mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-19 10:34:38 +02:00
7164144: Fix variable naming style in freeBlockDictionary.* and binaryTreeDictionary*
Fix naming style to be consistent with the predominant hotspot style. Reviewed-by: ysr, brutisso
This commit is contained in:
parent
f5558edf7b
commit
b63f7f3a18
14 changed files with 620 additions and 620 deletions
|
@ -119,7 +119,7 @@ CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
|
|||
// moved to its new location before the klass is moved.
|
||||
// Set the _refillSize for the linear allocation blocks
|
||||
if (!use_adaptive_freelists) {
|
||||
FreeChunk* fc = _dictionary->getChunk(mr.word_size());
|
||||
FreeChunk* fc = _dictionary->get_chunk(mr.word_size());
|
||||
// The small linAB initially has all the space and will allocate
|
||||
// a chunk of any size.
|
||||
HeapWord* addr = (HeapWord*) fc;
|
||||
|
@ -275,12 +275,12 @@ void CompactibleFreeListSpace::reset(MemRegion mr) {
|
|||
assert(mr.word_size() >= MinChunkSize, "Chunk size is too small");
|
||||
_bt.single_block(mr.start(), mr.word_size());
|
||||
FreeChunk* fc = (FreeChunk*) mr.start();
|
||||
fc->setSize(mr.word_size());
|
||||
fc->set_size(mr.word_size());
|
||||
if (mr.word_size() >= IndexSetSize ) {
|
||||
returnChunkToDictionary(fc);
|
||||
} else {
|
||||
_bt.verify_not_unallocated((HeapWord*)fc, fc->size());
|
||||
_indexedFreeList[mr.word_size()].returnChunkAtHead(fc);
|
||||
_indexedFreeList[mr.word_size()].return_chunk_at_head(fc);
|
||||
}
|
||||
}
|
||||
_promoInfo.reset();
|
||||
|
@ -298,7 +298,7 @@ void CompactibleFreeListSpace::reset_after_compaction() {
|
|||
} else {
|
||||
// Place as much of mr in the linAB as we can get,
|
||||
// provided it was big enough to go into the dictionary.
|
||||
FreeChunk* fc = dictionary()->findLargestDict();
|
||||
FreeChunk* fc = dictionary()->find_largest_dict();
|
||||
if (fc != NULL) {
|
||||
assert(fc->size() == mr.word_size(),
|
||||
"Why was the chunk broken up?");
|
||||
|
@ -325,14 +325,14 @@ FreeChunk* CompactibleFreeListSpace::find_chunk_at_end() {
|
|||
#ifndef PRODUCT
|
||||
void CompactibleFreeListSpace::initializeIndexedFreeListArrayReturnedBytes() {
|
||||
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
|
||||
_indexedFreeList[i].allocation_stats()->set_returnedBytes(0);
|
||||
_indexedFreeList[i].allocation_stats()->set_returned_bytes(0);
|
||||
}
|
||||
}
|
||||
|
||||
size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() {
|
||||
size_t sum = 0;
|
||||
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
|
||||
sum += _indexedFreeList[i].allocation_stats()->returnedBytes();
|
||||
sum += _indexedFreeList[i].allocation_stats()->returned_bytes();
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
@ -356,7 +356,7 @@ size_t CompactibleFreeListSpace::totalCountInIndexedFreeLists() const {
|
|||
|
||||
size_t CompactibleFreeListSpace::totalCount() {
|
||||
size_t num = totalCountInIndexedFreeLists();
|
||||
num += dictionary()->totalCount();
|
||||
num += dictionary()->total_count();
|
||||
if (_smallLinearAllocBlock._word_size != 0) {
|
||||
num++;
|
||||
}
|
||||
|
@ -366,7 +366,7 @@ size_t CompactibleFreeListSpace::totalCount() {
|
|||
|
||||
bool CompactibleFreeListSpace::is_free_block(const HeapWord* p) const {
|
||||
FreeChunk* fc = (FreeChunk*) p;
|
||||
return fc->isFree();
|
||||
return fc->is_free();
|
||||
}
|
||||
|
||||
size_t CompactibleFreeListSpace::used() const {
|
||||
|
@ -393,7 +393,7 @@ size_t CompactibleFreeListSpace::free() const {
|
|||
// that supports jvmstat, and you are apt to see the values
|
||||
// flicker in such cases.
|
||||
assert(_dictionary != NULL, "No _dictionary?");
|
||||
return (_dictionary->totalChunkSize(DEBUG_ONLY(freelistLock())) +
|
||||
return (_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())) +
|
||||
totalSizeInIndexedFreeLists() +
|
||||
_smallLinearAllocBlock._word_size) * HeapWordSize;
|
||||
}
|
||||
|
@ -401,7 +401,7 @@ size_t CompactibleFreeListSpace::free() const {
|
|||
size_t CompactibleFreeListSpace::max_alloc_in_words() const {
|
||||
assert(_dictionary != NULL, "No _dictionary?");
|
||||
assert_locked();
|
||||
size_t res = _dictionary->maxChunkSize();
|
||||
size_t res = _dictionary->max_chunk_size();
|
||||
res = MAX2(res, MIN2(_smallLinearAllocBlock._word_size,
|
||||
(size_t) SmallForLinearAlloc - 1));
|
||||
// XXX the following could potentially be pretty slow;
|
||||
|
@ -469,7 +469,7 @@ const {
|
|||
|
||||
void CompactibleFreeListSpace::print_dictionary_free_lists(outputStream* st)
|
||||
const {
|
||||
_dictionary->reportStatistics();
|
||||
_dictionary->report_statistics();
|
||||
st->print_cr("Layout of Freelists in Tree");
|
||||
st->print_cr("---------------------------");
|
||||
_dictionary->print_free_lists(st);
|
||||
|
@ -547,12 +547,12 @@ void CompactibleFreeListSpace::dump_at_safepoint_with_locks(CMSCollector* c,
|
|||
void CompactibleFreeListSpace::reportFreeListStatistics() const {
|
||||
assert_lock_strong(&_freelistLock);
|
||||
assert(PrintFLSStatistics != 0, "Reporting error");
|
||||
_dictionary->reportStatistics();
|
||||
_dictionary->report_statistics();
|
||||
if (PrintFLSStatistics > 1) {
|
||||
reportIndexedFreeListStatistics();
|
||||
size_t totalSize = totalSizeInIndexedFreeLists() +
|
||||
_dictionary->totalChunkSize(DEBUG_ONLY(freelistLock()));
|
||||
gclog_or_tty->print(" free=%ld frag=%1.4f\n", totalSize, flsFrag());
|
||||
size_t total_size = totalSizeInIndexedFreeLists() +
|
||||
_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
|
||||
gclog_or_tty->print(" free=%ld frag=%1.4f\n", total_size, flsFrag());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -560,13 +560,13 @@ void CompactibleFreeListSpace::reportIndexedFreeListStatistics() const {
|
|||
assert_lock_strong(&_freelistLock);
|
||||
gclog_or_tty->print("Statistics for IndexedFreeLists:\n"
|
||||
"--------------------------------\n");
|
||||
size_t totalSize = totalSizeInIndexedFreeLists();
|
||||
size_t freeBlocks = numFreeBlocksInIndexedFreeLists();
|
||||
gclog_or_tty->print("Total Free Space: %d\n", totalSize);
|
||||
size_t total_size = totalSizeInIndexedFreeLists();
|
||||
size_t free_blocks = numFreeBlocksInIndexedFreeLists();
|
||||
gclog_or_tty->print("Total Free Space: %d\n", total_size);
|
||||
gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSizeInIndexedFreeLists());
|
||||
gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
|
||||
if (freeBlocks != 0) {
|
||||
gclog_or_tty->print("Av. Block Size: %d\n", totalSize/freeBlocks);
|
||||
gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
|
||||
if (free_blocks != 0) {
|
||||
gclog_or_tty->print("Av. Block Size: %d\n", total_size/free_blocks);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -913,7 +913,7 @@ CompactibleFreeListSpace::object_iterate_careful(ObjectClosureCareful* cl) {
|
|||
for (addr = bottom(), last = end();
|
||||
addr < last; addr += size) {
|
||||
FreeChunk* fc = (FreeChunk*)addr;
|
||||
if (fc->isFree()) {
|
||||
if (fc->is_free()) {
|
||||
// Since we hold the free list lock, which protects direct
|
||||
// allocation in this generation by mutators, a free object
|
||||
// will remain free throughout this iteration code.
|
||||
|
@ -955,7 +955,7 @@ CompactibleFreeListSpace::object_iterate_careful_m(MemRegion mr,
|
|||
for (addr = block_start_careful(mr.start()), end = mr.end();
|
||||
addr < end; addr += size) {
|
||||
FreeChunk* fc = (FreeChunk*)addr;
|
||||
if (fc->isFree()) {
|
||||
if (fc->is_free()) {
|
||||
// Since we hold the free list lock, which protects direct
|
||||
// allocation in this generation by mutators, a free object
|
||||
// will remain free throughout this iteration code.
|
||||
|
@ -1071,7 +1071,7 @@ size_t CompactibleFreeListSpace::block_size_nopar(const HeapWord* p) const {
|
|||
NOT_PRODUCT(verify_objects_initialized());
|
||||
assert(MemRegion(bottom(), end()).contains(p), "p not in space");
|
||||
FreeChunk* fc = (FreeChunk*)p;
|
||||
if (fc->isFree()) {
|
||||
if (fc->is_free()) {
|
||||
return fc->size();
|
||||
} else {
|
||||
// Ignore mark word because this may be a recently promoted
|
||||
|
@ -1162,7 +1162,7 @@ bool CompactibleFreeListSpace::block_is_obj_nopar(const HeapWord* p) const {
|
|||
FreeChunk* fc = (FreeChunk*)p;
|
||||
assert(is_in_reserved(p), "Should be in space");
|
||||
assert(_bt.block_start(p) == p, "Should be a block boundary");
|
||||
if (!fc->isFree()) {
|
||||
if (!fc->is_free()) {
|
||||
// Ignore mark word because it may have been used to
|
||||
// chain together promoted objects (the last one
|
||||
// would have a null value).
|
||||
|
@ -1224,7 +1224,7 @@ HeapWord* CompactibleFreeListSpace::allocate(size_t size) {
|
|||
|
||||
FreeChunk* fc = (FreeChunk*)res;
|
||||
fc->markNotFree();
|
||||
assert(!fc->isFree(), "shouldn't be marked free");
|
||||
assert(!fc->is_free(), "shouldn't be marked free");
|
||||
assert(oop(fc)->klass_or_null() == NULL, "should look uninitialized");
|
||||
// Verify that the block offset table shows this to
|
||||
// be a single block, but not one which is unallocated.
|
||||
|
@ -1336,7 +1336,7 @@ FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
|
|||
FreeList<FreeChunk>* fl = &_indexedFreeList[i];
|
||||
if (fl->head()) {
|
||||
ret = getFromListGreater(fl, numWords);
|
||||
assert(ret == NULL || ret->isFree(), "Should be returning a free chunk");
|
||||
assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
@ -1347,7 +1347,7 @@ FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
|
|||
/* Try to get a chunk that satisfies request, while avoiding
|
||||
fragmentation that can't be handled. */
|
||||
{
|
||||
ret = dictionary()->getChunk(currSize);
|
||||
ret = dictionary()->get_chunk(currSize);
|
||||
if (ret != NULL) {
|
||||
assert(ret->size() - numWords >= MinChunkSize,
|
||||
"Chunk is too small");
|
||||
|
@ -1355,10 +1355,10 @@ FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
|
|||
/* Carve returned chunk. */
|
||||
(void) splitChunkAndReturnRemainder(ret, numWords);
|
||||
/* Label this as no longer a free chunk. */
|
||||
assert(ret->isFree(), "This chunk should be free");
|
||||
ret->linkPrev(NULL);
|
||||
assert(ret->is_free(), "This chunk should be free");
|
||||
ret->link_prev(NULL);
|
||||
}
|
||||
assert(ret == NULL || ret->isFree(), "Should be returning a free chunk");
|
||||
assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
|
||||
return ret;
|
||||
}
|
||||
ShouldNotReachHere();
|
||||
|
@ -1366,7 +1366,7 @@ FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
|
|||
|
||||
bool CompactibleFreeListSpace::verifyChunkInIndexedFreeLists(FreeChunk* fc) const {
|
||||
assert(fc->size() < IndexSetSize, "Size of chunk is too large");
|
||||
return _indexedFreeList[fc->size()].verifyChunkInFreeLists(fc);
|
||||
return _indexedFreeList[fc->size()].verify_chunk_in_free_list(fc);
|
||||
}
|
||||
|
||||
bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc) const {
|
||||
|
@ -1380,13 +1380,13 @@ bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc)
|
|||
// Check if the purported free chunk is present either as a linear
|
||||
// allocation block, the size-indexed table of (smaller) free blocks,
|
||||
// or the larger free blocks kept in the binary tree dictionary.
|
||||
bool CompactibleFreeListSpace::verifyChunkInFreeLists(FreeChunk* fc) const {
|
||||
bool CompactibleFreeListSpace::verify_chunk_in_free_list(FreeChunk* fc) const {
|
||||
if (verify_chunk_is_linear_alloc_block(fc)) {
|
||||
return true;
|
||||
} else if (fc->size() < IndexSetSize) {
|
||||
return verifyChunkInIndexedFreeLists(fc);
|
||||
} else {
|
||||
return dictionary()->verifyChunkInFreeLists(fc);
|
||||
return dictionary()->verify_chunk_in_free_list(fc);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1414,7 +1414,7 @@ FreeChunk* CompactibleFreeListSpace::allocateScratch(size_t size) {
|
|||
}
|
||||
if (fc != NULL) {
|
||||
fc->dontCoalesce();
|
||||
assert(fc->isFree(), "Should be free, but not coalescable");
|
||||
assert(fc->is_free(), "Should be free, but not coalescable");
|
||||
// Verify that the block offset table shows this to
|
||||
// be a single block, but not one which is unallocated.
|
||||
_bt.verify_single_block((HeapWord*)fc, fc->size());
|
||||
|
@ -1494,7 +1494,7 @@ CompactibleFreeListSpace::getChunkFromLinearAllocBlock(LinearAllocBlock *blk,
|
|||
}
|
||||
// Return the chunk that isn't big enough, and then refill below.
|
||||
addChunkToFreeLists(blk->_ptr, sz);
|
||||
splitBirth(sz);
|
||||
split_birth(sz);
|
||||
// Don't keep statistics on adding back chunk from a LinAB.
|
||||
} else {
|
||||
// A refilled block would not satisfy the request.
|
||||
|
@ -1506,14 +1506,14 @@ CompactibleFreeListSpace::getChunkFromLinearAllocBlock(LinearAllocBlock *blk,
|
|||
assert(blk->_ptr == NULL || blk->_word_size >= size + MinChunkSize,
|
||||
"block was replenished");
|
||||
if (res != NULL) {
|
||||
splitBirth(size);
|
||||
split_birth(size);
|
||||
repairLinearAllocBlock(blk);
|
||||
} else if (blk->_ptr != NULL) {
|
||||
res = blk->_ptr;
|
||||
size_t blk_size = blk->_word_size;
|
||||
blk->_word_size -= size;
|
||||
blk->_ptr += size;
|
||||
splitBirth(size);
|
||||
split_birth(size);
|
||||
repairLinearAllocBlock(blk);
|
||||
// Update BOT last so that other (parallel) GC threads see a consistent
|
||||
// view of the BOT and free blocks.
|
||||
|
@ -1542,7 +1542,7 @@ HeapWord* CompactibleFreeListSpace::getChunkFromLinearAllocBlockRemainder(
|
|||
size_t blk_size = blk->_word_size;
|
||||
blk->_word_size -= size;
|
||||
blk->_ptr += size;
|
||||
splitBirth(size);
|
||||
split_birth(size);
|
||||
repairLinearAllocBlock(blk);
|
||||
// Update BOT last so that other (parallel) GC threads see a consistent
|
||||
// view of the BOT and free blocks.
|
||||
|
@ -1559,7 +1559,7 @@ CompactibleFreeListSpace::getChunkFromIndexedFreeList(size_t size) {
|
|||
assert_locked();
|
||||
assert(size < SmallForDictionary, "just checking");
|
||||
FreeChunk* res;
|
||||
res = _indexedFreeList[size].getChunkAtHead();
|
||||
res = _indexedFreeList[size].get_chunk_at_head();
|
||||
if (res == NULL) {
|
||||
res = getChunkFromIndexedFreeListHelper(size);
|
||||
}
|
||||
|
@ -1593,7 +1593,7 @@ CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size,
|
|||
// Do not replenish from an underpopulated size.
|
||||
if (_indexedFreeList[replenish_size].surplus() > 0 &&
|
||||
_indexedFreeList[replenish_size].head() != NULL) {
|
||||
newFc = _indexedFreeList[replenish_size].getChunkAtHead();
|
||||
newFc = _indexedFreeList[replenish_size].get_chunk_at_head();
|
||||
} else if (bestFitFirst()) {
|
||||
newFc = bestFitSmall(replenish_size);
|
||||
}
|
||||
|
@ -1626,13 +1626,13 @@ CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size,
|
|||
i < (num_blk - 1);
|
||||
curFc = nextFc, nextFc = (FreeChunk*)((HeapWord*)nextFc + size),
|
||||
i++) {
|
||||
curFc->setSize(size);
|
||||
curFc->set_size(size);
|
||||
// Don't record this as a return in order to try and
|
||||
// determine the "returns" from a GC.
|
||||
_bt.verify_not_unallocated((HeapWord*) fc, size);
|
||||
_indexedFreeList[size].returnChunkAtTail(curFc, false);
|
||||
_indexedFreeList[size].return_chunk_at_tail(curFc, false);
|
||||
_bt.mark_block((HeapWord*)curFc, size);
|
||||
splitBirth(size);
|
||||
split_birth(size);
|
||||
// Don't record the initial population of the indexed list
|
||||
// as a split birth.
|
||||
}
|
||||
|
@ -1640,9 +1640,9 @@ CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size,
|
|||
// check that the arithmetic was OK above
|
||||
assert((HeapWord*)nextFc == (HeapWord*)newFc + num_blk*size,
|
||||
"inconsistency in carving newFc");
|
||||
curFc->setSize(size);
|
||||
curFc->set_size(size);
|
||||
_bt.mark_block((HeapWord*)curFc, size);
|
||||
splitBirth(size);
|
||||
split_birth(size);
|
||||
fc = curFc;
|
||||
} else {
|
||||
// Return entire block to caller
|
||||
|
@ -1655,14 +1655,14 @@ CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size,
|
|||
// replenish the indexed free list.
|
||||
fc = getChunkFromDictionaryExact(size);
|
||||
}
|
||||
// assert(fc == NULL || fc->isFree(), "Should be returning a free chunk");
|
||||
// assert(fc == NULL || fc->is_free(), "Should be returning a free chunk");
|
||||
return fc;
|
||||
}
|
||||
|
||||
FreeChunk*
|
||||
CompactibleFreeListSpace::getChunkFromDictionary(size_t size) {
|
||||
assert_locked();
|
||||
FreeChunk* fc = _dictionary->getChunk(size);
|
||||
FreeChunk* fc = _dictionary->get_chunk(size);
|
||||
if (fc == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
@ -1679,7 +1679,7 @@ CompactibleFreeListSpace::getChunkFromDictionary(size_t size) {
|
|||
FreeChunk*
|
||||
CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) {
|
||||
assert_locked();
|
||||
FreeChunk* fc = _dictionary->getChunk(size);
|
||||
FreeChunk* fc = _dictionary->get_chunk(size);
|
||||
if (fc == NULL) {
|
||||
return fc;
|
||||
}
|
||||
|
@ -1688,11 +1688,11 @@ CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) {
|
|||
_bt.verify_single_block((HeapWord*)fc, size);
|
||||
return fc;
|
||||
}
|
||||
assert(fc->size() > size, "getChunk() guarantee");
|
||||
assert(fc->size() > size, "get_chunk() guarantee");
|
||||
if (fc->size() < size + MinChunkSize) {
|
||||
// Return the chunk to the dictionary and go get a bigger one.
|
||||
returnChunkToDictionary(fc);
|
||||
fc = _dictionary->getChunk(size + MinChunkSize);
|
||||
fc = _dictionary->get_chunk(size + MinChunkSize);
|
||||
if (fc == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
@ -1713,7 +1713,7 @@ CompactibleFreeListSpace::returnChunkToDictionary(FreeChunk* chunk) {
|
|||
_bt.verify_single_block((HeapWord*)chunk, size);
|
||||
// adjust _unallocated_block downward, as necessary
|
||||
_bt.freed((HeapWord*)chunk, size);
|
||||
_dictionary->returnChunk(chunk);
|
||||
_dictionary->return_chunk(chunk);
|
||||
#ifndef PRODUCT
|
||||
if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
|
||||
TreeChunk<FreeChunk>::as_TreeChunk(chunk)->list()->verify_stats();
|
||||
|
@ -1728,9 +1728,9 @@ CompactibleFreeListSpace::returnChunkToFreeList(FreeChunk* fc) {
|
|||
_bt.verify_single_block((HeapWord*) fc, size);
|
||||
_bt.verify_not_unallocated((HeapWord*) fc, size);
|
||||
if (_adaptive_freelists) {
|
||||
_indexedFreeList[size].returnChunkAtTail(fc);
|
||||
_indexedFreeList[size].return_chunk_at_tail(fc);
|
||||
} else {
|
||||
_indexedFreeList[size].returnChunkAtHead(fc);
|
||||
_indexedFreeList[size].return_chunk_at_head(fc);
|
||||
}
|
||||
#ifndef PRODUCT
|
||||
if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
|
||||
|
@ -1758,7 +1758,7 @@ CompactibleFreeListSpace::addChunkToFreeListsAtEndRecordingStats(
|
|||
FreeChunk* ec;
|
||||
{
|
||||
MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
|
||||
ec = dictionary()->findLargestDict(); // get largest block
|
||||
ec = dictionary()->find_largest_dict(); // get largest block
|
||||
if (ec != NULL && ec->end() == chunk) {
|
||||
// It's a coterminal block - we can coalesce.
|
||||
size_t old_size = ec->size();
|
||||
|
@ -1769,7 +1769,7 @@ CompactibleFreeListSpace::addChunkToFreeListsAtEndRecordingStats(
|
|||
ec = (FreeChunk*)chunk;
|
||||
}
|
||||
}
|
||||
ec->setSize(size);
|
||||
ec->set_size(size);
|
||||
debug_only(ec->mangleFreed(size));
|
||||
if (size < SmallForDictionary) {
|
||||
lock = _indexedFreeListParLocks[size];
|
||||
|
@ -1792,7 +1792,7 @@ CompactibleFreeListSpace::addChunkToFreeLists(HeapWord* chunk,
|
|||
_bt.verify_single_block(chunk, size);
|
||||
|
||||
FreeChunk* fc = (FreeChunk*) chunk;
|
||||
fc->setSize(size);
|
||||
fc->set_size(size);
|
||||
debug_only(fc->mangleFreed(size));
|
||||
if (size < SmallForDictionary) {
|
||||
returnChunkToFreeList(fc);
|
||||
|
@ -1835,7 +1835,7 @@ CompactibleFreeListSpace::removeChunkFromDictionary(FreeChunk* fc) {
|
|||
assert_locked();
|
||||
assert(fc != NULL, "null chunk");
|
||||
_bt.verify_single_block((HeapWord*)fc, size);
|
||||
_dictionary->removeChunk(fc);
|
||||
_dictionary->remove_chunk(fc);
|
||||
// adjust _unallocated_block upward, as necessary
|
||||
_bt.allocated((HeapWord*)fc, size);
|
||||
}
|
||||
|
@ -1850,7 +1850,7 @@ CompactibleFreeListSpace::removeChunkFromIndexedFreeList(FreeChunk* fc) {
|
|||
verifyIndexedFreeList(size);
|
||||
}
|
||||
)
|
||||
_indexedFreeList[size].removeChunk(fc);
|
||||
_indexedFreeList[size].remove_chunk(fc);
|
||||
NOT_PRODUCT(
|
||||
if (FLSVerifyIndexTable) {
|
||||
verifyIndexedFreeList(size);
|
||||
|
@ -1874,7 +1874,7 @@ FreeChunk* CompactibleFreeListSpace::bestFitSmall(size_t numWords) {
|
|||
// and split out a free chunk which is returned.
|
||||
_indexedFreeList[start].set_hint(hint);
|
||||
FreeChunk* res = getFromListGreater(fl, numWords);
|
||||
assert(res == NULL || res->isFree(),
|
||||
assert(res == NULL || res->is_free(),
|
||||
"Should be returning a free chunk");
|
||||
return res;
|
||||
}
|
||||
|
@ -1896,13 +1896,13 @@ FreeChunk* CompactibleFreeListSpace::getFromListGreater(FreeList<FreeChunk>* fl,
|
|||
assert(oldNumWords >= numWords + MinChunkSize,
|
||||
"Size of chunks in the list is too small");
|
||||
|
||||
fl->removeChunk(curr);
|
||||
fl->remove_chunk(curr);
|
||||
// recorded indirectly by splitChunkAndReturnRemainder -
|
||||
// smallSplit(oldNumWords, numWords);
|
||||
FreeChunk* new_chunk = splitChunkAndReturnRemainder(curr, numWords);
|
||||
// Does anything have to be done for the remainder in terms of
|
||||
// fixing the card table?
|
||||
assert(new_chunk == NULL || new_chunk->isFree(),
|
||||
assert(new_chunk == NULL || new_chunk->is_free(),
|
||||
"Should be returning a free chunk");
|
||||
return new_chunk;
|
||||
}
|
||||
|
@ -1920,13 +1920,13 @@ CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk,
|
|||
assert(rem_size >= MinChunkSize, "Free chunk smaller than minimum");
|
||||
FreeChunk* ffc = (FreeChunk*)((HeapWord*)chunk + new_size);
|
||||
assert(is_aligned(ffc), "alignment problem");
|
||||
ffc->setSize(rem_size);
|
||||
ffc->linkNext(NULL);
|
||||
ffc->linkPrev(NULL); // Mark as a free block for other (parallel) GC threads.
|
||||
ffc->set_size(rem_size);
|
||||
ffc->link_next(NULL);
|
||||
ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
|
||||
// Above must occur before BOT is updated below.
|
||||
// adjust block offset table
|
||||
OrderAccess::storestore();
|
||||
assert(chunk->isFree() && ffc->isFree(), "Error");
|
||||
assert(chunk->is_free() && ffc->is_free(), "Error");
|
||||
_bt.split_block((HeapWord*)chunk, chunk->size(), new_size);
|
||||
if (rem_size < SmallForDictionary) {
|
||||
bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
|
||||
|
@ -1941,7 +1941,7 @@ CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk,
|
|||
returnChunkToDictionary(ffc);
|
||||
split(size ,rem_size);
|
||||
}
|
||||
chunk->setSize(new_size);
|
||||
chunk->set_size(new_size);
|
||||
return chunk;
|
||||
}
|
||||
|
||||
|
@ -2048,10 +2048,10 @@ void CompactibleFreeListSpace::repairLinearAllocBlock(LinearAllocBlock* blk) {
|
|||
assert(blk->_word_size != 0 && blk->_word_size >= MinChunkSize,
|
||||
"Minimum block size requirement");
|
||||
FreeChunk* fc = (FreeChunk*)(blk->_ptr);
|
||||
fc->setSize(blk->_word_size);
|
||||
fc->linkPrev(NULL); // mark as free
|
||||
fc->set_size(blk->_word_size);
|
||||
fc->link_prev(NULL); // mark as free
|
||||
fc->dontCoalesce();
|
||||
assert(fc->isFree(), "just marked it free");
|
||||
assert(fc->is_free(), "just marked it free");
|
||||
assert(fc->cantCoalesce(), "just marked it uncoalescable");
|
||||
}
|
||||
}
|
||||
|
@ -2151,7 +2151,7 @@ double CompactibleFreeListSpace::flsFrag() const {
|
|||
}
|
||||
|
||||
double totFree = itabFree +
|
||||
_dictionary->totalChunkSize(DEBUG_ONLY(freelistLock()));
|
||||
_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
|
||||
if (totFree > 0) {
|
||||
frag = ((frag + _dictionary->sum_of_squared_block_sizes()) /
|
||||
(totFree * totFree));
|
||||
|
@ -2174,11 +2174,11 @@ void CompactibleFreeListSpace::beginSweepFLCensus(
|
|||
gclog_or_tty->print("size[%d] : ", i);
|
||||
}
|
||||
fl->compute_desired(inter_sweep_current, inter_sweep_estimate, intra_sweep_estimate);
|
||||
fl->set_coalDesired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent));
|
||||
fl->set_beforeSweep(fl->count());
|
||||
fl->set_bfrSurp(fl->surplus());
|
||||
fl->set_coal_desired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent));
|
||||
fl->set_before_sweep(fl->count());
|
||||
fl->set_bfr_surp(fl->surplus());
|
||||
}
|
||||
_dictionary->beginSweepDictCensus(CMSLargeCoalSurplusPercent,
|
||||
_dictionary->begin_sweep_dict_census(CMSLargeCoalSurplusPercent,
|
||||
inter_sweep_current,
|
||||
inter_sweep_estimate,
|
||||
intra_sweep_estimate);
|
||||
|
@ -2212,17 +2212,17 @@ void CompactibleFreeListSpace::clearFLCensus() {
|
|||
size_t i;
|
||||
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
|
||||
FreeList<FreeChunk> *fl = &_indexedFreeList[i];
|
||||
fl->set_prevSweep(fl->count());
|
||||
fl->set_coalBirths(0);
|
||||
fl->set_coalDeaths(0);
|
||||
fl->set_splitBirths(0);
|
||||
fl->set_splitDeaths(0);
|
||||
fl->set_prev_sweep(fl->count());
|
||||
fl->set_coal_births(0);
|
||||
fl->set_coal_deaths(0);
|
||||
fl->set_split_births(0);
|
||||
fl->set_split_deaths(0);
|
||||
}
|
||||
}
|
||||
|
||||
void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) {
|
||||
if (PrintFLSStatistics > 0) {
|
||||
HeapWord* largestAddr = (HeapWord*) dictionary()->findLargestDict();
|
||||
HeapWord* largestAddr = (HeapWord*) dictionary()->find_largest_dict();
|
||||
gclog_or_tty->print_cr("CMS: Large block " PTR_FORMAT,
|
||||
largestAddr);
|
||||
}
|
||||
|
@ -2233,30 +2233,30 @@ void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) {
|
|||
}
|
||||
clearFLCensus();
|
||||
assert_locked();
|
||||
_dictionary->endSweepDictCensus(CMSLargeSplitSurplusPercent);
|
||||
_dictionary->end_sweep_dict_census(CMSLargeSplitSurplusPercent);
|
||||
}
|
||||
|
||||
bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
|
||||
if (size < SmallForDictionary) {
|
||||
FreeList<FreeChunk> *fl = &_indexedFreeList[size];
|
||||
return (fl->coalDesired() < 0) ||
|
||||
((int)fl->count() > fl->coalDesired());
|
||||
return (fl->coal_desired() < 0) ||
|
||||
((int)fl->count() > fl->coal_desired());
|
||||
} else {
|
||||
return dictionary()->coalDictOverPopulated(size);
|
||||
return dictionary()->coal_dict_over_populated(size);
|
||||
}
|
||||
}
|
||||
|
||||
void CompactibleFreeListSpace::smallCoalBirth(size_t size) {
|
||||
assert(size < SmallForDictionary, "Size too large for indexed list");
|
||||
FreeList<FreeChunk> *fl = &_indexedFreeList[size];
|
||||
fl->increment_coalBirths();
|
||||
fl->increment_coal_births();
|
||||
fl->increment_surplus();
|
||||
}
|
||||
|
||||
void CompactibleFreeListSpace::smallCoalDeath(size_t size) {
|
||||
assert(size < SmallForDictionary, "Size too large for indexed list");
|
||||
FreeList<FreeChunk> *fl = &_indexedFreeList[size];
|
||||
fl->increment_coalDeaths();
|
||||
fl->increment_coal_deaths();
|
||||
fl->decrement_surplus();
|
||||
}
|
||||
|
||||
|
@ -2264,7 +2264,7 @@ void CompactibleFreeListSpace::coalBirth(size_t size) {
|
|||
if (size < SmallForDictionary) {
|
||||
smallCoalBirth(size);
|
||||
} else {
|
||||
dictionary()->dictCensusUpdate(size,
|
||||
dictionary()->dict_census_udpate(size,
|
||||
false /* split */,
|
||||
true /* birth */);
|
||||
}
|
||||
|
@ -2274,7 +2274,7 @@ void CompactibleFreeListSpace::coalDeath(size_t size) {
|
|||
if(size < SmallForDictionary) {
|
||||
smallCoalDeath(size);
|
||||
} else {
|
||||
dictionary()->dictCensusUpdate(size,
|
||||
dictionary()->dict_census_udpate(size,
|
||||
false /* split */,
|
||||
false /* birth */);
|
||||
}
|
||||
|
@ -2283,22 +2283,22 @@ void CompactibleFreeListSpace::coalDeath(size_t size) {
|
|||
void CompactibleFreeListSpace::smallSplitBirth(size_t size) {
|
||||
assert(size < SmallForDictionary, "Size too large for indexed list");
|
||||
FreeList<FreeChunk> *fl = &_indexedFreeList[size];
|
||||
fl->increment_splitBirths();
|
||||
fl->increment_split_births();
|
||||
fl->increment_surplus();
|
||||
}
|
||||
|
||||
void CompactibleFreeListSpace::smallSplitDeath(size_t size) {
|
||||
assert(size < SmallForDictionary, "Size too large for indexed list");
|
||||
FreeList<FreeChunk> *fl = &_indexedFreeList[size];
|
||||
fl->increment_splitDeaths();
|
||||
fl->increment_split_deaths();
|
||||
fl->decrement_surplus();
|
||||
}
|
||||
|
||||
void CompactibleFreeListSpace::splitBirth(size_t size) {
|
||||
void CompactibleFreeListSpace::split_birth(size_t size) {
|
||||
if (size < SmallForDictionary) {
|
||||
smallSplitBirth(size);
|
||||
} else {
|
||||
dictionary()->dictCensusUpdate(size,
|
||||
dictionary()->dict_census_udpate(size,
|
||||
true /* split */,
|
||||
true /* birth */);
|
||||
}
|
||||
|
@ -2308,7 +2308,7 @@ void CompactibleFreeListSpace::splitDeath(size_t size) {
|
|||
if (size < SmallForDictionary) {
|
||||
smallSplitDeath(size);
|
||||
} else {
|
||||
dictionary()->dictCensusUpdate(size,
|
||||
dictionary()->dict_census_udpate(size,
|
||||
true /* split */,
|
||||
false /* birth */);
|
||||
}
|
||||
|
@ -2317,8 +2317,8 @@ void CompactibleFreeListSpace::splitDeath(size_t size) {
|
|||
void CompactibleFreeListSpace::split(size_t from, size_t to1) {
|
||||
size_t to2 = from - to1;
|
||||
splitDeath(from);
|
||||
splitBirth(to1);
|
||||
splitBirth(to2);
|
||||
split_birth(to1);
|
||||
split_birth(to2);
|
||||
}
|
||||
|
||||
void CompactibleFreeListSpace::print() const {
|
||||
|
@ -2364,7 +2364,7 @@ class VerifyAllBlksClosure: public BlkClosure {
|
|||
FreeChunk* fc = (FreeChunk*)addr;
|
||||
res = fc->size();
|
||||
if (FLSVerifyLists && !fc->cantCoalesce()) {
|
||||
guarantee(_sp->verifyChunkInFreeLists(fc),
|
||||
guarantee(_sp->verify_chunk_in_free_list(fc),
|
||||
"Chunk should be on a free list");
|
||||
}
|
||||
}
|
||||
|
@ -2520,7 +2520,7 @@ void CompactibleFreeListSpace::verifyIndexedFreeList(size_t size) const {
|
|||
"Slot should have been empty");
|
||||
for (; fc != NULL; fc = fc->next(), n++) {
|
||||
guarantee(fc->size() == size, "Size inconsistency");
|
||||
guarantee(fc->isFree(), "!free?");
|
||||
guarantee(fc->is_free(), "!free?");
|
||||
guarantee(fc->next() == NULL || fc->next()->prev() == fc, "Broken list");
|
||||
guarantee((fc->next() == NULL) == (fc == tail), "Incorrect tail");
|
||||
}
|
||||
|
@ -2529,7 +2529,7 @@ void CompactibleFreeListSpace::verifyIndexedFreeList(size_t size) const {
|
|||
|
||||
#ifndef PRODUCT
|
||||
void CompactibleFreeListSpace::check_free_list_consistency() const {
|
||||
assert(_dictionary->minSize() <= IndexSetSize,
|
||||
assert(_dictionary->min_size() <= IndexSetSize,
|
||||
"Some sizes can't be allocated without recourse to"
|
||||
" linear allocation buffers");
|
||||
assert(BinaryTreeDictionary<FreeChunk>::min_tree_chunk_size*HeapWordSize == sizeof(TreeChunk<FreeChunk>),
|
||||
|
@ -2548,33 +2548,33 @@ void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
|
|||
FreeList<FreeChunk> total;
|
||||
gclog_or_tty->print("end sweep# " SIZE_FORMAT "\n", sweep_count);
|
||||
FreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
|
||||
size_t totalFree = 0;
|
||||
size_t total_free = 0;
|
||||
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
|
||||
const FreeList<FreeChunk> *fl = &_indexedFreeList[i];
|
||||
totalFree += fl->count() * fl->size();
|
||||
total_free += fl->count() * fl->size();
|
||||
if (i % (40*IndexSetStride) == 0) {
|
||||
FreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
|
||||
}
|
||||
fl->print_on(gclog_or_tty);
|
||||
total.set_bfrSurp( total.bfrSurp() + fl->bfrSurp() );
|
||||
total.set_bfr_surp( total.bfr_surp() + fl->bfr_surp() );
|
||||
total.set_surplus( total.surplus() + fl->surplus() );
|
||||
total.set_desired( total.desired() + fl->desired() );
|
||||
total.set_prevSweep( total.prevSweep() + fl->prevSweep() );
|
||||
total.set_beforeSweep(total.beforeSweep() + fl->beforeSweep());
|
||||
total.set_prev_sweep( total.prev_sweep() + fl->prev_sweep() );
|
||||
total.set_before_sweep(total.before_sweep() + fl->before_sweep());
|
||||
total.set_count( total.count() + fl->count() );
|
||||
total.set_coalBirths( total.coalBirths() + fl->coalBirths() );
|
||||
total.set_coalDeaths( total.coalDeaths() + fl->coalDeaths() );
|
||||
total.set_splitBirths(total.splitBirths() + fl->splitBirths());
|
||||
total.set_splitDeaths(total.splitDeaths() + fl->splitDeaths());
|
||||
total.set_coal_births( total.coal_births() + fl->coal_births() );
|
||||
total.set_coal_deaths( total.coal_deaths() + fl->coal_deaths() );
|
||||
total.set_split_births(total.split_births() + fl->split_births());
|
||||
total.set_split_deaths(total.split_deaths() + fl->split_deaths());
|
||||
}
|
||||
total.print_on(gclog_or_tty, "TOTAL");
|
||||
gclog_or_tty->print_cr("Total free in indexed lists "
|
||||
SIZE_FORMAT " words", totalFree);
|
||||
SIZE_FORMAT " words", total_free);
|
||||
gclog_or_tty->print("growth: %8.5f deficit: %8.5f\n",
|
||||
(double)(total.splitBirths()+total.coalBirths()-total.splitDeaths()-total.coalDeaths())/
|
||||
(total.prevSweep() != 0 ? (double)total.prevSweep() : 1.0),
|
||||
(double)(total.split_births()+total.coal_births()-total.split_deaths()-total.coal_deaths())/
|
||||
(total.prev_sweep() != 0 ? (double)total.prev_sweep() : 1.0),
|
||||
(double)(total.desired() - total.count())/(total.desired() != 0 ? (double)total.desired() : 1.0));
|
||||
_dictionary->printDictCensus();
|
||||
_dictionary->print_dict_census();
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
@ -2643,11 +2643,11 @@ HeapWord* CFLS_LAB::alloc(size_t word_sz) {
|
|||
// If it didn't work, give up.
|
||||
if (fl->count() == 0) return NULL;
|
||||
}
|
||||
res = fl->getChunkAtHead();
|
||||
res = fl->get_chunk_at_head();
|
||||
assert(res != NULL, "Why was count non-zero?");
|
||||
}
|
||||
res->markNotFree();
|
||||
assert(!res->isFree(), "shouldn't be marked free");
|
||||
assert(!res->is_free(), "shouldn't be marked free");
|
||||
assert(oop(res)->klass_or_null() == NULL, "should look uninitialized");
|
||||
// mangle a just allocated object with a distinct pattern.
|
||||
debug_only(res->mangleAllocated(word_sz));
|
||||
|
@ -2786,9 +2786,9 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
|
|||
// we increment the split death count by the number of blocks
|
||||
// we just took from the cur_sz-size blocks list and which
|
||||
// we will be splitting below.
|
||||
ssize_t deaths = gfl->splitDeaths() +
|
||||
ssize_t deaths = gfl->split_deaths() +
|
||||
fl_for_cur_sz.count();
|
||||
gfl->set_splitDeaths(deaths);
|
||||
gfl->set_split_deaths(deaths);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -2799,21 +2799,21 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
|
|||
} else {
|
||||
// Divide each block on fl_for_cur_sz up k ways.
|
||||
FreeChunk* fc;
|
||||
while ((fc = fl_for_cur_sz.getChunkAtHead()) != NULL) {
|
||||
while ((fc = fl_for_cur_sz.get_chunk_at_head()) != NULL) {
|
||||
// Must do this in reverse order, so that anybody attempting to
|
||||
// access the main chunk sees it as a single free block until we
|
||||
// change it.
|
||||
size_t fc_size = fc->size();
|
||||
assert(fc->isFree(), "Error");
|
||||
assert(fc->is_free(), "Error");
|
||||
for (int i = k-1; i >= 0; i--) {
|
||||
FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
|
||||
assert((i != 0) ||
|
||||
((fc == ffc) && ffc->isFree() &&
|
||||
((fc == ffc) && ffc->is_free() &&
|
||||
(ffc->size() == k*word_sz) && (fc_size == word_sz)),
|
||||
"Counting error");
|
||||
ffc->setSize(word_sz);
|
||||
ffc->linkPrev(NULL); // Mark as a free block for other (parallel) GC threads.
|
||||
ffc->linkNext(NULL);
|
||||
ffc->set_size(word_sz);
|
||||
ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
|
||||
ffc->link_next(NULL);
|
||||
// Above must occur before BOT is updated below.
|
||||
OrderAccess::storestore();
|
||||
// splitting from the right, fc_size == i * word_sz
|
||||
|
@ -2824,7 +2824,7 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
|
|||
_bt.verify_single_block((HeapWord*)fc, fc_size);
|
||||
_bt.verify_single_block((HeapWord*)ffc, word_sz);
|
||||
// Push this on "fl".
|
||||
fl->returnChunkAtHead(ffc);
|
||||
fl->return_chunk_at_head(ffc);
|
||||
}
|
||||
// TRAP
|
||||
assert(fl->tail()->next() == NULL, "List invariant.");
|
||||
|
@ -2834,8 +2834,8 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
|
|||
size_t num = fl->count();
|
||||
MutexLockerEx x(_indexedFreeListParLocks[word_sz],
|
||||
Mutex::_no_safepoint_check_flag);
|
||||
ssize_t births = _indexedFreeList[word_sz].splitBirths() + num;
|
||||
_indexedFreeList[word_sz].set_splitBirths(births);
|
||||
ssize_t births = _indexedFreeList[word_sz].split_births() + num;
|
||||
_indexedFreeList[word_sz].set_split_births(births);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -2848,12 +2848,12 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
|
|||
MutexLockerEx x(parDictionaryAllocLock(),
|
||||
Mutex::_no_safepoint_check_flag);
|
||||
while (n > 0) {
|
||||
fc = dictionary()->getChunk(MAX2(n * word_sz,
|
||||
_dictionary->minSize()),
|
||||
fc = dictionary()->get_chunk(MAX2(n * word_sz,
|
||||
_dictionary->min_size()),
|
||||
FreeBlockDictionary<FreeChunk>::atLeast);
|
||||
if (fc != NULL) {
|
||||
_bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */); // update _unallocated_blk
|
||||
dictionary()->dictCensusUpdate(fc->size(),
|
||||
dictionary()->dict_census_udpate(fc->size(),
|
||||
true /*split*/,
|
||||
false /*birth*/);
|
||||
break;
|
||||
|
@ -2864,7 +2864,7 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
|
|||
if (fc == NULL) return;
|
||||
// Otherwise, split up that block.
|
||||
assert((ssize_t)n >= 1, "Control point invariant");
|
||||
assert(fc->isFree(), "Error: should be a free block");
|
||||
assert(fc->is_free(), "Error: should be a free block");
|
||||
_bt.verify_single_block((HeapWord*)fc, fc->size());
|
||||
const size_t nn = fc->size() / word_sz;
|
||||
n = MIN2(nn, n);
|
||||
|
@ -2895,18 +2895,18 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
|
|||
if (rem > 0) {
|
||||
size_t prefix_size = n * word_sz;
|
||||
rem_fc = (FreeChunk*)((HeapWord*)fc + prefix_size);
|
||||
rem_fc->setSize(rem);
|
||||
rem_fc->linkPrev(NULL); // Mark as a free block for other (parallel) GC threads.
|
||||
rem_fc->linkNext(NULL);
|
||||
rem_fc->set_size(rem);
|
||||
rem_fc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
|
||||
rem_fc->link_next(NULL);
|
||||
// Above must occur before BOT is updated below.
|
||||
assert((ssize_t)n > 0 && prefix_size > 0 && rem_fc > fc, "Error");
|
||||
OrderAccess::storestore();
|
||||
_bt.split_block((HeapWord*)fc, fc->size(), prefix_size);
|
||||
assert(fc->isFree(), "Error");
|
||||
fc->setSize(prefix_size);
|
||||
assert(fc->is_free(), "Error");
|
||||
fc->set_size(prefix_size);
|
||||
if (rem >= IndexSetSize) {
|
||||
returnChunkToDictionary(rem_fc);
|
||||
dictionary()->dictCensusUpdate(rem, true /*split*/, true /*birth*/);
|
||||
dictionary()->dict_census_udpate(rem, true /*split*/, true /*birth*/);
|
||||
rem_fc = NULL;
|
||||
}
|
||||
// Otherwise, return it to the small list below.
|
||||
|
@ -2916,7 +2916,7 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
|
|||
MutexLockerEx x(_indexedFreeListParLocks[rem],
|
||||
Mutex::_no_safepoint_check_flag);
|
||||
_bt.verify_not_unallocated((HeapWord*)rem_fc, rem_fc->size());
|
||||
_indexedFreeList[rem].returnChunkAtHead(rem_fc);
|
||||
_indexedFreeList[rem].return_chunk_at_head(rem_fc);
|
||||
smallSplitBirth(rem);
|
||||
}
|
||||
assert((ssize_t)n > 0 && fc != NULL, "Consistency");
|
||||
|
@ -2928,9 +2928,9 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
|
|||
// All but first chunk in this loop
|
||||
for (ssize_t i = n-1; i > 0; i--) {
|
||||
FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
|
||||
ffc->setSize(word_sz);
|
||||
ffc->linkPrev(NULL); // Mark as a free block for other (parallel) GC threads.
|
||||
ffc->linkNext(NULL);
|
||||
ffc->set_size(word_sz);
|
||||
ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
|
||||
ffc->link_next(NULL);
|
||||
// Above must occur before BOT is updated below.
|
||||
OrderAccess::storestore();
|
||||
// splitting from the right, fc_size == (n - i + 1) * wordsize
|
||||
|
@ -2940,25 +2940,25 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
|
|||
_bt.verify_single_block((HeapWord*)ffc, ffc->size());
|
||||
_bt.verify_single_block((HeapWord*)fc, fc_size);
|
||||
// Push this on "fl".
|
||||
fl->returnChunkAtHead(ffc);
|
||||
fl->return_chunk_at_head(ffc);
|
||||
}
|
||||
// First chunk
|
||||
assert(fc->isFree() && fc->size() == n*word_sz, "Error: should still be a free block");
|
||||
assert(fc->is_free() && fc->size() == n*word_sz, "Error: should still be a free block");
|
||||
// The blocks above should show their new sizes before the first block below
|
||||
fc->setSize(word_sz);
|
||||
fc->linkPrev(NULL); // idempotent wrt free-ness, see assert above
|
||||
fc->linkNext(NULL);
|
||||
fc->set_size(word_sz);
|
||||
fc->link_prev(NULL); // idempotent wrt free-ness, see assert above
|
||||
fc->link_next(NULL);
|
||||
_bt.verify_not_unallocated((HeapWord*)fc, fc->size());
|
||||
_bt.verify_single_block((HeapWord*)fc, fc->size());
|
||||
fl->returnChunkAtHead(fc);
|
||||
fl->return_chunk_at_head(fc);
|
||||
|
||||
assert((ssize_t)n > 0 && (ssize_t)n == fl->count(), "Incorrect number of blocks");
|
||||
{
|
||||
// Update the stats for this block size.
|
||||
MutexLockerEx x(_indexedFreeListParLocks[word_sz],
|
||||
Mutex::_no_safepoint_check_flag);
|
||||
const ssize_t births = _indexedFreeList[word_sz].splitBirths() + n;
|
||||
_indexedFreeList[word_sz].set_splitBirths(births);
|
||||
const ssize_t births = _indexedFreeList[word_sz].split_births() + n;
|
||||
_indexedFreeList[word_sz].set_split_births(births);
|
||||
// ssize_t new_surplus = _indexedFreeList[word_sz].surplus() + n;
|
||||
// _indexedFreeList[word_sz].set_surplus(new_surplus);
|
||||
}
|
||||
|
|
|
@ -499,7 +499,7 @@ class CompactibleFreeListSpace: public CompactibleSpace {
|
|||
// Verify that the given chunk is in the free lists:
|
||||
// i.e. either the binary tree dictionary, the indexed free lists
|
||||
// or the linear allocation block.
|
||||
bool verifyChunkInFreeLists(FreeChunk* fc) const;
|
||||
bool verify_chunk_in_free_list(FreeChunk* fc) const;
|
||||
// Verify that the given chunk is the linear allocation block
|
||||
bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
|
||||
// Do some basic checks on the the free lists.
|
||||
|
@ -608,7 +608,7 @@ class CompactibleFreeListSpace: public CompactibleSpace {
|
|||
void coalDeath(size_t size);
|
||||
void smallSplitBirth(size_t size);
|
||||
void smallSplitDeath(size_t size);
|
||||
void splitBirth(size_t size);
|
||||
void split_birth(size_t size);
|
||||
void splitDeath(size_t size);
|
||||
void split(size_t from, size_t to1);
|
||||
|
||||
|
|
|
@ -1026,7 +1026,7 @@ HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
|
|||
// its mark-bit or P-bits not yet set. Such objects need
|
||||
// to be safely navigable by block_start().
|
||||
assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
|
||||
assert(!((FreeChunk*)res)->isFree(), "Error, block will look free but show wrong size");
|
||||
assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
|
||||
collector()->direct_allocated(res, adjustedSize);
|
||||
_direct_allocated_words += adjustedSize;
|
||||
// allocation counters
|
||||
|
@ -1391,7 +1391,7 @@ ConcurrentMarkSweepGeneration::par_promote(int thread_num,
|
|||
oop obj = oop(obj_ptr);
|
||||
OrderAccess::storestore();
|
||||
assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
|
||||
assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
|
||||
assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
|
||||
// IMPORTANT: See note on object initialization for CMS above.
|
||||
// Otherwise, copy the object. Here we must be careful to insert the
|
||||
// klass pointer last, since this marks the block as an allocated object.
|
||||
|
@ -1400,7 +1400,7 @@ ConcurrentMarkSweepGeneration::par_promote(int thread_num,
|
|||
// Restore the mark word copied above.
|
||||
obj->set_mark(m);
|
||||
assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
|
||||
assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
|
||||
assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
|
||||
OrderAccess::storestore();
|
||||
|
||||
if (UseCompressedOops) {
|
||||
|
@ -1421,7 +1421,7 @@ ConcurrentMarkSweepGeneration::par_promote(int thread_num,
|
|||
promoInfo->track((PromotedObject*)obj, old->klass());
|
||||
}
|
||||
assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
|
||||
assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
|
||||
assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
|
||||
assert(old->is_oop(), "Will use and dereference old klass ptr below");
|
||||
|
||||
// Finally, install the klass pointer (this should be volatile).
|
||||
|
@ -2034,7 +2034,7 @@ void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
|
|||
pointer_delta(cms_space->end(), cms_space->compaction_top())
|
||||
* HeapWordSize,
|
||||
"All the free space should be compacted into one chunk at top");
|
||||
assert(cms_space->dictionary()->totalChunkSize(
|
||||
assert(cms_space->dictionary()->total_chunk_size(
|
||||
debug_only(cms_space->freelistLock())) == 0 ||
|
||||
cms_space->totalSizeInIndexedFreeLists() == 0,
|
||||
"All the free space should be in a single chunk");
|
||||
|
@ -6131,7 +6131,7 @@ void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
|
|||
double nearLargestPercent = FLSLargestBlockCoalesceProximity;
|
||||
HeapWord* minAddr = _cmsSpace->bottom();
|
||||
HeapWord* largestAddr =
|
||||
(HeapWord*) _cmsSpace->dictionary()->findLargestDict();
|
||||
(HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
|
||||
if (largestAddr == NULL) {
|
||||
// The dictionary appears to be empty. In this case
|
||||
// try to coalesce at the end of the heap.
|
||||
|
@ -7906,7 +7906,7 @@ SweepClosure::SweepClosure(CMSCollector* collector,
|
|||
_last_fc = NULL;
|
||||
|
||||
_sp->initializeIndexedFreeListArrayReturnedBytes();
|
||||
_sp->dictionary()->initializeDictReturnedBytes();
|
||||
_sp->dictionary()->initialize_dict_returned_bytes();
|
||||
)
|
||||
assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
|
||||
"sweep _limit out of bounds");
|
||||
|
@ -7954,13 +7954,13 @@ SweepClosure::~SweepClosure() {
|
|||
|
||||
if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
|
||||
size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
|
||||
size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
|
||||
size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
|
||||
gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
|
||||
size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
|
||||
size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
|
||||
gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
|
||||
gclog_or_tty->print(" Indexed List Returned "SIZE_FORMAT" bytes",
|
||||
indexListReturnedBytes);
|
||||
gclog_or_tty->print_cr(" Dictionary Returned "SIZE_FORMAT" bytes",
|
||||
dictReturnedBytes);
|
||||
dict_returned_bytes);
|
||||
}
|
||||
}
|
||||
if (CMSTraceSweeper) {
|
||||
|
@ -7985,9 +7985,9 @@ void SweepClosure::initialize_free_range(HeapWord* freeFinger,
|
|||
if (CMSTestInFreeList) {
|
||||
if (freeRangeInFreeLists) {
|
||||
FreeChunk* fc = (FreeChunk*) freeFinger;
|
||||
assert(fc->isFree(), "A chunk on the free list should be free.");
|
||||
assert(fc->is_free(), "A chunk on the free list should be free.");
|
||||
assert(fc->size() > 0, "Free range should have a size");
|
||||
assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
|
||||
assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -8057,7 +8057,7 @@ size_t SweepClosure::do_blk_careful(HeapWord* addr) {
|
|||
assert(addr < _limit, "sweep invariant");
|
||||
// check if we should yield
|
||||
do_yield_check(addr);
|
||||
if (fc->isFree()) {
|
||||
if (fc->is_free()) {
|
||||
// Chunk that is already free
|
||||
res = fc->size();
|
||||
do_already_free_chunk(fc);
|
||||
|
@ -8145,7 +8145,7 @@ void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
|
|||
// Chunks that cannot be coalesced are not in the
|
||||
// free lists.
|
||||
if (CMSTestInFreeList && !fc->cantCoalesce()) {
|
||||
assert(_sp->verifyChunkInFreeLists(fc),
|
||||
assert(_sp->verify_chunk_in_free_list(fc),
|
||||
"free chunk should be in free lists");
|
||||
}
|
||||
// a chunk that is already free, should not have been
|
||||
|
@ -8171,7 +8171,7 @@ void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
|
|||
FreeChunk* nextChunk = (FreeChunk*)(addr + size);
|
||||
assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
|
||||
if ((HeapWord*)nextChunk < _sp->end() && // There is another free chunk to the right ...
|
||||
nextChunk->isFree() && // ... which is free...
|
||||
nextChunk->is_free() && // ... which is free...
|
||||
nextChunk->cantCoalesce()) { // ... but can't be coalesced
|
||||
// nothing to do
|
||||
} else {
|
||||
|
@ -8203,7 +8203,7 @@ void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
|
|||
assert(ffc->size() == pointer_delta(addr, freeFinger()),
|
||||
"Size of free range is inconsistent with chunk size.");
|
||||
if (CMSTestInFreeList) {
|
||||
assert(_sp->verifyChunkInFreeLists(ffc),
|
||||
assert(_sp->verify_chunk_in_free_list(ffc),
|
||||
"free range is not in free lists");
|
||||
}
|
||||
_sp->removeFreeChunkFromFreeLists(ffc);
|
||||
|
@ -8262,7 +8262,7 @@ size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
|
|||
assert(ffc->size() == pointer_delta(addr, freeFinger()),
|
||||
"Size of free range is inconsistent with chunk size.");
|
||||
if (CMSTestInFreeList) {
|
||||
assert(_sp->verifyChunkInFreeLists(ffc),
|
||||
assert(_sp->verify_chunk_in_free_list(ffc),
|
||||
"free range is not in free lists");
|
||||
}
|
||||
_sp->removeFreeChunkFromFreeLists(ffc);
|
||||
|
@ -8351,11 +8351,11 @@ void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
|
|||
size_t chunkSize) {
|
||||
// do_post_free_or_garbage_chunk() should only be called in the case
|
||||
// of the adaptive free list allocator.
|
||||
const bool fcInFreeLists = fc->isFree();
|
||||
const bool fcInFreeLists = fc->is_free();
|
||||
assert(_sp->adaptive_freelists(), "Should only be used in this case.");
|
||||
assert((HeapWord*)fc <= _limit, "sweep invariant");
|
||||
if (CMSTestInFreeList && fcInFreeLists) {
|
||||
assert(_sp->verifyChunkInFreeLists(fc), "free chunk is not in free lists");
|
||||
assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
|
||||
}
|
||||
|
||||
if (CMSTraceSweeper) {
|
||||
|
@ -8410,7 +8410,7 @@ void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
|
|||
assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
|
||||
"Size of free range is inconsistent with chunk size.");
|
||||
if (CMSTestInFreeList) {
|
||||
assert(_sp->verifyChunkInFreeLists(ffc),
|
||||
assert(_sp->verify_chunk_in_free_list(ffc),
|
||||
"Chunk is not in free lists");
|
||||
}
|
||||
_sp->coalDeath(ffc->size());
|
||||
|
@ -8459,7 +8459,7 @@ void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
|
|||
" when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
|
||||
_limit, _sp->bottom(), _sp->end(), fc, chunk_size));
|
||||
if (eob >= _limit) {
|
||||
assert(eob == _limit || fc->isFree(), "Only a free chunk should allow us to cross over the limit");
|
||||
assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
|
||||
if (CMSTraceSweeper) {
|
||||
gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
|
||||
"[" PTR_FORMAT "," PTR_FORMAT ") in space "
|
||||
|
@ -8482,8 +8482,8 @@ void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
|
|||
if (!freeRangeInFreeLists()) {
|
||||
if (CMSTestInFreeList) {
|
||||
FreeChunk* fc = (FreeChunk*) chunk;
|
||||
fc->setSize(size);
|
||||
assert(!_sp->verifyChunkInFreeLists(fc),
|
||||
fc->set_size(size);
|
||||
assert(!_sp->verify_chunk_in_free_list(fc),
|
||||
"chunk should not be in free lists yet");
|
||||
}
|
||||
if (CMSTraceSweeper) {
|
||||
|
@ -8557,8 +8557,8 @@ void SweepClosure::do_yield_work(HeapWord* addr) {
|
|||
// This is actually very useful in a product build if it can
|
||||
// be called from the debugger. Compile it into the product
|
||||
// as needed.
|
||||
bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
|
||||
return debug_cms_space->verifyChunkInFreeLists(fc);
|
||||
bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
|
||||
return debug_cms_space->verify_chunk_in_free_list(fc);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -9255,7 +9255,7 @@ void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
|
|||
size_t chunk_at_end_old_size = chunk_at_end->size();
|
||||
assert(chunk_at_end_old_size >= word_size_change,
|
||||
"Shrink is too large");
|
||||
chunk_at_end->setSize(chunk_at_end_old_size -
|
||||
chunk_at_end->set_size(chunk_at_end_old_size -
|
||||
word_size_change);
|
||||
_cmsSpace->freed((HeapWord*) chunk_at_end->end(),
|
||||
word_size_change);
|
||||
|
|
|
@ -75,20 +75,20 @@ class FreeChunk VALUE_OBJ_CLASS_SPEC {
|
|||
// calls. We really want the read of _mark and _prev from this pointer
|
||||
// to be volatile but making the fields volatile causes all sorts of
|
||||
// compilation errors.
|
||||
return ((volatile FreeChunk*)addr)->isFree();
|
||||
return ((volatile FreeChunk*)addr)->is_free();
|
||||
}
|
||||
|
||||
bool isFree() const volatile {
|
||||
bool is_free() const volatile {
|
||||
LP64_ONLY(if (UseCompressedOops) return mark()->is_cms_free_chunk(); else)
|
||||
return (((intptr_t)_prev) & 0x1) == 0x1;
|
||||
}
|
||||
bool cantCoalesce() const {
|
||||
assert(isFree(), "can't get coalesce bit on not free");
|
||||
assert(is_free(), "can't get coalesce bit on not free");
|
||||
return (((intptr_t)_prev) & 0x2) == 0x2;
|
||||
}
|
||||
void dontCoalesce() {
|
||||
// the block should be free
|
||||
assert(isFree(), "Should look like a free block");
|
||||
assert(is_free(), "Should look like a free block");
|
||||
_prev = (FreeChunk*)(((intptr_t)_prev) | 0x2);
|
||||
}
|
||||
FreeChunk* prev() const {
|
||||
|
@ -103,23 +103,23 @@ class FreeChunk VALUE_OBJ_CLASS_SPEC {
|
|||
LP64_ONLY(if (UseCompressedOops) return mark()->get_size(); else )
|
||||
return _size;
|
||||
}
|
||||
void setSize(size_t sz) {
|
||||
void set_size(size_t sz) {
|
||||
LP64_ONLY(if (UseCompressedOops) set_mark(markOopDesc::set_size_and_free(sz)); else )
|
||||
_size = sz;
|
||||
}
|
||||
|
||||
FreeChunk* next() const { return _next; }
|
||||
|
||||
void linkAfter(FreeChunk* ptr) {
|
||||
linkNext(ptr);
|
||||
if (ptr != NULL) ptr->linkPrev(this);
|
||||
void link_after(FreeChunk* ptr) {
|
||||
link_next(ptr);
|
||||
if (ptr != NULL) ptr->link_prev(this);
|
||||
}
|
||||
void linkNext(FreeChunk* ptr) { _next = ptr; }
|
||||
void linkPrev(FreeChunk* ptr) {
|
||||
void link_next(FreeChunk* ptr) { _next = ptr; }
|
||||
void link_prev(FreeChunk* ptr) {
|
||||
LP64_ONLY(if (UseCompressedOops) _prev = ptr; else)
|
||||
_prev = (FreeChunk*)((intptr_t)ptr | 0x1);
|
||||
}
|
||||
void clearNext() { _next = NULL; }
|
||||
void clear_next() { _next = NULL; }
|
||||
void markNotFree() {
|
||||
// Set _prev (klass) to null before (if) clearing the mark word below
|
||||
_prev = NULL;
|
||||
|
@ -129,7 +129,7 @@ class FreeChunk VALUE_OBJ_CLASS_SPEC {
|
|||
set_mark(markOopDesc::prototype());
|
||||
}
|
||||
#endif
|
||||
assert(!isFree(), "Error");
|
||||
assert(!is_free(), "Error");
|
||||
}
|
||||
|
||||
// Return the address past the end of this chunk
|
||||
|
|
|
@ -121,7 +121,7 @@ void PromotionInfo::track(PromotedObject* trackOop) {
|
|||
void PromotionInfo::track(PromotedObject* trackOop, klassOop klassOfOop) {
|
||||
// make a copy of header as it may need to be spooled
|
||||
markOop mark = oop(trackOop)->mark();
|
||||
trackOop->clearNext();
|
||||
trackOop->clear_next();
|
||||
if (mark->must_be_preserved_for_cms_scavenge(klassOfOop)) {
|
||||
// save non-prototypical header, and mark oop
|
||||
saveDisplacedHeader(mark);
|
||||
|
|
|
@ -43,7 +43,7 @@ class PromotedObject VALUE_OBJ_CLASS_SPEC {
|
|||
// whose position will depend on endian-ness of the platform.
|
||||
// This is so that there is no interference with the
|
||||
// cms_free_bit occupying bit position 7 (lsb == 0)
|
||||
// when we are using compressed oops; see FreeChunk::isFree().
|
||||
// when we are using compressed oops; see FreeChunk::is_free().
|
||||
// We cannot move the cms_free_bit down because currently
|
||||
// biased locking code assumes that age bits are contiguous
|
||||
// with the lock bits. Even if that assumption were relaxed,
|
||||
|
@ -65,7 +65,7 @@ class PromotedObject VALUE_OBJ_CLASS_SPEC {
|
|||
};
|
||||
public:
|
||||
inline PromotedObject* next() const {
|
||||
assert(!((FreeChunk*)this)->isFree(), "Error");
|
||||
assert(!((FreeChunk*)this)->is_free(), "Error");
|
||||
PromotedObject* res;
|
||||
if (UseCompressedOops) {
|
||||
// The next pointer is a compressed oop stored in the top 32 bits
|
||||
|
@ -85,27 +85,27 @@ class PromotedObject VALUE_OBJ_CLASS_SPEC {
|
|||
} else {
|
||||
_next |= (intptr_t)x;
|
||||
}
|
||||
assert(!((FreeChunk*)this)->isFree(), "Error");
|
||||
assert(!((FreeChunk*)this)->is_free(), "Error");
|
||||
}
|
||||
inline void setPromotedMark() {
|
||||
_next |= promoted_mask;
|
||||
assert(!((FreeChunk*)this)->isFree(), "Error");
|
||||
assert(!((FreeChunk*)this)->is_free(), "Error");
|
||||
}
|
||||
inline bool hasPromotedMark() const {
|
||||
assert(!((FreeChunk*)this)->isFree(), "Error");
|
||||
assert(!((FreeChunk*)this)->is_free(), "Error");
|
||||
return (_next & promoted_mask) == promoted_mask;
|
||||
}
|
||||
inline void setDisplacedMark() {
|
||||
_next |= displaced_mark;
|
||||
assert(!((FreeChunk*)this)->isFree(), "Error");
|
||||
assert(!((FreeChunk*)this)->is_free(), "Error");
|
||||
}
|
||||
inline bool hasDisplacedMark() const {
|
||||
assert(!((FreeChunk*)this)->isFree(), "Error");
|
||||
assert(!((FreeChunk*)this)->is_free(), "Error");
|
||||
return (_next & displaced_mark) != 0;
|
||||
}
|
||||
inline void clearNext() {
|
||||
inline void clear_next() {
|
||||
_next = 0;
|
||||
assert(!((FreeChunk*)this)->isFree(), "Error");
|
||||
assert(!((FreeChunk*)this)->is_free(), "Error");
|
||||
}
|
||||
debug_only(void *next_addr() { return (void *) &_next; })
|
||||
};
|
||||
|
|
|
@ -46,7 +46,7 @@
|
|||
nonstatic_field(LinearAllocBlock, _word_size, size_t) \
|
||||
nonstatic_field(FreeList<FreeChunk>, _size, size_t) \
|
||||
nonstatic_field(FreeList<FreeChunk>, _count, ssize_t) \
|
||||
nonstatic_field(BinaryTreeDictionary<FreeChunk>,_totalSize, size_t) \
|
||||
nonstatic_field(BinaryTreeDictionary<FreeChunk>,_total_size, size_t) \
|
||||
nonstatic_field(CompactibleFreeListSpace, _dictionary, FreeBlockDictionary<FreeChunk>*) \
|
||||
nonstatic_field(CompactibleFreeListSpace, _indexedFreeList[0], FreeList<FreeChunk>) \
|
||||
nonstatic_field(CompactibleFreeListSpace, _smallLinearAllocBlock, LinearAllocBlock)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue