8329538: Accelerate P256 on x86_64 using Montgomery intrinsic

Reviewed-by: ihse, ascarpino, sviswanathan
This commit is contained in:
Volodymyr Paprotski 2024-05-22 16:27:27 +00:00 committed by Sandhya Viswanathan
parent 9ca90ccd6b
commit afed7d0b05
36 changed files with 2252 additions and 315 deletions

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2018, 2022, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -778,7 +778,7 @@ public class FieldGen {
result.appendLine("}");
result.appendLine("@Override");
result.appendLine("protected void mult(long[] a, long[] b, long[] r) {");
result.appendLine("protected int mult(long[] a, long[] b, long[] r) {");
result.incrIndent();
for (int i = 0; i < 2 * params.getNumLimbs() - 1; i++) {
result.appendIndent();
@ -804,6 +804,9 @@ public class FieldGen {
}
}
result.append(");\n");
result.appendIndent();
result.append("return 0;");
result.appendLine();
result.decrIndent();
result.appendLine("}");
@ -833,7 +836,7 @@ public class FieldGen {
// }
// }
result.appendLine("@Override");
result.appendLine("protected void square(long[] a, long[] r) {");
result.appendLine("protected int square(long[] a, long[] r) {");
result.incrIndent();
for (int i = 0; i < 2 * params.getNumLimbs() - 1; i++) {
result.appendIndent();
@ -874,6 +877,9 @@ public class FieldGen {
}
}
result.append(");\n");
result.appendIndent();
result.append("return 0;");
result.appendLine();
result.decrIndent();
result.appendLine("}");

View file

@ -109,6 +109,8 @@ $(eval $(call SetupJavaCompilation, BUILD_JDK_MICROBENCHMARK, \
--add-exports java.base/jdk.internal.vm=ALL-UNNAMED \
--add-exports java.base/sun.invoke.util=ALL-UNNAMED \
--add-exports java.base/sun.security.util=ALL-UNNAMED \
--add-exports java.base/sun.security.util.math=ALL-UNNAMED \
--add-exports java.base/sun.security.util.math.intpoly=ALL-UNNAMED \
--enable-preview \
-XDsuppressNotes \
-processor org.openjdk.jmh.generators.BenchmarkProcessor, \

View file

@ -1549,6 +1549,8 @@ public:
Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
}
}
using Assembler::evpsrlq;
void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
@ -1570,6 +1572,7 @@ public:
Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
}
}
using Assembler::evpsraq;
void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);

View file

@ -4255,6 +4255,11 @@ void StubGenerator::generate_compiler_stubs() {
StubRoutines::_poly1305_processBlocks = generate_poly1305_processBlocks();
}
if (UseIntPolyIntrinsics) {
StubRoutines::_intpoly_montgomeryMult_P256 = generate_intpoly_montgomeryMult_P256();
StubRoutines::_intpoly_assign = generate_intpoly_assign();
}
if (UseMD5Intrinsics) {
StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress");
StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB");

View file

@ -483,6 +483,9 @@ class StubGenerator: public StubCodeGenerator {
const XMMRegister P2L, const XMMRegister P2H,
const XMMRegister YTMP1, const Register rscratch);
address generate_intpoly_montgomeryMult_P256();
address generate_intpoly_assign();
// BASE64 stubs
address base64_shuffle_addr();

View file

@ -0,0 +1,376 @@
/*
* Copyright (c) 2024, Intel Corporation. All rights reserved.
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "macroAssembler_x86.hpp"
#include "stubGenerator_x86_64.hpp"
#define __ _masm->
ATTRIBUTE_ALIGNED(64) uint64_t MODULUS_P256[] = {
0x000fffffffffffffULL, 0x00000fffffffffffULL,
0x0000000000000000ULL, 0x0000001000000000ULL,
0x0000ffffffff0000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL, 0x0000000000000000ULL
};
static address modulus_p256() {
return (address)MODULUS_P256;
}
ATTRIBUTE_ALIGNED(64) uint64_t P256_MASK52[] = {
0x000fffffffffffffULL, 0x000fffffffffffffULL,
0x000fffffffffffffULL, 0x000fffffffffffffULL,
0xffffffffffffffffULL, 0xffffffffffffffffULL,
0xffffffffffffffffULL, 0xffffffffffffffffULL,
};
static address p256_mask52() {
return (address)P256_MASK52;
}
ATTRIBUTE_ALIGNED(64) uint64_t SHIFT1R[] = {
0x0000000000000001ULL, 0x0000000000000002ULL,
0x0000000000000003ULL, 0x0000000000000004ULL,
0x0000000000000005ULL, 0x0000000000000006ULL,
0x0000000000000007ULL, 0x0000000000000000ULL,
};
static address shift_1R() {
return (address)SHIFT1R;
}
ATTRIBUTE_ALIGNED(64) uint64_t SHIFT1L[] = {
0x0000000000000007ULL, 0x0000000000000000ULL,
0x0000000000000001ULL, 0x0000000000000002ULL,
0x0000000000000003ULL, 0x0000000000000004ULL,
0x0000000000000005ULL, 0x0000000000000006ULL,
};
static address shift_1L() {
return (address)SHIFT1L;
}
/**
* Unrolled Word-by-Word Montgomery Multiplication
* r = a * b * 2^-260 (mod P)
*
* Reference [1]: Shay Gueron and Vlad Krasnov
* "Fast Prime Field Elliptic Curve Cryptography with 256 Bit Primes"
* See Figure 5. "Algorithm 2: Word-by-Word Montgomery Multiplication for a Montgomery
* Friendly modulus p". Note: Step 6. Skipped; Instead use numAdds to reuse existing overflow
* logic.
*
* Pseudocode:
*
* +--+--+--+--+--+--+--+--+
* M = load(*modulus_p256) | 0| 0| 0|m5|m4|m3|m2|m1|
* +--+--+--+--+--+--+--+--+
* A = load(*aLimbs) | 0| 0| 0|a5|a4|a3|a2|a1|
* +--+--+--+--+--+--+--+--+
* Acc1 = 0 | 0| 0| 0| 0| 0| 0| 0| 0|
* +--+--+--+--+--+--+--+--+
* ---- for i = 0 to 4
* +--+--+--+--+--+--+--+--+
* Acc2 = 0 | 0| 0| 0| 0| 0| 0| 0| 0|
* +--+--+--+--+--+--+--+--+
* B = replicate(bLimbs[i]) |bi|bi|bi|bi|bi|bi|bi|bi|
* +--+--+--+--+--+--+--+--+
* +--+--+--+--+--+--+--+--+
* Acc1+=| 0| 0| 0|c5|c4|c3|c2|c1|
* *| 0| 0| 0|a5|a4|a3|a2|a1|
* Acc1 += A * B |bi|bi|bi|bi|bi|bi|bi|bi|
* +--+--+--+--+--+--+--+--+
* Acc2+=| 0| 0| 0| 0| 0| 0| 0| 0|
* *h| 0| 0| 0|a5|a4|a3|a2|a1|
* Acc2 += A *h B |bi|bi|bi|bi|bi|bi|bi|bi|
* +--+--+--+--+--+--+--+--+
* N = replicate(Acc1[0]) |n0|n0|n0|n0|n0|n0|n0|n0|
* +--+--+--+--+--+--+--+--+
* +--+--+--+--+--+--+--+--+
* Acc1+=| 0| 0| 0|c5|c4|c3|c2|c1|
* *| 0| 0| 0|m5|m4|m3|m2|m1|
* Acc1 += M * N |n0|n0|n0|n0|n0|n0|n0|n0| Note: 52 low bits of Acc1[0] == 0 due to Montgomery!
* +--+--+--+--+--+--+--+--+
* Acc2+=| 0| 0| 0|d5|d4|d3|d2|d1|
* *h| 0| 0| 0|m5|m4|m3|m2|m1|
* Acc2 += M *h N |n0|n0|n0|n0|n0|n0|n0|n0|
* +--+--+--+--+--+--+--+--+
* if (i == 4) break;
* // Combine high/low partial sums Acc1 + Acc2
* +--+--+--+--+--+--+--+--+
* carry = Acc1[0] >> 52 | 0| 0| 0| 0| 0| 0| 0|c1|
* +--+--+--+--+--+--+--+--+
* Acc2[0] += carry
* +--+--+--+--+--+--+--+--+
* Acc1 = Acc1 shift one q element>> | 0| 0| 0| 0|c5|c4|c3|c2|
* +--+--+--+--+--+--+--+--+
* Acc1 = Acc1 + Acc2
* ---- done
* // Last Carry round: Combine high/low partial sums Acc1<high_bits> + Acc1 + Acc2
* carry = Acc1 >> 52
* Acc1 = Acc1 shift one q element >>
* Acc1 = mask52(Acc1)
* Acc2 += carry
* Acc1 = Acc1 + Acc2
* output to rLimbs
*/
void montgomeryMultiply(const Register aLimbs, const Register bLimbs, const Register rLimbs, const Register tmp, MacroAssembler* _masm) {
Register t0 = tmp;
Register rscratch = tmp;
// Inputs
XMMRegister A = xmm0;
XMMRegister B = xmm1;
XMMRegister T = xmm2;
// Intermediates
XMMRegister Acc1 = xmm10;
XMMRegister Acc2 = xmm11;
XMMRegister N = xmm12;
XMMRegister carry = xmm13;
// // Constants
XMMRegister modulus = xmm20;
XMMRegister shift1L = xmm21;
XMMRegister shift1R = xmm22;
XMMRegister mask52 = xmm23;
KRegister limb0 = k1;
KRegister allLimbs = k2;
__ mov64(t0, 0x1);
__ kmovql(limb0, t0);
__ mov64(t0, 0x1f);
__ kmovql(allLimbs, t0);
__ evmovdquq(shift1L, allLimbs, ExternalAddress(shift_1L()), false, Assembler::AVX_512bit, rscratch);
__ evmovdquq(shift1R, allLimbs, ExternalAddress(shift_1R()), false, Assembler::AVX_512bit, rscratch);
__ evmovdquq(mask52, allLimbs, ExternalAddress(p256_mask52()), false, Assembler::AVX_512bit, rscratch);
// M = load(*modulus_p256)
__ evmovdquq(modulus, allLimbs, ExternalAddress(modulus_p256()), false, Assembler::AVX_512bit, rscratch);
// A = load(*aLimbs); masked evmovdquq() can be slow. Instead load full 256bit, and compbine with 64bit
__ evmovdquq(A, Address(aLimbs, 8), Assembler::AVX_256bit);
__ evpermq(A, allLimbs, shift1L, A, false, Assembler::AVX_512bit);
__ movq(T, Address(aLimbs, 0));
__ evporq(A, A, T, Assembler::AVX_512bit);
// Acc1 = 0
__ vpxorq(Acc1, Acc1, Acc1, Assembler::AVX_512bit);
for (int i = 0; i< 5; i++) {
// Acc2 = 0
__ vpxorq(Acc2, Acc2, Acc2, Assembler::AVX_512bit);
// B = replicate(bLimbs[i])
__ vpbroadcastq(B, Address(bLimbs, i*8), Assembler::AVX_512bit);
// Acc1 += A * B
__ evpmadd52luq(Acc1, A, B, Assembler::AVX_512bit);
// Acc2 += A *h B
__ evpmadd52huq(Acc2, A, B, Assembler::AVX_512bit);
// N = replicate(Acc1[0])
__ vpbroadcastq(N, Acc1, Assembler::AVX_512bit);
// Acc1 += M * N
__ evpmadd52luq(Acc1, modulus, N, Assembler::AVX_512bit);
// Acc2 += M *h N
__ evpmadd52huq(Acc2, modulus, N, Assembler::AVX_512bit);
if (i == 4) break;
// Combine high/low partial sums Acc1 + Acc2
// carry = Acc1[0] >> 52
__ evpsrlq(carry, limb0, Acc1, 52, true, Assembler::AVX_512bit);
// Acc2[0] += carry
__ evpaddq(Acc2, limb0, carry, Acc2, true, Assembler::AVX_512bit);
// Acc1 = Acc1 shift one q element >>
__ evpermq(Acc1, allLimbs, shift1R, Acc1, false, Assembler::AVX_512bit);
// Acc1 = Acc1 + Acc2
__ vpaddq(Acc1, Acc1, Acc2, Assembler::AVX_512bit);
}
// Last Carry round: Combine high/low partial sums Acc1<high_bits> + Acc1 + Acc2
// carry = Acc1 >> 52
__ evpsrlq(carry, allLimbs, Acc1, 52, true, Assembler::AVX_512bit);
// Acc1 = Acc1 shift one q element >>
__ evpermq(Acc1, allLimbs, shift1R, Acc1, false, Assembler::AVX_512bit);
// Acc1 = mask52(Acc1)
__ evpandq(Acc1, Acc1, mask52, Assembler::AVX_512bit); // Clear top 12 bits
// Acc2 += carry
__ evpaddq(Acc2, allLimbs, carry, Acc2, true, Assembler::AVX_512bit);
// Acc1 = Acc1 + Acc2
__ vpaddq(Acc1, Acc1, Acc2, Assembler::AVX_512bit);
// output to rLimbs (1 + 4 limbs)
__ movq(Address(rLimbs, 0), Acc1);
__ evpermq(Acc1, k0, shift1R, Acc1, true, Assembler::AVX_512bit);
__ evmovdquq(Address(rLimbs, 8), k0, Acc1, true, Assembler::AVX_256bit);
}
address StubGenerator::generate_intpoly_montgomeryMult_P256() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "intpoly_montgomeryMult_P256");
address start = __ pc();
__ enter();
// Register Map
const Register aLimbs = c_rarg0; // rdi | rcx
const Register bLimbs = c_rarg1; // rsi | rdx
const Register rLimbs = c_rarg2; // rdx | r8
const Register tmp = r9;
montgomeryMultiply(aLimbs, bLimbs, rLimbs, tmp, _masm);
__ mov64(rax, 0x1); // Return 1 (Fig. 5, Step 6 [1] skipped in montgomeryMultiply)
__ leave();
__ ret(0);
return start;
}
// A = B if select
// Must be:
// - constant time (i.e. no branches)
// - no-side channel (i.e. all memory must always be accessed, and in same order)
void assign_avx(XMMRegister A, Address aAddr, XMMRegister B, Address bAddr, KRegister select, int vector_len, MacroAssembler* _masm) {
__ evmovdquq(A, aAddr, vector_len);
__ evmovdquq(B, bAddr, vector_len);
__ evmovdquq(A, select, B, true, vector_len);
__ evmovdquq(aAddr, A, vector_len);
}
void assign_scalar(Address aAddr, Address bAddr, Register select, Register tmp, MacroAssembler* _masm) {
// Original java:
// long dummyLimbs = maskValue & (a[i] ^ b[i]);
// a[i] = dummyLimbs ^ a[i];
__ movq(tmp, aAddr);
__ xorq(tmp, bAddr);
__ andq(tmp, select);
__ xorq(aAddr, tmp);
}
address StubGenerator::generate_intpoly_assign() {
// KNOWN Lengths:
// MontgomeryIntPolynP256: 5 = 4 + 1
// IntegerPolynomial1305: 5 = 4 + 1
// IntegerPolynomial25519: 10 = 8 + 2
// IntegerPolynomialP256: 10 = 8 + 2
// Curve25519OrderField: 10 = 8 + 2
// Curve25519OrderField: 10 = 8 + 2
// P256OrderField: 10 = 8 + 2
// IntegerPolynomialP384: 14 = 8 + 4 + 2
// P384OrderField: 14 = 8 + 4 + 2
// IntegerPolynomial448: 16 = 8 + 8
// Curve448OrderField: 16 = 8 + 8
// Curve448OrderField: 16 = 8 + 8
// IntegerPolynomialP521: 19 = 8 + 8 + 2 + 1
// P521OrderField: 19 = 8 + 8 + 2 + 1
// Special Cases 5, 10, 14, 16, 19
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "intpoly_assign");
address start = __ pc();
__ enter();
// Inputs
const Register set = c_rarg0;
const Register aLimbs = c_rarg1;
const Register bLimbs = c_rarg2;
const Register length = c_rarg3;
XMMRegister A = xmm0;
XMMRegister B = xmm1;
Register tmp = r9;
KRegister select = k1;
Label L_Length5, L_Length10, L_Length14, L_Length16, L_Length19, L_DefaultLoop, L_Done;
__ negq(set);
__ kmovql(select, set);
// NOTE! Crypto code cannot branch on user input. However; allowed to branch on number of limbs;
// Number of limbs is a constant in each IntegerPolynomial (i.e. this side-channel branch leaks
// number of limbs which is not a secret)
__ cmpl(length, 5);
__ jcc(Assembler::equal, L_Length5);
__ cmpl(length, 10);
__ jcc(Assembler::equal, L_Length10);
__ cmpl(length, 14);
__ jcc(Assembler::equal, L_Length14);
__ cmpl(length, 16);
__ jcc(Assembler::equal, L_Length16);
__ cmpl(length, 19);
__ jcc(Assembler::equal, L_Length19);
// Default copy loop (UNLIKELY)
__ cmpl(length, 0);
__ jcc(Assembler::lessEqual, L_Done);
__ bind(L_DefaultLoop);
assign_scalar(Address(aLimbs, 0), Address(bLimbs, 0), set, tmp, _masm);
__ subl(length, 1);
__ lea(aLimbs, Address(aLimbs,8));
__ lea(bLimbs, Address(bLimbs,8));
__ cmpl(length, 0);
__ jcc(Assembler::greater, L_DefaultLoop);
__ jmp(L_Done);
__ bind(L_Length5); // 1 + 4
assign_scalar(Address(aLimbs, 0), Address(bLimbs, 0), set, tmp, _masm);
assign_avx(A, Address(aLimbs, 8), B, Address(bLimbs, 8), select, Assembler::AVX_256bit, _masm);
__ jmp(L_Done);
__ bind(L_Length10); // 2 + 8
assign_avx(A, Address(aLimbs, 0), B, Address(bLimbs, 0), select, Assembler::AVX_128bit, _masm);
assign_avx(A, Address(aLimbs, 16), B, Address(bLimbs, 16), select, Assembler::AVX_512bit, _masm);
__ jmp(L_Done);
__ bind(L_Length14); // 2 + 4 + 8
assign_avx(A, Address(aLimbs, 0), B, Address(bLimbs, 0), select, Assembler::AVX_128bit, _masm);
assign_avx(A, Address(aLimbs, 16), B, Address(bLimbs, 16), select, Assembler::AVX_256bit, _masm);
assign_avx(A, Address(aLimbs, 48), B, Address(bLimbs, 48), select, Assembler::AVX_512bit, _masm);
__ jmp(L_Done);
__ bind(L_Length16); // 8 + 8
assign_avx(A, Address(aLimbs, 0), B, Address(bLimbs, 0), select, Assembler::AVX_512bit, _masm);
assign_avx(A, Address(aLimbs, 64), B, Address(bLimbs, 64), select, Assembler::AVX_512bit, _masm);
__ jmp(L_Done);
__ bind(L_Length19); // 1 + 2 + 8 + 8
assign_scalar(Address(aLimbs, 0), Address(bLimbs, 0), set, tmp, _masm);
assign_avx(A, Address(aLimbs, 8), B, Address(bLimbs, 8), select, Assembler::AVX_128bit, _masm);
assign_avx(A, Address(aLimbs, 24), B, Address(bLimbs, 24), select, Assembler::AVX_512bit, _masm);
assign_avx(A, Address(aLimbs, 88), B, Address(bLimbs, 88), select, Assembler::AVX_512bit, _masm);
__ bind(L_Done);
__ leave();
__ ret(0);
return start;
}

View file

@ -1366,6 +1366,18 @@ void VM_Version::get_processor_features() {
FLAG_SET_DEFAULT(UsePoly1305Intrinsics, false);
}
#ifdef _LP64
if (supports_avx512ifma() && supports_avx512vlbw()) {
if (FLAG_IS_DEFAULT(UseIntPolyIntrinsics)) {
FLAG_SET_DEFAULT(UseIntPolyIntrinsics, true);
}
} else
#endif
if (UseIntPolyIntrinsics) {
warning("Intrinsics for Polynomial crypto functions not available on this CPU.");
FLAG_SET_DEFAULT(UseIntPolyIntrinsics, false);
}
#ifdef _LP64
if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
UseMultiplyToLenIntrinsic = true;

View file

@ -492,6 +492,10 @@ bool vmIntrinsics::disabled_by_jvm_flags(vmIntrinsics::ID id) {
case vmIntrinsics::_poly1305_processBlocks:
if (!UsePoly1305Intrinsics) return true;
break;
case vmIntrinsics::_intpoly_montgomeryMult_P256:
case vmIntrinsics::_intpoly_assign:
if (!UseIntPolyIntrinsics) return true;
break;
case vmIntrinsics::_updateBytesCRC32C:
case vmIntrinsics::_updateDirectByteBufferCRC32C:
if (!UseCRC32CIntrinsics) return true;

View file

@ -526,7 +526,18 @@ class methodHandle;
do_intrinsic(_digestBase_implCompressMB, sun_security_provider_digestbase, implCompressMB_name, countPositives_signature, F_R) \
do_name( implCompressMB_name, "implCompressMultiBlock0") \
\
/* support for java.util.Base64.Encoder*/ \
/* support for sun.security.util.math.intpoly.MontgomeryIntegerPolynomialP256 */ \
do_class(sun_security_util_math_intpoly_MontgomeryIntegerPolynomialP256, "sun/security/util/math/intpoly/MontgomeryIntegerPolynomialP256") \
do_intrinsic(_intpoly_montgomeryMult_P256, sun_security_util_math_intpoly_MontgomeryIntegerPolynomialP256, intPolyMult_name, intPolyMult_signature, F_R) \
do_name(intPolyMult_name, "mult") \
do_signature(intPolyMult_signature, "([J[J[J)I") \
\
do_class(sun_security_util_math_intpoly_IntegerPolynomial, "sun/security/util/math/intpoly/IntegerPolynomial") \
do_intrinsic(_intpoly_assign, sun_security_util_math_intpoly_IntegerPolynomial, intPolyAssign_name, intPolyAssign_signature, F_S) \
do_name(intPolyAssign_name, "conditionalAssign") \
do_signature(intPolyAssign_signature, "(I[J[J)V") \
\
/* support for java.util.Base64.Encoder*/ \
do_class(java_util_Base64_Encoder, "java/util/Base64$Encoder") \
do_intrinsic(_base64_encodeBlock, java_util_Base64_Encoder, encodeBlock_name, encodeBlock_signature, F_R) \
do_name(encodeBlock_name, "encodeBlock") \

View file

@ -463,6 +463,12 @@ void ShenandoahBarrierC2Support::verify(RootNode* root) {
"decodeBlock",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+3, ShenandoahStore }, { -1, ShenandoahNone },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"intpoly_montgomeryMult_P256",
{ { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahLoad }, { TypeFunc::Parms+2, ShenandoahStore },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
"intpoly_assign",
{ { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad }, { -1, ShenandoahNone },
{ -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} },
};
if (call->is_call_to_arraycopystub()) {

View file

@ -361,6 +361,8 @@
static_field(StubRoutines, _md5_implCompressMB, address) \
static_field(StubRoutines, _chacha20Block, address) \
static_field(StubRoutines, _poly1305_processBlocks, address) \
static_field(StubRoutines, _intpoly_montgomeryMult_P256, address) \
static_field(StubRoutines, _intpoly_assign, address) \
static_field(StubRoutines, _sha1_implCompress, address) \
static_field(StubRoutines, _sha1_implCompressMB, address) \
static_field(StubRoutines, _sha256_implCompress, address) \

View file

@ -786,6 +786,8 @@ bool C2Compiler::is_intrinsic_supported(vmIntrinsics::ID id) {
case vmIntrinsics::_base64_encodeBlock:
case vmIntrinsics::_base64_decodeBlock:
case vmIntrinsics::_poly1305_processBlocks:
case vmIntrinsics::_intpoly_montgomeryMult_P256:
case vmIntrinsics::_intpoly_assign:
case vmIntrinsics::_updateCRC32:
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32:

View file

@ -2173,6 +2173,8 @@ void ConnectionGraph::process_call_arguments(CallNode *call) {
strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
strcmp(call->as_CallLeaf()->_name, "galoisCounterMode_AESCrypt") == 0 ||
strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 ||
strcmp(call->as_CallLeaf()->_name, "intpoly_montgomeryMult_P256") == 0 ||
strcmp(call->as_CallLeaf()->_name, "intpoly_assign") == 0 ||
strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 ||
strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||

View file

@ -638,7 +638,10 @@ bool LibraryCallKit::try_to_inline(int predicate) {
return inline_base64_decodeBlock();
case vmIntrinsics::_poly1305_processBlocks:
return inline_poly1305_processBlocks();
case vmIntrinsics::_intpoly_montgomeryMult_P256:
return inline_intpoly_montgomeryMult_P256();
case vmIntrinsics::_intpoly_assign:
return inline_intpoly_assign();
case vmIntrinsics::_encodeISOArray:
case vmIntrinsics::_encodeByteISOArray:
return inline_encodeISOArray(false);
@ -7568,6 +7571,69 @@ bool LibraryCallKit::inline_poly1305_processBlocks() {
return true;
}
bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
address stubAddr;
const char *stubName;
assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
stubName = "intpoly_montgomeryMult_P256";
if (!stubAddr) return false;
null_check_receiver(); // null-check receiver
if (stopped()) return true;
Node* a = argument(1);
Node* b = argument(2);
Node* r = argument(3);
a = must_be_not_null(a, true);
b = must_be_not_null(b, true);
r = must_be_not_null(r, true);
Node* a_start = array_element_address(a, intcon(0), T_LONG);
assert(a_start, "a array is NULL");
Node* b_start = array_element_address(b, intcon(0), T_LONG);
assert(b_start, "b array is NULL");
Node* r_start = array_element_address(r, intcon(0), T_LONG);
assert(r_start, "r array is NULL");
Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
OptoRuntime::intpoly_montgomeryMult_P256_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
a_start, b_start, r_start);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
bool LibraryCallKit::inline_intpoly_assign() {
assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
const char *stubName = "intpoly_assign";
address stubAddr = StubRoutines::intpoly_assign();
if (!stubAddr) return false;
Node* set = argument(0);
Node* a = argument(1);
Node* b = argument(2);
Node* arr_length = load_array_length(a);
a = must_be_not_null(a, true);
b = must_be_not_null(b, true);
Node* a_start = array_element_address(a, intcon(0), T_LONG);
assert(a_start, "a array is NULL");
Node* b_start = array_element_address(b, intcon(0), T_LONG);
assert(b_start, "b array is NULL");
Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
OptoRuntime::intpoly_assign_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
set, a_start, b_start, arr_length);
return true;
}
//------------------------------inline_digestBase_implCompress-----------------------
//
// Calculate MD5 for single-block byte[] array.

View file

@ -307,6 +307,8 @@ class LibraryCallKit : public GraphKit {
bool inline_base64_encodeBlock();
bool inline_base64_decodeBlock();
bool inline_poly1305_processBlocks();
bool inline_intpoly_montgomeryMult_P256();
bool inline_intpoly_assign();
bool inline_digestBase_implCompress(vmIntrinsics::ID id);
bool inline_digestBase_implCompressMB(int predicate);
bool inline_digestBase_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass,

View file

@ -1401,6 +1401,45 @@ const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() {
return TypeFunc::make(domain, range);
}
// MontgomeryIntegerPolynomialP256 multiply function
const TypeFunc* OptoRuntime::intpoly_montgomeryMult_P256_Type() {
int argcnt = 3;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // a array
fields[argp++] = TypePtr::NOTNULL; // b array
fields[argp++] = TypePtr::NOTNULL; // r(esult) array
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms + 0] = TypeInt::INT; // carry bits in output
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
// IntegerPolynomial constant time assignment function
const TypeFunc* OptoRuntime::intpoly_assign_Type() {
int argcnt = 4;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypeInt::INT; // set flag
fields[argp++] = TypePtr::NOTNULL; // a array (result)
fields[argp++] = TypePtr::NOTNULL; // b array (if set is set)
fields[argp++] = TypeInt::INT; // array length
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms + 0] = NULL; // void
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
//------------- Interpreter state access for on stack replacement
const TypeFunc* OptoRuntime::osr_end_Type() {
// create input type (domain)

View file

@ -298,6 +298,8 @@ private:
static const TypeFunc* base64_encodeBlock_Type();
static const TypeFunc* base64_decodeBlock_Type();
static const TypeFunc* poly1305_processBlocks_Type();
static const TypeFunc* intpoly_montgomeryMult_P256_Type();
static const TypeFunc* intpoly_assign_Type();
static const TypeFunc* updateBytesCRC32_Type();
static const TypeFunc* updateBytesCRC32C_Type();

View file

@ -233,6 +233,8 @@ const int ObjectAlignmentInBytes = 8;
\
product(bool, UsePoly1305Intrinsics, false, DIAGNOSTIC, \
"Use intrinsics for sun.security.util.math.intpoly") \
product(bool, UseIntPolyIntrinsics, false, DIAGNOSTIC, \
"Use intrinsics for sun.security.util.math.intpoly.MontgomeryIntegerPolynomialP256") \
\
product(size_t, LargePageSizeInBytes, 0, \
"Maximum large page size used (0 will use the default large " \

View file

@ -132,6 +132,8 @@ address StubRoutines::_chacha20Block = nullptr;
address StubRoutines::_base64_encodeBlock = nullptr;
address StubRoutines::_base64_decodeBlock = nullptr;
address StubRoutines::_poly1305_processBlocks = nullptr;
address StubRoutines::_intpoly_montgomeryMult_P256 = nullptr;
address StubRoutines::_intpoly_assign = nullptr;
address StubRoutines::_md5_implCompress = nullptr;
address StubRoutines::_md5_implCompressMB = nullptr;

View file

@ -215,6 +215,8 @@ class StubRoutines: AllStatic {
static address _base64_encodeBlock;
static address _base64_decodeBlock;
static address _poly1305_processBlocks;
static address _intpoly_montgomeryMult_P256;
static address _intpoly_assign;
static address _md5_implCompress;
static address _md5_implCompressMB;
@ -409,6 +411,8 @@ class StubRoutines: AllStatic {
static address electronicCodeBook_encryptAESCrypt() { return _electronicCodeBook_encryptAESCrypt; }
static address electronicCodeBook_decryptAESCrypt() { return _electronicCodeBook_decryptAESCrypt; }
static address poly1305_processBlocks() { return _poly1305_processBlocks; }
static address intpoly_montgomeryMult_P256() { return _intpoly_montgomeryMult_P256; }
static address intpoly_assign() { return _intpoly_assign; }
static address counterMode_AESCrypt() { return _counterMode_AESCrypt; }
static address ghash_processBlocks() { return _ghash_processBlocks; }
static address chacha20Block() { return _chacha20Block; }

View file

@ -31,6 +31,7 @@ import sun.security.util.CurveDB;
import sun.security.util.ECUtil;
import sun.security.util.NamedCurve;
import sun.security.util.math.IntegerFieldModuloP;
import sun.security.util.math.IntegerMontgomeryFieldModuloP;
import sun.security.util.math.MutableIntegerModuloP;
import sun.security.util.math.SmallValue;
@ -265,6 +266,11 @@ public final class ECDHKeyAgreement extends KeyAgreementSpi {
ECPublicKey pubKey) throws InvalidKeyException {
IntegerFieldModuloP field = ops.getField();
if (field instanceof IntegerMontgomeryFieldModuloP) {
// No point of doing a single SmallValue operation in Montgomery domain
field = ((IntegerMontgomeryFieldModuloP)field).residueField();
}
// convert s array into field element and multiply by the cofactor
MutableIntegerModuloP scalar = field.getElement(priv.getS()).mutable();
SmallValue cofactor =

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2018, 2022, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -252,7 +252,7 @@ public class ECDSAOperations {
MutablePoint p1 = ecOps.multiply(basePoint, temp1);
MutablePoint p2 = ecOps.multiply(pp, temp2);
ecOps.setSum(p1, p2.asAffine());
ecOps.setSum(p1, p2);
IntegerModuloP result = p1.asAffine().getX();
b2a(result, orderField, temp1);
return MessageDigest.isEqual(temp1, r);

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2018, 2023, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -46,12 +46,7 @@ import java.util.Optional;
* Formulas are derived from "Complete addition formulas for prime order
* elliptic curves" by Renes, Costello, and Batina.
*/
public class ECOperations {
private static final ECOperations secp256r1Ops =
new ECOperations(IntegerPolynomialP256.ONE.getElement(
CurveDB.lookup(KnownOIDs.secp256r1.value()).getCurve().getB()),
P256OrderField.ONE);
/*
* An exception indicating a problem with an intermediate value produced
@ -64,7 +59,7 @@ public class ECOperations {
}
static final Map<BigInteger, IntegerFieldModuloP> fields = Map.of(
IntegerPolynomialP256.MODULUS, IntegerPolynomialP256.ONE,
IntegerPolynomialP256.MODULUS, MontgomeryIntegerPolynomialP256.ONE,
IntegerPolynomialP384.MODULUS, IntegerPolynomialP384.ONE,
IntegerPolynomialP521.MODULUS, IntegerPolynomialP521.ONE
);
@ -207,11 +202,28 @@ public class ECOperations {
* @return the product
*/
public MutablePoint multiply(AffinePoint affineP, byte[] s) {
return PointMultiplier.of(this, affineP).pointMultiply(s);
PointMultiplier multiplier = null;
if (getField() instanceof IntegerMontgomeryFieldModuloP
&& affineP.equals(Secp256R1GeneratorMontgomeryMultiplier.generator)) {
// Lazy class loading here
multiplier = Secp256R1GeneratorMontgomeryMultiplier.multiplier;
} else {
multiplier = new DefaultMultiplier(this, affineP);
}
return multiplier.pointMultiply(s);
}
/**
* Multiply an affine ecpoint point by a scalar and return the result as a
* mutable point.
*
* @param ecPoint the point
* @param s the scalar as a little-endian array
* @return the product
*/
public MutablePoint multiply(ECPoint ecPoint, byte[] s) {
return PointMultiplier.of(this, ecPoint).pointMultiply(s);
return multiply(AffinePoint.fromECPoint(ecPoint, getField()), s);
}
/*
@ -264,21 +276,26 @@ public class ECOperations {
}
/*
* Mixed point addition. This method constructs new temporaries each time
* it is called. For better efficiency, the method that reuses temporaries
* should be used if more than one sum will be computed.
/**
* Adds second Mutable (Projective) point to first.
*
* Used by ECDSAOperations. This method constructs new temporaries each time
* it is called. For better efficiency, the (private) method that reuses
* temporaries should be used if more than one sum will be computed.
*
* @param p first point and result
* @param p2 second point to add
*/
public void setSum(MutablePoint p, AffinePoint p2) {
public void setSum(MutablePoint p, MutablePoint p2) {
IntegerModuloP zero = p.getField().get0();
MutableIntegerModuloP t0 = zero.mutable();
MutableIntegerModuloP t1 = zero.mutable();
MutableIntegerModuloP t2 = zero.mutable();
MutableIntegerModuloP t3 = zero.mutable();
MutableIntegerModuloP t4 = zero.mutable();
setSum((ProjectivePoint.Mutable) p, p2, t0, t1, t2, t3, t4);
setSum((ProjectivePoint.Mutable) p, (ProjectivePoint.Mutable) p2,
t0, t1, t2, t3, t4);
}
/*
@ -289,18 +306,18 @@ public class ECOperations {
MutableIntegerModuloP t2, MutableIntegerModuloP t3,
MutableIntegerModuloP t4) {
t0.setValue(p.getX()).setProduct(p2.getX());
t1.setValue(p.getY()).setProduct(p2.getY());
t3.setValue(p2.getX()).setSum(p2.getY());
t0.setValue(p.getX()).setProduct(p2.getX(false));
t1.setValue(p.getY()).setProduct(p2.getY(false));
t3.setValue(p2.getX(false)).setSum(p2.getY(false));
t4.setValue(p.getX()).setSum(p.getY());
t3.setProduct(t4);
t4.setValue(t0).setSum(t1);
t3.setDifference(t4);
t4.setValue(p2.getY()).setProduct(p.getZ());
t4.setValue(p2.getY(false)).setProduct(p.getZ());
t4.setSum(p.getY());
p.getY().setValue(p2.getX()).setProduct(p.getZ());
p.getY().setValue(p2.getX(false)).setProduct(p.getZ());
p.getY().setSum(p.getX());
t2.setValue(p.getZ());
p.getZ().setProduct(b);
@ -412,11 +429,8 @@ public class ECOperations {
return isNeutral(this.multiply(ap, scalar));
}
sealed interface PointMultiplier {
Map<ECPoint, PointMultiplier> multipliers = Map.of(
Secp256R1GeneratorMultiplier.generator,
Secp256R1GeneratorMultiplier.multiplier);
sealed interface PointMultiplier
permits DefaultMultiplier, Secp256R1GeneratorMontgomeryMultiplier {
// Multiply the point by a scalar and return the result as a mutable
// point. The multiplier point is specified by the implementation of
// this interface, which could be a general EC point or EC generator
@ -429,26 +443,6 @@ public class ECOperations {
// in little endian byte array representation.
ProjectivePoint.Mutable pointMultiply(byte[] scalar);
static PointMultiplier of(ECOperations ecOps, AffinePoint affPoint) {
PointMultiplier multiplier = multipliers.get(affPoint.toECPoint());
if (multiplier == null) {
multiplier = new Default(ecOps, affPoint);
}
return multiplier;
}
static PointMultiplier of(ECOperations ecOps, ECPoint ecPoint) {
PointMultiplier multiplier = multipliers.get(ecPoint);
if (multiplier == null) {
AffinePoint affPoint =
AffinePoint.fromECPoint(ecPoint, ecOps.getField());
multiplier = new Default(ecOps, affPoint);
}
return multiplier;
}
private static void lookup(
ProjectivePoint.Immutable[] ips, int index,
ProjectivePoint.Mutable result) {
@ -465,232 +459,249 @@ public class ECOperations {
result.conditionalSet(pi, set);
}
}
}
final class Default implements PointMultiplier {
private final AffinePoint affineP;
private final ECOperations ecOps;
final static class DefaultMultiplier implements PointMultiplier {
private final ECOperations ecOps;
private final ProjectivePoint.Immutable[] pointMultiples;
private Default(ECOperations ecOps, AffinePoint affineP) {
this.ecOps = ecOps;
this.affineP = affineP;
DefaultMultiplier(ECOperations ecOps, AffinePoint affineP) {
this.ecOps = ecOps;
// Precompute and cache point multiples
this.pointMultiples = new ProjectivePoint.Immutable[16];
IntegerFieldModuloP field = ecOps.getField();
ImmutableIntegerModuloP zero = field.get0();
// temporaries
MutableIntegerModuloP t0 = zero.mutable();
MutableIntegerModuloP t1 = zero.mutable();
MutableIntegerModuloP t2 = zero.mutable();
MutableIntegerModuloP t3 = zero.mutable();
MutableIntegerModuloP t4 = zero.mutable();
ProjectivePoint.Mutable ps =
new ProjectivePoint.Mutable(field);
ps.getY().setValue(field.get1().mutable());
// 0P is neutral---same as initial result value
pointMultiples[0] = ps.fixed();
ps.setValue(affineP);
// 1P = P
pointMultiples[1] = ps.fixed();
// the rest are calculated using mixed point addition
for (int i = 2; i < 16; i++) {
ecOps.setSum(ps, affineP, t0, t1, t2, t3, t4);
pointMultiples[i] = ps.fixed();
}
}
@Override
public ProjectivePoint.Mutable pointMultiply(byte[] s) {
// 4-bit windowed multiply with branchless lookup.
// The mixed addition is faster, so it is used to construct
// the array at the beginning of the operation.
IntegerFieldModuloP field = ecOps.getField();
ImmutableIntegerModuloP zero = field.get0();
// temporaries
MutableIntegerModuloP t0 = zero.mutable();
MutableIntegerModuloP t1 = zero.mutable();
MutableIntegerModuloP t2 = zero.mutable();
MutableIntegerModuloP t3 = zero.mutable();
MutableIntegerModuloP t4 = zero.mutable();
ProjectivePoint.Mutable result = new ProjectivePoint.Mutable(field);
result.getY().setValue(field.get1().mutable());
ProjectivePoint.Mutable lookupResult = new ProjectivePoint.Mutable(field);
for (int i = s.length - 1; i >= 0; i--) {
double4(result, t0, t1, t2, t3, t4);
int high = (0xFF & s[i]) >>> 4;
PointMultiplier.lookup(pointMultiples, high, lookupResult);
ecOps.setSum(result, lookupResult, t0, t1, t2, t3, t4);
double4(result, t0, t1, t2, t3, t4);
int low = 0xF & s[i];
PointMultiplier.lookup(pointMultiples, low, lookupResult);
ecOps.setSum(result, lookupResult, t0, t1, t2, t3, t4);
}
@Override
public ProjectivePoint.Mutable pointMultiply(byte[] s) {
// 4-bit windowed multiply with branchless lookup.
// The mixed addition is faster, so it is used to construct
// the array at the beginning of the operation.
return result;
}
IntegerFieldModuloP field = affineP.getX().getField();
ImmutableIntegerModuloP zero = field.get0();
// temporaries
MutableIntegerModuloP t0 = zero.mutable();
MutableIntegerModuloP t1 = zero.mutable();
MutableIntegerModuloP t2 = zero.mutable();
MutableIntegerModuloP t3 = zero.mutable();
MutableIntegerModuloP t4 = zero.mutable();
private void double4(ProjectivePoint.Mutable p,
MutableIntegerModuloP t0, MutableIntegerModuloP t1,
MutableIntegerModuloP t2, MutableIntegerModuloP t3,
MutableIntegerModuloP t4) {
for (int i = 0; i < 4; i++) {
ecOps.setDouble(p, t0, t1, t2, t3, t4);
}
}
}
ProjectivePoint.Mutable result =
new ProjectivePoint.Mutable(field);
result.getY().setValue(field.get1().mutable());
// Represents a multiplier with a larger precomputed table. Intended to be
// used for Basepoint multiplication
final static class Secp256R1GeneratorMontgomeryMultiplier
implements PointMultiplier {
private static final ECOperations secp256r1Ops = new ECOperations(
MontgomeryIntegerPolynomialP256.ONE.getElement(
CurveDB.P_256.getCurve().getB()), P256OrderField.ONE);
public static final AffinePoint generator = AffinePoint.fromECPoint(
CurveDB.P_256.getGenerator(), secp256r1Ops.getField());
public static final PointMultiplier multiplier =
new Secp256R1GeneratorMontgomeryMultiplier();
ProjectivePoint.Immutable[] pointMultiples =
new ProjectivePoint.Immutable[16];
// 0P is neutral---same as initial result value
pointMultiples[0] = result.fixed();
private final ImmutableIntegerModuloP zero;
private final ImmutableIntegerModuloP one;
private final ProjectivePoint.Immutable[][] points;
private final BigInteger[] base;
ProjectivePoint.Mutable ps = new ProjectivePoint.Mutable(field);
ps.setValue(affineP);
// 1P = P
pointMultiples[1] = ps.fixed();
private Secp256R1GeneratorMontgomeryMultiplier() {
this(MontgomeryIntegerPolynomialP256.ONE,
new DefaultMultiplier(secp256r1Ops, generator));
// the rest are calculated using mixed point addition
for (int i = 2; i < 16; i++) {
ecOps.setSum(ps, affineP, t0, t1, t2, t3, t4);
pointMultiples[i] = ps.fixed();
// Check that the tables are correctly generated.
if (ECOperations.class.desiredAssertionStatus()) {
verifyTables(this);
}
}
private Secp256R1GeneratorMontgomeryMultiplier(
IntegerFieldModuloP field, PointMultiplier smallTableMultiplier) {
zero = field.get0();
one = field.get1();
// Pre-computed table to speed up the point multiplication.
//
// This is a 4x16 array of ProjectivePoint.Immutable elements.
// The first row contains the following multiples of the
// generator.
//
// index | point
// --------+----------------
// 0x0000 | 0G
// 0x0001 | 1G
// 0x0002 | (2^64)G
// 0x0003 | (2^64 + 1)G
// 0x0004 | 2^128G
// 0x0005 | (2^128 + 1)G
// 0x0006 | (2^128 + 2^64)G
// 0x0007 | (2^128 + 2^64 + 1)G
// 0x0008 | 2^192G
// 0x0009 | (2^192 + 1)G
// 0x000A | (2^192 + 2^64)G
// 0x000B | (2^192 + 2^64 + 1)G
// 0x000C | (2^192 + 2^128)G
// 0x000D | (2^192 + 2^128 + 1)G
// 0x000E | (2^192 + 2^128 + 2^64)G
// 0x000F | (2^192 + 2^128 + 2^64 + 1)G
//
// For the other 3 rows, points[i][j] = 2^16 * (points[i-1][j].
// Generate the pre-computed tables. This block may be
// replaced with hard-coded tables in order to speed up
// the class loading.
points = new ProjectivePoint.Immutable[4][16];
BigInteger[] factors = new BigInteger[] {
BigInteger.ONE,
BigInteger.TWO.pow(64),
BigInteger.TWO.pow(128),
BigInteger.TWO.pow(192)
};
base = new BigInteger[16];
base[0] = BigInteger.ZERO;
base[1] = BigInteger.ONE;
base[2] = factors[1];
for (int i = 3; i < 16; i++) {
base[i] = BigInteger.ZERO;
for (int k = 0; k < 4; k++) {
if (((i >>> k) & 0x01) != 0) {
base[i] = base[i].add(factors[k]);
}
}
ProjectivePoint.Mutable lookupResult = ps.mutable();
for (int i = s.length - 1; i >= 0; i--) {
double4(result, t0, t1, t2, t3, t4);
int high = (0xFF & s[i]) >>> 4;
lookup(pointMultiples, high, lookupResult);
ecOps.setSum(result, lookupResult, t0, t1, t2, t3, t4);
double4(result, t0, t1, t2, t3, t4);
int low = 0xF & s[i];
lookup(pointMultiples, low, lookupResult);
ecOps.setSum(result, lookupResult, t0, t1, t2, t3, t4);
}
return result;
}
private void double4(ProjectivePoint.Mutable p,
MutableIntegerModuloP t0, MutableIntegerModuloP t1,
MutableIntegerModuloP t2, MutableIntegerModuloP t3,
MutableIntegerModuloP t4) {
for (int i = 0; i < 4; i++) {
ecOps.setDouble(p, t0, t1, t2, t3, t4);
for (int d = 0; d < 4; d++) {
for (int w = 0; w < 16; w++) {
BigInteger bi = base[w];
if (d != 0) {
bi = bi.multiply(BigInteger.TWO.pow(d * 16));
}
if (w == 0) {
points[d][0] = new ProjectivePoint.Immutable(
zero.fixed(), one.fixed(), zero.fixed());
} else {
byte[] s = bi.toByteArray();
ArrayUtil.reverse(s);
ProjectivePoint.Mutable m = smallTableMultiplier.pointMultiply(s);
points[d][w] = m.fixed();
}
}
}
}
final class Secp256R1GeneratorMultiplier implements PointMultiplier {
private static final ECPoint generator =
CurveDB.P_256.getGenerator();
private static final PointMultiplier multiplier =
new Secp256R1GeneratorMultiplier();
public ProjectivePoint.Mutable pointMultiply(byte[] s) {
MutableIntegerModuloP t0 = zero.mutable();
MutableIntegerModuloP t1 = zero.mutable();
MutableIntegerModuloP t2 = zero.mutable();
MutableIntegerModuloP t3 = zero.mutable();
MutableIntegerModuloP t4 = zero.mutable();
private static final ImmutableIntegerModuloP zero =
IntegerPolynomialP256.ONE.get0();
private static final ImmutableIntegerModuloP one =
IntegerPolynomialP256.ONE.get1();
ProjectivePoint.Mutable d = new ProjectivePoint.Mutable(
zero.mutable(),
one.mutable(),
zero.mutable());
ProjectivePoint.Mutable r = d.mutable();
for (int i = 15; i >= 0; i--) {
secp256r1Ops.setDouble(d, t0, t1, t2, t3, t4);
for (int j = 3; j >= 0; j--) {
int pos = i + j * 16;
int index = (bit(s, pos + 192) << 3) |
(bit(s, pos + 128) << 2) |
(bit(s, pos + 64) << 1) |
bit(s, pos);
@Override
public ProjectivePoint.Mutable pointMultiply(byte[] s) {
MutableIntegerModuloP t0 = zero.mutable();
MutableIntegerModuloP t1 = zero.mutable();
MutableIntegerModuloP t2 = zero.mutable();
MutableIntegerModuloP t3 = zero.mutable();
MutableIntegerModuloP t4 = zero.mutable();
ProjectivePoint.Mutable d = new ProjectivePoint.Mutable(
zero.mutable(),
one.mutable(),
zero.mutable());
ProjectivePoint.Mutable r = d.mutable();
for (int i = 15; i >= 0; i--) {
secp256r1Ops.setDouble(d, t0, t1, t2, t3, t4);
for (int j = 3; j >= 0; j--) {
int pos = i + j * 16;
int index = (bit(s, pos + 192) << 3) |
(bit(s, pos + 128) << 2) |
(bit(s, pos + 64) << 1) |
bit(s, pos);
lookup(P256.points[j], index, r);
secp256r1Ops.setSum(d, r, t0, t1, t2, t3, t4);
}
PointMultiplier.lookup(points[j], index, r);
secp256r1Ops.setSum(d, r, t0, t1, t2, t3, t4);
}
return d;
}
private static int bit(byte[] k, int i) {
return (k[i >> 3] >> (i & 0x07)) & 0x01;
}
return d;
}
// Lazy loading of the tables.
private static final class P256 {
// Pre-computed table to speed up the point multiplication.
//
// This is a 4x16 array of ProjectivePoint.Immutable elements.
// The first row contains the following multiples of the
// generator.
//
// index | point
// --------+----------------
// 0x0000 | 0G
// 0x0001 | 1G
// 0x0002 | (2^64)G
// 0x0003 | (2^64 + 1)G
// 0x0004 | 2^128G
// 0x0005 | (2^128 + 1)G
// 0x0006 | (2^128 + 2^64)G
// 0x0007 | (2^128 + 2^64 + 1)G
// 0x0008 | 2^192G
// 0x0009 | (2^192 + 1)G
// 0x000A | (2^192 + 2^64)G
// 0x000B | (2^192 + 2^64 + 1)G
// 0x000C | (2^192 + 2^128)G
// 0x000D | (2^192 + 2^128 + 1)G
// 0x000E | (2^192 + 2^128 + 2^64)G
// 0x000F | (2^192 + 2^128 + 2^64 + 1)G
//
// For the other 3 rows, points[i][j] = 2^16 * (points[i-1][j].
private static final ProjectivePoint.Immutable[][] points;
private static int bit(byte[] k, int i) {
return (k[i >> 3] >> (i & 0x07)) & 0x01;
}
// Generate the pre-computed tables. This block may be
// replaced with hard-coded tables in order to speed up
// the class loading.
static {
points = new ProjectivePoint.Immutable[4][16];
BigInteger[] factors = new BigInteger[] {
BigInteger.ONE,
BigInteger.TWO.pow(64),
BigInteger.TWO.pow(128),
BigInteger.TWO.pow(192)
};
BigInteger[] base = new BigInteger[16];
base[0] = BigInteger.ZERO;
base[1] = BigInteger.ONE;
base[2] = factors[1];
for (int i = 3; i < 16; i++) {
base[i] = BigInteger.ZERO;
for (int k = 0; k < 4; k++) {
if (((i >>> k) & 0x01) != 0) {
base[i] = base[i].add(factors[k]);
}
}
protected void verifyTables(PointMultiplier multiplier) {
for (int d = 0; d < 4; d++) {
for (int w = 0; w < 16; w++) {
BigInteger bi = base[w];
if (d != 0) {
bi = bi.multiply(BigInteger.TWO.pow(d * 16));
}
if (w != 0) {
byte[] s = new byte[32];
byte[] b = bi.toByteArray();
ArrayUtil.reverse(b);
System.arraycopy(b, 0, s, 0, b.length);
for (int d = 0; d < 4; d++) {
for (int w = 0; w < 16; w++) {
BigInteger bi = base[w];
if (d != 0) {
bi = bi.multiply(BigInteger.TWO.pow(d * 16));
}
if (w == 0) {
points[d][0] = new ProjectivePoint.Immutable(
zero.fixed(), one.fixed(), zero.fixed());
} else {
PointMultiplier multiplier = new Default(
secp256r1Ops, AffinePoint.fromECPoint(
generator, zero.getField()));
byte[] s = bi.toByteArray();
ArrayUtil.reverse(s);
ProjectivePoint.Mutable m =
multiplier.pointMultiply(s);
points[d][w] = m.setValue(m.asAffine()).fixed();
}
}
}
// Check that the tables are correctly generated.
if (ECOperations.class.desiredAssertionStatus()) {
verifyTables(base);
}
}
private static void verifyTables(BigInteger[] base) {
for (int d = 0; d < 4; d++) {
for (int w = 0; w < 16; w++) {
BigInteger bi = base[w];
if (d != 0) {
bi = bi.multiply(BigInteger.TWO.pow(d * 16));
}
if (w != 0) {
byte[] s = new byte[32];
byte[] b = bi.toByteArray();
ArrayUtil.reverse(b);
System.arraycopy(b, 0, s, 0, b.length);
ProjectivePoint.Mutable m =
multiplier.pointMultiply(s);
ProjectivePoint.Immutable v =
m.setValue(m.asAffine()).fixed();
if (!v.getX().asBigInteger().equals(
points[d][w].getX().asBigInteger()) ||
!v.getY().asBigInteger().equals(
points[d][w].getY().asBigInteger())) {
throw new RuntimeException();
}
}
// Compare this multiplier to the table
// (generated by Default multiplier)
AffinePoint m = multiplier.pointMultiply(s).asAffine();
AffinePoint v = points[d][w].asAffine();
if (!m.equals(v)) {
java.util.HexFormat hex = java.util.HexFormat.of();
throw new RuntimeException(
"Bad multiple found at [" +d+"]["+w+"]" +
hex.formatHex(s) + " " + m.getX().asBigInteger()
);
}
}
}

View file

@ -26,6 +26,7 @@ package sun.security.ec.point;
import sun.security.util.math.ImmutableIntegerModuloP;
import sun.security.util.math.IntegerFieldModuloP;
import sun.security.util.math.IntegerMontgomeryFieldModuloP;
import java.security.spec.ECPoint;
import java.util.Objects;
@ -54,14 +55,30 @@ public class AffinePoint {
}
public ECPoint toECPoint() {
return new ECPoint(x.asBigInteger(), y.asBigInteger());
return new ECPoint(getX().asBigInteger(), getY().asBigInteger());
}
public ImmutableIntegerModuloP getX() {
return getX(true);
}
public ImmutableIntegerModuloP getX(boolean fieldCheck) {
IntegerFieldModuloP field = x.getField();
if (fieldCheck && field instanceof IntegerMontgomeryFieldModuloP) {
return ((IntegerMontgomeryFieldModuloP)field).fromMontgomery(x);
}
return x;
}
public ImmutableIntegerModuloP getY() {
return getY(true);
}
public ImmutableIntegerModuloP getY(boolean fieldCheck) {
IntegerFieldModuloP field = y.getField();
if (fieldCheck && field instanceof IntegerMontgomeryFieldModuloP) {
return ((IntegerMontgomeryFieldModuloP)field).fromMontgomery(y);
}
return y;
}
@ -71,8 +88,30 @@ public class AffinePoint {
return false;
}
AffinePoint p = (AffinePoint) obj;
boolean xEquals = x.asBigInteger().equals(p.x.asBigInteger());
boolean yEquals = y.asBigInteger().equals(p.y.asBigInteger());
boolean xEquals, yEquals;
boolean thisMont = x.getField() instanceof IntegerMontgomeryFieldModuloP;
boolean objMont = p.x.getField() instanceof IntegerMontgomeryFieldModuloP;
if (thisMont ^ objMont == false) {
// both fields same
xEquals = x.asBigInteger().equals(p.x.asBigInteger());
yEquals = y.asBigInteger().equals(p.y.asBigInteger());
} else if (thisMont) {
// mismatched fields should not happen in production, but useful in
// testing
IntegerMontgomeryFieldModuloP field =
(IntegerMontgomeryFieldModuloP)x.getField();
xEquals = x.asBigInteger().equals(
field.getElement(p.x.asBigInteger()).asBigInteger());
yEquals = y.asBigInteger().equals(
field.getElement(p.y.asBigInteger()).asBigInteger());
} else {
IntegerMontgomeryFieldModuloP field =
(IntegerMontgomeryFieldModuloP)p.x.getField();
xEquals = field.getElement(
x.asBigInteger()).asBigInteger().equals(p.x.asBigInteger());
yEquals = field.getElement(
y.asBigInteger()).asBigInteger().equals(p.y.asBigInteger());
}
return xEquals && yEquals;
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -25,6 +25,7 @@
package sun.security.ec.point;
import sun.security.util.math.*;
import jdk.internal.vm.annotation.ForceInline;
/**
* Elliptic curve point in projective coordinates (X, Y, Z) where
@ -145,6 +146,7 @@ public abstract class ProjectivePoint
return conditionalSet(pp, set);
}
@ForceInline
private <T extends IntegerModuloP>
Mutable conditionalSet(ProjectivePoint<T> pp, int set) {
@ -157,9 +159,9 @@ public abstract class ProjectivePoint
@Override
public Mutable setValue(AffinePoint p) {
x.setValue(p.getX());
y.setValue(p.getY());
z.setValue(p.getX().getField().get1());
x.setValue(p.getX(false));
y.setValue(p.getY(false));
z.setValue(p.getX(false).getField().get1());
return this;
}

View file

@ -0,0 +1,40 @@
/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.util.math;
import java.math.BigInteger;
/**
* An interface for the field of integers modulo a prime number. An
* implementation of this interface can be used to get properties of the
* field and to produce field elements of type ImmutableIntegerModuloP from
* other objects and representations of field elements.
*/
public interface IntegerMontgomeryFieldModuloP extends IntegerFieldModuloP {
ImmutableIntegerModuloP fromMontgomery(ImmutableIntegerModuloP m);
IntegerFieldModuloP residueField();
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2018, 2022, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -32,6 +32,9 @@ import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.Arrays;
import jdk.internal.vm.annotation.ForceInline;
import jdk.internal.vm.annotation.IntrinsicCandidate;
/**
* A large number polynomial representation using sparse limbs of signed
* long (64-bit) values. Limb values will always fit within a long, so inputs
@ -62,10 +65,9 @@ import java.util.Arrays;
public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
permits IntegerPolynomial1305, IntegerPolynomial25519,
IntegerPolynomial448, IntegerPolynomialP256,
IntegerPolynomialP384, IntegerPolynomialP521,
IntegerPolynomialModBinP, P256OrderField,
P384OrderField, P521OrderField,
Curve25519OrderField,
MontgomeryIntegerPolynomialP256, IntegerPolynomialP384,
IntegerPolynomialP521, IntegerPolynomialModBinP, P256OrderField,
P384OrderField, P521OrderField, Curve25519OrderField,
Curve448OrderField {
protected static final BigInteger TWO = BigInteger.valueOf(2);
@ -74,7 +76,8 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
private final BigInteger modulus;
protected final int bitsPerLimb;
private final long[] posModLimbs;
private final int maxAdds;
private final int maxAddsMul; // max additions before a multiplication
private final int maxAddsAdd; // max additions before an addition
/**
* Reduce an IntegerPolynomial representation (a) and store the result
@ -87,11 +90,12 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
* store the result in an IntegerPolynomial representation in a. Requires
* that a.length == numLimbs.
*/
protected void multByInt(long[] a, long b) {
protected int multByInt(long[] a, long b) {
for (int i = 0; i < a.length; i++) {
a[i] *= b;
}
reduce(a);
return 0;
}
/**
@ -100,7 +104,7 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
* a.length == b.length == r.length == numLimbs. It is allowed for a and r
* to be the same array.
*/
protected abstract void mult(long[] a, long[] b, long[] r);
protected abstract int mult(long[] a, long[] b, long[] r);
/**
* Multiply an IntegerPolynomial representation (a) with itself and store
@ -108,19 +112,23 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
* a.length == r.length == numLimbs. It is allowed for a and r
* to be the same array.
*/
protected abstract void square(long[] a, long[] r);
protected abstract int square(long[] a, long[] r);
IntegerPolynomial(int bitsPerLimb,
int numLimbs,
int maxAdds,
int maxAddsMul,
BigInteger modulus) {
this.numLimbs = numLimbs;
this.modulus = modulus;
this.bitsPerLimb = bitsPerLimb;
this.maxAdds = maxAdds;
this.maxAddsMul = maxAddsMul;
if (bitsPerLimb>32) {
this.maxAddsAdd = 64 - bitsPerLimb;
} else {
this.maxAddsAdd = 32 - bitsPerLimb;
}
posModLimbs = setPosModLimbs();
}
@ -135,7 +143,7 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
}
public int getMaxAdds() {
return maxAdds;
return maxAddsMul;
}
@Override
@ -327,10 +335,9 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
}
protected void setLimbsValuePositive(BigInteger v, long[] limbs) {
assert bitsPerLimb < 32;
long limbMask = (1L << bitsPerLimb) - 1;
for (int i = 0; i < limbs.length; i++) {
limbs[i] = v.intValue() & limbMask;
limbs[i] = v.longValue() & limbMask;
v = v.shiftRight(bitsPerLimb);
}
}
@ -449,6 +456,8 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
* will be unchanged. If set==1, then the values of b will be assigned to a.
* The behavior is undefined if swap has any value other than 0 or 1.
*/
@ForceInline
@IntrinsicCandidate
protected static void conditionalAssign(int set, long[] a, long[] b) {
int maskValue = -set;
for (int i = 0; i < a.length; i++) {
@ -557,14 +566,12 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
Element b = (Element)genB;
// Reduce if required.
// if (numAdds >= maxAdds) {
if (numAdds > 32 - bitsPerLimb) {
if (numAdds > maxAddsAdd) {
reduce(limbs);
numAdds = 0;
}
// if (b.numAdds >= maxAdds) {
if (b.numAdds > 32 - bitsPerLimb) {
if (b.numAdds > maxAddsAdd) {
reduce(b.limbs);
b.numAdds = 0;
}
@ -586,7 +593,7 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
newLimbs[i] = -limbs[i];
}
return new ImmutableElement(newLimbs, numAdds);
return new ImmutableElement(newLimbs, numAdds+1);
}
protected long[] cloneLow(long[] limbs) {
@ -604,32 +611,32 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
Element b = (Element)genB;
// Reduce if required.
if (numAdds > maxAdds) {
if (numAdds > maxAddsMul) {
reduce(limbs);
numAdds = 0;
}
if (b.numAdds > maxAdds) {
if (b.numAdds > maxAddsMul) {
reduce(b.limbs);
b.numAdds = 0;
}
long[] newLimbs = new long[limbs.length];
mult(limbs, b.limbs, newLimbs);
return new ImmutableElement(newLimbs, 0);
int numAdds = mult(limbs, b.limbs, newLimbs);
return new ImmutableElement(newLimbs, numAdds);
}
@Override
public ImmutableElement square() {
// Reduce if required.
if (numAdds > maxAdds) {
if (numAdds > maxAddsMul) {
reduce(limbs);
numAdds = 0;
}
long[] newLimbs = new long[limbs.length];
IntegerPolynomial.this.square(limbs, newLimbs);
return new ImmutableElement(newLimbs, 0);
int numAdds = IntegerPolynomial.this.square(limbs, newLimbs);
return new ImmutableElement(newLimbs, numAdds);
}
public void addModPowerTwo(IntegerModuloP arg, byte[] result) {
@ -637,12 +644,12 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
Element other = (Element)arg;
// Reduce if required.
if (numAdds > 32 - bitsPerLimb) {
if (numAdds > maxAddsAdd) {
reduce(limbs);
numAdds = 0;
}
if (other.numAdds > 32 - bitsPerLimb) {
if (other.numAdds > maxAddsAdd) {
reduce(other.limbs);
other.numAdds = 0;
}
@ -734,32 +741,30 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
Element b = (Element)genB;
// Reduce if required.
if (numAdds > maxAdds) {
if (numAdds > maxAddsMul) {
reduce(limbs);
numAdds = 0;
}
if (b.numAdds > maxAdds) {
if (b.numAdds > maxAddsMul) {
reduce(b.limbs);
b.numAdds = 0;
}
mult(limbs, b.limbs, limbs);
numAdds = 0;
numAdds = mult(limbs, b.limbs, limbs);
return this;
}
@Override
public MutableElement setProduct(SmallValue v) {
// Reduce if required.
if (numAdds > maxAdds) {
if (numAdds > maxAddsMul) {
reduce(limbs);
numAdds = 0;
}
int value = ((Limb)v).value;
multByInt(limbs, value);
numAdds = 0;
numAdds += multByInt(limbs, value);
return this;
}
@ -769,14 +774,12 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
Element b = (Element)genB;
// Reduce if required.
// if (numAdds >= maxAdds) {
if (numAdds > 32 - bitsPerLimb) {
if (numAdds > maxAddsAdd) {
reduce(limbs);
numAdds = 0;
}
// if (b.numAdds >= maxAdds) {
if (b.numAdds > 32 - bitsPerLimb) {
if (b.numAdds > maxAddsAdd) {
reduce(b.limbs);
b.numAdds = 0;
}
@ -795,14 +798,12 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
Element b = (Element)genB;
// Reduce if required.
// if (numAdds >= maxAdds) {
if (numAdds > 32 - bitsPerLimb) {
if (numAdds > maxAddsAdd) {
reduce(limbs);
numAdds = 0;
}
// if (b.numAdds >= maxAdds) {
if (b.numAdds > 32 - bitsPerLimb) {
if (b.numAdds > maxAddsAdd) {
reduce(b.limbs);
b.numAdds = 0;
}
@ -818,13 +819,12 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
@Override
public MutableElement setSquare() {
// Reduce if required.
if (numAdds > maxAdds) {
if (numAdds > maxAddsMul) {
reduce(limbs);
numAdds = 0;
}
IntegerPolynomial.this.square(limbs, limbs);
numAdds = 0;
numAdds = IntegerPolynomial.this.square(limbs, limbs);;
return this;
}
@ -833,6 +833,7 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
for (int i = 0; i < limbs.length; i++) {
limbs[i] = -limbs[i];
}
numAdds++;
return this;
}
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2018, 2022, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -50,7 +50,7 @@ public final class IntegerPolynomial1305 extends IntegerPolynomial {
super(BITS_PER_LIMB, NUM_LIMBS, 1, MODULUS);
}
protected void mult(long[] a, long[] b, long[] r) {
protected int mult(long[] a, long[] b, long[] r) {
// Use grade-school multiplication into primitives to avoid the
// temporary array allocation. This is equivalent to the following
@ -73,6 +73,7 @@ public final class IntegerPolynomial1305 extends IntegerPolynomial {
long c8 = (a[4] * b[4]);
carryReduce(r, c0, c1, c2, c3, c4, c5, c6, c7, c8);
return 0;
}
private void carryReduce(long[] r, long c0, long c1, long c2, long c3,
@ -99,7 +100,7 @@ public final class IntegerPolynomial1305 extends IntegerPolynomial {
}
@Override
protected void square(long[] a, long[] r) {
protected int square(long[] a, long[] r) {
// Use grade-school multiplication with a simple squaring optimization.
// Multiply into primitives to avoid the temporary array allocation.
// This is equivalent to the following code:
@ -122,6 +123,7 @@ public final class IntegerPolynomial1305 extends IntegerPolynomial {
long c8 = (a[4] * a[4]);
carryReduce(r, c0, c1, c2, c3, c4, c5, c6, c7, c8);
return 0;
}
@Override

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2020, 2022, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2020, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -131,11 +131,12 @@ public sealed class IntegerPolynomialModBinP extends IntegerPolynomial {
}
@Override
protected void mult(long[] a, long[] b, long[] r) {
protected int mult(long[] a, long[] b, long[] r) {
long[] c = new long[2 * numLimbs];
multOnly(a, b, c);
carryReduce(c, r);
return 0;
}
private void modReduceInBits(long[] limbs, int index, int bits, long x) {
@ -188,7 +189,7 @@ public sealed class IntegerPolynomialModBinP extends IntegerPolynomial {
}
@Override
protected void square(long[] a, long[] r) {
protected int square(long[] a, long[] r) {
long[] c = new long[2 * numLimbs];
for (int i = 0; i < numLimbs; i++) {
@ -199,7 +200,7 @@ public sealed class IntegerPolynomialModBinP extends IntegerPolynomial {
}
carryReduce(c, r);
return 0;
}
/**

View file

@ -0,0 +1,560 @@
/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.util.math.intpoly;
import sun.security.util.math.ImmutableIntegerModuloP;
import sun.security.util.math.IntegerMontgomeryFieldModuloP;
import sun.security.util.math.SmallValue;
import sun.security.util.math.IntegerFieldModuloP;
import java.lang.Math;
import java.math.BigInteger;
import jdk.internal.vm.annotation.IntrinsicCandidate;
// Reference:
// - [1] Shay Gueron and Vlad Krasnov "Fast Prime Field Elliptic Curve
// Cryptography with 256 Bit Primes"
//
public final class MontgomeryIntegerPolynomialP256 extends IntegerPolynomial
implements IntegerMontgomeryFieldModuloP {
private static final int BITS_PER_LIMB = 52;
private static final int NUM_LIMBS = 5;
private static final int MAX_ADDS = 0;
public static final BigInteger MODULUS = evaluateModulus();
private static final long LIMB_MASK = -1L >>> (64 - BITS_PER_LIMB);
public static final MontgomeryIntegerPolynomialP256 ONE = new MontgomeryIntegerPolynomialP256();
// h = 2^(2*260)%p = 0x4fffffffdfffffffffffffffefffffffbffffffff000000000000000300
// oneActual = 1
// oneMont = (1*2^260) mod p
// modulus = p
private static final long[] h = new long[] {
0x0000000000000300L, 0x000ffffffff00000L, 0x000ffffefffffffbL,
0x000fdfffffffffffL, 0x0000000004ffffffL };
private static final long[] oneActual = new long[] {
0x0000000000000001L, 0x0000000000000000L, 0x0000000000000000L,
0x0000000000000000L, 0x0000000000000000L };
private static final long[] oneMont = new long[] {
0x0000000000000010L, 0x000f000000000000L, 0x000fffffffffffffL,
0x000ffeffffffffffL, 0x00000000000fffffL };
private static final long[] zero = new long[] {
0x0000000000000000L, 0x0000000000000000L, 0x0000000000000000L,
0x0000000000000000L, 0x0000000000000000L };
private static final long[] modulus = new long[] {
0x000fffffffffffffL, 0x00000fffffffffffL, 0x0000000000000000L,
0x0000001000000000L, 0x0000ffffffff0000L };
private MontgomeryIntegerPolynomialP256() {
super(BITS_PER_LIMB, NUM_LIMBS, MAX_ADDS, MODULUS);
}
public IntegerFieldModuloP residueField() {
return IntegerPolynomialP256.ONE;
}
// (224%nat,-1)::(192%nat,1)::(96%nat,1)::(0%nat,-1)::nil.
private static BigInteger evaluateModulus() {
BigInteger result = BigInteger.valueOf(2).pow(256);
result = result.subtract(BigInteger.valueOf(1).shiftLeft(224));
result = result.add(BigInteger.valueOf(1).shiftLeft(192));
result = result.add(BigInteger.valueOf(1).shiftLeft(96));
result = result.subtract(BigInteger.valueOf(1));
return result;
}
@Override
public ImmutableElement get0() {
return new ImmutableElement(zero, 0);
}
// One in montgomery domain: (1*2^260) mod p
@Override
public ImmutableElement get1() {
return new ImmutableElement(oneMont, 0);
}
// Convert v to Montgomery domain
@Override
public ImmutableElement getElement(BigInteger v) {
long[] vLimbs = new long[NUM_LIMBS];
long[] montLimbs = new long[NUM_LIMBS];
setLimbsValuePositive(v, vLimbs);
// Convert to Montgomery domain
int numAdds = mult(vLimbs, h, montLimbs);
return new ImmutableElement(montLimbs, numAdds);
}
@Override
public SmallValue getSmallValue(int value) {
// Explicitely here as reminder that SmallValue stays in residue domain
// See multByInt below for how this is used
return super.getSmallValue(value);
}
/*
* This function is used by IntegerPolynomial.setProduct(SmallValue v) to
* multiply by a small constant (i.e. (int) 1,2,3,4). Instead of doing a
* montgomery conversion followed by a montgomery multiplication, just use
* the spare top (64-BITS_PER_LIMB) bits to multiply by a constant. (See [1]
* Section 4 )
*
* Will return an unreduced value
*/
@Override
protected int multByInt(long[] a, long b) {
assert (b < (1 << BITS_PER_LIMB));
for (int i = 0; i < a.length; i++) {
a[i] *= b;
}
return (int) (b - 1);
}
@Override
public ImmutableIntegerModuloP fromMontgomery(ImmutableIntegerModuloP n) {
assert n.getField() == MontgomeryIntegerPolynomialP256.ONE;
ImmutableElement nn = (ImmutableElement) n;
long[] r1 = new long[NUM_LIMBS];
long[] r2 = new long[2 * NUM_LIMBS];
long[] limbs = nn.getLimbs();
reduce(limbs);
MontgomeryIntegerPolynomialP256.ONE.mult(limbs, oneActual, r1);
reduce(r1);
halfLimbs(r1, r2);
return IntegerPolynomialP256.ONE.new ImmutableElement(r2, 0);
}
private void halfLimbs(long[] a, long[] r) {
final long HALF_BITS_LIMB = BITS_PER_LIMB / 2;
final long HALF_LIMB_MASK = -1L >>> (64 - HALF_BITS_LIMB);
r[0] = a[0] & HALF_LIMB_MASK;
r[1] = a[0] >> HALF_BITS_LIMB;
r[2] = a[1] & HALF_LIMB_MASK;
r[3] = a[1] >> HALF_BITS_LIMB;
r[4] = a[2] & HALF_LIMB_MASK;
r[5] = a[2] >> HALF_BITS_LIMB;
r[6] = a[3] & HALF_LIMB_MASK;
r[7] = a[3] >> HALF_BITS_LIMB;
r[8] = a[4] & HALF_LIMB_MASK;
r[9] = a[4] >> HALF_BITS_LIMB;
}
@Override
protected int square(long[] a, long[] r) {
return mult(a, a, r);
}
/**
* Unrolled Word-by-Word Montgomery Multiplication r = a * b * 2^-260 (mod P)
*
* See [1] Figure 5. "Algorithm 2: Word-by-Word Montgomery Multiplication
* for a Montgomery Friendly modulus p". Note: Step 6. Skipped; Instead use
* numAdds to reuse existing overflow logic.
*/
@IntrinsicCandidate
protected int mult(long[] a, long[] b, long[] r) {
long aa0 = a[0];
long aa1 = a[1];
long aa2 = a[2];
long aa3 = a[3];
long aa4 = a[4];
long bb0 = b[0];
long bb1 = b[1];
long bb2 = b[2];
long bb3 = b[3];
long bb4 = b[4];
final long shift1 = 64 - BITS_PER_LIMB; // 12
final long shift2 = BITS_PER_LIMB; // 40
long d0, d1, d2, d3, d4; // low digits from multiplication
long dd0, dd1, dd2, dd3, dd4; // high digits from multiplication
long n, n0, n1, n2, n3, n4,
nn0, nn1, nn2, nn3, nn4; // modulus multiple digits
long c0, c1, c2, c3, c4, c5, c6, c7, c8, c9; // multiplication result
// digits for each column
// Row 0 - multiply by aa0 and reduce out c0
d0 = aa0 * bb0;
dd0 = Math.unsignedMultiplyHigh(aa0, bb0) << shift1 | (d0 >>> shift2);
d0 &= LIMB_MASK;
n = d0;
d1 = aa0 * bb1;
dd1 = Math.unsignedMultiplyHigh(aa0, bb1) << shift1 | (d1 >>> shift2);
d1 &= LIMB_MASK;
d2 = aa0 * bb2;
dd2 = Math.unsignedMultiplyHigh(aa0, bb2) << shift1 | (d2 >>> shift2);
d2 &= LIMB_MASK;
d3 = aa0 * bb3;
dd3 = Math.unsignedMultiplyHigh(aa0, bb3) << shift1 | (d3 >>> shift2);
d3 &= LIMB_MASK;
d4 = aa0 * bb4;
dd4 = Math.unsignedMultiplyHigh(aa0, bb4) << shift1 | (d4 >>> shift2);
d4 &= LIMB_MASK;
n0 = n * modulus[0];
nn0 = Math.unsignedMultiplyHigh(n, modulus[0]) << shift1 | (n0 >>> shift2);
n0 &= LIMB_MASK;
n1 = n * modulus[1];
nn1 = Math.unsignedMultiplyHigh(n, modulus[1]) << shift1 | (n1 >>> shift2);
n1 &= LIMB_MASK;
n2 = n * modulus[2];
nn2 = Math.unsignedMultiplyHigh(n, modulus[2]) << shift1 | (n2 >>> shift2);
n2 &= LIMB_MASK;
n3 = n * modulus[3];
nn3 = Math.unsignedMultiplyHigh(n, modulus[3]) << shift1 | (n3 >>> shift2);
n3 &= LIMB_MASK;
n4 = n * modulus[4];
nn4 = Math.unsignedMultiplyHigh(n, modulus[4]) << shift1 | (n4 >>> shift2);
n4 &= LIMB_MASK;
dd0 += nn0;
d0 += n0;
dd1 += nn1;
d1 += n1;
dd2 += nn2;
d2 += n2;
dd3 += nn3;
d3 += n3;
dd4 += nn4;
d4 += n4;
c1 = d1 + dd0 + (d0 >>> BITS_PER_LIMB);
c2 = d2 + dd1;
c3 = d3 + dd2;
c4 = d4 + dd3;
c5 = dd4;
// Row 1 - multiply by aa1 and reduce out c1
d0 = aa1 * bb0;
dd0 = Math.unsignedMultiplyHigh(aa1, bb0) << shift1 | (d0 >>> shift2);
d0 &= LIMB_MASK;
d0 += c1;
n = d0 & LIMB_MASK;
d1 = aa1 * bb1;
dd1 = Math.unsignedMultiplyHigh(aa1, bb1) << shift1 | (d1 >>> shift2);
d1 &= LIMB_MASK;
d2 = aa1 * bb2;
dd2 = Math.unsignedMultiplyHigh(aa1, bb2) << shift1 | (d2 >>> shift2);
d2 &= LIMB_MASK;
d3 = aa1 * bb3;
dd3 = Math.unsignedMultiplyHigh(aa1, bb3) << shift1 | (d3 >>> shift2);
d3 &= LIMB_MASK;
d4 = aa1 * bb4;
dd4 = Math.unsignedMultiplyHigh(aa1, bb4) << shift1 | (d4 >>> shift2);
d4 &= LIMB_MASK;
n0 = n * modulus[0];
dd0 += Math.unsignedMultiplyHigh(n, modulus[0]) << shift1 | (n0 >>> shift2);
d0 += n0 & LIMB_MASK;
n1 = n * modulus[1];
dd1 += Math.unsignedMultiplyHigh(n, modulus[1]) << shift1 | (n1 >>> shift2);
d1 += n1 & LIMB_MASK;
n2 = n * modulus[2];
dd2 += Math.unsignedMultiplyHigh(n, modulus[2]) << shift1 | (n2 >>> shift2);
d2 += n2 & LIMB_MASK;
n3 = n * modulus[3];
dd3 += Math.unsignedMultiplyHigh(n, modulus[3]) << shift1 | (n3 >>> shift2);
d3 += n3 & LIMB_MASK;
n4 = n * modulus[4];
dd4 += Math.unsignedMultiplyHigh(n, modulus[4]) << shift1 | (n4 >>> shift2);
d4 += n4 & LIMB_MASK;
c2 += d1 + dd0 + (d0 >>> BITS_PER_LIMB);
c3 += d2 + dd1;
c4 += d3 + dd2;
c5 += d4 + dd3;
c6 = dd4;
// Row 2 - multiply by aa2 and reduce out c2
d0 = aa2 * bb0;
dd0 = Math.unsignedMultiplyHigh(aa2, bb0) << shift1 | (d0 >>> shift2);
d0 &= LIMB_MASK;
d0 += c2;
n = d0 & LIMB_MASK;
d1 = aa2 * bb1;
dd1 = Math.unsignedMultiplyHigh(aa2, bb1) << shift1 | (d1 >>> shift2);
d1 &= LIMB_MASK;
d2 = aa2 * bb2;
dd2 = Math.unsignedMultiplyHigh(aa2, bb2) << shift1 | (d2 >>> shift2);
d2 &= LIMB_MASK;
d3 = aa2 * bb3;
dd3 = Math.unsignedMultiplyHigh(aa2, bb3) << shift1 | (d3 >>> shift2);
d3 &= LIMB_MASK;
d4 = aa2 * bb4;
dd4 = Math.unsignedMultiplyHigh(aa2, bb4) << shift1 | (d4 >>> shift2);
d4 &= LIMB_MASK;
n0 = n * modulus[0];
dd0 += Math.unsignedMultiplyHigh(n, modulus[0]) << shift1 | (n0 >>> shift2);
d0 += n0 & LIMB_MASK;
n1 = n * modulus[1];
dd1 += Math.unsignedMultiplyHigh(n, modulus[1]) << shift1 | (n1 >>> shift2);
d1 += n1 & LIMB_MASK;
n2 = n * modulus[2];
dd2 += Math.unsignedMultiplyHigh(n, modulus[2]) << shift1 | (n2 >>> shift2);
d2 += n2 & LIMB_MASK;
n3 = n * modulus[3];
dd3 += Math.unsignedMultiplyHigh(n, modulus[3]) << shift1 | (n3 >>> shift2);
d3 += n3 & LIMB_MASK;
n4 = n * modulus[4];
dd4 += Math.unsignedMultiplyHigh(n, modulus[4]) << shift1 | (n4 >>> shift2);
d4 += n4 & LIMB_MASK;
c3 += d1 + dd0 + (d0 >>> BITS_PER_LIMB);
c4 += d2 + dd1;
c5 += d3 + dd2;
c6 += d4 + dd3;
c7 = dd4;
// Row 3 - multiply by aa3 and reduce out c3
d0 = aa3 * bb0;
dd0 = Math.unsignedMultiplyHigh(aa3, bb0) << shift1 | (d0 >>> shift2);
d0 &= LIMB_MASK;
d0 += c3;
n = d0 & LIMB_MASK;
d1 = aa3 * bb1;
dd1 = Math.unsignedMultiplyHigh(aa3, bb1) << shift1 | (d1 >>> shift2);
d1 &= LIMB_MASK;
d2 = aa3 * bb2;
dd2 = Math.unsignedMultiplyHigh(aa3, bb2) << shift1 | (d2 >>> shift2);
d2 &= LIMB_MASK;
d3 = aa3 * bb3;
dd3 = Math.unsignedMultiplyHigh(aa3, bb3) << shift1 | (d3 >>> shift2);
d3 &= LIMB_MASK;
d4 = aa3 * bb4;
dd4 = Math.unsignedMultiplyHigh(aa3, bb4) << shift1 | (d4 >>> shift2);
d4 &= LIMB_MASK;
n0 = n * modulus[0];
dd0 += Math.unsignedMultiplyHigh(n, modulus[0]) << shift1 | (n0 >>> shift2);
d0 += n0 & LIMB_MASK;
n1 = n * modulus[1];
dd1 += Math.unsignedMultiplyHigh(n, modulus[1]) << shift1 | (n1 >>> shift2);
d1 += n1 & LIMB_MASK;
n2 = n * modulus[2];
dd2 += Math.unsignedMultiplyHigh(n, modulus[2]) << shift1 | (n2 >>> shift2);
d2 += n2 & LIMB_MASK;
n3 = n * modulus[3];
dd3 += Math.unsignedMultiplyHigh(n, modulus[3]) << shift1 | (n3 >>> shift2);
d3 += n3 & LIMB_MASK;
n4 = n * modulus[4];
dd4 += Math.unsignedMultiplyHigh(n, modulus[4]) << shift1 | (n4 >>> shift2);
d4 += n4 & LIMB_MASK;
c4 += d1 + dd0 + (d0 >>> BITS_PER_LIMB);
c5 += d2 + dd1;
c6 += d3 + dd2;
c7 += d4 + dd3;
c8 = dd4;
// Row 4 - multiply by aa3 and reduce out c4
d0 = aa4 * bb0;
dd0 = Math.unsignedMultiplyHigh(aa4, bb0) << shift1 | (d0 >>> shift2);
d0 &= LIMB_MASK;
d0 += c4;
n = d0 & LIMB_MASK;
d1 = aa4 * bb1;
dd1 = Math.unsignedMultiplyHigh(aa4, bb1) << shift1 | (d1 >>> shift2);
d1 &= LIMB_MASK;
d2 = aa4 * bb2;
dd2 = Math.unsignedMultiplyHigh(aa4, bb2) << shift1 | (d2 >>> shift2);
d2 &= LIMB_MASK;
d3 = aa4 * bb3;
dd3 = Math.unsignedMultiplyHigh(aa4, bb3) << shift1 | (d3 >>> shift2);
d3 &= LIMB_MASK;
d4 = aa4 * bb4;
dd4 = Math.unsignedMultiplyHigh(aa4, bb4) << shift1 | (d4 >>> shift2);
d4 &= LIMB_MASK;
n0 = n * modulus[0];
dd0 += Math.unsignedMultiplyHigh(n, modulus[0]) << shift1 | (n0 >>> shift2);
d0 += n0 & LIMB_MASK;
n1 = n * modulus[1];
dd1 += Math.unsignedMultiplyHigh(n, modulus[1]) << shift1 | (n1 >>> shift2);
d1 += n1 & LIMB_MASK;
n2 = n * modulus[2];
dd2 += Math.unsignedMultiplyHigh(n, modulus[2]) << shift1 | (n2 >>> shift2);
d2 += n2 & LIMB_MASK;
n3 = n * modulus[3];
dd3 += Math.unsignedMultiplyHigh(n, modulus[3]) << shift1 | (n3 >>> shift2);
d3 += n3 & LIMB_MASK;
n4 = n * modulus[4];
dd4 += Math.unsignedMultiplyHigh(n, modulus[4]) << shift1 | (n4 >>> shift2);
d4 += n4 & LIMB_MASK;
c5 += d1 + dd0 + (d0 >>> BITS_PER_LIMB);
c6 += d2 + dd1 + (c5 >>> BITS_PER_LIMB);
c7 += d3 + dd2 + (c6 >>> BITS_PER_LIMB);
c8 += d4 + dd3 + (c7 >>> BITS_PER_LIMB);
c9 = dd4 + (c8 >>> BITS_PER_LIMB);
c5 &= LIMB_MASK;
c6 &= LIMB_MASK;
c7 &= LIMB_MASK;
c8 &= LIMB_MASK;
// At this point, the result could overflow by one modulus.
c0 = c5 - modulus[0];
c1 = c6 - modulus[1] + (c0 >> BITS_PER_LIMB);
c0 &= LIMB_MASK;
c2 = c7 - modulus[2] + (c1 >> BITS_PER_LIMB);
c1 &= LIMB_MASK;
c3 = c8 - modulus[3] + (c2 >> BITS_PER_LIMB);
c2 &= LIMB_MASK;
c4 = c9 - modulus[4] + (c3 >> BITS_PER_LIMB);
c3 &= LIMB_MASK;
long mask = c4 >> BITS_PER_LIMB; // Signed shift!
r[0] = ((c5 & mask) | (c0 & ~mask));
r[1] = ((c6 & mask) | (c1 & ~mask));
r[2] = ((c7 & mask) | (c2 & ~mask));
r[3] = ((c8 & mask) | (c3 & ~mask));
r[4] = ((c9 & mask) | (c4 & ~mask));
return 0;
}
@Override
protected void finalCarryReduceLast(long[] limbs) {
reduce(limbs);
}
@Override
protected long carryValue(long x) {
return x >> BITS_PER_LIMB;
}
@Override
protected void postEncodeCarry(long[] v) {
// not needed because carry is unsigned
}
// Proof:
// carry * 2^256 (mod p) == carry * [2^256 - p] (mod p)
// == carry * [2^256 - (2^256 -2^224 +2^192 +2^96 -1)] (mod p)
// == carry * [2^224 -2^192 -2^96 +1] (mod p)
@Override
protected void reduce(long[] limbs) {
long b0 = limbs[0];
long b1 = limbs[1];
long b2 = limbs[2];
long b3 = limbs[3];
long b4 = limbs[4];
long carry = b4 >> 48; // max 16-bits
b4 -= carry << 48;
// 2^0 position
b0 += carry;
// -2^96
b1 -= carry << 44;
// -2^192
b3 -= carry << 36;
// 2^224
b4 += carry << 16;
b1 += b0 >> BITS_PER_LIMB;
b2 += b1 >> BITS_PER_LIMB;
b3 += b2 >> BITS_PER_LIMB;
b4 += b3 >> BITS_PER_LIMB;
b0 &= LIMB_MASK;
b1 &= LIMB_MASK;
b2 &= LIMB_MASK;
b3 &= LIMB_MASK;
long c0, c1, c2, c3, c4;
c0 = modulus[0] + b0;
c1 = modulus[1] + b1 + (c0 >> BITS_PER_LIMB);
c0 &= LIMB_MASK;
c2 = modulus[2] + b2 + (c1 >> BITS_PER_LIMB);
c1 &= LIMB_MASK;
c3 = modulus[3] + b3 + (c2 >> BITS_PER_LIMB);
c2 &= LIMB_MASK;
c4 = modulus[4] + b4 + (c3 >> BITS_PER_LIMB);
c3 &= LIMB_MASK;
long mask = b4 >> BITS_PER_LIMB; // Signed shift!
limbs[0] = (b0 & ~mask) | (c0 & mask);
limbs[1] = (b1 & ~mask) | (c1 & mask);
limbs[2] = (b2 & ~mask) | (c2 & mask);
limbs[3] = (b3 & ~mask) | (c3 & mask);
limbs[4] = (b4 & ~mask) | (c4 & mask);
}
public ImmutableElement getElement(byte[] v, int offset, int length,
byte highByte) {
long[] vLimbs = new long[NUM_LIMBS];
long[] montLimbs = new long[NUM_LIMBS];
super.encode(v, offset, length, highByte, vLimbs);
// Convert to Montgomery domain
int numAdds = mult(vLimbs, h, montLimbs);
return new ImmutableElement(montLimbs, numAdds);
}
/*
* This function 'moves/reduces' digit 'v' to the 'lower' limbs
*
* The result is not reduced further. Carry propagation is not performed
* (see IntegerPolynomial.reduceHigh() for how this method is used)
*
* Proof:
* v * 2^(i*52) (mod p) == v * 2^(52i) - v * 2^(52i-256) * p (mod p)
* == v * 2^(52i) - v * 2^(52i-256) * (2^256 -2^224 +2^192 +2^96 -1) (mod p)
* == v * 2^(52i) - v * [2^(52i-256+256) -2^(52i-256+224) +2^(52i-256+192) +2^(52i-256+96) -2^(52i-256)] (mod p)
* == v * 2^(52i) - v * [2^(52i) -2^(52i-32) +2^(52i-64) +2^(52i-160) -2^(52i-256)] (mod p)
*
* == v * [2^(52i-32) +2^(52i-52-12) +2^(52i-3*52-4) -2^(52i-4*52-48)] (mod p)
*/
@Override
protected void reduceIn(long[] limbs, long v, int i) {
// Since top term (2^(52i-32)) will leave top 20 bits back in the same
// position i,
// "repeat same reduction on top 20 bits"
v += v >> 32;
// 2^(52i-32)
limbs[i - 1] += (v << 20) & LIMB_MASK;
// 2^(52i-52-12)
limbs[i - 2] -= (v << 40) & LIMB_MASK;
limbs[i - 1] -= v >> 12;
// 2^(52i-3*52-4)
limbs[i - 4] -= (v << 48) & LIMB_MASK;
limbs[i - 3] -= v >> 4;
// 2^(52i-4*52-48)
limbs[i - 5] += (v << 4) & LIMB_MASK;
limbs[i - 4] += v >> 48;
}
}

View file

@ -0,0 +1,171 @@
/*
* Copyright (c) 2024, Intel Corporation. All rights reserved.
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import java.util.Random;
import java.math.BigInteger;
import java.lang.reflect.Field;
import java.security.spec.ECParameterSpec;
import sun.security.ec.ECOperations;
import sun.security.util.ECUtil;
import sun.security.util.NamedCurve;
import sun.security.util.CurveDB;
import sun.security.ec.point.*;
import java.security.spec.ECPoint;
import sun.security.util.KnownOIDs;
import sun.security.util.math.IntegerMontgomeryFieldModuloP;
import sun.security.util.math.intpoly.*;
/*
* @test
* @key randomness
* @modules java.base/sun.security.ec java.base/sun.security.ec.point
* java.base/sun.security.util java.base/sun.security.util.math
* java.base/sun.security.util.math.intpoly
* @run main/othervm/timeout=1200 --add-opens
* java.base/sun.security.ec=ALL-UNNAMED -XX:+UnlockDiagnosticVMOptions
* -XX:-UseIntPolyIntrinsics ECOperationsFuzzTest
* @summary Unit test ECOperationsFuzzTest.
*/
/*
* @test
* @key randomness
* @modules java.base/sun.security.ec java.base/sun.security.ec.point
* java.base/sun.security.util java.base/sun.security.util.math
* java.base/sun.security.util.math.intpoly
* @run main/othervm/timeout=1200 --add-opens
* java.base/sun.security.ec=ALL-UNNAMED -XX:+UnlockDiagnosticVMOptions
* -XX:+UseIntPolyIntrinsics ECOperationsFuzzTest
* @summary Unit test ECOperationsFuzzTest.
*/
// This test case is NOT entirely deterministic, it uses a random seed for
// pseudo-random number generator. If a failure occurs, hardcode the seed to
// make the test case deterministic
public class ECOperationsFuzzTest {
public static void main(String[] args) throws Exception {
// Note: it might be useful to increase this number during development
final int repeat = 10000;
test(repeat);
System.out.println("Fuzz Success");
}
private static void check(MutablePoint reference, MutablePoint testValue,
long seed, int iter) {
AffinePoint affineRef = reference.asAffine();
AffinePoint affine = testValue.asAffine();
if (!affineRef.equals(affine)) {
throw new RuntimeException(
"Found error with seed " + seed + "at iteration " + iter);
}
}
public static void test(int repeat) throws Exception {
Random rnd = new Random();
long seed = rnd.nextLong();
rnd.setSeed(seed);
int keySize = 256;
ECParameterSpec params = ECUtil.getECParameterSpec(keySize);
NamedCurve curve = CurveDB.lookup(KnownOIDs.secp256r1.value());
ECPoint generator = curve.getGenerator();
BigInteger b = curve.getCurve().getB();
if (params == null || generator == null) {
throw new RuntimeException(
"No EC parameters available for key size " + keySize + " bits");
}
ECOperations ops = ECOperations.forParameters(params).get();
ECOperations opsReference = new ECOperations(
IntegerPolynomialP256.ONE.getElement(b), P256OrderField.ONE);
boolean instanceTest1 = ops
.getField() instanceof IntegerMontgomeryFieldModuloP;
boolean instanceTest2 = opsReference
.getField() instanceof IntegerMontgomeryFieldModuloP;
if (instanceTest1 == false || instanceTest2 == true) {
throw new RuntimeException("Bad Initialization: ["
+ instanceTest1 + "," + instanceTest2 + "]");
}
byte[] multiple = new byte[keySize / 8];
rnd.nextBytes(multiple);
multiple[keySize/8 - 1] &= 0x7f; // from opsReference.seedToScalar(multiple);
MutablePoint referencePoint = opsReference.multiply(generator, multiple);
MutablePoint point = ops.multiply(generator, multiple);
check(referencePoint, point, seed, -1);
AffinePoint refAffineGenerator = AffinePoint.fromECPoint(generator,
referencePoint.getField());
AffinePoint montAffineGenerator = AffinePoint.fromECPoint(generator,
point.getField());
MutablePoint refProjGenerator = new ProjectivePoint.Mutable(
refAffineGenerator.getX(false).mutable(),
refAffineGenerator.getY(false).mutable(),
referencePoint.getField().get1().mutable());
MutablePoint projGenerator = new ProjectivePoint.Mutable(
montAffineGenerator.getX(false).mutable(),
montAffineGenerator.getY(false).mutable(),
point.getField().get1().mutable());
for (int i = 0; i < repeat; i++) {
rnd.nextBytes(multiple);
multiple[keySize/8 - 1] &= 0x7f; // opsReference.seedToScalar(multiple);
MutablePoint nextReferencePoint = opsReference
.multiply(referencePoint.asAffine(), multiple);
MutablePoint nextPoint = ops.multiply(point.asAffine().toECPoint(),
multiple);
check(nextReferencePoint, nextPoint, seed, i);
if (rnd.nextBoolean()) {
opsReference.setSum(nextReferencePoint, referencePoint);
ops.setSum(nextPoint, point);
check(nextReferencePoint, nextPoint, seed, i);
}
if (rnd.nextBoolean()) {
opsReference.setSum(nextReferencePoint, refProjGenerator);
ops.setSum(nextPoint, projGenerator);
check(nextReferencePoint, nextPoint, seed, i);
}
if (rnd.nextInt(100) < 10) { // 10% Reset point to generator, test
// generator multiplier
referencePoint = opsReference.multiply(generator, multiple);
point = ops.multiply(generator, multiple);
check(referencePoint, point, seed, i);
} else {
referencePoint = nextReferencePoint;
point = nextPoint;
}
}
}
}
// make test TEST="test/jdk/com/sun/security/ec/ECOperationsFuzzTest.java"

View file

@ -0,0 +1,253 @@
/*
* Copyright (c) 2024, Intel Corporation. All rights reserved.
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import java.util.Random;
import java.util.List;
import java.util.LinkedList;
import java.math.BigInteger;
import java.lang.reflect.Field;
import java.security.spec.ECParameterSpec;
import sun.security.ec.ECOperations;
import sun.security.util.ECUtil;
import sun.security.util.NamedCurve;
import sun.security.util.CurveDB;
import sun.security.ec.point.*;
import java.security.spec.ECPoint;
import sun.security.util.KnownOIDs;
import sun.security.util.math.IntegerMontgomeryFieldModuloP;
import sun.security.util.math.intpoly.*;
/*
* @test
* @modules java.base/sun.security.ec java.base/sun.security.ec.point
* java.base/sun.security.util java.base/sun.security.util.math
* java.base/sun.security.util.math.intpoly
* @run main/othervm --add-opens java.base/sun.security.ec=ALL-UNNAMED
* ECOperationsKATTest
* @summary Unit test ECOperationsKATTest.
*/
/*
* @test
* @modules java.base/sun.security.ec java.base/sun.security.ec.point
* java.base/sun.security.util java.base/sun.security.util.math
* java.base/sun.security.util.math.intpoly
* @run main/othervm -XX:+UnlockDiagnosticVMOptions -Xcomp
* -XX:-TieredCompilation --add-opens java.base/sun.security.ec=ALL-UNNAMED
* -XX:+UnlockDiagnosticVMOptions ECOperationsKATTest
* @summary Unit test ECOperationsKATTest.
*/
public class ECOperationsKATTest {
final private static java.util.HexFormat hex = java.util.HexFormat.of();
public static void main(String args[]) throws Exception {
int testsPassed = 0;
int testNumber = 0;
for (TestData test : testList) {
System.out.println("*** Test " + ++testNumber + ": " + test.testName);
if (runSingleTest(test)) {
testsPassed++;
}
}
System.out.println();
if (testsPassed != testNumber) {
throw new RuntimeException(
"One or more tests failed. Check output for details");
}
}
private static boolean check(MutablePoint testValue, ECPoint reference) {
AffinePoint affine = testValue.asAffine();
BigInteger x = affine.getX().asBigInteger();
BigInteger y = affine.getY().asBigInteger();
BigInteger refX = reference.getAffineX();
BigInteger refY = reference.getAffineY();
if (!refX.equals(x) || !refY.equals(y)) {
System.out.println("ERROR - Output Mismatch!");
System.out.println("Expected: X: " + refX.toString(16) + " Y: "
+ refY.toString(16));
System.out.println(
"Result: X: " + x.toString(16) + " Y: " + y.toString(16));
return false;
}
return true;
}
private static class TestData {
public TestData(String name, String keyStr, String xStr1, String yStr1,
String xStr2, String yStr2) {
testName = name;
// multiplier = (new BigInteger(keyStr, 16)).toByteArray();
multiplier = hex.parseHex(keyStr);
sun.security.util.ArrayUtil.reverse(multiplier);
reference1 = new ECPoint(new BigInteger(xStr1, 16),
new BigInteger(yStr1, 16));
reference2 = new ECPoint(new BigInteger(xStr2, 16),
new BigInteger(yStr2, 16));
}
String testName;
byte[] multiplier;
ECPoint reference1; // For generator multiplier test
ECPoint reference2; // For non-generator multiplier test
}
public static final List<TestData> testList = new LinkedList<TestData>() {{
// (x1,y1) = mult*generator
// (x2,y2) = mult*mult*generator
add(new TestData("Test Vector #1",
"0000000000000000000000000000000000000000000000000000000000000012", // mult
"1057E0AB5780F470DEFC9378D1C7C87437BB4C6F9EA55C63D936266DBD781FDA", // x1
"F6F1645A15CBE5DC9FA9B7DFD96EE5A7DCC11B5C5EF4F1F78D83B3393C6A45A2", // y1
"4954047A366A91E3FD94E574DB6F2B04F3A8465883DBC55A816EA563BF54A324", // x2
"B5A54786FD9EA48C9FC38A0557B0C4D54F285908A7291B630D06BEE970F530D3") // y2
);
add(new TestData("Test Vector #2",
"1200000000000000000000000000000000000000000000000000000000000000", // mult
"DF684E6D0D57AF8B89DA11E8F7436C3D360F531D62BDCE42C5A8B72D73D5C717", // x
"9D3576BD03C09B8F416EE9C27D70AD4A425119271ACF549312CA48758F4E1FEC", // y
"57C8257EEAABF5446DCFACB99DEE104367B6C9950C76797C372EB177D5FA23B3", // x
"1CD3E8A34521C1C8E574EB4B99343CAA57E00725D8618F0231C7C79AA6837725") // y
);
add(new TestData("Test Vector #3",
"0000000000000000000000000000000120000000000000000000000000000012", // mult
"A69DFD47B24485E5F523BDA5FBACF03F5A7C3D22E0C2BC6705594B7B051A06D0", // x
"ECF19629416BE5C9AF1E30988F3AA8B803809CF4D12944EB49C5E9892723798A", // y
"1E28559F5B681C308632EE11A007B9891B3FD592C982C4926153795794295E58", // x
"3C373046C27BB34609A43C91DF6D4B9AB9EB08F3B69A8F8FAE944211D8297F30") // y
);
add(new TestData("Test Vector #4",
"0000000000000000000000000000000000000000000000000000000000000001", // mult
"6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296", // x
"4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5", // y
"6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296", // x
"4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5") // y
);
add(new TestData("Test Vector #5",
"EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", // mult
"66B71D0BD47344197CCFB0C9578EAF0ADB609E05BB4E8F87D56BD34F24EE7C47", // x
"14A0ECB7F708C02B2BAE238D2C4607BB9D04FCE64E10A428C911D6FA25B2F0FD", // y
"D25AAFD0FCC5B5E95C84C0702C138BC4D7FEB4E5F9C2DFB4301E313507EFDF44", // x
"F3F04EBC7D308511B0392BB7171CF92688D6484A95A8100EDFC933613A359133") // y
);
add(new TestData("Test Vector #6",
"1111111111111111111111111111111111111111111111111111111111111111", // mult
"0217E617F0B6443928278F96999E69A23A4F2C152BDF6D6CDF66E5B80282D4ED", // x
"194A7DEBCB97712D2DDA3CA85AA8765A56F45FC758599652F2897C65306E5794", // y
"A83A07D6AE918359DEBCC385DA1E416EB83417435079CA8DB06005E107C309A0", // x
"5AACDF816850C33EB3E54F3D0DD759B97B5E7065B2060016F73735E4A6AADE23") // y
);
}};
private static boolean runSingleTest(TestData testData) {
int keySize = 256;
ECParameterSpec params = ECUtil.getECParameterSpec(keySize);
NamedCurve curve = CurveDB.lookup(KnownOIDs.secp256r1.value());
ECPoint generator = curve.getGenerator();
BigInteger b = curve.getCurve().getB();
if (params == null || generator == null) {
throw new RuntimeException(
"No EC parameters available for key size " + keySize + " bits");
}
ECOperations ops = ECOperations.forParameters(params).get();
ECOperations opsReference = new ECOperations(
IntegerPolynomialP256.ONE.getElement(b), P256OrderField.ONE);
boolean instanceTest1 = ops
.getField() instanceof IntegerMontgomeryFieldModuloP;
boolean instanceTest2 = opsReference
.getField() instanceof IntegerMontgomeryFieldModuloP;
if (instanceTest1 == false || instanceTest2 == true) {
throw new RuntimeException("Bad Initialization: [" + instanceTest1 + ","
+ instanceTest2 + "]");
}
MutablePoint nextPoint = ops.multiply(generator, testData.multiplier);
MutablePoint nextReferencePoint = opsReference.multiply(generator,
testData.multiplier);
if (!check(nextReferencePoint, testData.reference1)
|| !check(nextPoint, testData.reference1)) {
return false;
}
nextPoint = ops.multiply(nextPoint.asAffine(), testData.multiplier);
nextReferencePoint = opsReference.multiply(nextReferencePoint.asAffine(),
testData.multiplier);
if (!check(nextReferencePoint, testData.reference2)
|| !check(nextPoint, testData.reference2)) {
return false;
}
return true;
}
}
//make test TEST="test/jdk/com/sun/security/ec/ECOperationsKATTest.java"
/*
* KAT generator using OpenSSL for reference vectors
* g++ ecpoint.cpp -g -lcrypto -Wno-deprecated-declarations && ./a.out
* (Some OpenSSL EC operations are marked internal i.e. deprecated)
*
#include <openssl/obj_mac.h>
#include <openssl/ec.h>
void check(int rc, const char* locator) {
if (rc != 1) {
printf("Failed at %s\n", locator);
exit(55);
}
}
int main(){
BN_CTX* ctx = BN_CTX_new();
BIGNUM* k = BN_CTX_get(ctx);
BIGNUM* x1 = BN_CTX_get(ctx);
BIGNUM* y1 = BN_CTX_get(ctx);
BIGNUM* x2 = BN_CTX_get(ctx);
BIGNUM* y2 = BN_CTX_get(ctx);
EC_GROUP *ec_group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
EC_POINT* pubkey = EC_POINT_new(ec_group);
EC_POINT* pubkey2 = EC_POINT_new(ec_group);
int rc;
rc = BN_hex2bn(&k, "1111111111111111111111111111111111111111111111111111111111111111"); //check(rc, "set raw key");
rc = EC_POINT_mul(ec_group, pubkey, k, NULL, NULL, ctx); check(rc, "mult public key");
rc = EC_POINT_get_affine_coordinates(ec_group, pubkey, x1, y1, ctx); check(rc, "get affine coordinates");
rc = EC_POINT_mul(ec_group, pubkey2, NULL, pubkey, k, ctx); check(rc, "mult public key");
rc = EC_POINT_get_affine_coordinates(ec_group, pubkey2, x2, y2, ctx); check(rc, "get affine coordinates");
printf("k: %s\n", BN_bn2hex(k));
printf("x: %s\ny: %s\n", BN_bn2hex(x1), BN_bn2hex(y1));
printf("x: %s\ny: %s\n", BN_bn2hex(x2), BN_bn2hex(y2));
BN_CTX_free(ctx);
return 0;
}
*/

View file

@ -0,0 +1,95 @@
/*
* Copyright (c) 2024, Intel Corporation. All rights reserved.
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import java.util.Random;
import java.math.BigInteger;
import java.util.Arrays;
import sun.security.util.math.*;
import sun.security.util.math.intpoly.*;
/*
* @test
* @key randomness
* @modules java.base/sun.security.util java.base/sun.security.util.math
* java.base/sun.security.util.math.intpoly
* @run main/othervm -XX:+UnlockDiagnosticVMOptions -XX:-UseIntPolyIntrinsics
* IntegerPolynomialTest
* @summary Unit test
* IntegerPolynomial.MutableIntegerModuloP.conditionalAssign().
*/
/*
* @test
* @key randomness
* @modules java.base/sun.security.util java.base/sun.security.util.math
* java.base/sun.security.util.math.intpoly
* @run main/othervm -XX:+UnlockDiagnosticVMOptions -Xcomp
* -XX:-TieredCompilation -XX:+UseIntPolyIntrinsics IntegerPolynomialTest
* @summary Unit test
* IntegerPolynomial.MutableIntegerModuloP.conditionalAssign().
*/
// This test case is NOT entirely deterministic, it uses a random seed for
// pseudo-random number generator. If a failure occurs, hardcode the seed to
// make the test case deterministic
public class IntegerPolynomialTest {
public static void main(String[] args) throws Exception {
Random rnd = new Random();
long seed = rnd.nextLong();
rnd.setSeed(seed);
IntegerPolynomial testFields[] = new IntegerPolynomial[] {
IntegerPolynomial1305.ONE, IntegerPolynomial25519.ONE,
IntegerPolynomial448.ONE, IntegerPolynomialP256.ONE,
MontgomeryIntegerPolynomialP256.ONE, IntegerPolynomialP384.ONE,
IntegerPolynomialP521.ONE,
new IntegerPolynomialModBinP.Curve25519OrderField(),
new IntegerPolynomialModBinP.Curve448OrderField(),
P256OrderField.ONE, P384OrderField.ONE, P521OrderField.ONE,
Curve25519OrderField.ONE, Curve448OrderField.ONE };
for (IntegerPolynomial field : testFields) {
ImmutableIntegerModuloP aRef = field
.getElement(new BigInteger(32 * 64, rnd));
MutableIntegerModuloP a = aRef.mutable();
ImmutableIntegerModuloP bRef = field
.getElement(new BigInteger(32 * 64, rnd));
MutableIntegerModuloP b = bRef.mutable();
a.conditionalSet(b, 0); // Don't assign
if (Arrays.equals(a.getLimbs(), b.getLimbs())) {
throw new RuntimeException(
"[SEED " + seed + "]: Incorrect assign for " + field);
}
a.conditionalSet(b, 1); // Assign
if (!Arrays.equals(a.getLimbs(), b.getLimbs())) {
throw new RuntimeException(
"[SEED " + seed + "]: Incorrect assign for " + field);
}
}
System.out.println("Test Success");
}
}
//make test TEST="test/jdk/com/sun/security/util/math/intpoly/IntegerPolynomialTest.java"

View file

@ -0,0 +1,100 @@
/*
* Copyright (c) 2024, Intel Corporation. All rights reserved.
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import java.util.Random;
import sun.security.util.math.IntegerMontgomeryFieldModuloP;
import sun.security.util.math.ImmutableIntegerModuloP;
import java.math.BigInteger;
import sun.security.util.math.intpoly.*;
/*
* @test
* @key randomness
* @modules java.base/sun.security.util java.base/sun.security.util.math
* java.base/sun.security.util.math.intpoly
* @run main/othervm -XX:+UnlockDiagnosticVMOptions -XX:-UseIntPolyIntrinsics
* MontgomeryPolynomialFuzzTest
* @summary Unit test MontgomeryPolynomialFuzzTest.
*/
/*
* @test
* @key randomness
* @modules java.base/sun.security.util java.base/sun.security.util.math
* java.base/sun.security.util.math.intpoly
* @run main/othervm -XX:+UnlockDiagnosticVMOptions -XX:+UseIntPolyIntrinsics
* MontgomeryPolynomialFuzzTest
* @summary Unit test MontgomeryPolynomialFuzzTest.
*/
// This test case is NOT entirely deterministic, it uses a random seed for pseudo-random number generator
// If a failure occurs, hardcode the seed to make the test case deterministic
public class MontgomeryPolynomialFuzzTest {
public static void main(String[] args) throws Exception {
// Note: it might be useful to increase this number during development
final int repeat = 1000000;
for (int i = 0; i < repeat; i++) {
run();
}
System.out.println("Fuzz Success");
}
private static void check(BigInteger reference,
ImmutableIntegerModuloP testValue, long seed) {
if (!reference.equals(testValue.asBigInteger())) {
throw new RuntimeException("SEED: " + seed);
}
}
public static void run() throws Exception {
Random rnd = new Random();
long seed = rnd.nextLong();
rnd.setSeed(seed);
IntegerMontgomeryFieldModuloP montField = MontgomeryIntegerPolynomialP256.ONE;
BigInteger P = MontgomeryIntegerPolynomialP256.ONE.MODULUS;
BigInteger r = BigInteger.ONE.shiftLeft(260).mod(P);
BigInteger rInv = r.modInverse(P);
BigInteger aRef = (new BigInteger(P.bitLength(), rnd)).mod(P);
// Test conversion to montgomery domain
ImmutableIntegerModuloP a = montField.getElement(aRef);
aRef = aRef.multiply(r).mod(P);
check(aRef, a, seed);
if (rnd.nextBoolean()) {
aRef = aRef.multiply(aRef).multiply(rInv).mod(P);
a = a.multiply(a);
check(aRef, a, seed);
}
if (rnd.nextBoolean()) {
aRef = aRef.add(aRef).mod(P);
a = a.add(a);
check(aRef, a, seed);
}
}
}
//make test TEST="test/jdk/com/sun/security/util/math/intpoly/MontgomeryPolynomialFuzzTest.java"

View file

@ -0,0 +1,105 @@
/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.javax.crypto.full;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import org.openjdk.jmh.annotations.Benchmark;
import java.math.BigInteger;
import java.util.concurrent.TimeUnit;
import sun.security.util.math.intpoly.MontgomeryIntegerPolynomialP256;
import sun.security.util.math.intpoly.IntegerPolynomialP256;
import sun.security.util.math.MutableIntegerModuloP;
import sun.security.util.math.ImmutableIntegerModuloP;
@Fork(jvmArgsAppend = {"-XX:+AlwaysPreTouch",
"--add-exports", "java.base/sun.security.util.math.intpoly=ALL-UNNAMED",
"--add-exports", "java.base/sun.security.util.math=ALL-UNNAMED"}, value = 1)
@Warmup(iterations = 3, time = 3)
@Measurement(iterations = 8, time = 2)
@OutputTimeUnit(TimeUnit.SECONDS)
@State(Scope.Thread)
@BenchmarkMode(Mode.Throughput)
public class PolynomialP256Bench {
final MontgomeryIntegerPolynomialP256 montField = MontgomeryIntegerPolynomialP256.ONE;
final IntegerPolynomialP256 residueField = IntegerPolynomialP256.ONE;
final BigInteger refx =
new BigInteger("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16);
final ImmutableIntegerModuloP x = residueField.getElement(refx);
final ImmutableIntegerModuloP X = montField.getElement(refx);
final ImmutableIntegerModuloP one = montField.get1();
@Param({"true", "false"})
private boolean isMontBench;
@Benchmark
public MutableIntegerModuloP benchMultiply() {
MutableIntegerModuloP test;
if (isMontBench) {
test = X.mutable();
} else {
test = x.mutable();
}
for (int i = 0; i< 10000; i++) {
test = test.setProduct(test);
}
return test;
}
@Benchmark
public MutableIntegerModuloP benchSquare() {
MutableIntegerModuloP test;
if (isMontBench) {
test = X.mutable();
} else {
test = x.mutable();
}
for (int i = 0; i< 10000; i++) {
test = test.setSquare();
}
return test;
}
@Benchmark
public MutableIntegerModuloP benchAssign() {
MutableIntegerModuloP test1 = X.mutable();
MutableIntegerModuloP test2 = one.mutable();
for (int i = 0; i< 10000; i++) {
test1.conditionalSet(test2, 0);
test1.conditionalSet(test2, 1);
test2.conditionalSet(test1, 0);
test2.conditionalSet(test1, 1);
}
return test2;
}
}