8000244: G1: Ergonomically set MarkStackSize and use virtual space for global marking stack

Set the value of MarkStackSize to a value based on the number of parallel marking threads with a reasonable minimum. Expand the marking stack if we have to restart marking due to an overflow up to a reasonable maximum. Allocate the underlying space for the marking stack from virtual memory.

Reviewed-by: jmasa, brutisso
This commit is contained in:
John Cuthbertson 2012-10-01 09:28:13 -07:00
parent e74d551608
commit aac13806ea
4 changed files with 271 additions and 110 deletions

View file

@ -46,27 +46,11 @@
// Concurrent marking bit map wrapper
CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
_bm((uintptr_t*)NULL,0),
CMBitMapRO::CMBitMapRO(int shifter) :
_bm(),
_shifter(shifter) {
_bmStartWord = (HeapWord*)(rs.base());
_bmWordSize = rs.size()/HeapWordSize; // rs.size() is in bytes
ReservedSpace brs(ReservedSpace::allocation_align_size_up(
(_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
guarantee(brs.is_reserved(), "couldn't allocate concurrent marking bit map");
// For now we'll just commit all of the bit map up fromt.
// Later on we'll try to be more parsimonious with swap.
guarantee(_virtual_space.initialize(brs, brs.size()),
"couldn't reseve backing store for concurrent marking bit map");
assert(_virtual_space.committed_size() == brs.size(),
"didn't reserve backing store for all of concurrent marking bit map?");
_bm.set_map((uintptr_t*)_virtual_space.low());
assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
_bmWordSize, "inconsistency in bit map sizing");
_bm.set_size(_bmWordSize >> _shifter);
_bmStartWord = 0;
_bmWordSize = 0;
}
HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
@ -108,15 +92,40 @@ int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
}
#ifndef PRODUCT
bool CMBitMapRO::covers(ReservedSpace rs) const {
bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
// assert(_bm.map() == _virtual_space.low(), "map inconsistency");
assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
"size inconsistency");
return _bmStartWord == (HeapWord*)(rs.base()) &&
_bmWordSize == rs.size()>>LogHeapWordSize;
return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
_bmWordSize == heap_rs.size()>>LogHeapWordSize;
}
#endif
bool CMBitMap::allocate(ReservedSpace heap_rs) {
_bmStartWord = (HeapWord*)(heap_rs.base());
_bmWordSize = heap_rs.size()/HeapWordSize; // heap_rs.size() is in bytes
ReservedSpace brs(ReservedSpace::allocation_align_size_up(
(_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
if (!brs.is_reserved()) {
warning("ConcurrentMark marking bit map allocation failure");
return false;
}
MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
// For now we'll just commit all of the bit map up front.
// Later on we'll try to be more parsimonious with swap.
if (!_virtual_space.initialize(brs, brs.size())) {
warning("ConcurrentMark marking bit map backing store failure");
return false;
}
assert(_virtual_space.committed_size() == brs.size(),
"didn't reserve backing store for all of concurrent marking bit map?");
_bm.set_map((uintptr_t*)_virtual_space.low());
assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
_bmWordSize, "inconsistency in bit map sizing");
_bm.set_size(_bmWordSize >> _shifter);
return true;
}
void CMBitMap::clearAll() {
_bm.clear();
return;
@ -163,20 +172,79 @@ CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
#endif
{}
void CMMarkStack::allocate(size_t size) {
_base = NEW_C_HEAP_ARRAY(oop, size, mtGC);
if (_base == NULL) {
vm_exit_during_initialization("Failed to allocate CM region mark stack");
bool CMMarkStack::allocate(size_t capacity) {
// allocate a stack of the requisite depth
ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
if (!rs.is_reserved()) {
warning("ConcurrentMark MarkStack allocation failure");
return false;
}
_index = 0;
_capacity = (jint) size;
MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
if (!_virtual_space.initialize(rs, rs.size())) {
warning("ConcurrentMark MarkStack backing store failure");
// Release the virtual memory reserved for the marking stack
rs.release();
return false;
}
assert(_virtual_space.committed_size() == rs.size(),
"Didn't reserve backing store for all of ConcurrentMark stack?");
_base = (oop*) _virtual_space.low();
setEmpty();
_capacity = (jint) capacity;
_saved_index = -1;
NOT_PRODUCT(_max_depth = 0);
return true;
}
void CMMarkStack::expand() {
// Called, during remark, if we've overflown the marking stack during marking.
assert(isEmpty(), "stack should been emptied while handling overflow");
assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
// Clear expansion flag
_should_expand = false;
if (_capacity == (jint) MarkStackSizeMax) {
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
}
return;
}
// Double capacity if possible
jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
// Do not give up existing stack until we have managed to
// get the double capacity that we desired.
ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
sizeof(oop)));
if (rs.is_reserved()) {
// Release the backing store associated with old stack
_virtual_space.release();
// Reinitialize virtual space for new stack
if (!_virtual_space.initialize(rs, rs.size())) {
fatal("Not enough swap for expanded marking stack capacity");
}
_base = (oop*)(_virtual_space.low());
_index = 0;
_capacity = new_capacity;
} else {
if (PrintGCDetails && Verbose) {
// Failed to double capacity, continue;
gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
SIZE_FORMAT"K to " SIZE_FORMAT"K",
_capacity / K, new_capacity / K);
}
}
}
void CMMarkStack::set_should_expand() {
// If we're resetting the marking state because of an
// marking stack overflow, record that we should, if
// possible, expand the stack.
_should_expand = _cm->has_overflown();
}
CMMarkStack::~CMMarkStack() {
if (_base != NULL) {
FREE_C_HEAP_ARRAY(oop, _base, mtGC);
_base = NULL;
_virtual_space.release();
}
}
@ -217,7 +285,7 @@ void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
jint res = Atomic::cmpxchg(next_index, &_index, index);
if (res == index) {
for (int i = 0; i < n; i++) {
int ind = index + i;
int ind = index + i;
assert(ind < _capacity, "By overflow test above.");
_base[ind] = ptr_arr[i];
}
@ -228,7 +296,6 @@ void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
}
}
void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
jint start = _index;
@ -244,9 +311,9 @@ void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
assert(ind < _capacity, "By overflow test above.");
_base[ind] = ptr_arr[i];
}
NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
}
bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
jint index = _index;
@ -255,7 +322,7 @@ bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
return false;
} else {
int k = MIN2(max, index);
jint new_ind = index - k;
jint new_ind = index - k;
for (int j = 0; j < k; j++) {
ptr_arr[j] = _base[new_ind + j];
}
@ -404,9 +471,10 @@ uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
return MAX2((n_par_threads + 2) / 4, 1U);
}
ConcurrentMark::ConcurrentMark(ReservedSpace rs, uint max_regions) :
_markBitMap1(rs, MinObjAlignment - 1),
_markBitMap2(rs, MinObjAlignment - 1),
ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
_g1h(g1h),
_markBitMap1(MinObjAlignment - 1),
_markBitMap2(MinObjAlignment - 1),
_parallel_marking_threads(0),
_max_parallel_marking_threads(0),
@ -415,10 +483,10 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs, uint max_regions) :
_cleanup_sleep_factor(0.0),
_cleanup_task_overhead(1.0),
_cleanup_list("Cleanup List"),
_region_bm((BitMap::idx_t) max_regions, false /* in_resource_area*/),
_card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
CardTableModRefBS::card_shift,
false /* in_resource_area*/),
_region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
_card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
CardTableModRefBS::card_shift,
false /* in_resource_area*/),
_prevMarkBitMap(&_markBitMap1),
_nextMarkBitMap(&_markBitMap2),
@ -449,7 +517,8 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs, uint max_regions) :
_parallel_workers(NULL),
_count_card_bitmaps(NULL),
_count_marked_bytes(NULL) {
_count_marked_bytes(NULL),
_completed_initialization(false) {
CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
if (verbose_level < no_verbose) {
verbose_level = no_verbose;
@ -464,61 +533,34 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs, uint max_regions) :
"heap end = "PTR_FORMAT, _heap_start, _heap_end);
}
_markStack.allocate(MarkStackSize);
if (!_markBitMap1.allocate(heap_rs)) {
warning("Failed to allocate first CM bit map");
return;
}
if (!_markBitMap2.allocate(heap_rs)) {
warning("Failed to allocate second CM bit map");
return;
}
// Create & start a ConcurrentMark thread.
_cmThread = new ConcurrentMarkThread(this);
assert(cmThread() != NULL, "CM Thread should have been created");
assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
_g1h = G1CollectedHeap::heap();
assert(CGC_lock != NULL, "Where's the CGC_lock?");
assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");
assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
satb_qs.set_buffer_size(G1SATBBufferSize);
_root_regions.init(_g1h, this);
_tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
_accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
_count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap, _max_worker_id, mtGC);
_count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
BitMap::idx_t card_bm_size = _card_bm.size();
// so that the assertion in MarkingTaskQueue::task_queue doesn't fail
_active_tasks = _max_worker_id;
for (uint i = 0; i < _max_worker_id; ++i) {
CMTaskQueue* task_queue = new CMTaskQueue();
task_queue->initialize();
_task_queues->register_queue(i, task_queue);
_count_card_bitmaps[i] = BitMap(card_bm_size, false);
_count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, (size_t) max_regions, mtGC);
_tasks[i] = new CMTask(i, this,
_count_marked_bytes[i],
&_count_card_bitmaps[i],
task_queue, _task_queues);
_accum_task_vtime[i] = 0.0;
}
// Calculate the card number for the bottom of the heap. Used
// in biasing indexes into the accounting card bitmaps.
_heap_bottom_card_num =
intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
CardTableModRefBS::card_shift);
// Clear all the liveness counting data
clear_all_count_data();
if (ConcGCThreads > ParallelGCThreads) {
vm_exit_during_initialization("Can't have more ConcGCThreads "
"than ParallelGCThreads.");
warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
"than ParallelGCThreads (" UINT32_FORMAT ").",
ConcGCThreads, ParallelGCThreads);
return;
}
if (ParallelGCThreads == 0) {
// if we are not running with any parallel GC threads we will not
@ -590,9 +632,86 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs, uint max_regions) :
}
}
if (FLAG_IS_DEFAULT(MarkStackSize)) {
uintx mark_stack_size =
MIN2(MarkStackSizeMax,
MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
// Verify that the calculated value for MarkStackSize is in range.
// It would be nice to use the private utility routine from Arguments.
if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
"must be between " UINTX_FORMAT " and " UINTX_FORMAT,
mark_stack_size, 1, MarkStackSizeMax);
return;
}
FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
} else {
// Verify MarkStackSize is in range.
if (FLAG_IS_CMDLINE(MarkStackSize)) {
if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
"must be between " UINTX_FORMAT " and " UINTX_FORMAT,
MarkStackSize, 1, MarkStackSizeMax);
return;
}
} else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
" or for MarkStackSizeMax (" UINTX_FORMAT ")",
MarkStackSize, MarkStackSizeMax);
return;
}
}
}
}
if (!_markStack.allocate(MarkStackSize)) {
warning("Failed to allocate CM marking stack");
return;
}
_tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
_accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
_count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap, _max_worker_id, mtGC);
_count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
BitMap::idx_t card_bm_size = _card_bm.size();
// so that the assertion in MarkingTaskQueue::task_queue doesn't fail
_active_tasks = _max_worker_id;
size_t max_regions = (size_t) _g1h->max_regions();
for (uint i = 0; i < _max_worker_id; ++i) {
CMTaskQueue* task_queue = new CMTaskQueue();
task_queue->initialize();
_task_queues->register_queue(i, task_queue);
_count_card_bitmaps[i] = BitMap(card_bm_size, false);
_count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
_tasks[i] = new CMTask(i, this,
_count_marked_bytes[i],
&_count_card_bitmaps[i],
task_queue, _task_queues);
_accum_task_vtime[i] = 0.0;
}
// Calculate the card number for the bottom of the heap. Used
// in biasing indexes into the accounting card bitmaps.
_heap_bottom_card_num =
intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
CardTableModRefBS::card_shift);
// Clear all the liveness counting data
clear_all_count_data();
// so that the call below can read a sensible value
_heap_start = (HeapWord*) rs.base();
_heap_start = (HeapWord*) heap_rs.base();
set_non_marking_state();
_completed_initialization = true;
}
void ConcurrentMark::update_g1_committed(bool force) {
@ -1165,6 +1284,11 @@ void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
assert(!restart_for_overflow(), "sanity");
}
// Expand the marking stack, if we have to and if we can.
if (_markStack.should_expand()) {
_markStack.expand();
}
// Reset the marking state if marking completed
if (!restart_for_overflow()) {
set_non_marking_state();
@ -2785,7 +2909,7 @@ void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
// Verify entries on the task queues
for (uint i = 0; i < _max_worker_id; i += 1) {
cl.set_phase(VerifyNoCSetOopsQueues, i);
OopTaskQueue* queue = _task_queues->queue(i);
CMTaskQueue* queue = _task_queues->queue(i);
queue->oops_do(&cl);
}
}
@ -2840,8 +2964,8 @@ void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
#endif // PRODUCT
void ConcurrentMark::clear_marking_state(bool clear_overflow) {
_markStack.setEmpty();
_markStack.clear_overflow();
_markStack.set_should_expand();
_markStack.setEmpty(); // Also clears the _markStack overflow flag
if (clear_overflow) {
clear_has_overflown();
} else {
@ -2850,7 +2974,7 @@ void ConcurrentMark::clear_marking_state(bool clear_overflow) {
_finger = _heap_start;
for (uint i = 0; i < _max_worker_id; ++i) {
OopTaskQueue* queue = _task_queues->queue(i);
CMTaskQueue* queue = _task_queues->queue(i);
queue->set_empty();
}
}