(__m512i idx, zmm_t zmm) {
return _mm512_permutexvar_ps(idx, zmm);
}
static type_t reducemax(zmm_t v) { return _mm512_reduce_max_ps(v); }
static type_t reducemin(zmm_t v) { return _mm512_reduce_min_ps(v); }
static zmm_t set1(type_t v) { return _mm512_set1_ps(v); }
template <uint8_t mask>
static zmm_t shuffle(zmm_t zmm) {
return _mm512_shuffle_ps(zmm, zmm, (_MM_PERM_ENUM)mask);
}
static void storeu(void *mem, zmm_t x) { return _mm512_storeu_ps(mem, x); }
static ymm_t max(ymm_t x, ymm_t y) { return _mm256_max_ps(x, y); }
static ymm_t min(ymm_t x, ymm_t y) { return _mm256_min_ps(x, y); }
};
/*
* Assumes zmm is random and performs a full sorting network defined in
* https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg
*/
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE zmm_t sort_zmm_32bit(zmm_t zmm) {
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), 0xAAAA);
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(0, 1, 2, 3)>(zmm), 0xCCCC);
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), 0xAAAA);
zmm = cmp_merge<vtype>(
zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_3), zmm),
0xF0F0);
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(1, 0, 3, 2)>(zmm), 0xCCCC);
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), 0xAAAA);
zmm = cmp_merge<vtype>(
zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5), zmm),
0xFF00);
zmm = cmp_merge<vtype>(
zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_6), zmm),
0xF0F0);
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(1, 0, 3, 2)>(zmm), 0xCCCC);
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), 0xAAAA);
return zmm;
}
// Assumes zmm is bitonic and performs a recursive half cleaner
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE zmm_t bitonic_merge_zmm_32bit(zmm_t zmm) {
// 1) half_cleaner[16]: compare 1-9, 2-10, 3-11 etc ..
zmm = cmp_merge<vtype>(
zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_7), zmm),
0xFF00);
// 2) half_cleaner[8]: compare 1-5, 2-6, 3-7 etc ..
zmm = cmp_merge<vtype>(
zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_6), zmm),
0xF0F0);
// 3) half_cleaner[4]
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(1, 0, 3, 2)>(zmm), 0xCCCC);
// 3) half_cleaner[1]
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), 0xAAAA);
return zmm;
}
// Assumes zmm1 and zmm2 are sorted and performs a recursive half cleaner
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE void bitonic_merge_two_zmm_32bit(zmm_t *zmm1,
zmm_t *zmm2) {
// 1) First step of a merging network: coex of zmm1 and zmm2 reversed
*zmm2 = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5), *zmm2);
zmm_t zmm3 = vtype::min(*zmm1, *zmm2);
zmm_t zmm4 = vtype::max(*zmm1, *zmm2);
// 2) Recursive half cleaner for each
*zmm1 = bitonic_merge_zmm_32bit<vtype>(zmm3);
*zmm2 = bitonic_merge_zmm_32bit<vtype>(zmm4);
}
// Assumes [zmm0, zmm1] and [zmm2, zmm3] are sorted and performs a recursive
// half cleaner
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE void bitonic_merge_four_zmm_32bit(zmm_t *zmm) {
zmm_t zmm2r = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5), zmm[2]);
zmm_t zmm3r = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5), zmm[3]);
zmm_t zmm_t1 = vtype::min(zmm[0], zmm3r);
zmm_t zmm_t2 = vtype::min(zmm[1], zmm2r);
zmm_t zmm_t3 = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5),
vtype::max(zmm[1], zmm2r));
zmm_t zmm_t4 = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5),
vtype::max(zmm[0], zmm3r));
zmm_t zmm0 = vtype::min(zmm_t1, zmm_t2);
zmm_t zmm1 = vtype::max(zmm_t1, zmm_t2);
zmm_t zmm2 = vtype::min(zmm_t3, zmm_t4);
zmm_t zmm3 = vtype::max(zmm_t3, zmm_t4);
zmm[0] = bitonic_merge_zmm_32bit<vtype>(zmm0);
zmm[1] = bitonic_merge_zmm_32bit<vtype>(zmm1);
zmm[2] = bitonic_merge_zmm_32bit<vtype>(zmm2);
zmm[3] = bitonic_merge_zmm_32bit<vtype>(zmm3);
}
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE void bitonic_merge_eight_zmm_32bit(zmm_t *zmm) {
zmm_t zmm4r = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5), zmm[4]);
zmm_t zmm5r = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5), zmm[5]);
zmm_t zmm6r = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5), zmm[6]);
zmm_t zmm7r = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5), zmm[7]);
zmm_t zmm_t1 = vtype::min(zmm[0], zmm7r);
zmm_t zmm_t2 = vtype::min(zmm[1], zmm6r);
zmm_t zmm_t3 = vtype::min(zmm[2], zmm5r);
zmm_t zmm_t4 = vtype::min(zmm[3], zmm4r);
zmm_t zmm_t5 = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5),
vtype::max(zmm[3], zmm4r));
zmm_t zmm_t6 = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5),
vtype::max(zmm[2], zmm5r));
zmm_t zmm_t7 = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5),
vtype::max(zmm[1], zmm6r));
zmm_t zmm_t8 = vtype::permutexvar(_mm512_set_epi32(NETWORK_32BIT_5),
vtype::max(zmm[0], zmm7r));
COEX<vtype>(zmm_t1, zmm_t3);
COEX<vtype>(zmm_t2, zmm_t4);
COEX<vtype>(zmm_t5, zmm_t7);
COEX<vtype>(zmm_t6, zmm_t8);
COEX<vtype>(zmm_t1, zmm_t2);
COEX<vtype>(zmm_t3, zmm_t4);
COEX<vtype>(zmm_t5, zmm_t6);
COEX<vtype>(zmm_t7, zmm_t8);
zmm[0] = bitonic_merge_zmm_32bit<vtype>(zmm_t1);
zmm[1] = bitonic_merge_zmm_32bit<vtype>(zmm_t2);
zmm[2] = bitonic_merge_zmm_32bit<vtype>(zmm_t3);
zmm[3] = bitonic_merge_zmm_32bit<vtype>(zmm_t4);
zmm[4] = bitonic_merge_zmm_32bit<vtype>(zmm_t5);
zmm[5] = bitonic_merge_zmm_32bit<vtype>(zmm_t6);
zmm[6] = bitonic_merge_zmm_32bit<vtype>(zmm_t7);
zmm[7] = bitonic_merge_zmm_32bit<vtype>(zmm_t8);
}
template <typename vtype, typename type_t>
X86_SIMD_SORT_INLINE void sort_16_32bit(type_t *arr, int32_t N) {
typename vtype::opmask_t load_mask = (0x0001 << N) - 0x0001;
typename vtype::zmm_t zmm =
vtype::mask_loadu(vtype::zmm_max(), load_mask, arr);
vtype::mask_storeu(arr, load_mask, sort_zmm_32bit<vtype>(zmm));
}
template <typename vtype, typename type_t>
X86_SIMD_SORT_INLINE void sort_32_32bit(type_t *arr, int32_t N) {
if (N <= 16) {
sort_16_32bit<vtype>(arr, N);
return;
}
using zmm_t = typename vtype::zmm_t;
zmm_t zmm1 = vtype::loadu(arr);
typename vtype::opmask_t load_mask = (0x0001 << (N - 16)) - 0x0001;
zmm_t zmm2 = vtype::mask_loadu(vtype::zmm_max(), load_mask, arr + 16);
zmm1 = sort_zmm_32bit<vtype>(zmm1);
zmm2 = sort_zmm_32bit<vtype>(zmm2);
bitonic_merge_two_zmm_32bit<vtype>(&zmm1, &zmm2);
vtype::storeu(arr, zmm1);
vtype::mask_storeu(arr + 16, load_mask, zmm2);
}
template <typename vtype, typename type_t>
X86_SIMD_SORT_INLINE void sort_64_32bit(type_t *arr, int32_t N) {
if (N <= 32) {
sort_32_32bit<vtype>(arr, N);
return;
}
using zmm_t = typename vtype::zmm_t;
using opmask_t = typename vtype::opmask_t;
zmm_t zmm[4];
zmm[0] = vtype::loadu(arr);
zmm[1] = vtype::loadu(arr + 16);
opmask_t load_mask1 = 0xFFFF, load_mask2 = 0xFFFF;
uint64_t combined_mask = (0x1ull << (N - 32)) - 0x1ull;
load_mask1 &= combined_mask & 0xFFFF;
load_mask2 &= (combined_mask >> 16) & 0xFFFF;
zmm[2] = vtype::mask_loadu(vtype::zmm_max(), load_mask1, arr + 32);
zmm[3] = vtype::mask_loadu(vtype::zmm_max(), load_mask2, arr + 48);
zmm[0] = sort_zmm_32bit<vtype>(zmm[0]);
zmm[1] = sort_zmm_32bit<vtype>(zmm[1]);
zmm[2] = sort_zmm_32bit<vtype>(zmm[2]);
zmm[3] = sort_zmm_32bit<vtype>(zmm[3]);
bitonic_merge_two_zmm_32bit<vtype>(&zmm[0], &zmm[1]);
bitonic_merge_two_zmm_32bit<vtype>(&zmm[2], &zmm[3]);
bitonic_merge_four_zmm_32bit<vtype>(zmm);
vtype::storeu(arr, zmm[0]);
vtype::storeu(arr + 16, zmm[1]);
vtype::mask_storeu(arr + 32, load_mask1, zmm[2]);
vtype::mask_storeu(arr + 48, load_mask2, zmm[3]);
}
template <typename vtype, typename type_t>
X86_SIMD_SORT_INLINE void sort_128_32bit(type_t *arr, int32_t N) {
if (N <= 64) {
sort_64_32bit<vtype>(arr, N);
return;
}
using zmm_t = typename vtype::zmm_t;
using opmask_t = typename vtype::opmask_t;
zmm_t zmm[8];
zmm[0] = vtype::loadu(arr);
zmm[1] = vtype::loadu(arr + 16);
zmm[2] = vtype::loadu(arr + 32);
zmm[3] = vtype::loadu(arr + 48);
zmm[0] = sort_zmm_32bit<vtype>(zmm[0]);
zmm[1] = sort_zmm_32bit<vtype>(zmm[1]);
zmm[2] = sort_zmm_32bit<vtype>(zmm[2]);
zmm[3] = sort_zmm_32bit<vtype>(zmm[3]);
opmask_t load_mask1 = 0xFFFF, load_mask2 = 0xFFFF;
opmask_t load_mask3 = 0xFFFF, load_mask4 = 0xFFFF;
if (N != 128) {
uint64_t combined_mask = (0x1ull << (N - 64)) - 0x1ull;
load_mask1 &= combined_mask & 0xFFFF;
load_mask2 &= (combined_mask >> 16) & 0xFFFF;
load_mask3 &= (combined_mask >> 32) & 0xFFFF;
load_mask4 &= (combined_mask >> 48) & 0xFFFF;
}
zmm[4] = vtype::mask_loadu(vtype::zmm_max(), load_mask1, arr + 64);
zmm[5] = vtype::mask_loadu(vtype::zmm_max(), load_mask2, arr + 80);
zmm[6] = vtype::mask_loadu(vtype::zmm_max(), load_mask3, arr + 96);
zmm[7] = vtype::mask_loadu(vtype::zmm_max(), load_mask4, arr + 112);
zmm[4] = sort_zmm_32bit<vtype>(zmm[4]);
zmm[5] = sort_zmm_32bit<vtype>(zmm[5]);
zmm[6] = sort_zmm_32bit<vtype>(zmm[6]);
zmm[7] = sort_zmm_32bit<vtype>(zmm[7]);
bitonic_merge_two_zmm_32bit<vtype>(&zmm[0], &zmm[1]);
bitonic_merge_two_zmm_32bit<vtype>(&zmm[2], &zmm[3]);
bitonic_merge_two_zmm_32bit<vtype>(&zmm[4], &zmm[5]);
bitonic_merge_two_zmm_32bit<vtype>(&zmm[6], &zmm[7]);
bitonic_merge_four_zmm_32bit<vtype>(zmm);
bitonic_merge_four_zmm_32bit<vtype>(zmm + 4);
bitonic_merge_eight_zmm_32bit<vtype>(zmm);
vtype::storeu(arr, zmm[0]);
vtype::storeu(arr + 16, zmm[1]);
vtype::storeu(arr + 32, zmm[2]);
vtype::storeu(arr + 48, zmm[3]);
vtype::mask_storeu(arr + 64, load_mask1, zmm[4]);
vtype::mask_storeu(arr + 80, load_mask2, zmm[5]);
vtype::mask_storeu(arr + 96, load_mask3, zmm[6]);
vtype::mask_storeu(arr + 112, load_mask4, zmm[7]);
}
template <typename vtype, typename type_t>
static void qsort_32bit_(type_t *arr, int64_t left, int64_t right,
int64_t max_iters) {
/*
* Resort to std::sort if quicksort isnt making any progress
*/
if (max_iters <= 0) {
std::sort(arr + left, arr + right + 1);
return;
}
/*
* Base case: use bitonic networks to sort arrays <= 128
*/
if (right + 1 - left <= 128) {
sort_128_32bit<vtype>(arr + left, (int32_t)(right + 1 - left));
return;
}
type_t pivot = get_pivot_scalar<type_t>(arr, left, right);
type_t smallest = vtype::type_max();
type_t biggest = vtype::type_min();
int64_t pivot_index = partition_avx512_unrolled<vtype, 2>(
arr, left, right + 1, pivot, &smallest, &biggest, false);
if (pivot != smallest)
qsort_32bit_<vtype>(arr, left, pivot_index - 1, max_iters - 1);
if (pivot != biggest)
qsort_32bit_<vtype>(arr, pivot_index, right, max_iters - 1);
}
template <>
void inline avx512_qsort<int32_t>(int32_t *arr, int64_t fromIndex, int64_t toIndex) {
int64_t arrsize = toIndex - fromIndex;
if (arrsize > 1) {
qsort_32bit_<zmm_vector<int32_t>, int32_t>(arr, fromIndex, toIndex - 1,
2 * (int64_t)log2(arrsize));
}
}
template <>
void inline avx512_qsort<float>(float *arr, int64_t fromIndex, int64_t toIndex) {
int64_t arrsize = toIndex - fromIndex;
if (arrsize > 1) {
qsort_32bit_<zmm_vector<float>, float>(arr, fromIndex, toIndex - 1,
2 * (int64_t)log2(arrsize));
}
}
#endif // AVX512_QSORT_32BIT

View file

@ -0,0 +1,212 @@
/*
* Copyright (c) 2021, 2023, Intel Corporation. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// This implementation is based on x86-simd-sort(https://github.com/intel/x86-simd-sort)
#ifndef AVX512_64BIT_COMMON
#define AVX512_64BIT_COMMON
#include "avx512-common-qsort.h"
/*
* Constants used in sorting 8 elements in a ZMM registers. Based on Bitonic
* sorting network (see
* https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg)
*/
// ZMM 7, 6, 5, 4, 3, 2, 1, 0
#define NETWORK_64BIT_1 4, 5, 6, 7, 0, 1, 2, 3
#define NETWORK_64BIT_2 0, 1, 2, 3, 4, 5, 6, 7
#define NETWORK_64BIT_3 5, 4, 7, 6, 1, 0, 3, 2
#define NETWORK_64BIT_4 3, 2, 1, 0, 7, 6, 5, 4
template <>
struct zmm_vector<int64_t> {
using type_t = int64_t;
using zmm_t = __m512i;
using zmmi_t = __m512i;
using ymm_t = __m512i;
using opmask_t = __mmask8;
static const uint8_t numlanes = 8;
static type_t type_max() { return X86_SIMD_SORT_MAX_INT64; }
static type_t type_min() { return X86_SIMD_SORT_MIN_INT64; }
static zmm_t zmm_max() {
return _mm512_set1_epi64(type_max());
} // TODO: this should broadcast bits as is?
static zmmi_t seti(int v1, int v2, int v3, int v4, int v5, int v6, int v7,
int v8) {
return _mm512_set_epi64(v1, v2, v3, v4, v5, v6, v7, v8);
}
static opmask_t kxor_opmask(opmask_t x, opmask_t y) {
return _kxor_mask8(x, y);
}
static opmask_t knot_opmask(opmask_t x) { return _knot_mask8(x); }
static opmask_t le(zmm_t x, zmm_t y) {
return _mm512_cmp_epi64_mask(x, y, _MM_CMPINT_LE);
}
static opmask_t ge(zmm_t x, zmm_t y) {
return _mm512_cmp_epi64_mask(x, y, _MM_CMPINT_NLT);
}
static opmask_t gt(zmm_t x, zmm_t y) {
return _mm512_cmp_epi64_mask(x, y, _MM_CMPINT_GT);
}
static opmask_t eq(zmm_t x, zmm_t y) {
return _mm512_cmp_epi64_mask(x, y, _MM_CMPINT_EQ);
}
template <int scale>
static zmm_t mask_i64gather(zmm_t src, opmask_t mask, __m512i index,
void const *base) {
return _mm512_mask_i64gather_epi64(src, mask, index, base, scale);
}
template <int scale>
static zmm_t i64gather(__m512i index, void const *base) {
return _mm512_i64gather_epi64(index, base, scale);
}
static zmm_t loadu(void const *mem) { return _mm512_loadu_si512(mem); }
static zmm_t max(zmm_t x, zmm_t y) { return _mm512_max_epi64(x, y); }
static void mask_compressstoreu(void *mem, opmask_t mask, zmm_t x) {
return _mm512_mask_compressstoreu_epi64(mem, mask, x);
}
static zmm_t maskz_loadu(opmask_t mask, void const *mem) {
return _mm512_maskz_loadu_epi64(mask, mem);
}
static zmm_t mask_loadu(zmm_t x, opmask_t mask, void const *mem) {
return _mm512_mask_loadu_epi64(x, mask, mem);
}
static zmm_t mask_mov(zmm_t x, opmask_t mask, zmm_t y) {
return _mm512_mask_mov_epi64(x, mask, y);
}
static void mask_storeu(void *mem, opmask_t mask, zmm_t x) {
return _mm512_mask_storeu_epi64(mem, mask, x);
}
static zmm_t min(zmm_t x, zmm_t y) { return _mm512_min_epi64(x, y); }
static zmm_t permutexvar(__m512i idx, zmm_t zmm) {
return _mm512_permutexvar_epi64(idx, zmm);
}
static type_t reducemax(zmm_t v) { return _mm512_reduce_max_epi64(v); }
static type_t reducemin(zmm_t v) { return _mm512_reduce_min_epi64(v); }
static zmm_t set1(type_t v) { return _mm512_set1_epi64(v); }
template <uint8_t mask>
static zmm_t shuffle(zmm_t zmm) {
__m512d temp = _mm512_castsi512_pd(zmm);
return _mm512_castpd_si512(
_mm512_shuffle_pd(temp, temp, (_MM_PERM_ENUM)mask));
}
static void storeu(void *mem, zmm_t x) { _mm512_storeu_si512(mem, x); }
};
template <>
struct zmm_vector<double> {
using type_t = double;
using zmm_t = __m512d;
using zmmi_t = __m512i;
using ymm_t = __m512d;
using opmask_t = __mmask8;
static const uint8_t numlanes = 8;
static type_t type_max() { return X86_SIMD_SORT_INFINITY; }
static type_t type_min() { return -X86_SIMD_SORT_INFINITY; }
static zmm_t zmm_max() { return _mm512_set1_pd(type_max()); }
static zmmi_t seti(int v1, int v2, int v3, int v4, int v5, int v6, int v7,
int v8) {
return _mm512_set_epi64(v1, v2, v3, v4, v5, v6, v7, v8);
}
static zmm_t maskz_loadu(opmask_t mask, void const *mem) {
return _mm512_maskz_loadu_pd(mask, mem);
}
static opmask_t knot_opmask(opmask_t x) { return _knot_mask8(x); }
static opmask_t ge(zmm_t x, zmm_t y) {
return _mm512_cmp_pd_mask(x, y, _CMP_GE_OQ);
}
static opmask_t gt(zmm_t x, zmm_t y) {
return _mm512_cmp_pd_mask(x, y, _CMP_GT_OQ);
}
static opmask_t eq(zmm_t x, zmm_t y) {
return _mm512_cmp_pd_mask(x, y, _CMP_EQ_OQ);
}
template <int type>
static opmask_t fpclass(zmm_t x) {
return _mm512_fpclass_pd_mask(x, type);
}
template <int scale>
static zmm_t mask_i64gather(zmm_t src, opmask_t mask, __m512i index,
void const *base) {
return _mm512_mask_i64gather_pd(src, mask, index, base, scale);
}
template <int scale>
static zmm_t i64gather(__m512i index, void const *base) {
return _mm512_i64gather_pd(index, base, scale);
}
static zmm_t loadu(void const *mem) { return _mm512_loadu_pd(mem); }
static zmm_t max(zmm_t x, zmm_t y) { return _mm512_max_pd(x, y); }
static void mask_compressstoreu(void *mem, opmask_t mask, zmm_t x) {
return _mm512_mask_compressstoreu_pd(mem, mask, x);
}
static zmm_t mask_loadu(zmm_t x, opmask_t mask, void const *mem) {
return _mm512_mask_loadu_pd(x, mask, mem);
}
static zmm_t mask_mov(zmm_t x, opmask_t mask, zmm_t y) {
return _mm512_mask_mov_pd(x, mask, y);
}
static void mask_storeu(void *mem, opmask_t mask, zmm_t x) {
return _mm512_mask_storeu_pd(mem, mask, x);
}
static zmm_t min(zmm_t x, zmm_t y) { return _mm512_min_pd(x, y); }
static zmm_t permutexvar(__m512i idx, zmm_t zmm) {
return _mm512_permutexvar_pd(idx, zmm);
}
static type_t reducemax(zmm_t v) { return _mm512_reduce_max_pd(v); }
static type_t reducemin(zmm_t v) { return _mm512_reduce_min_pd(v); }
static zmm_t set1(type_t v) { return _mm512_set1_pd(v); }
template <uint8_t mask>
static zmm_t shuffle(zmm_t zmm) {
return _mm512_shuffle_pd(zmm, zmm, (_MM_PERM_ENUM)mask);
}
static void storeu(void *mem, zmm_t x) { _mm512_storeu_pd(mem, x); }
};
/*
* Assumes zmm is random and performs a full sorting network defined in
* https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg
*/
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE zmm_t sort_zmm_64bit(zmm_t zmm) {
const typename vtype::zmmi_t rev_index = vtype::seti(NETWORK_64BIT_2);
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(1, 1, 1, 1)>(zmm), 0xAA);
zmm = cmp_merge<vtype>(
zmm, vtype::permutexvar(vtype::seti(NETWORK_64BIT_1), zmm), 0xCC);
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(1, 1, 1, 1)>(zmm), 0xAA);
zmm = cmp_merge<vtype>(zmm, vtype::permutexvar(rev_index, zmm), 0xF0);
zmm = cmp_merge<vtype>(
zmm, vtype::permutexvar(vtype::seti(NETWORK_64BIT_3), zmm), 0xCC);
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(1, 1, 1, 1)>(zmm), 0xAA);
return zmm;
}
#endif

View file

@ -0,0 +1,772 @@
/*
* Copyright (c) 2021, 2023, Intel Corporation. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// This implementation is based on x86-simd-sort(https://github.com/intel/x86-simd-sort)
#ifndef AVX512_QSORT_64BIT
#define AVX512_QSORT_64BIT
#include "avx512-64bit-common.h"
// Assumes zmm is bitonic and performs a recursive half cleaner
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE zmm_t bitonic_merge_zmm_64bit(zmm_t zmm) {
// 1) half_cleaner[8]: compare 0-4, 1-5, 2-6, 3-7
zmm = cmp_merge<vtype>(
zmm, vtype::permutexvar(_mm512_set_epi64(NETWORK_64BIT_4), zmm), 0xF0);
// 2) half_cleaner[4]
zmm = cmp_merge<vtype>(
zmm, vtype::permutexvar(_mm512_set_epi64(NETWORK_64BIT_3), zmm), 0xCC);
// 3) half_cleaner[1]
zmm = cmp_merge<vtype>(
zmm, vtype::template shuffle<SHUFFLE_MASK(1, 1, 1, 1)>(zmm), 0xAA);
return zmm;
}
// Assumes zmm1 and zmm2 are sorted and performs a recursive half cleaner
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE void bitonic_merge_two_zmm_64bit(zmm_t &zmm1,
zmm_t &zmm2) {
const __m512i rev_index = _mm512_set_epi64(NETWORK_64BIT_2);
// 1) First step of a merging network: coex of zmm1 and zmm2 reversed
zmm2 = vtype::permutexvar(rev_index, zmm2);
zmm_t zmm3 = vtype::min(zmm1, zmm2);
zmm_t zmm4 = vtype::max(zmm1, zmm2);
// 2) Recursive half cleaner for each
zmm1 = bitonic_merge_zmm_64bit<vtype>(zmm3);
zmm2 = bitonic_merge_zmm_64bit<vtype>(zmm4);
}
// Assumes [zmm0, zmm1] and [zmm2, zmm3] are sorted and performs a recursive
// half cleaner
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE void bitonic_merge_four_zmm_64bit(zmm_t *zmm) {
const __m512i rev_index = _mm512_set_epi64(NETWORK_64BIT_2);
// 1) First step of a merging network
zmm_t zmm2r = vtype::permutexvar(rev_index, zmm[2]);
zmm_t zmm3r = vtype::permutexvar(rev_index, zmm[3]);
zmm_t zmm_t1 = vtype::min(zmm[0], zmm3r);
zmm_t zmm_t2 = vtype::min(zmm[1], zmm2r);
// 2) Recursive half clearer: 16
zmm_t zmm_t3 = vtype::permutexvar(rev_index, vtype::max(zmm[1], zmm2r));
zmm_t zmm_t4 = vtype::permutexvar(rev_index, vtype::max(zmm[0], zmm3r));
zmm_t zmm0 = vtype::min(zmm_t1, zmm_t2);
zmm_t zmm1 = vtype::max(zmm_t1, zmm_t2);
zmm_t zmm2 = vtype::min(zmm_t3, zmm_t4);
zmm_t zmm3 = vtype::max(zmm_t3, zmm_t4);
zmm[0] = bitonic_merge_zmm_64bit<vtype>(zmm0);
zmm[1] = bitonic_merge_zmm_64bit<vtype>(zmm1);
zmm[2] = bitonic_merge_zmm_64bit<vtype>(zmm2);
zmm[3] = bitonic_merge_zmm_64bit<vtype>(zmm3);
}
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE void bitonic_merge_eight_zmm_64bit(zmm_t *zmm) {
const __m512i rev_index = _mm512_set_epi64(NETWORK_64BIT_2);
zmm_t zmm4r = vtype::permutexvar(rev_index, zmm[4]);
zmm_t zmm5r = vtype::permutexvar(rev_index, zmm[5]);
zmm_t zmm6r = vtype::permutexvar(rev_index, zmm[6]);
zmm_t zmm7r = vtype::permutexvar(rev_index, zmm[7]);
zmm_t zmm_t1 = vtype::min(zmm[0], zmm7r);
zmm_t zmm_t2 = vtype::min(zmm[1], zmm6r);
zmm_t zmm_t3 = vtype::min(zmm[2], zmm5r);
zmm_t zmm_t4 = vtype::min(zmm[3], zmm4r);
zmm_t zmm_t5 = vtype::permutexvar(rev_index, vtype::max(zmm[3], zmm4r));
zmm_t zmm_t6 = vtype::permutexvar(rev_index, vtype::max(zmm[2], zmm5r));
zmm_t zmm_t7 = vtype::permutexvar(rev_index, vtype::max(zmm[1], zmm6r));
zmm_t zmm_t8 = vtype::permutexvar(rev_index, vtype::max(zmm[0], zmm7r));
COEX<vtype>(zmm_t1, zmm_t3);
COEX<vtype>(zmm_t2, zmm_t4);
COEX<vtype>(zmm_t5, zmm_t7);
COEX<vtype>(zmm_t6, zmm_t8);
COEX<vtype>(zmm_t1, zmm_t2);
COEX<vtype>(zmm_t3, zmm_t4);
COEX<vtype>(zmm_t5, zmm_t6);
COEX<vtype>(zmm_t7, zmm_t8);
zmm[0] = bitonic_merge_zmm_64bit<vtype>(zmm_t1);
zmm[1] = bitonic_merge_zmm_64bit<vtype>(zmm_t2);
zmm[2] = bitonic_merge_zmm_64bit<vtype>(zmm_t3);
zmm[3] = bitonic_merge_zmm_64bit<vtype>(zmm_t4);
zmm[4] = bitonic_merge_zmm_64bit<vtype>(zmm_t5);
zmm[5] = bitonic_merge_zmm_64bit<vtype>(zmm_t6);
zmm[6] = bitonic_merge_zmm_64bit<vtype>(zmm_t7);
zmm[7] = bitonic_merge_zmm_64bit<vtype>(zmm_t8);
}
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE void bitonic_merge_sixteen_zmm_64bit(zmm_t *zmm) {
const __m512i rev_index = _mm512_set_epi64(NETWORK_64BIT_2);
zmm_t zmm8r = vtype::permutexvar(rev_index, zmm[8]);
zmm_t zmm9r = vtype::permutexvar(rev_index, zmm[9]);
zmm_t zmm10r = vtype::permutexvar(rev_index, zmm[10]);
zmm_t zmm11r = vtype::permutexvar(rev_index, zmm[11]);
zmm_t zmm12r = vtype::permutexvar(rev_index, zmm[12]);
zmm_t zmm13r = vtype::permutexvar(rev_index, zmm[13]);
zmm_t zmm14r = vtype::permutexvar(rev_index, zmm[14]);
zmm_t zmm15r = vtype::permutexvar(rev_index, zmm[15]);
zmm_t zmm_t1 = vtype::min(zmm[0], zmm15r);
zmm_t zmm_t2 = vtype::min(zmm[1], zmm14r);
zmm_t zmm_t3 = vtype::min(zmm[2], zmm13r);
zmm_t zmm_t4 = vtype::min(zmm[3], zmm12r);
zmm_t zmm_t5 = vtype::min(zmm[4], zmm11r);
zmm_t zmm_t6 = vtype::min(zmm[5], zmm10r);
zmm_t zmm_t7 = vtype::min(zmm[6], zmm9r);
zmm_t zmm_t8 = vtype::min(zmm[7], zmm8r);
zmm_t zmm_t9 = vtype::permutexvar(rev_index, vtype::max(zmm[7], zmm8r));
zmm_t zmm_t10 = vtype::permutexvar(rev_index, vtype::max(zmm[6], zmm9r));
zmm_t zmm_t11 = vtype::permutexvar(rev_index, vtype::max(zmm[5], zmm10r));
zmm_t zmm_t12 = vtype::permutexvar(rev_index, vtype::max(zmm[4], zmm11r));
zmm_t zmm_t13 = vtype::permutexvar(rev_index, vtype::max(zmm[3], zmm12r));
zmm_t zmm_t14 = vtype::permutexvar(rev_index, vtype::max(zmm[2], zmm13r));
zmm_t zmm_t15 = vtype::permutexvar(rev_index, vtype::max(zmm[1], zmm14r));
zmm_t zmm_t16 = vtype::permutexvar(rev_index, vtype::max(zmm[0], zmm15r));
// Recusive half clear 16 zmm regs
COEX<vtype>(zmm_t1, zmm_t5);
COEX<vtype>(zmm_t2, zmm_t6);
COEX<vtype>(zmm_t3, zmm_t7);
COEX<vtype>(zmm_t4, zmm_t8);
COEX<vtype>(zmm_t9, zmm_t13);
COEX<vtype>(zmm_t10, zmm_t14);
COEX<vtype>(zmm_t11, zmm_t15);
COEX<vtype>(zmm_t12, zmm_t16);
//
COEX<vtype>(zmm_t1, zmm_t3);
COEX<vtype>(zmm_t2, zmm_t4);
COEX<vtype>(zmm_t5, zmm_t7);
COEX<vtype>(zmm_t6, zmm_t8);
COEX<vtype>(zmm_t9, zmm_t11);
COEX<vtype>(zmm_t10, zmm_t12);
COEX<vtype>(zmm_t13, zmm_t15);
COEX<vtype>(zmm_t14, zmm_t16);
//
COEX<vtype>(zmm_t1, zmm_t2);
COEX<vtype>(zmm_t3, zmm_t4);
COEX<vtype>(zmm_t5, zmm_t6);
COEX<vtype>(zmm_t7, zmm_t8);
COEX<vtype>(zmm_t9, zmm_t10);
COEX<vtype>(zmm_t11, zmm_t12);
COEX<vtype>(zmm_t13, zmm_t14);
COEX<vtype>(zmm_t15, zmm_t16);
//
zmm[0] = bitonic_merge_zmm_64bit<vtype>(zmm_t1);
zmm[1] = bitonic_merge_zmm_64bit<vtype>(zmm_t2);
zmm[2] = bitonic_merge_zmm_64bit<vtype>(zmm_t3);
zmm[3] = bitonic_merge_zmm_64bit<vtype>(zmm_t4);
zmm[4] = bitonic_merge_zmm_64bit<vtype>(zmm_t5);
zmm[5] = bitonic_merge_zmm_64bit<vtype>(zmm_t6);
zmm[6] = bitonic_merge_zmm_64bit<vtype>(zmm_t7);
zmm[7] = bitonic_merge_zmm_64bit<vtype>(zmm_t8);
zmm[8] = bitonic_merge_zmm_64bit<vtype>(zmm_t9);
zmm[9] = bitonic_merge_zmm_64bit<vtype>(zmm_t10);
zmm[10] = bitonic_merge_zmm_64bit<vtype>(zmm_t11);
zmm[11] = bitonic_merge_zmm_64bit<vtype>(zmm_t12);
zmm[12] = bitonic_merge_zmm_64bit<vtype>(zmm_t13);
zmm[13] = bitonic_merge_zmm_64bit<vtype>(zmm_t14);
zmm[14] = bitonic_merge_zmm_64bit<vtype>(zmm_t15);
zmm[15] = bitonic_merge_zmm_64bit<vtype>(zmm_t16);
}
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
X86_SIMD_SORT_INLINE void bitonic_merge_32_zmm_64bit(zmm_t *zmm) {
const __m512i rev_index = _mm512_set_epi64(NETWORK_64BIT_2);
zmm_t zmm16r = vtype::permutexvar(rev_index, zmm[16]);
zmm_t zmm17r = vtype::permutexvar(rev_index, zmm[17]);
zmm_t zmm18r = vtype::permutexvar(rev_index, zmm[18]);
zmm_t zmm19r = vtype::permutexvar(rev_index, zmm[19]);
zmm_t zmm20r = vtype::permutexvar(rev_index, zmm[20]);
zmm_t zmm21r = vtype::permutexvar(rev_index, zmm[21]);
zmm_t zmm22r = vtype::permutexvar(rev_index, zmm[22]);
zmm_t zmm23r = vtype::permutexvar(rev_index, zmm[23]);
zmm_t zmm24r = vtype::permutexvar(rev_index, zmm[24]);
zmm_t zmm25r = vtype::permutexvar(rev_index, zmm[25]);
zmm_t zmm26r = vtype::permutexvar(rev_index, zmm[26]);
zmm_t zmm27r = vtype::permutexvar(rev_index, zmm[27]);
zmm_t zmm28r = vtype::permutexvar(rev_index, zmm[28]);
zmm_t zmm29r = vtype::permutexvar(rev_index, zmm[29]);
zmm_t zmm30r = vtype::permutexvar(rev_index, zmm[30]);
zmm_t zmm31r = vtype::permutexvar(rev_index, zmm[31]);
zmm_t zmm_t1 = vtype::min(zmm[0], zmm31r);
zmm_t zmm_t2 = vtype::min(zmm[1], zmm30r);
zmm_t zmm_t3 = vtype::min(zmm[2], zmm29r);
zmm_t zmm_t4 = vtype::min(zmm[3], zmm28r);
zmm_t zmm_t5 = vtype::min(zmm[4], zmm27r);
zmm_t zmm_t6 = vtype::min(zmm[5], zmm26r);
zmm_t zmm_t7 = vtype::min(zmm[6], zmm25r);
zmm_t zmm_t8 = vtype::min(zmm[7], zmm24r);
zmm_t zmm_t9 = vtype::min(zmm[8], zmm23r);
zmm_t zmm_t10 = vtype::min(zmm[9], zmm22r);
zmm_t zmm_t11 = vtype::min(zmm[10], zmm21r);
zmm_t zmm_t12 = vtype::min(zmm[11], zmm20r);
zmm_t zmm_t13 = vtype::min(zmm[12], zmm19r);
zmm_t zmm_t14 = vtype::min(zmm[13], zmm18r);
zmm_t zmm_t15 = vtype::min(zmm[14], zmm17r);
zmm_t zmm_t16 = vtype::min(zmm[15], zmm16r);
zmm_t zmm_t17 = vtype::permutexvar(rev_index, vtype::max(zmm[15], zmm16r));
zmm_t zmm_t18 = vtype::permutexvar(rev_index, vtype::max(zmm[14], zmm17r));
zmm_t zmm_t19 = vtype::permutexvar(rev_index, vtype::max(zmm[13], zmm18r));
zmm_t zmm_t20 = vtype::permutexvar(rev_index, vtype::max(zmm[12], zmm19r));
zmm_t zmm_t21 = vtype::permutexvar(rev_index, vtype::max(zmm[11], zmm20r));
zmm_t zmm_t22 = vtype::permutexvar(rev_index, vtype::max(zmm[10], zmm21r));
zmm_t zmm_t23 = vtype::permutexvar(rev_index, vtype::max(zmm[9], zmm22r));
zmm_t zmm_t24 = vtype::permutexvar(rev_index, vtype::max(zmm[8], zmm23r));
zmm_t zmm_t25 = vtype::permutexvar(rev_index, vtype::max(zmm[7], zmm24r));
zmm_t zmm_t26 = vtype::permutexvar(rev_index, vtype::max(zmm[6], zmm25r));
zmm_t zmm_t27 = vtype::permutexvar(rev_index, vtype::max(zmm[5], zmm26r));
zmm_t zmm_t28 = vtype::permutexvar(rev_index, vtype::max(zmm[4], zmm27r));
zmm_t zmm_t29 = vtype::permutexvar(rev_index, vtype::max(zmm[3], zmm28r));
zmm_t zmm_t30 = vtype::permutexvar(rev_index, vtype::max(zmm[2], zmm29r));
zmm_t zmm_t31 = vtype::permutexvar(rev_index, vtype::max(zmm[1], zmm30r));
zmm_t zmm_t32 = vtype::permutexvar(rev_index, vtype::max(zmm[0], zmm31r));
// Recusive half clear 16 zmm regs
COEX<vtype>(zmm_t1, zmm_t9);
COEX<vtype>(zmm_t2, zmm_t10);
COEX<vtype>(zmm_t3, zmm_t11);
COEX<vtype>(zmm_t4, zmm_t12);
COEX<vtype>(zmm_t5, zmm_t13);
COEX<vtype>(zmm_t6, zmm_t14);
COEX<vtype>(zmm_t7, zmm_t15);
COEX<vtype>(zmm_t8, zmm_t16);
COEX<vtype>(zmm_t17, zmm_t25);
COEX<vtype>(zmm_t18, zmm_t26);
COEX<vtype>(zmm_t19, zmm_t27);
COEX<vtype>(zmm_t20, zmm_t28);
COEX<vtype>(zmm_t21, zmm_t29);
COEX<vtype>(zmm_t22, zmm_t30);
COEX<vtype>(zmm_t23, zmm_t31);
COEX<vtype>(zmm_t24, zmm_t32);
//
COEX<vtype>(zmm_t1, zmm_t5);
COEX<vtype>(zmm_t2, zmm_t6);
COEX<vtype>(zmm_t3, zmm_t7);
COEX<vtype>(zmm_t4, zmm_t8);
COEX<vtype>(zmm_t9, zmm_t13);
COEX<vtype>(zmm_t10, zmm_t14);
COEX<vtype>(zmm_t11, zmm_t15);
COEX<vtype>(zmm_t12, zmm_t16);
COEX<vtype>(zmm_t17, zmm_t21);
COEX<vtype>(zmm_t18, zmm_t22);
COEX<vtype>(zmm_t19, zmm_t23);
COEX<vtype>(zmm_t20, zmm_t24);
COEX<vtype>(zmm_t25, zmm_t29);
COEX<vtype>(zmm_t26, zmm_t30);
COEX<vtype>(zmm_t27, zmm_t31);
COEX<vtype>(zmm_t28, zmm_t32);
//
COEX<vtype>(zmm_t1, zmm_t3);
COEX<vtype>(zmm_t2, zmm_t4);
COEX<vtype>(zmm_t5, zmm_t7);
COEX<vtype>(zmm_t6, zmm_t8);
COEX<vtype>(zmm_t9, zmm_t11);
COEX<vtype>(zmm_t10, zmm_t12);
COEX<vtype>(zmm_t13, zmm_t15);
COEX<vtype>(zmm_t14, zmm_t16);
COEX<vtype>(zmm_t17, zmm_t19);
COEX<vtype>(zmm_t18, zmm_t20);
COEX<vtype>(zmm_t21, zmm_t23);
COEX<vtype>(zmm_t22, zmm_t24);
COEX<vtype>(zmm_t25, zmm_t27);
COEX<vtype>(zmm_t26, zmm_t28);
COEX<vtype>(zmm_t29, zmm_t31);
COEX<vtype>(zmm_t30, zmm_t32);
//
COEX<vtype>(zmm_t1, zmm_t2);
COEX<vtype>(zmm_t3, zmm_t4);
COEX<vtype>(zmm_t5, zmm_t6);
COEX<vtype>(zmm_t7, zmm_t8);
COEX<vtype>(zmm_t9, zmm_t10);
COEX<vtype>(zmm_t11, zmm_t12);
COEX<vtype>(zmm_t13, zmm_t14);
COEX<vtype>(zmm_t15, zmm_t16);
COEX<vtype>(zmm_t17, zmm_t18);
COEX<vtype>(zmm_t19, zmm_t20);
COEX<vtype>(zmm_t21, zmm_t22);
COEX<vtype>(zmm_t23, zmm_t24);
COEX<vtype>(zmm_t25, zmm_t26);
COEX<vtype>(zmm_t27, zmm_t28);
COEX<vtype>(zmm_t29, zmm_t30);
COEX<vtype>(zmm_t31, zmm_t32);
//
zmm[0] = bitonic_merge_zmm_64bit<vtype>(zmm_t1);
zmm[1] = bitonic_merge_zmm_64bit<vtype>(zmm_t2);
zmm[2] = bitonic_merge_zmm_64bit<vtype>(zmm_t3);
zmm[3] = bitonic_merge_zmm_64bit<vtype>(zmm_t4);
zmm[4] = bitonic_merge_zmm_64bit<vtype>(zmm_t5);
zmm[5] = bitonic_merge_zmm_64bit<vtype>(zmm_t6);
zmm[6] = bitonic_merge_zmm_64bit<vtype>(zmm_t7);
zmm[7] = bitonic_merge_zmm_64bit<vtype>(zmm_t8);
zmm[8] = bitonic_merge_zmm_64bit<vtype>(zmm_t9);
zmm[9] = bitonic_merge_zmm_64bit<vtype>(zmm_t10);
zmm[10] = bitonic_merge_zmm_64bit<vtype>(zmm_t11);
zmm[11] = bitonic_merge_zmm_64bit<vtype>(zmm_t12);
zmm[12] = bitonic_merge_zmm_64bit<vtype>(zmm_t13);
zmm[13] = bitonic_merge_zmm_64bit<vtype>(zmm_t14);
zmm[14] = bitonic_merge_zmm_64bit<vtype>(zmm_t15);
zmm[15] = bitonic_merge_zmm_64bit<vtype>(zmm_t16);
zmm[16] = bitonic_merge_zmm_64bit<vtype>(zmm_t17);
zmm[17] = bitonic_merge_zmm_64bit<vtype>(zmm_t18);
zmm[18] = bitonic_merge_zmm_64bit<vtype>(zmm_t19);
zmm[19] = bitonic_merge_zmm_64bit<vtype>(zmm_t20);
zmm[20] = bitonic_merge_zmm_64bit<vtype>(zmm_t21);
zmm[21] = bitonic_merge_zmm_64bit<vtype>(zmm_t22);
zmm[22] = bitonic_merge_zmm_64bit<vtype>(zmm_t23);
zmm[23] = bitonic_merge_zmm_64bit<vtype>(zmm_t24);
zmm[24] = bitonic_merge_zmm_64bit<vtype>(zmm_t25);
zmm[25] = bitonic_merge_zmm_64bit<vtype>(zmm_t26);
zmm[26] = bitonic_merge_zmm_64bit<vtype>(zmm_t27);
zmm[27] = bitonic_merge_zmm_64bit<vtype>(zmm_t28);
zmm[28] = bitonic_merge_zmm_64bit<vtype>(zmm_t29);
zmm[29] = bitonic_merge_zmm_64bit<vtype>(zmm_t30);
zmm[30] = bitonic_merge_zmm_64bit<vtype>(zmm_t31);
zmm[31] = bitonic_merge_zmm_64bit<vtype>(zmm_t32);
}
template <typename vtype, typename type_t>
X86_SIMD_SORT_INLINE void sort_8_64bit(type_t *arr, int32_t N) {
typename vtype::opmask_t load_mask = (0x01 << N) - 0x01;
typename vtype::zmm_t zmm =
vtype::mask_loadu(vtype::zmm_max(), load_mask, arr);
vtype::mask_storeu(arr, load_mask, sort_zmm_64bit<vtype>(zmm));
}
template <typename vtype, typename type_t>
X86_SIMD_SORT_INLINE void sort_16_64bit(type_t *arr, int32_t N) {
if (N <= 8) {
sort_8_64bit<vtype>(arr, N);
return;
}
using zmm_t = typename vtype::zmm_t;
zmm_t zmm1 = vtype::loadu(arr);
typename vtype::opmask_t load_mask = (0x01 << (N - 8)) - 0x01;
zmm_t zmm2 = vtype::mask_loadu(vtype::zmm_max(), load_mask, arr + 8);
zmm1 = sort_zmm_64bit<vtype>(zmm1);
zmm2 = sort_zmm_64bit<vtype>(zmm2);
bitonic_merge_two_zmm_64bit<vtype>(zmm1, zmm2);
vtype::storeu(arr, zmm1);
vtype::mask_storeu(arr + 8, load_mask, zmm2);
}
template <typename vtype, typename type_t>
X86_SIMD_SORT_INLINE void sort_32_64bit(type_t *arr, int32_t N) {
if (N <= 16) {
sort_16_64bit<vtype>(arr, N);
return;
}
using zmm_t = typename vtype::zmm_t;
using opmask_t = typename vtype::opmask_t;
zmm_t zmm[4];
zmm[0] = vtype::loadu(arr);
zmm[1] = vtype::loadu(arr + 8);
opmask_t load_mask1 = 0xFF, load_mask2 = 0xFF;
uint64_t combined_mask = (0x1ull << (N - 16)) - 0x1ull;
load_mask1 = (combined_mask)&0xFF;
load_mask2 = (combined_mask >> 8) & 0xFF;
zmm[2] = vtype::mask_loadu(vtype::zmm_max(), load_mask1, arr + 16);
zmm[3] = vtype::mask_loadu(vtype::zmm_max(), load_mask2, arr + 24);
zmm[0] = sort_zmm_64bit<vtype>(zmm[0]);
zmm[1] = sort_zmm_64bit<vtype>(zmm[1]);
zmm[2] = sort_zmm_64bit<vtype>(zmm[2]);
zmm[3] = sort_zmm_64bit<vtype>(zmm[3]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[0], zmm[1]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[2], zmm[3]);
bitonic_merge_four_zmm_64bit<vtype>(zmm);
vtype::storeu(arr, zmm[0]);
vtype::storeu(arr + 8, zmm[1]);
vtype::mask_storeu(arr + 16, load_mask1, zmm[2]);
vtype::mask_storeu(arr + 24, load_mask2, zmm[3]);
}
template <typename vtype, typename type_t>
X86_SIMD_SORT_INLINE void sort_64_64bit(type_t *arr, int32_t N) {
if (N <= 32) {
sort_32_64bit<vtype>(arr, N);
return;
}
using zmm_t = typename vtype::zmm_t;
using opmask_t = typename vtype::opmask_t;
zmm_t zmm[8];
zmm[0] = vtype::loadu(arr);
zmm[1] = vtype::loadu(arr + 8);
zmm[2] = vtype::loadu(arr + 16);
zmm[3] = vtype::loadu(arr + 24);
zmm[0] = sort_zmm_64bit<vtype>(zmm[0]);
zmm[1] = sort_zmm_64bit<vtype>(zmm[1]);
zmm[2] = sort_zmm_64bit<vtype>(zmm[2]);
zmm[3] = sort_zmm_64bit<vtype>(zmm[3]);
opmask_t load_mask1 = 0xFF, load_mask2 = 0xFF;
opmask_t load_mask3 = 0xFF, load_mask4 = 0xFF;
// N-32 >= 1
uint64_t combined_mask = (0x1ull << (N - 32)) - 0x1ull;
load_mask1 = (combined_mask)&0xFF;
load_mask2 = (combined_mask >> 8) & 0xFF;
load_mask3 = (combined_mask >> 16) & 0xFF;
load_mask4 = (combined_mask >> 24) & 0xFF;
zmm[4] = vtype::mask_loadu(vtype::zmm_max(), load_mask1, arr + 32);
zmm[5] = vtype::mask_loadu(vtype::zmm_max(), load_mask2, arr + 40);
zmm[6] = vtype::mask_loadu(vtype::zmm_max(), load_mask3, arr + 48);
zmm[7] = vtype::mask_loadu(vtype::zmm_max(), load_mask4, arr + 56);
zmm[4] = sort_zmm_64bit<vtype>(zmm[4]);
zmm[5] = sort_zmm_64bit<vtype>(zmm[5]);
zmm[6] = sort_zmm_64bit<vtype>(zmm[6]);
zmm[7] = sort_zmm_64bit<vtype>(zmm[7]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[0], zmm[1]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[2], zmm[3]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[4], zmm[5]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[6], zmm[7]);
bitonic_merge_four_zmm_64bit<vtype>(zmm);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 4);
bitonic_merge_eight_zmm_64bit<vtype>(zmm);
vtype::storeu(arr, zmm[0]);
vtype::storeu(arr + 8, zmm[1]);
vtype::storeu(arr + 16, zmm[2]);
vtype::storeu(arr + 24, zmm[3]);
vtype::mask_storeu(arr + 32, load_mask1, zmm[4]);
vtype::mask_storeu(arr + 40, load_mask2, zmm[5]);
vtype::mask_storeu(arr + 48, load_mask3, zmm[6]);
vtype::mask_storeu(arr + 56, load_mask4, zmm[7]);
}
template <typename vtype, typename type_t>
X86_SIMD_SORT_INLINE void sort_128_64bit(type_t *arr, int32_t N) {
if (N <= 64) {
sort_64_64bit<vtype>(arr, N);
return;
}
using zmm_t = typename vtype::zmm_t;
using opmask_t = typename vtype::opmask_t;
zmm_t zmm[16];
zmm[0] = vtype::loadu(arr);
zmm[1] = vtype::loadu(arr + 8);
zmm[2] = vtype::loadu(arr + 16);
zmm[3] = vtype::loadu(arr + 24);
zmm[4] = vtype::loadu(arr + 32);
zmm[5] = vtype::loadu(arr + 40);
zmm[6] = vtype::loadu(arr + 48);
zmm[7] = vtype::loadu(arr + 56);
zmm[0] = sort_zmm_64bit<vtype>(zmm[0]);
zmm[1] = sort_zmm_64bit<vtype>(zmm[1]);
zmm[2] = sort_zmm_64bit<vtype>(zmm[2]);
zmm[3] = sort_zmm_64bit<vtype>(zmm[3]);
zmm[4] = sort_zmm_64bit<vtype>(zmm[4]);
zmm[5] = sort_zmm_64bit<vtype>(zmm[5]);
zmm[6] = sort_zmm_64bit<vtype>(zmm[6]);
zmm[7] = sort_zmm_64bit<vtype>(zmm[7]);
opmask_t load_mask1 = 0xFF, load_mask2 = 0xFF;
opmask_t load_mask3 = 0xFF, load_mask4 = 0xFF;
opmask_t load_mask5 = 0xFF, load_mask6 = 0xFF;
opmask_t load_mask7 = 0xFF, load_mask8 = 0xFF;
if (N != 128) {
uint64_t combined_mask = (0x1ull << (N - 64)) - 0x1ull;
load_mask1 = (combined_mask)&0xFF;
load_mask2 = (combined_mask >> 8) & 0xFF;
load_mask3 = (combined_mask >> 16) & 0xFF;
load_mask4 = (combined_mask >> 24) & 0xFF;
load_mask5 = (combined_mask >> 32) & 0xFF;
load_mask6 = (combined_mask >> 40) & 0xFF;
load_mask7 = (combined_mask >> 48) & 0xFF;
load_mask8 = (combined_mask >> 56) & 0xFF;
}
zmm[8] = vtype::mask_loadu(vtype::zmm_max(), load_mask1, arr + 64);
zmm[9] = vtype::mask_loadu(vtype::zmm_max(), load_mask2, arr + 72);
zmm[10] = vtype::mask_loadu(vtype::zmm_max(), load_mask3, arr + 80);
zmm[11] = vtype::mask_loadu(vtype::zmm_max(), load_mask4, arr + 88);
zmm[12] = vtype::mask_loadu(vtype::zmm_max(), load_mask5, arr + 96);
zmm[13] = vtype::mask_loadu(vtype::zmm_max(), load_mask6, arr + 104);
zmm[14] = vtype::mask_loadu(vtype::zmm_max(), load_mask7, arr + 112);
zmm[15] = vtype::mask_loadu(vtype::zmm_max(), load_mask8, arr + 120);
zmm[8] = sort_zmm_64bit<vtype>(zmm[8]);
zmm[9] = sort_zmm_64bit<vtype>(zmm[9]);
zmm[10] = sort_zmm_64bit<vtype>(zmm[10]);
zmm[11] = sort_zmm_64bit<vtype>(zmm[11]);
zmm[12] = sort_zmm_64bit<vtype>(zmm[12]);
zmm[13] = sort_zmm_64bit<vtype>(zmm[13]);
zmm[14] = sort_zmm_64bit<vtype>(zmm[14]);
zmm[15] = sort_zmm_64bit<vtype>(zmm[15]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[0], zmm[1]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[2], zmm[3]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[4], zmm[5]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[6], zmm[7]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[8], zmm[9]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[10], zmm[11]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[12], zmm[13]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[14], zmm[15]);
bitonic_merge_four_zmm_64bit<vtype>(zmm);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 4);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 8);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 12);
bitonic_merge_eight_zmm_64bit<vtype>(zmm);
bitonic_merge_eight_zmm_64bit<vtype>(zmm + 8);
bitonic_merge_sixteen_zmm_64bit<vtype>(zmm);
vtype::storeu(arr, zmm[0]);
vtype::storeu(arr + 8, zmm[1]);
vtype::storeu(arr + 16, zmm[2]);
vtype::storeu(arr + 24, zmm[3]);
vtype::storeu(arr + 32, zmm[4]);
vtype::storeu(arr + 40, zmm[5]);
vtype::storeu(arr + 48, zmm[6]);
vtype::storeu(arr + 56, zmm[7]);
vtype::mask_storeu(arr + 64, load_mask1, zmm[8]);
vtype::mask_storeu(arr + 72, load_mask2, zmm[9]);
vtype::mask_storeu(arr + 80, load_mask3, zmm[10]);
vtype::mask_storeu(arr + 88, load_mask4, zmm[11]);
vtype::mask_storeu(arr + 96, load_mask5, zmm[12]);
vtype::mask_storeu(arr + 104, load_mask6, zmm[13]);
vtype::mask_storeu(arr + 112, load_mask7, zmm[14]);
vtype::mask_storeu(arr + 120, load_mask8, zmm[15]);
}
template <typename vtype, typename type_t>
X86_SIMD_SORT_INLINE void sort_256_64bit(type_t *arr, int32_t N) {
if (N <= 128) {
sort_128_64bit<vtype>(arr, N);
return;
}
using zmm_t = typename vtype::zmm_t;
using opmask_t = typename vtype::opmask_t;
zmm_t zmm[32];
zmm[0] = vtype::loadu(arr);
zmm[1] = vtype::loadu(arr + 8);
zmm[2] = vtype::loadu(arr + 16);
zmm[3] = vtype::loadu(arr + 24);
zmm[4] = vtype::loadu(arr + 32);
zmm[5] = vtype::loadu(arr + 40);
zmm[6] = vtype::loadu(arr + 48);
zmm[7] = vtype::loadu(arr + 56);
zmm[8] = vtype::loadu(arr + 64);
zmm[9] = vtype::loadu(arr + 72);
zmm[10] = vtype::loadu(arr + 80);
zmm[11] = vtype::loadu(arr + 88);
zmm[12] = vtype::loadu(arr + 96);
zmm[13] = vtype::loadu(arr + 104);
zmm[14] = vtype::loadu(arr + 112);
zmm[15] = vtype::loadu(arr + 120);
zmm[0] = sort_zmm_64bit<vtype>(zmm[0]);
zmm[1] = sort_zmm_64bit<vtype>(zmm[1]);
zmm[2] = sort_zmm_64bit<vtype>(zmm[2]);
zmm[3] = sort_zmm_64bit<vtype>(zmm[3]);
zmm[4] = sort_zmm_64bit<vtype>(zmm[4]);
zmm[5] = sort_zmm_64bit<vtype>(zmm[5]);
zmm[6] = sort_zmm_64bit<vtype>(zmm[6]);
zmm[7] = sort_zmm_64bit<vtype>(zmm[7]);
zmm[8] = sort_zmm_64bit<vtype>(zmm[8]);
zmm[9] = sort_zmm_64bit<vtype>(zmm[9]);
zmm[10] = sort_zmm_64bit<vtype>(zmm[10]);
zmm[11] = sort_zmm_64bit<vtype>(zmm[11]);
zmm[12] = sort_zmm_64bit<vtype>(zmm[12]);
zmm[13] = sort_zmm_64bit<vtype>(zmm[13]);
zmm[14] = sort_zmm_64bit<vtype>(zmm[14]);
zmm[15] = sort_zmm_64bit<vtype>(zmm[15]);
opmask_t load_mask1 = 0xFF, load_mask2 = 0xFF;
opmask_t load_mask3 = 0xFF, load_mask4 = 0xFF;
opmask_t load_mask5 = 0xFF, load_mask6 = 0xFF;
opmask_t load_mask7 = 0xFF, load_mask8 = 0xFF;
opmask_t load_mask9 = 0xFF, load_mask10 = 0xFF;
opmask_t load_mask11 = 0xFF, load_mask12 = 0xFF;
opmask_t load_mask13 = 0xFF, load_mask14 = 0xFF;
opmask_t load_mask15 = 0xFF, load_mask16 = 0xFF;
if (N != 256) {
uint64_t combined_mask;
if (N < 192) {
combined_mask = (0x1ull << (N - 128)) - 0x1ull;
load_mask1 = (combined_mask)&0xFF;
load_mask2 = (combined_mask >> 8) & 0xFF;
load_mask3 = (combined_mask >> 16) & 0xFF;
load_mask4 = (combined_mask >> 24) & 0xFF;
load_mask5 = (combined_mask >> 32) & 0xFF;
load_mask6 = (combined_mask >> 40) & 0xFF;
load_mask7 = (combined_mask >> 48) & 0xFF;
load_mask8 = (combined_mask >> 56) & 0xFF;
load_mask9 = 0x00;
load_mask10 = 0x0;
load_mask11 = 0x00;
load_mask12 = 0x00;
load_mask13 = 0x00;
load_mask14 = 0x00;
load_mask15 = 0x00;
load_mask16 = 0x00;
} else {
combined_mask = (0x1ull << (N - 192)) - 0x1ull;
load_mask9 = (combined_mask)&0xFF;
load_mask10 = (combined_mask >> 8) & 0xFF;
load_mask11 = (combined_mask >> 16) & 0xFF;
load_mask12 = (combined_mask >> 24) & 0xFF;
load_mask13 = (combined_mask >> 32) & 0xFF;
load_mask14 = (combined_mask >> 40) & 0xFF;
load_mask15 = (combined_mask >> 48) & 0xFF;
load_mask16 = (combined_mask >> 56) & 0xFF;
}
}
zmm[16] = vtype::mask_loadu(vtype::zmm_max(), load_mask1, arr + 128);
zmm[17] = vtype::mask_loadu(vtype::zmm_max(), load_mask2, arr + 136);
zmm[18] = vtype::mask_loadu(vtype::zmm_max(), load_mask3, arr + 144);
zmm[19] = vtype::mask_loadu(vtype::zmm_max(), load_mask4, arr + 152);
zmm[20] = vtype::mask_loadu(vtype::zmm_max(), load_mask5, arr + 160);
zmm[21] = vtype::mask_loadu(vtype::zmm_max(), load_mask6, arr + 168);
zmm[22] = vtype::mask_loadu(vtype::zmm_max(), load_mask7, arr + 176);
zmm[23] = vtype::mask_loadu(vtype::zmm_max(), load_mask8, arr + 184);
if (N < 192) {
zmm[24] = vtype::zmm_max();
zmm[25] = vtype::zmm_max();
zmm[26] = vtype::zmm_max();
zmm[27] = vtype::zmm_max();
zmm[28] = vtype::zmm_max();
zmm[29] = vtype::zmm_max();
zmm[30] = vtype::zmm_max();
zmm[31] = vtype::zmm_max();
} else {
zmm[24] = vtype::mask_loadu(vtype::zmm_max(), load_mask9, arr + 192);
zmm[25] = vtype::mask_loadu(vtype::zmm_max(), load_mask10, arr + 200);
zmm[26] = vtype::mask_loadu(vtype::zmm_max(), load_mask11, arr + 208);
zmm[27] = vtype::mask_loadu(vtype::zmm_max(), load_mask12, arr + 216);
zmm[28] = vtype::mask_loadu(vtype::zmm_max(), load_mask13, arr + 224);
zmm[29] = vtype::mask_loadu(vtype::zmm_max(), load_mask14, arr + 232);
zmm[30] = vtype::mask_loadu(vtype::zmm_max(), load_mask15, arr + 240);
zmm[31] = vtype::mask_loadu(vtype::zmm_max(), load_mask16, arr + 248);
}
zmm[16] = sort_zmm_64bit<vtype>(zmm[16]);
zmm[17] = sort_zmm_64bit<vtype>(zmm[17]);
zmm[18] = sort_zmm_64bit<vtype>(zmm[18]);
zmm[19] = sort_zmm_64bit<vtype>(zmm[19]);
zmm[20] = sort_zmm_64bit<vtype>(zmm[20]);
zmm[21] = sort_zmm_64bit<vtype>(zmm[21]);
zmm[22] = sort_zmm_64bit<vtype>(zmm[22]);
zmm[23] = sort_zmm_64bit<vtype>(zmm[23]);
zmm[24] = sort_zmm_64bit<vtype>(zmm[24]);
zmm[25] = sort_zmm_64bit<vtype>(zmm[25]);
zmm[26] = sort_zmm_64bit<vtype>(zmm[26]);
zmm[27] = sort_zmm_64bit<vtype>(zmm[27]);
zmm[28] = sort_zmm_64bit<vtype>(zmm[28]);
zmm[29] = sort_zmm_64bit<vtype>(zmm[29]);
zmm[30] = sort_zmm_64bit<vtype>(zmm[30]);
zmm[31] = sort_zmm_64bit<vtype>(zmm[31]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[0], zmm[1]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[2], zmm[3]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[4], zmm[5]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[6], zmm[7]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[8], zmm[9]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[10], zmm[11]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[12], zmm[13]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[14], zmm[15]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[16], zmm[17]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[18], zmm[19]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[20], zmm[21]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[22], zmm[23]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[24], zmm[25]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[26], zmm[27]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[28], zmm[29]);
bitonic_merge_two_zmm_64bit<vtype>(zmm[30], zmm[31]);
bitonic_merge_four_zmm_64bit<vtype>(zmm);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 4);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 8);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 12);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 16);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 20);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 24);
bitonic_merge_four_zmm_64bit<vtype>(zmm + 28);
bitonic_merge_eight_zmm_64bit<vtype>(zmm);
bitonic_merge_eight_zmm_64bit<vtype>(zmm + 8);
bitonic_merge_eight_zmm_64bit<vtype>(zmm + 16);
bitonic_merge_eight_zmm_64bit<vtype>(zmm + 24);
bitonic_merge_sixteen_zmm_64bit<vtype>(zmm);
bitonic_merge_sixteen_zmm_64bit<vtype>(zmm + 16);
bitonic_merge_32_zmm_64bit<vtype>(zmm);
vtype::storeu(arr, zmm[0]);
vtype::storeu(arr + 8, zmm[1]);
vtype::storeu(arr + 16, zmm[2]);
vtype::storeu(arr + 24, zmm[3]);
vtype::storeu(arr + 32, zmm[4]);
vtype::storeu(arr + 40, zmm[5]);
vtype::storeu(arr + 48, zmm[6]);
vtype::storeu(arr + 56, zmm[7]);
vtype::storeu(arr + 64, zmm[8]);
vtype::storeu(arr + 72, zmm[9]);
vtype::storeu(arr + 80, zmm[10]);
vtype::storeu(arr + 88, zmm[11]);
vtype::storeu(arr + 96, zmm[12]);
vtype::storeu(arr + 104, zmm[13]);
vtype::storeu(arr + 112, zmm[14]);
vtype::storeu(arr + 120, zmm[15]);
vtype::mask_storeu(arr + 128, load_mask1, zmm[16]);
vtype::mask_storeu(arr + 136, load_mask2, zmm[17]);
vtype::mask_storeu(arr + 144, load_mask3, zmm[18]);
vtype::mask_storeu(arr + 152, load_mask4, zmm[19]);
vtype::mask_storeu(arr + 160, load_mask5, zmm[20]);
vtype::mask_storeu(arr + 168, load_mask6, zmm[21]);
vtype::mask_storeu(arr + 176, load_mask7, zmm[22]);
vtype::mask_storeu(arr + 184, load_mask8, zmm[23]);
if (N > 192) {
vtype::mask_storeu(arr + 192, load_mask9, zmm[24]);
vtype::mask_storeu(arr + 200, load_mask10, zmm[25]);
vtype::mask_storeu(arr + 208, load_mask11, zmm[26]);
vtype::mask_storeu(arr + 216, load_mask12, zmm[27]);
vtype::mask_storeu(arr + 224, load_mask13, zmm[28]);
vtype::mask_storeu(arr + 232, load_mask14, zmm[29]);
vtype::mask_storeu(arr + 240, load_mask15, zmm[30]);
vtype::mask_storeu(arr + 248, load_mask16, zmm[31]);
}
}
template <typename vtype, typename type_t>
static void qsort_64bit_(type_t *arr, int64_t left, int64_t right,
int64_t max_iters) {
/*
* Resort to std::sort if quicksort isnt making any progress
*/
if (max_iters <= 0) {
std::sort(arr + left, arr + right + 1);
return;
}
/*
* Base case: use bitonic networks to sort arrays <= 128
*/
if (right + 1 - left <= 256) {
sort_256_64bit<vtype>(arr + left, (int32_t)(right + 1 - left));
return;
}
type_t pivot = get_pivot_scalar<type_t>(arr, left, right);
type_t smallest = vtype::type_max();
type_t biggest = vtype::type_min();
int64_t pivot_index = partition_avx512_unrolled<vtype, 8>(
arr, left, right + 1, pivot, &smallest, &biggest, false);
if (pivot != smallest)
qsort_64bit_<vtype>(arr, left, pivot_index - 1, max_iters - 1);
if (pivot != biggest)
qsort_64bit_<vtype>(arr, pivot_index, right, max_iters - 1);
}
template <>
void inline avx512_qsort<int64_t>(int64_t *arr, int64_t fromIndex, int64_t toIndex) {
int64_t arrsize = toIndex - fromIndex;
if (arrsize > 1) {
qsort_64bit_<zmm_vector<int64_t>, int64_t>(arr, fromIndex, toIndex - 1,
2 * (int64_t)log2(arrsize));
}
}
template <>
void inline avx512_qsort<double>(double *arr, int64_t fromIndex, int64_t toIndex) {
int64_t arrsize = toIndex - fromIndex;
if (arrsize > 1) {
qsort_64bit_<zmm_vector<double>, double>(arr, fromIndex, toIndex - 1,
2 * (int64_t)log2(arrsize));
}
}
#endif // AVX512_QSORT_64BIT

View file

@ -0,0 +1,474 @@
/*
* Copyright (c) 2021, 2023, Intel Corporation. All rights reserved.
* Copyright (c) 2021 Serge Sans Paille. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// This implementation is based on x86-simd-sort(https://github.com/intel/x86-simd-sort)
#ifndef AVX512_QSORT_COMMON
#define AVX512_QSORT_COMMON
/*
* Quicksort using AVX-512. The ideas and code are based on these two research
* papers [1] and [2]. On a high level, the idea is to vectorize quicksort
* partitioning using AVX-512 compressstore instructions. If the array size is
* < 128, then use Bitonic sorting network implemented on 512-bit registers.
* The precise network definitions depend on the dtype and are defined in
* separate files: avx512-16bit-qsort.hpp, avx512-32bit-qsort.hpp and
* avx512-64bit-qsort.hpp. Article [4] is a good resource for bitonic sorting
* network. The core implementations of the vectorized qsort functions
* avx512_qsort<T>(T*, int64_t) are modified versions of avx2 quicksort
* presented in the paper [2] and source code associated with that paper [3].
*
* [1] Fast and Robust Vectorized In-Place Sorting of Primitive Types
* https://drops.dagstuhl.de/opus/volltexte/2021/13775/
*
* [2] A Novel Hybrid Quicksort Algorithm Vectorized using AVX-512 on Intel
* Skylake https://arxiv.org/pdf/1704.08579.pdf
*
* [3] https://github.com/simd-sorting/fast-and-robust: SPDX-License-Identifier:
* MIT
*
* [4]
* http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_pres_0&fn=Chapter%2027.pdf&id=8030
*
*/
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <immintrin.h>
#include <limits>
#define X86_SIMD_SORT_INFINITY std::numeric_limits<double>::infinity()
#define X86_SIMD_SORT_INFINITYF std::numeric_limits<float>::infinity()
#define X86_SIMD_SORT_INFINITYH 0x7c00
#define X86_SIMD_SORT_NEGINFINITYH 0xfc00
#define X86_SIMD_SORT_MAX_UINT16 std::numeric_limits<uint16_t>::max()
#define X86_SIMD_SORT_MAX_INT16 std::numeric_limits<int16_t>::max()
#define X86_SIMD_SORT_MIN_INT16 std::numeric_limits<int16_t>::min()
#define X86_SIMD_SORT_MAX_UINT32 std::numeric_limits<uint32_t>::max()
#define X86_SIMD_SORT_MAX_INT32 std::numeric_limits<int32_t>::max()
#define X86_SIMD_SORT_MIN_INT32 std::numeric_limits<int32_t>::min()
#define X86_SIMD_SORT_MAX_UINT64 std::numeric_limits<uint64_t>::max()
#define X86_SIMD_SORT_MAX_INT64 std::numeric_limits<int64_t>::max()
#define X86_SIMD_SORT_MIN_INT64 std::numeric_limits<int64_t>::min()
#define ZMM_MAX_DOUBLE _mm512_set1_pd(X86_SIMD_SORT_INFINITY)
#define ZMM_MAX_UINT64 _mm512_set1_epi64(X86_SIMD_SORT_MAX_UINT64)
#define ZMM_MAX_INT64 _mm512_set1_epi64(X86_SIMD_SORT_MAX_INT64)
#define ZMM_MAX_FLOAT _mm512_set1_ps(X86_SIMD_SORT_INFINITYF)
#define ZMM_MAX_UINT _mm512_set1_epi32(X86_SIMD_SORT_MAX_UINT32)
#define ZMM_MAX_INT _mm512_set1_epi32(X86_SIMD_SORT_MAX_INT32)
#define ZMM_MAX_HALF _mm512_set1_epi16(X86_SIMD_SORT_INFINITYH)
#define YMM_MAX_HALF _mm256_set1_epi16(X86_SIMD_SORT_INFINITYH)
#define ZMM_MAX_UINT16 _mm512_set1_epi16(X86_SIMD_SORT_MAX_UINT16)
#define ZMM_MAX_INT16 _mm512_set1_epi16(X86_SIMD_SORT_MAX_INT16)
#define SHUFFLE_MASK(a, b, c, d) (a << 6) | (b << 4) | (c << 2) | d
#ifdef _MSC_VER
#define X86_SIMD_SORT_INLINE static inline
#define X86_SIMD_SORT_FINLINE static __forceinline
#elif defined(__CYGWIN__)
/*
* Force inline in cygwin to work around a compiler bug. See
* https://github.com/numpy/numpy/pull/22315#issuecomment-1267757584
*/
#define X86_SIMD_SORT_INLINE static __attribute__((always_inline))
#define X86_SIMD_SORT_FINLINE static __attribute__((always_inline))
#elif defined(__GNUC__)
#define X86_SIMD_SORT_INLINE static inline
#define X86_SIMD_SORT_FINLINE static __attribute__((always_inline))
#else
#define X86_SIMD_SORT_INLINE static
#define X86_SIMD_SORT_FINLINE static
#endif
#define LIKELY(x) __builtin_expect((x), 1)
#define UNLIKELY(x) __builtin_expect((x), 0)
template <typename type>
struct zmm_vector;
template <typename type>
struct ymm_vector;
// Regular quicksort routines:
template <typename T>
void avx512_qsort(T *arr, int64_t arrsize);
template <typename T>
void inline avx512_qsort(T *arr, int64_t from_index, int64_t to_index);
template <typename T>
bool is_a_nan(T elem) {
return std::isnan(elem);
}
template <typename T>
X86_SIMD_SORT_INLINE T get_pivot_scalar(T *arr, const int64_t left, const int64_t right) {
// median of 8 equally spaced elements
int64_t NUM_ELEMENTS = 8;
int64_t MID = NUM_ELEMENTS / 2;
int64_t size = (right - left) / NUM_ELEMENTS;
T temp[NUM_ELEMENTS];
for (int64_t i = 0; i < NUM_ELEMENTS; i++) temp[i] = arr[left + (i * size)];
std::sort(temp, temp + NUM_ELEMENTS);
return temp[MID];
}
template <typename vtype, typename T = typename vtype::type_t>
bool comparison_func_ge(const T &a, const T &b) {
return a < b;
}
template <typename vtype, typename T = typename vtype::type_t>
bool comparison_func_gt(const T &a, const T &b) {
return a <= b;
}
/*
* COEX == Compare and Exchange two registers by swapping min and max values
*/
template <typename vtype, typename mm_t>
static void COEX(mm_t &a, mm_t &b) {
mm_t temp = a;
a = vtype::min(a, b);
b = vtype::max(temp, b);
}
template <typename vtype, typename zmm_t = typename vtype::zmm_t,
typename opmask_t = typename vtype::opmask_t>
static inline zmm_t cmp_merge(zmm_t in1, zmm_t in2, opmask_t mask) {
zmm_t min = vtype::min(in2, in1);
zmm_t max = vtype::max(in2, in1);
return vtype::mask_mov(min, mask, max); // 0 -> min, 1 -> max
}
/*
* Parition one ZMM register based on the pivot and returns the
* number of elements that are greater than or equal to the pivot.
*/
template <typename vtype, typename type_t, typename zmm_t>
static inline int32_t partition_vec(type_t *arr, int64_t left, int64_t right,
const zmm_t curr_vec, const zmm_t pivot_vec,
zmm_t *smallest_vec, zmm_t *biggest_vec, bool use_gt) {
/* which elements are larger than or equal to the pivot */
typename vtype::opmask_t mask;
if (use_gt) mask = vtype::gt(curr_vec, pivot_vec);
else mask = vtype::ge(curr_vec, pivot_vec);
//mask = vtype::ge(curr_vec, pivot_vec);
int32_t amount_ge_pivot = _mm_popcnt_u32((int32_t)mask);
vtype::mask_compressstoreu(arr + left, vtype::knot_opmask(mask),
curr_vec);
vtype::mask_compressstoreu(arr + right - amount_ge_pivot, mask,
curr_vec);
*smallest_vec = vtype::min(curr_vec, *smallest_vec);
*biggest_vec = vtype::max(curr_vec, *biggest_vec);
return amount_ge_pivot;
}
/*
* Parition an array based on the pivot and returns the index of the
* first element that is greater than or equal to the pivot.
*/
template <typename vtype, typename type_t>
static inline int64_t partition_avx512(type_t *arr, int64_t left, int64_t right,
type_t pivot, type_t *smallest,
type_t *biggest, bool use_gt) {
auto comparison_func = use_gt ? comparison_func_gt<vtype> : comparison_func_ge<vtype>;
/* make array length divisible by vtype::numlanes , shortening the array */
for (int32_t i = (right - left) % vtype::numlanes; i > 0; --i) {
*smallest = std::min(*smallest, arr[left], comparison_func);
*biggest = std::max(*biggest, arr[left], comparison_func);
if (!comparison_func(arr[left], pivot)) {
std::swap(arr[left], arr[--right]);
} else {
++left;
}
}
if (left == right)
return left; /* less than vtype::numlanes elements in the array */
using zmm_t = typename vtype::zmm_t;
zmm_t pivot_vec = vtype::set1(pivot);
zmm_t min_vec = vtype::set1(*smallest);
zmm_t max_vec = vtype::set1(*biggest);
if (right - left == vtype::numlanes) {
zmm_t vec = vtype::loadu(arr + left);
int32_t amount_ge_pivot =
partition_vec<vtype>(arr, left, left + vtype::numlanes, vec,
pivot_vec, &min_vec, &max_vec, use_gt);
*smallest = vtype::reducemin(min_vec);
*biggest = vtype::reducemax(max_vec);
return left + (vtype::numlanes - amount_ge_pivot);
}
// first and last vtype::numlanes values are partitioned at the end
zmm_t vec_left = vtype::loadu(arr + left);
zmm_t vec_right = vtype::loadu(arr + (right - vtype::numlanes));
// store points of the vectors
int64_t r_store = right - vtype::numlanes;
int64_t l_store = left;
// indices for loading the elements
left += vtype::numlanes;
right -= vtype::numlanes;
while (right - left != 0) {
zmm_t curr_vec;
/*
* if fewer elements are stored on the right side of the array,
* then next elements are loaded from the right side,
* otherwise from the left side
*/
if ((r_store + vtype::numlanes) - right < left - l_store) {
right -= vtype::numlanes;
curr_vec = vtype::loadu(arr + right);
} else {
curr_vec = vtype::loadu(arr + left);
left += vtype::numlanes;
}
// partition the current vector and save it on both sides of the array
int32_t amount_ge_pivot =
partition_vec<vtype>(arr, l_store, r_store + vtype::numlanes,
curr_vec, pivot_vec, &min_vec, &max_vec, use_gt);
;
r_store -= amount_ge_pivot;
l_store += (vtype::numlanes - amount_ge_pivot);
}
/* partition and save vec_left and vec_right */
int32_t amount_ge_pivot =
partition_vec<vtype>(arr, l_store, r_store + vtype::numlanes, vec_left,
pivot_vec, &min_vec, &max_vec, use_gt);
l_store += (vtype::numlanes - amount_ge_pivot);
amount_ge_pivot =
partition_vec<vtype>(arr, l_store, l_store + vtype::numlanes, vec_right,
pivot_vec, &min_vec, &max_vec, use_gt);
l_store += (vtype::numlanes - amount_ge_pivot);
*smallest = vtype::reducemin(min_vec);
*biggest = vtype::reducemax(max_vec);
return l_store;
}
template <typename vtype, int num_unroll,
typename type_t = typename vtype::type_t>
static inline int64_t partition_avx512_unrolled(type_t *arr, int64_t left,
int64_t right, type_t pivot,
type_t *smallest,
type_t *biggest, bool use_gt) {
if (right - left <= 2 * num_unroll * vtype::numlanes) {
return partition_avx512<vtype>(arr, left, right, pivot, smallest,
biggest, use_gt);
}
auto comparison_func = use_gt ? comparison_func_gt<vtype> : comparison_func_ge<vtype>;
/* make array length divisible by 8*vtype::numlanes , shortening the array
*/
for (int32_t i = ((right - left) % (num_unroll * vtype::numlanes)); i > 0;
--i) {
*smallest = std::min(*smallest, arr[left], comparison_func);
*biggest = std::max(*biggest, arr[left], comparison_func);
if (!comparison_func(arr[left], pivot)) {
std::swap(arr[left], arr[--right]);
} else {
++left;
}
}
if (left == right)
return left; /* less than vtype::numlanes elements in the array */
using zmm_t = typename vtype::zmm_t;
zmm_t pivot_vec = vtype::set1(pivot);
zmm_t min_vec = vtype::set1(*smallest);
zmm_t max_vec = vtype::set1(*biggest);
// We will now have atleast 16 registers worth of data to process:
// left and right vtype::numlanes values are partitioned at the end
zmm_t vec_left[num_unroll], vec_right[num_unroll];
#pragma GCC unroll 8
for (int ii = 0; ii < num_unroll; ++ii) {
vec_left[ii] = vtype::loadu(arr + left + vtype::numlanes * ii);
vec_right[ii] =
vtype::loadu(arr + (right - vtype::numlanes * (num_unroll - ii)));
}
// store points of the vectors
int64_t r_store = right - vtype::numlanes;
int64_t l_store = left;
// indices for loading the elements
left += num_unroll * vtype::numlanes;
right -= num_unroll * vtype::numlanes;
while (right - left != 0) {
zmm_t curr_vec[num_unroll];
/*
* if fewer elements are stored on the right side of the array,
* then next elements are loaded from the right side,
* otherwise from the left side
*/
if ((r_store + vtype::numlanes) - right < left - l_store) {
right -= num_unroll * vtype::numlanes;
#pragma GCC unroll 8
for (int ii = 0; ii < num_unroll; ++ii) {
curr_vec[ii] = vtype::loadu(arr + right + ii * vtype::numlanes);
}
} else {
#pragma GCC unroll 8
for (int ii = 0; ii < num_unroll; ++ii) {
curr_vec[ii] = vtype::loadu(arr + left + ii * vtype::numlanes);
}
left += num_unroll * vtype::numlanes;
}
// partition the current vector and save it on both sides of the array
#pragma GCC unroll 8
for (int ii = 0; ii < num_unroll; ++ii) {
int32_t amount_ge_pivot = partition_vec<vtype>(
arr, l_store, r_store + vtype::numlanes, curr_vec[ii],
pivot_vec, &min_vec, &max_vec, use_gt);
l_store += (vtype::numlanes - amount_ge_pivot);
r_store -= amount_ge_pivot;
}
}
/* partition and save vec_left[8] and vec_right[8] */
#pragma GCC unroll 8
for (int ii = 0; ii < num_unroll; ++ii) {
int32_t amount_ge_pivot =
partition_vec<vtype>(arr, l_store, r_store + vtype::numlanes,
vec_left[ii], pivot_vec, &min_vec, &max_vec, use_gt);
l_store += (vtype::numlanes - amount_ge_pivot);
r_store -= amount_ge_pivot;
}
#pragma GCC unroll 8
for (int ii = 0; ii < num_unroll; ++ii) {
int32_t amount_ge_pivot =
partition_vec<vtype>(arr, l_store, r_store + vtype::numlanes,
vec_right[ii], pivot_vec, &min_vec, &max_vec, use_gt);
l_store += (vtype::numlanes - amount_ge_pivot);
r_store -= amount_ge_pivot;
}
*smallest = vtype::reducemin(min_vec);
*biggest = vtype::reducemax(max_vec);
return l_store;
}
// to_index (exclusive)
template <typename vtype, typename type_t>
static int64_t vectorized_partition(type_t *arr, int64_t from_index, int64_t to_index, type_t pivot, bool use_gt) {
type_t smallest = vtype::type_max();
type_t biggest = vtype::type_min();
int64_t pivot_index = partition_avx512_unrolled<vtype, 2>(
arr, from_index, to_index, pivot, &smallest, &biggest, use_gt);
return pivot_index;
}
// partitioning functions
template <typename T>
void avx512_dual_pivot_partition(T *arr, int64_t from_index, int64_t to_index, int32_t *pivot_indices, int64_t index_pivot1, int64_t index_pivot2){
const T pivot1 = arr[index_pivot1];
const T pivot2 = arr[index_pivot2];
const int64_t low = from_index;
const int64_t high = to_index;
const int64_t start = low + 1;
const int64_t end = high - 1;
std::swap(arr[index_pivot1], arr[low]);
std::swap(arr[index_pivot2], arr[end]);
const int64_t pivot_index2 = vectorized_partition<zmm_vector<T>, T>(arr, start, end, pivot2, true); // use_gt = true
std::swap(arr[end], arr[pivot_index2]);
int64_t upper = pivot_index2;
// if all other elements are greater than pivot2 (and pivot1), no need to do further partitioning
if (upper == start) {
pivot_indices[0] = low;
pivot_indices[1] = upper;
return;
}
const int64_t pivot_index1 = vectorized_partition<zmm_vector<T>, T>(arr, start, upper, pivot1, false); // use_ge (use_gt = false)
int64_t lower = pivot_index1 - 1;
std::swap(arr[low], arr[lower]);
pivot_indices[0] = lower;
pivot_indices[1] = upper;
}
template <typename T>
void avx512_single_pivot_partition(T *arr, int64_t from_index, int64_t to_index, int32_t *pivot_indices, int64_t index_pivot){
const T pivot = arr[index_pivot];
const int64_t low = from_index;
const int64_t high = to_index;
const int64_t end = high - 1;
const int64_t pivot_index1 = vectorized_partition<zmm_vector<T>, T>(arr, low, high, pivot, false); // use_gt = false (use_ge)
int64_t lower = pivot_index1;
const int64_t pivot_index2 = vectorized_partition<zmm_vector<T>, T>(arr, pivot_index1, high, pivot, true); // use_gt = true
int64_t upper = pivot_index2;
pivot_indices[0] = lower;
pivot_indices[1] = upper;
}
template <typename T>
void inline avx512_fast_partition(T *arr, int64_t from_index, int64_t to_index, int32_t *pivot_indices, int64_t index_pivot1, int64_t index_pivot2) {
if (index_pivot1 != index_pivot2) {
avx512_dual_pivot_partition<T>(arr, from_index, to_index, pivot_indices, index_pivot1, index_pivot2);
}
else {
avx512_single_pivot_partition<T>(arr, from_index, to_index, pivot_indices, index_pivot1);
}
}
template <typename T>
void inline insertion_sort(T *arr, int32_t from_index, int32_t to_index) {
for (int i, k = from_index; ++k < to_index; ) {
T ai = arr[i = k];
if (ai < arr[i - 1]) {
while (--i >= from_index && ai < arr[i]) {
arr[i + 1] = arr[i];
}
arr[i + 1] = ai;
}
}
}
template <typename T>
void inline avx512_fast_sort(T *arr, int64_t from_index, int64_t to_index, const int32_t INS_SORT_THRESHOLD) {
int32_t size = to_index - from_index;
if (size <= INS_SORT_THRESHOLD) {
insertion_sort<T>(arr, from_index, to_index);
}
else {
avx512_qsort<T>(arr, from_index, to_index);
}
}
#endif // AVX512_QSORT_COMMON

View file

@ -0,0 +1,70 @@
/*
* Copyright (c) 2023 Intel Corporation. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#pragma GCC target("avx512dq", "avx512f")
#include "avx512-32bit-qsort.hpp"
#include "avx512-64bit-qsort.hpp"
#include "classfile_constants.h"
#define DLL_PUBLIC __attribute__((visibility("default")))
#define INSERTION_SORT_THRESHOLD_32BIT 16
#define INSERTION_SORT_THRESHOLD_64BIT 20
extern "C" {
DLL_PUBLIC void avx512_sort(void *array, int elem_type, int32_t from_index, int32_t to_index) {
switch(elem_type) {
case JVM_T_INT:
avx512_fast_sort<int32_t>((int32_t*)array, from_index, to_index, INSERTION_SORT_THRESHOLD_32BIT);
break;
case JVM_T_LONG:
avx512_fast_sort<int64_t>((int64_t*)array, from_index, to_index, INSERTION_SORT_THRESHOLD_64BIT);
break;
case JVM_T_FLOAT:
avx512_fast_sort<float>((float*)array, from_index, to_index, INSERTION_SORT_THRESHOLD_32BIT);
break;
case JVM_T_DOUBLE:
avx512_fast_sort<double>((double*)array, from_index, to_index, INSERTION_SORT_THRESHOLD_64BIT);
break;
}
}
DLL_PUBLIC void avx512_partition(void *array, int elem_type, int32_t from_index, int32_t to_index, int32_t *pivot_indices, int32_t index_pivot1, int32_t index_pivot2) {
switch(elem_type) {
case JVM_T_INT:
avx512_fast_partition<int32_t>((int32_t*)array, from_index, to_index, pivot_indices, index_pivot1, index_pivot2);
break;
case JVM_T_LONG:
avx512_fast_partition<int64_t>((int64_t*)array, from_index, to_index, pivot_indices, index_pivot1, index_pivot2);
break;
case JVM_T_FLOAT:
avx512_fast_partition<float>((float*)array, from_index, to_index, pivot_indices, index_pivot1, index_pivot2);
break;
case JVM_T_DOUBLE:
avx512_fast_partition<double>((double*)array, from_index, to_index, pivot_indices, index_pivot1, index_pivot2);
break;
}
}
}