mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-27 14:54:52 +02:00
Merge
This commit is contained in:
commit
a8c5f1e59a
64 changed files with 1781 additions and 378 deletions
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 1996, 2017, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 1996, 2018, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
|
@ -31,6 +31,7 @@ package java.math;
|
|||
|
||||
import static java.math.BigInteger.LONG_MASK;
|
||||
import java.util.Arrays;
|
||||
import java.util.Objects;
|
||||
|
||||
/**
|
||||
* Immutable, arbitrary-precision signed decimal numbers. A
|
||||
|
@ -424,9 +425,14 @@ public class BigDecimal extends Number implements Comparable<BigDecimal> {
|
|||
* @since 1.5
|
||||
*/
|
||||
public BigDecimal(char[] in, int offset, int len, MathContext mc) {
|
||||
// protect against huge length.
|
||||
if (offset + len > in.length || offset < 0)
|
||||
throw new NumberFormatException("Bad offset or len arguments for char[] input.");
|
||||
// protect against huge length, negative values, and integer overflow
|
||||
try {
|
||||
Objects.checkFromIndexSize(offset, len, in.length);
|
||||
} catch (IndexOutOfBoundsException e) {
|
||||
throw new NumberFormatException
|
||||
("Bad offset or len arguments for char[] input.");
|
||||
}
|
||||
|
||||
// This is the primary string to BigDecimal constructor; all
|
||||
// incoming strings end up here; it uses explicit (inline)
|
||||
// parsing for speed and generates at most one intermediate
|
||||
|
|
|
@ -307,10 +307,8 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
public BigInteger(byte[] val, int off, int len) {
|
||||
if (val.length == 0) {
|
||||
throw new NumberFormatException("Zero length BigInteger");
|
||||
} else if ((off < 0) || (off >= val.length) || (len < 0) ||
|
||||
(len > val.length - off)) { // 0 <= off < val.length
|
||||
throw new IndexOutOfBoundsException();
|
||||
}
|
||||
Objects.checkFromIndexSize(off, len, val.length);
|
||||
|
||||
if (val[off] < 0) {
|
||||
mag = makePositive(val, off, len);
|
||||
|
@ -395,12 +393,8 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
public BigInteger(int signum, byte[] magnitude, int off, int len) {
|
||||
if (signum < -1 || signum > 1) {
|
||||
throw(new NumberFormatException("Invalid signum value"));
|
||||
} else if ((off < 0) || (len < 0) ||
|
||||
(len > 0 &&
|
||||
((off >= magnitude.length) ||
|
||||
(len > magnitude.length - off)))) { // 0 <= off < magnitude.length
|
||||
throw new IndexOutOfBoundsException();
|
||||
}
|
||||
Objects.checkFromIndexSize(off, len, magnitude.length);
|
||||
|
||||
// stripLeadingZeroBytes() returns a zero length array if len == 0
|
||||
this.mag = stripLeadingZeroBytes(magnitude, off, len);
|
||||
|
@ -1239,6 +1233,14 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
private static final double LOG_TWO = Math.log(2.0);
|
||||
|
||||
static {
|
||||
assert 0 < KARATSUBA_THRESHOLD
|
||||
&& KARATSUBA_THRESHOLD < TOOM_COOK_THRESHOLD
|
||||
&& TOOM_COOK_THRESHOLD < Integer.MAX_VALUE
|
||||
&& 0 < KARATSUBA_SQUARE_THRESHOLD
|
||||
&& KARATSUBA_SQUARE_THRESHOLD < TOOM_COOK_SQUARE_THRESHOLD
|
||||
&& TOOM_COOK_SQUARE_THRESHOLD < Integer.MAX_VALUE :
|
||||
"Algorithm thresholds are inconsistent";
|
||||
|
||||
for (int i = 1; i <= MAX_CONSTANT; i++) {
|
||||
int[] magnitude = new int[1];
|
||||
magnitude[0] = i;
|
||||
|
@ -1562,6 +1564,18 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
* @return {@code this * val}
|
||||
*/
|
||||
public BigInteger multiply(BigInteger val) {
|
||||
return multiply(val, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a BigInteger whose value is {@code (this * val)}. If
|
||||
* the invocation is recursive certain overflow checks are skipped.
|
||||
*
|
||||
* @param val value to be multiplied by this BigInteger.
|
||||
* @param isRecursion whether this is a recursive invocation
|
||||
* @return {@code this * val}
|
||||
*/
|
||||
private BigInteger multiply(BigInteger val, boolean isRecursion) {
|
||||
if (val.signum == 0 || signum == 0)
|
||||
return ZERO;
|
||||
|
||||
|
@ -1589,6 +1603,63 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) {
|
||||
return multiplyKaratsuba(this, val);
|
||||
} else {
|
||||
//
|
||||
// In "Hacker's Delight" section 2-13, p.33, it is explained
|
||||
// that if x and y are unsigned 32-bit quantities and m and n
|
||||
// are their respective numbers of leading zeros within 32 bits,
|
||||
// then the number of leading zeros within their product as a
|
||||
// 64-bit unsigned quantity is either m + n or m + n + 1. If
|
||||
// their product is not to overflow, it cannot exceed 32 bits,
|
||||
// and so the number of leading zeros of the product within 64
|
||||
// bits must be at least 32, i.e., the leftmost set bit is at
|
||||
// zero-relative position 31 or less.
|
||||
//
|
||||
// From the above there are three cases:
|
||||
//
|
||||
// m + n leftmost set bit condition
|
||||
// ----- ---------------- ---------
|
||||
// >= 32 x <= 64 - 32 = 32 no overflow
|
||||
// == 31 x >= 64 - 32 = 32 possible overflow
|
||||
// <= 30 x >= 64 - 31 = 33 definite overflow
|
||||
//
|
||||
// The "possible overflow" condition cannot be detected by
|
||||
// examning data lengths alone and requires further calculation.
|
||||
//
|
||||
// By analogy, if 'this' and 'val' have m and n as their
|
||||
// respective numbers of leading zeros within 32*MAX_MAG_LENGTH
|
||||
// bits, then:
|
||||
//
|
||||
// m + n >= 32*MAX_MAG_LENGTH no overflow
|
||||
// m + n == 32*MAX_MAG_LENGTH - 1 possible overflow
|
||||
// m + n <= 32*MAX_MAG_LENGTH - 2 definite overflow
|
||||
//
|
||||
// Note however that if the number of ints in the result
|
||||
// were to be MAX_MAG_LENGTH and mag[0] < 0, then there would
|
||||
// be overflow. As a result the leftmost bit (of mag[0]) cannot
|
||||
// be used and the constraints must be adjusted by one bit to:
|
||||
//
|
||||
// m + n > 32*MAX_MAG_LENGTH no overflow
|
||||
// m + n == 32*MAX_MAG_LENGTH possible overflow
|
||||
// m + n < 32*MAX_MAG_LENGTH definite overflow
|
||||
//
|
||||
// The foregoing leading zero-based discussion is for clarity
|
||||
// only. The actual calculations use the estimated bit length
|
||||
// of the product as this is more natural to the internal
|
||||
// array representation of the magnitude which has no leading
|
||||
// zero elements.
|
||||
//
|
||||
if (!isRecursion) {
|
||||
// The bitLength() instance method is not used here as we
|
||||
// are only considering the magnitudes as non-negative. The
|
||||
// Toom-Cook multiplication algorithm determines the sign
|
||||
// at its end from the two signum values.
|
||||
if (bitLength(mag, mag.length) +
|
||||
bitLength(val.mag, val.mag.length) >
|
||||
32L*MAX_MAG_LENGTH) {
|
||||
reportOverflow();
|
||||
}
|
||||
}
|
||||
|
||||
return multiplyToomCook3(this, val);
|
||||
}
|
||||
}
|
||||
|
@ -1674,7 +1745,7 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
int ystart = ylen - 1;
|
||||
|
||||
if (z == null || z.length < (xlen+ ylen))
|
||||
z = new int[xlen+ylen];
|
||||
z = new int[xlen+ylen];
|
||||
|
||||
long carry = 0;
|
||||
for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) {
|
||||
|
@ -1808,16 +1879,16 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
|
||||
BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1;
|
||||
|
||||
v0 = a0.multiply(b0);
|
||||
v0 = a0.multiply(b0, true);
|
||||
da1 = a2.add(a0);
|
||||
db1 = b2.add(b0);
|
||||
vm1 = da1.subtract(a1).multiply(db1.subtract(b1));
|
||||
vm1 = da1.subtract(a1).multiply(db1.subtract(b1), true);
|
||||
da1 = da1.add(a1);
|
||||
db1 = db1.add(b1);
|
||||
v1 = da1.multiply(db1);
|
||||
v1 = da1.multiply(db1, true);
|
||||
v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply(
|
||||
db1.add(b2).shiftLeft(1).subtract(b0));
|
||||
vinf = a2.multiply(b2);
|
||||
db1.add(b2).shiftLeft(1).subtract(b0), true);
|
||||
vinf = a2.multiply(b2, true);
|
||||
|
||||
// The algorithm requires two divisions by 2 and one by 3.
|
||||
// All divisions are known to be exact, that is, they do not produce
|
||||
|
@ -1983,6 +2054,17 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
* @return {@code this<sup>2</sup>}
|
||||
*/
|
||||
private BigInteger square() {
|
||||
return square(false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a BigInteger whose value is {@code (this<sup>2</sup>)}. If
|
||||
* the invocation is recursive certain overflow checks are skipped.
|
||||
*
|
||||
* @param isRecursion whether this is a recursive invocation
|
||||
* @return {@code this<sup>2</sup>}
|
||||
*/
|
||||
private BigInteger square(boolean isRecursion) {
|
||||
if (signum == 0) {
|
||||
return ZERO;
|
||||
}
|
||||
|
@ -1995,6 +2077,15 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
if (len < TOOM_COOK_SQUARE_THRESHOLD) {
|
||||
return squareKaratsuba();
|
||||
} else {
|
||||
//
|
||||
// For a discussion of overflow detection see multiply()
|
||||
//
|
||||
if (!isRecursion) {
|
||||
if (bitLength(mag, mag.length) > 16L*MAX_MAG_LENGTH) {
|
||||
reportOverflow();
|
||||
}
|
||||
}
|
||||
|
||||
return squareToomCook3();
|
||||
}
|
||||
}
|
||||
|
@ -2146,13 +2237,13 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
a0 = getToomSlice(k, r, 2, len);
|
||||
BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1;
|
||||
|
||||
v0 = a0.square();
|
||||
v0 = a0.square(true);
|
||||
da1 = a2.add(a0);
|
||||
vm1 = da1.subtract(a1).square();
|
||||
vm1 = da1.subtract(a1).square(true);
|
||||
da1 = da1.add(a1);
|
||||
v1 = da1.square();
|
||||
vinf = a2.square();
|
||||
v2 = da1.add(a2).shiftLeft(1).subtract(a0).square();
|
||||
v1 = da1.square(true);
|
||||
vinf = a2.square(true);
|
||||
v2 = da1.add(a2).shiftLeft(1).subtract(a0).square(true);
|
||||
|
||||
// The algorithm requires two divisions by 2 and one by 3.
|
||||
// All divisions are known to be exact, that is, they do not produce
|
||||
|
@ -2323,10 +2414,11 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
// The remaining part can then be exponentiated faster. The
|
||||
// powers of two will be multiplied back at the end.
|
||||
int powersOfTwo = partToSquare.getLowestSetBit();
|
||||
long bitsToShift = (long)powersOfTwo * exponent;
|
||||
if (bitsToShift > Integer.MAX_VALUE) {
|
||||
long bitsToShiftLong = (long)powersOfTwo * exponent;
|
||||
if (bitsToShiftLong > Integer.MAX_VALUE) {
|
||||
reportOverflow();
|
||||
}
|
||||
int bitsToShift = (int)bitsToShiftLong;
|
||||
|
||||
int remainingBits;
|
||||
|
||||
|
@ -2336,9 +2428,9 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
remainingBits = partToSquare.bitLength();
|
||||
if (remainingBits == 1) { // Nothing left but +/- 1?
|
||||
if (signum < 0 && (exponent&1) == 1) {
|
||||
return NEGATIVE_ONE.shiftLeft(powersOfTwo*exponent);
|
||||
return NEGATIVE_ONE.shiftLeft(bitsToShift);
|
||||
} else {
|
||||
return ONE.shiftLeft(powersOfTwo*exponent);
|
||||
return ONE.shiftLeft(bitsToShift);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
@ -2383,13 +2475,16 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
if (bitsToShift + scaleFactor <= 62) { // Fits in long?
|
||||
return valueOf((result << bitsToShift) * newSign);
|
||||
} else {
|
||||
return valueOf(result*newSign).shiftLeft((int) bitsToShift);
|
||||
return valueOf(result*newSign).shiftLeft(bitsToShift);
|
||||
}
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
return valueOf(result*newSign);
|
||||
}
|
||||
} else {
|
||||
if ((long)bitLength() * exponent / Integer.SIZE > MAX_MAG_LENGTH) {
|
||||
reportOverflow();
|
||||
}
|
||||
|
||||
// Large number algorithm. This is basically identical to
|
||||
// the algorithm above, but calls multiply() and square()
|
||||
// which may use more efficient algorithms for large numbers.
|
||||
|
@ -2409,7 +2504,7 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
// Multiply back the (exponentiated) powers of two (quickly,
|
||||
// by shifting left)
|
||||
if (powersOfTwo > 0) {
|
||||
answer = answer.shiftLeft(powersOfTwo*exponent);
|
||||
answer = answer.shiftLeft(bitsToShift);
|
||||
}
|
||||
|
||||
if (signum < 0 && (exponent&1) == 1) {
|
||||
|
@ -3584,7 +3679,7 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
|||
for (int i=1; i< len && pow2; i++)
|
||||
pow2 = (mag[i] == 0);
|
||||
|
||||
n = (pow2 ? magBitLength -1 : magBitLength);
|
||||
n = (pow2 ? magBitLength - 1 : magBitLength);
|
||||
} else {
|
||||
n = magBitLength;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue