7164144: Fix variable naming style in freeBlockDictionary.* and binaryTreeDictionary*

Fix naming style to be consistent with the predominant hotspot style.

Reviewed-by: ysr, brutisso
This commit is contained in:
Jon Masamitsu 2012-04-25 09:55:55 -07:00
parent f5558edf7b
commit b63f7f3a18
14 changed files with 620 additions and 620 deletions

View file

@ -44,7 +44,7 @@ TreeChunk<Chunk>* TreeChunk<Chunk>::as_TreeChunk(Chunk* fc) {
}
template <class Chunk>
void TreeChunk<Chunk>::verifyTreeChunkList() const {
void TreeChunk<Chunk>::verify_tree_chunk_list() const {
TreeChunk<Chunk>* nextTC = (TreeChunk<Chunk>*)next();
if (prev() != NULL) { // interior list node shouldn'r have tree fields
guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
@ -53,7 +53,7 @@ void TreeChunk<Chunk>::verifyTreeChunkList() const {
if (nextTC != NULL) {
guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
guarantee(nextTC->size() == size(), "wrong size");
nextTC->verifyTreeChunkList();
nextTC->verify_tree_chunk_list();
}
}
@ -73,9 +73,9 @@ TreeList<Chunk>* TreeList<Chunk>::as_TreeList(TreeChunk<Chunk>* tc) {
tl->link_tail(tc);
tl->set_count(1);
tl->init_statistics(true /* split_birth */);
tl->setParent(NULL);
tl->setLeft(NULL);
tl->setRight(NULL);
tl->set_parent(NULL);
tl->set_left(NULL);
tl->set_right(NULL);
return tl;
}
@ -92,15 +92,15 @@ TreeList<Chunk>* TreeList<Chunk>::as_TreeList(HeapWord* addr, size_t size) {
SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
(tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
"Space should be clear or mangled");
tc->setSize(size);
tc->linkPrev(NULL);
tc->linkNext(NULL);
tc->set_size(size);
tc->link_prev(NULL);
tc->link_next(NULL);
TreeList<Chunk>* tl = TreeList<Chunk>::as_TreeList(tc);
return tl;
}
template <class Chunk>
TreeList<Chunk>* TreeList<Chunk>::removeChunkReplaceIfNeeded(TreeChunk<Chunk>* tc) {
TreeList<Chunk>* TreeList<Chunk>::remove_chunk_replace_if_needed(TreeChunk<Chunk>* tc) {
TreeList<Chunk>* retTL = this;
Chunk* list = head();
@ -108,7 +108,7 @@ TreeList<Chunk>* TreeList<Chunk>::removeChunkReplaceIfNeeded(TreeChunk<Chunk>* t
assert(tc != NULL, "Chunk being removed is NULL");
assert(parent() == NULL || this == parent()->left() ||
this == parent()->right(), "list is inconsistent");
assert(tc->isFree(), "Header is not marked correctly");
assert(tc->is_free(), "Header is not marked correctly");
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
@ -148,24 +148,24 @@ TreeList<Chunk>* TreeList<Chunk>::removeChunkReplaceIfNeeded(TreeChunk<Chunk>* t
// Fix the parent to point to the new TreeList<Chunk>.
if (retTL->parent() != NULL) {
if (this == retTL->parent()->left()) {
retTL->parent()->setLeft(retTL);
retTL->parent()->set_left(retTL);
} else {
assert(this == retTL->parent()->right(), "Parent is incorrect");
retTL->parent()->setRight(retTL);
retTL->parent()->set_right(retTL);
}
}
// Fix the children's parent pointers to point to the
// new list.
assert(right() == retTL->right(), "Should have been copied");
if (retTL->right() != NULL) {
retTL->right()->setParent(retTL);
retTL->right()->set_parent(retTL);
}
assert(left() == retTL->left(), "Should have been copied");
if (retTL->left() != NULL) {
retTL->left()->setParent(retTL);
retTL->left()->set_parent(retTL);
}
retTL->link_head(nextTC);
assert(nextTC->isFree(), "Should be a free chunk");
assert(nextTC->is_free(), "Should be a free chunk");
}
} else {
if (nextTC == NULL) {
@ -173,7 +173,7 @@ TreeList<Chunk>* TreeList<Chunk>::removeChunkReplaceIfNeeded(TreeChunk<Chunk>* t
link_tail(prevFC);
}
// Chunk is interior to the list
prevFC->linkAfter(nextTC);
prevFC->link_after(nextTC);
}
// Below this point the embeded TreeList<Chunk> being used for the
@ -183,8 +183,8 @@ TreeList<Chunk>* TreeList<Chunk>::removeChunkReplaceIfNeeded(TreeChunk<Chunk>* t
assert(!retTL->head() || retTL->size() == retTL->head()->size(),
"Wrong sized chunk in list");
debug_only(
tc->linkPrev(NULL);
tc->linkNext(NULL);
tc->link_prev(NULL);
tc->link_next(NULL);
tc->set_list(NULL);
bool prev_found = false;
bool next_found = false;
@ -207,7 +207,7 @@ TreeList<Chunk>* TreeList<Chunk>::removeChunkReplaceIfNeeded(TreeChunk<Chunk>* t
)
retTL->decrement_count();
assert(tc->isFree(), "Should still be a free chunk");
assert(tc->is_free(), "Should still be a free chunk");
assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
"list invariant");
assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
@ -216,22 +216,22 @@ TreeList<Chunk>* TreeList<Chunk>::removeChunkReplaceIfNeeded(TreeChunk<Chunk>* t
}
template <class Chunk>
void TreeList<Chunk>::returnChunkAtTail(TreeChunk<Chunk>* chunk) {
void TreeList<Chunk>::return_chunk_at_tail(TreeChunk<Chunk>* chunk) {
assert(chunk != NULL, "returning NULL chunk");
assert(chunk->list() == this, "list should be set for chunk");
assert(tail() != NULL, "The tree list is embedded in the first chunk");
// which means that the list can never be empty.
assert(!verifyChunkInFreeLists(chunk), "Double entry");
assert(!verify_chunk_in_free_list(chunk), "Double entry");
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
Chunk* fc = tail();
fc->linkAfter(chunk);
fc->link_after(chunk);
link_tail(chunk);
assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
FreeList<Chunk>::increment_count();
debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}
@ -241,25 +241,25 @@ void TreeList<Chunk>::returnChunkAtTail(TreeChunk<Chunk>* chunk) {
// because the TreeList<Chunk> is embedded in the first TreeChunk<Chunk> in the
// list. See the definition of TreeChunk<Chunk>.
template <class Chunk>
void TreeList<Chunk>::returnChunkAtHead(TreeChunk<Chunk>* chunk) {
void TreeList<Chunk>::return_chunk_at_head(TreeChunk<Chunk>* chunk) {
assert(chunk->list() == this, "list should be set for chunk");
assert(head() != NULL, "The tree list is embedded in the first chunk");
assert(chunk != NULL, "returning NULL chunk");
assert(!verifyChunkInFreeLists(chunk), "Double entry");
assert(!verify_chunk_in_free_list(chunk), "Double entry");
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
Chunk* fc = head()->next();
if (fc != NULL) {
chunk->linkAfter(fc);
chunk->link_after(fc);
} else {
assert(tail() == NULL, "List is inconsistent");
link_tail(chunk);
}
head()->linkAfter(chunk);
head()->link_after(chunk);
assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
FreeList<Chunk>::increment_count();
debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}
@ -314,7 +314,7 @@ TreeChunk<Chunk>* TreeList<Chunk>::largest_address() {
template <class Chunk>
BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(bool adaptive_freelists, bool splay) :
_splay(splay), _adaptive_freelists(adaptive_freelists),
_totalSize(0), _totalFreeBlocks(0), _root(0) {}
_total_size(0), _total_free_blocks(0), _root(0) {}
template <class Chunk>
BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(MemRegion mr,
@ -329,26 +329,26 @@ BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(MemRegion mr,
assert(root()->right() == NULL, "reset check failed");
assert(root()->head()->next() == NULL, "reset check failed");
assert(root()->head()->prev() == NULL, "reset check failed");
assert(totalSize() == root()->size(), "reset check failed");
assert(totalFreeBlocks() == 1, "reset check failed");
assert(total_size() == root()->size(), "reset check failed");
assert(total_free_blocks() == 1, "reset check failed");
}
template <class Chunk>
void BinaryTreeDictionary<Chunk>::inc_totalSize(size_t inc) {
_totalSize = _totalSize + inc;
void BinaryTreeDictionary<Chunk>::inc_total_size(size_t inc) {
_total_size = _total_size + inc;
}
template <class Chunk>
void BinaryTreeDictionary<Chunk>::dec_totalSize(size_t dec) {
_totalSize = _totalSize - dec;
void BinaryTreeDictionary<Chunk>::dec_total_size(size_t dec) {
_total_size = _total_size - dec;
}
template <class Chunk>
void BinaryTreeDictionary<Chunk>::reset(MemRegion mr) {
assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
set_root(TreeList<Chunk>::as_TreeList(mr.start(), mr.word_size()));
set_totalSize(mr.word_size());
set_totalFreeBlocks(1);
set_total_size(mr.word_size());
set_total_free_blocks(1);
}
template <class Chunk>
@ -360,8 +360,8 @@ void BinaryTreeDictionary<Chunk>::reset(HeapWord* addr, size_t byte_size) {
template <class Chunk>
void BinaryTreeDictionary<Chunk>::reset() {
set_root(NULL);
set_totalSize(0);
set_totalFreeBlocks(0);
set_total_size(0);
set_total_free_blocks(0);
}
// Get a free block of size at least size from tree, or NULL.
@ -374,13 +374,13 @@ void BinaryTreeDictionary<Chunk>::reset() {
// node is replaced in place by its tree successor.
template <class Chunk>
TreeChunk<Chunk>*
BinaryTreeDictionary<Chunk>::getChunkFromTree(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither, bool splay)
BinaryTreeDictionary<Chunk>::get_chunk_from_tree(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither, bool splay)
{
TreeList<Chunk> *curTL, *prevTL;
TreeChunk<Chunk>* retTC = NULL;
assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
if (FLSVerifyDictionary) {
verifyTree();
verify_tree();
}
// starting at the root, work downwards trying to find match.
// Remember the last node of size too great or too small.
@ -421,7 +421,7 @@ BinaryTreeDictionary<Chunk>::getChunkFromTree(size_t size, enum FreeBlockDiction
while (hintTL->hint() != 0) {
assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
"hint points in the wrong direction");
hintTL = findList(hintTL->hint());
hintTL = find_list(hintTL->hint());
assert(curTL != hintTL, "Infinite loop");
if (hintTL == NULL ||
hintTL == curTL /* Should not happen but protect against it */ ) {
@ -448,15 +448,15 @@ BinaryTreeDictionary<Chunk>::getChunkFromTree(size_t size, enum FreeBlockDiction
}
// don't waste time splaying if chunk's singleton
if (splay && curTL->head()->next() != NULL) {
semiSplayStep(curTL);
semi_splay_step(curTL);
}
retTC = curTL->first_available();
assert((retTC != NULL) && (curTL->count() > 0),
"A list in the binary tree should not be NULL");
assert(retTC->size() >= size,
"A chunk of the wrong size was found");
removeChunkFromTree(retTC);
assert(retTC->isFree(), "Header is not marked correctly");
remove_chunk_from_tree(retTC);
assert(retTC->is_free(), "Header is not marked correctly");
}
if (FLSVerifyDictionary) {
@ -466,7 +466,7 @@ BinaryTreeDictionary<Chunk>::getChunkFromTree(size_t size, enum FreeBlockDiction
}
template <class Chunk>
TreeList<Chunk>* BinaryTreeDictionary<Chunk>::findList(size_t size) const {
TreeList<Chunk>* BinaryTreeDictionary<Chunk>::find_list(size_t size) const {
TreeList<Chunk>* curTL;
for (curTL = root(); curTL != NULL;) {
if (curTL->size() == size) { // exact match
@ -485,18 +485,18 @@ TreeList<Chunk>* BinaryTreeDictionary<Chunk>::findList(size_t size) const {
template <class Chunk>
bool BinaryTreeDictionary<Chunk>::verifyChunkInFreeLists(Chunk* tc) const {
bool BinaryTreeDictionary<Chunk>::verify_chunk_in_free_list(Chunk* tc) const {
size_t size = tc->size();
TreeList<Chunk>* tl = findList(size);
TreeList<Chunk>* tl = find_list(size);
if (tl == NULL) {
return false;
} else {
return tl->verifyChunkInFreeLists(tc);
return tl->verify_chunk_in_free_list(tc);
}
}
template <class Chunk>
Chunk* BinaryTreeDictionary<Chunk>::findLargestDict() const {
Chunk* BinaryTreeDictionary<Chunk>::find_largest_dict() const {
TreeList<Chunk> *curTL = root();
if (curTL != NULL) {
while(curTL->right() != NULL) curTL = curTL->right();
@ -512,9 +512,9 @@ Chunk* BinaryTreeDictionary<Chunk>::findLargestDict() const {
// remove the node and repair the tree.
template <class Chunk>
TreeChunk<Chunk>*
BinaryTreeDictionary<Chunk>::removeChunkFromTree(TreeChunk<Chunk>* tc) {
BinaryTreeDictionary<Chunk>::remove_chunk_from_tree(TreeChunk<Chunk>* tc) {
assert(tc != NULL, "Should not call with a NULL chunk");
assert(tc->isFree(), "Header is not marked correctly");
assert(tc->is_free(), "Header is not marked correctly");
TreeList<Chunk> *newTL, *parentTL;
TreeChunk<Chunk>* retTC;
@ -534,13 +534,13 @@ BinaryTreeDictionary<Chunk>::removeChunkFromTree(TreeChunk<Chunk>* tc) {
assert(tl->parent() == NULL || tl == tl->parent()->left() ||
tl == tl->parent()->right(), "list is inconsistent");
bool complicatedSplice = false;
bool complicated_splice = false;
retTC = tc;
// Removing this chunk can have the side effect of changing the node
// (TreeList<Chunk>*) in the tree. If the node is the root, update it.
TreeList<Chunk>* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
assert(tc->isFree(), "Chunk should still be free");
TreeList<Chunk>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
assert(tc->is_free(), "Chunk should still be free");
assert(replacementTL->parent() == NULL ||
replacementTL == replacementTL->parent()->left() ||
replacementTL == replacementTL->parent()->right(),
@ -570,15 +570,15 @@ BinaryTreeDictionary<Chunk>::removeChunkFromTree(TreeChunk<Chunk>* tc) {
if (replacementTL->left() == NULL) {
// left is NULL so pick right. right may also be NULL.
newTL = replacementTL->right();
debug_only(replacementTL->clearRight();)
debug_only(replacementTL->clear_right();)
} else if (replacementTL->right() == NULL) {
// right is NULL
newTL = replacementTL->left();
debug_only(replacementTL->clearLeft();)
} else { // we have both children, so, by patriarchal convention,
// my replacement is least node in right sub-tree
complicatedSplice = true;
newTL = removeTreeMinimum(replacementTL->right());
complicated_splice = true;
newTL = remove_tree_minimum(replacementTL->right());
assert(newTL != NULL && newTL->left() == NULL &&
newTL->right() == NULL, "sub-tree minimum exists");
}
@ -586,7 +586,7 @@ BinaryTreeDictionary<Chunk>::removeChunkFromTree(TreeChunk<Chunk>* tc) {
// newTL may be NULL.
// should verify; we just cleanly excised our replacement
if (FLSVerifyDictionary) {
verifyTree();
verify_tree();
}
// first make newTL my parent's child
if ((parentTL = replacementTL->parent()) == NULL) {
@ -594,35 +594,35 @@ BinaryTreeDictionary<Chunk>::removeChunkFromTree(TreeChunk<Chunk>* tc) {
assert(tl == root(), "Incorrectly replacing root");
set_root(newTL);
if (newTL != NULL) {
newTL->clearParent();
newTL->clear_parent();
}
} else if (parentTL->right() == replacementTL) {
// replacementTL is a right child
parentTL->setRight(newTL);
parentTL->set_right(newTL);
} else { // replacementTL is a left child
assert(parentTL->left() == replacementTL, "should be left child");
parentTL->setLeft(newTL);
parentTL->set_left(newTL);
}
debug_only(replacementTL->clearParent();)
if (complicatedSplice) { // we need newTL to get replacementTL's
debug_only(replacementTL->clear_parent();)
if (complicated_splice) { // we need newTL to get replacementTL's
// two children
assert(newTL != NULL &&
newTL->left() == NULL && newTL->right() == NULL,
"newTL should not have encumbrances from the past");
// we'd like to assert as below:
// assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
// "else !complicatedSplice");
// "else !complicated_splice");
// ... however, the above assertion is too strong because we aren't
// guaranteed that replacementTL->right() is still NULL.
// Recall that we removed
// the right sub-tree minimum from replacementTL.
// That may well have been its right
// child! So we'll just assert half of the above:
assert(replacementTL->left() != NULL, "else !complicatedSplice");
newTL->setLeft(replacementTL->left());
newTL->setRight(replacementTL->right());
assert(replacementTL->left() != NULL, "else !complicated_splice");
newTL->set_left(replacementTL->left());
newTL->set_right(replacementTL->right());
debug_only(
replacementTL->clearRight();
replacementTL->clear_right();
replacementTL->clearLeft();
)
}
@ -632,16 +632,16 @@ BinaryTreeDictionary<Chunk>::removeChunkFromTree(TreeChunk<Chunk>* tc) {
"delete without encumbrances");
}
assert(totalSize() >= retTC->size(), "Incorrect total size");
dec_totalSize(retTC->size()); // size book-keeping
assert(totalFreeBlocks() > 0, "Incorrect total count");
set_totalFreeBlocks(totalFreeBlocks() - 1);
assert(total_size() >= retTC->size(), "Incorrect total size");
dec_total_size(retTC->size()); // size book-keeping
assert(total_free_blocks() > 0, "Incorrect total count");
set_total_free_blocks(total_free_blocks() - 1);
assert(retTC != NULL, "null chunk?");
assert(retTC->prev() == NULL && retTC->next() == NULL,
"should return without encumbrances");
if (FLSVerifyDictionary) {
verifyTree();
verify_tree();
}
assert(!removing_only_chunk || _root == NULL, "root should be NULL");
return TreeChunk<Chunk>::as_TreeChunk(retTC);
@ -651,7 +651,7 @@ BinaryTreeDictionary<Chunk>::removeChunkFromTree(TreeChunk<Chunk>* tc) {
// If lm has a right child, link it to the left node of
// the parent of lm.
template <class Chunk>
TreeList<Chunk>* BinaryTreeDictionary<Chunk>::removeTreeMinimum(TreeList<Chunk>* tl) {
TreeList<Chunk>* BinaryTreeDictionary<Chunk>::remove_tree_minimum(TreeList<Chunk>* tl) {
assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
// locate the subtree minimum by walking down left branches
TreeList<Chunk>* curTL = tl;
@ -660,12 +660,12 @@ TreeList<Chunk>* BinaryTreeDictionary<Chunk>::removeTreeMinimum(TreeList<Chunk>*
if (curTL != root()) { // Should this test just be removed?
TreeList<Chunk>* parentTL = curTL->parent();
if (parentTL->left() == curTL) { // curTL is a left child
parentTL->setLeft(curTL->right());
parentTL->set_left(curTL->right());
} else {
// If the list tl has no left child, then curTL may be
// the right child of parentTL.
assert(parentTL->right() == curTL, "should be a right child");
parentTL->setRight(curTL->right());
parentTL->set_right(curTL->right());
}
} else {
// The only use of this method would not pass the root of the
@ -675,12 +675,12 @@ TreeList<Chunk>* BinaryTreeDictionary<Chunk>::removeTreeMinimum(TreeList<Chunk>*
set_root(NULL);
}
debug_only(
curTL->clearParent(); // Test if this needs to be cleared
curTL->clearRight(); // recall, above, left child is already null
curTL->clear_parent(); // Test if this needs to be cleared
curTL->clear_right(); // recall, above, left child is already null
)
// we just excised a (non-root) node, we should still verify all tree invariants
if (FLSVerifyDictionary) {
verifyTree();
verify_tree();
}
return curTL;
}
@ -694,7 +694,7 @@ TreeList<Chunk>* BinaryTreeDictionary<Chunk>::removeTreeMinimum(TreeList<Chunk>*
// [Measurements will be needed to (in)validate this expectation.]
template <class Chunk>
void BinaryTreeDictionary<Chunk>::semiSplayStep(TreeList<Chunk>* tc) {
void BinaryTreeDictionary<Chunk>::semi_splay_step(TreeList<Chunk>* tc) {
// apply a semi-splay step at the given node:
// . if root, norting needs to be done
// . if child of root, splay once
@ -705,17 +705,17 @@ void BinaryTreeDictionary<Chunk>::semiSplayStep(TreeList<Chunk>* tc) {
}
template <class Chunk>
void BinaryTreeDictionary<Chunk>::insertChunkInTree(Chunk* fc) {
void BinaryTreeDictionary<Chunk>::insert_chunk_in_tree(Chunk* fc) {
TreeList<Chunk> *curTL, *prevTL;
size_t size = fc->size();
assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "too small to be a TreeList<Chunk>");
if (FLSVerifyDictionary) {
verifyTree();
verify_tree();
}
fc->clearNext();
fc->linkPrev(NULL);
fc->clear_next();
fc->link_prev(NULL);
// work down from the _root, looking for insertion point
for (prevTL = curTL = root(); curTL != NULL;) {
@ -735,10 +735,10 @@ void BinaryTreeDictionary<Chunk>::insertChunkInTree(Chunk* fc) {
tc->initialize();
if (curTL != NULL) { // exact match
tc->set_list(curTL);
curTL->returnChunkAtTail(tc);
curTL->return_chunk_at_tail(tc);
} else { // need a new node in tree
tc->clearNext();
tc->linkPrev(NULL);
tc->clear_next();
tc->link_prev(NULL);
TreeList<Chunk>* newTL = TreeList<Chunk>::as_TreeList(tc);
assert(((TreeChunk<Chunk>*)tc)->list() == newTL,
"List was not initialized correctly");
@ -748,28 +748,28 @@ void BinaryTreeDictionary<Chunk>::insertChunkInTree(Chunk* fc) {
} else { // insert under prevTL ...
if (prevTL->size() < size) { // am right child
assert(prevTL->right() == NULL, "control point invariant");
prevTL->setRight(newTL);
prevTL->set_right(newTL);
} else { // am left child
assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
prevTL->setLeft(newTL);
prevTL->set_left(newTL);
}
}
}
assert(tc->list() != NULL, "Tree list should be set");
inc_totalSize(size);
// Method 'totalSizeInTree' walks through the every block in the
inc_total_size(size);
// Method 'total_size_in_tree' walks through the every block in the
// tree, so it can cause significant performance loss if there are
// many blocks in the tree
assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
set_totalFreeBlocks(totalFreeBlocks() + 1);
assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
set_total_free_blocks(total_free_blocks() + 1);
if (FLSVerifyDictionary) {
verifyTree();
verify_tree();
}
}
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::maxChunkSize() const {
size_t BinaryTreeDictionary<Chunk>::max_chunk_size() const {
FreeBlockDictionary<Chunk>::verify_par_locked();
TreeList<Chunk>* tc = root();
if (tc == NULL) return 0;
@ -778,7 +778,7 @@ size_t BinaryTreeDictionary<Chunk>::maxChunkSize() const {
}
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::totalListLength(TreeList<Chunk>* tl) const {
size_t BinaryTreeDictionary<Chunk>::total_list_length(TreeList<Chunk>* tl) const {
size_t res;
res = tl->count();
#ifdef ASSERT
@ -791,12 +791,12 @@ size_t BinaryTreeDictionary<Chunk>::totalListLength(TreeList<Chunk>* tl) const {
}
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::totalSizeInTree(TreeList<Chunk>* tl) const {
size_t BinaryTreeDictionary<Chunk>::total_size_in_tree(TreeList<Chunk>* tl) const {
if (tl == NULL)
return 0;
return (tl->size() * totalListLength(tl)) +
totalSizeInTree(tl->left()) +
totalSizeInTree(tl->right());
return (tl->size() * total_list_length(tl)) +
total_size_in_tree(tl->left()) +
total_size_in_tree(tl->right());
}
template <class Chunk>
@ -805,73 +805,73 @@ double BinaryTreeDictionary<Chunk>::sum_of_squared_block_sizes(TreeList<Chunk>*
return 0.0;
}
double size = (double)(tl->size());
double curr = size * size * totalListLength(tl);
double curr = size * size * total_list_length(tl);
curr += sum_of_squared_block_sizes(tl->left());
curr += sum_of_squared_block_sizes(tl->right());
return curr;
}
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::totalFreeBlocksInTree(TreeList<Chunk>* tl) const {
size_t BinaryTreeDictionary<Chunk>::total_free_blocks_in_tree(TreeList<Chunk>* tl) const {
if (tl == NULL)
return 0;
return totalListLength(tl) +
totalFreeBlocksInTree(tl->left()) +
totalFreeBlocksInTree(tl->right());
return total_list_length(tl) +
total_free_blocks_in_tree(tl->left()) +
total_free_blocks_in_tree(tl->right());
}
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::numFreeBlocks() const {
assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
"_totalFreeBlocks inconsistency");
return totalFreeBlocks();
size_t BinaryTreeDictionary<Chunk>::num_free_blocks() const {
assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
"_total_free_blocks inconsistency");
return total_free_blocks();
}
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::treeHeightHelper(TreeList<Chunk>* tl) const {
size_t BinaryTreeDictionary<Chunk>::tree_height_helper(TreeList<Chunk>* tl) const {
if (tl == NULL)
return 0;
return 1 + MAX2(treeHeightHelper(tl->left()),
treeHeightHelper(tl->right()));
return 1 + MAX2(tree_height_helper(tl->left()),
tree_height_helper(tl->right()));
}
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::treeHeight() const {
return treeHeightHelper(root());
return tree_height_helper(root());
}
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::totalNodesHelper(TreeList<Chunk>* tl) const {
size_t BinaryTreeDictionary<Chunk>::total_nodes_helper(TreeList<Chunk>* tl) const {
if (tl == NULL) {
return 0;
}
return 1 + totalNodesHelper(tl->left()) +
totalNodesHelper(tl->right());
return 1 + total_nodes_helper(tl->left()) +
total_nodes_helper(tl->right());
}
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::totalNodesInTree(TreeList<Chunk>* tl) const {
return totalNodesHelper(root());
size_t BinaryTreeDictionary<Chunk>::total_nodes_in_tree(TreeList<Chunk>* tl) const {
return total_nodes_helper(root());
}
template <class Chunk>
void BinaryTreeDictionary<Chunk>::dictCensusUpdate(size_t size, bool split, bool birth){
TreeList<Chunk>* nd = findList(size);
void BinaryTreeDictionary<Chunk>::dict_census_udpate(size_t size, bool split, bool birth){
TreeList<Chunk>* nd = find_list(size);
if (nd) {
if (split) {
if (birth) {
nd->increment_splitBirths();
nd->increment_split_births();
nd->increment_surplus();
} else {
nd->increment_splitDeaths();
nd->increment_split_deaths();
nd->decrement_surplus();
}
} else {
if (birth) {
nd->increment_coalBirths();
nd->increment_coal_births();
nd->increment_surplus();
} else {
nd->increment_coalDeaths();
nd->increment_coal_deaths();
nd->decrement_surplus();
}
}
@ -884,13 +884,13 @@ void BinaryTreeDictionary<Chunk>::dictCensusUpdate(size_t size, bool split, bool
}
template <class Chunk>
bool BinaryTreeDictionary<Chunk>::coalDictOverPopulated(size_t size) {
bool BinaryTreeDictionary<Chunk>::coal_dict_over_populated(size_t size) {
if (FLSAlwaysCoalesceLarge) return true;
TreeList<Chunk>* list_of_size = findList(size);
TreeList<Chunk>* list_of_size = find_list(size);
// None of requested size implies overpopulated.
return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
list_of_size->count() > list_of_size->coalDesired();
return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
list_of_size->count() > list_of_size->coal_desired();
}
// Closures for walking the binary tree.
@ -952,9 +952,9 @@ class BeginSweepClosure : public AscendTreeCensusClosure<Chunk> {
void do_list(FreeList<Chunk>* fl) {
double coalSurplusPercent = _percentage;
fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
fl->set_beforeSweep(fl->count());
fl->set_bfrSurp(fl->surplus());
fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
fl->set_before_sweep(fl->count());
fl->set_bfr_surp(fl->surplus());
}
};
@ -1031,7 +1031,7 @@ Chunk* BinaryTreeDictionary<Chunk>::find_chunk_ends_at(HeapWord* target) const {
}
template <class Chunk>
void BinaryTreeDictionary<Chunk>::beginSweepDictCensus(double coalSurplusPercent,
void BinaryTreeDictionary<Chunk>::begin_sweep_dict_census(double coalSurplusPercent,
float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
BeginSweepClosure<Chunk> bsc(coalSurplusPercent, inter_sweep_current,
inter_sweep_estimate,
@ -1046,33 +1046,33 @@ template <class Chunk>
class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> {
public:
void do_list(FreeList<Chunk>* fl) {
fl->set_returnedBytes(0);
fl->set_returned_bytes(0);
}
};
template <class Chunk>
void BinaryTreeDictionary<Chunk>::initializeDictReturnedBytes() {
void BinaryTreeDictionary<Chunk>::initialize_dict_returned_bytes() {
InitializeDictReturnedBytesClosure<Chunk> idrb;
idrb.do_tree(root());
}
template <class Chunk>
class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> {
size_t _dictReturnedBytes;
size_t _dict_returned_bytes;
public:
ReturnedBytesClosure() { _dictReturnedBytes = 0; }
ReturnedBytesClosure() { _dict_returned_bytes = 0; }
void do_list(FreeList<Chunk>* fl) {
_dictReturnedBytes += fl->returnedBytes();
_dict_returned_bytes += fl->returned_bytes();
}
size_t dictReturnedBytes() { return _dictReturnedBytes; }
size_t dict_returned_bytes() { return _dict_returned_bytes; }
};
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::sumDictReturnedBytes() {
size_t BinaryTreeDictionary<Chunk>::sum_dict_returned_bytes() {
ReturnedBytesClosure<Chunk> rbc;
rbc.do_tree(root());
return rbc.dictReturnedBytes();
return rbc.dict_returned_bytes();
}
// Count the number of entries in the tree.
@ -1087,7 +1087,7 @@ class treeCountClosure : public DescendTreeCensusClosure<Chunk> {
};
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::totalCount() {
size_t BinaryTreeDictionary<Chunk>::total_count() {
treeCountClosure<Chunk> ctc(0);
ctc.do_tree(root());
return ctc.count;
@ -1108,7 +1108,7 @@ class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk> {
};
template <class Chunk>
void BinaryTreeDictionary<Chunk>::setTreeSurplus(double splitSurplusPercent) {
void BinaryTreeDictionary<Chunk>::set_tree_surplus(double splitSurplusPercent) {
setTreeSurplusClosure<Chunk> sts(splitSurplusPercent);
sts.do_tree(root());
}
@ -1130,7 +1130,7 @@ class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk> {
};
template <class Chunk>
void BinaryTreeDictionary<Chunk>::setTreeHints(void) {
void BinaryTreeDictionary<Chunk>::set_tree_hints(void) {
setTreeHintsClosure<Chunk> sth(0);
sth.do_tree(root());
}
@ -1139,45 +1139,45 @@ void BinaryTreeDictionary<Chunk>::setTreeHints(void) {
template <class Chunk>
class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk> {
void do_list(FreeList<Chunk>* fl) {
fl->set_prevSweep(fl->count());
fl->set_coalBirths(0);
fl->set_coalDeaths(0);
fl->set_splitBirths(0);
fl->set_splitDeaths(0);
fl->set_prev_sweep(fl->count());
fl->set_coal_births(0);
fl->set_coal_deaths(0);
fl->set_split_births(0);
fl->set_split_deaths(0);
}
};
template <class Chunk>
void BinaryTreeDictionary<Chunk>::clearTreeCensus(void) {
void BinaryTreeDictionary<Chunk>::clear_tree_census(void) {
clearTreeCensusClosure<Chunk> ctc;
ctc.do_tree(root());
}
// Do reporting and post sweep clean up.
template <class Chunk>
void BinaryTreeDictionary<Chunk>::endSweepDictCensus(double splitSurplusPercent) {
void BinaryTreeDictionary<Chunk>::end_sweep_dict_census(double splitSurplusPercent) {
// Does walking the tree 3 times hurt?
setTreeSurplus(splitSurplusPercent);
setTreeHints();
set_tree_surplus(splitSurplusPercent);
set_tree_hints();
if (PrintGC && Verbose) {
reportStatistics();
report_statistics();
}
clearTreeCensus();
clear_tree_census();
}
// Print summary statistics
template <class Chunk>
void BinaryTreeDictionary<Chunk>::reportStatistics() const {
void BinaryTreeDictionary<Chunk>::report_statistics() const {
FreeBlockDictionary<Chunk>::verify_par_locked();
gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
"------------------------------------\n");
size_t totalSize = totalChunkSize(debug_only(NULL));
size_t freeBlocks = numFreeBlocks();
gclog_or_tty->print("Total Free Space: %d\n", totalSize);
gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSize());
gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
if (freeBlocks > 0) {
gclog_or_tty->print("Av. Block Size: %d\n", totalSize/freeBlocks);
size_t total_size = total_chunk_size(debug_only(NULL));
size_t free_blocks = num_free_blocks();
gclog_or_tty->print("Total Free Space: %d\n", total_size);
gclog_or_tty->print("Max Chunk Size: %d\n", max_chunk_size());
gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
if (free_blocks > 0) {
gclog_or_tty->print("Av. Block Size: %d\n", total_size/free_blocks);
}
gclog_or_tty->print("Tree Height: %d\n", treeHeight());
}
@ -1188,38 +1188,38 @@ void BinaryTreeDictionary<Chunk>::reportStatistics() const {
template <class Chunk>
class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk> {
int _print_line;
size_t _totalFree;
size_t _total_free;
FreeList<Chunk> _total;
public:
PrintTreeCensusClosure() {
_print_line = 0;
_totalFree = 0;
_total_free = 0;
}
FreeList<Chunk>* total() { return &_total; }
size_t totalFree() { return _totalFree; }
size_t total_free() { return _total_free; }
void do_list(FreeList<Chunk>* fl) {
if (++_print_line >= 40) {
FreeList<Chunk>::print_labels_on(gclog_or_tty, "size");
_print_line = 0;
}
fl->print_on(gclog_or_tty);
_totalFree += fl->count() * fl->size() ;
_total_free += fl->count() * fl->size() ;
total()->set_count( total()->count() + fl->count() );
total()->set_bfrSurp( total()->bfrSurp() + fl->bfrSurp() );
total()->set_surplus( total()->splitDeaths() + fl->surplus() );
total()->set_bfr_surp( total()->bfr_surp() + fl->bfr_surp() );
total()->set_surplus( total()->split_deaths() + fl->surplus() );
total()->set_desired( total()->desired() + fl->desired() );
total()->set_prevSweep( total()->prevSweep() + fl->prevSweep() );
total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
total()->set_coalBirths( total()->coalBirths() + fl->coalBirths() );
total()->set_coalDeaths( total()->coalDeaths() + fl->coalDeaths() );
total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
total()->set_prev_sweep( total()->prev_sweep() + fl->prev_sweep() );
total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
total()->set_coal_births( total()->coal_births() + fl->coal_births() );
total()->set_coal_deaths( total()->coal_deaths() + fl->coal_deaths() );
total()->set_split_births(total()->split_births() + fl->split_births());
total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
}
};
template <class Chunk>
void BinaryTreeDictionary<Chunk>::printDictCensus(void) const {
void BinaryTreeDictionary<Chunk>::print_dict_census(void) const {
gclog_or_tty->print("\nBinaryTree\n");
FreeList<Chunk>::print_labels_on(gclog_or_tty, "size");
@ -1230,12 +1230,12 @@ void BinaryTreeDictionary<Chunk>::printDictCensus(void) const {
FreeList<Chunk>::print_labels_on(gclog_or_tty, " ");
total->print_on(gclog_or_tty, "TOTAL\t");
gclog_or_tty->print(
"totalFree(words): " SIZE_FORMAT_W(16)
"total_free(words): " SIZE_FORMAT_W(16)
" growth: %8.5f deficit: %8.5f\n",
ptc.totalFree(),
(double)(total->splitBirths() + total->coalBirths()
- total->splitDeaths() - total->coalDeaths())
/(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
ptc.total_free(),
(double)(total->split_births() + total->coal_births()
- total->split_deaths() - total->coal_deaths())
/(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
(double)(total->desired() - total->count())
/(total->desired() != 0 ? (double)total->desired() : 1.0));
}
@ -1279,19 +1279,19 @@ void BinaryTreeDictionary<Chunk>::print_free_lists(outputStream* st) const {
// . parent and child point to each other
// . each node's key correctly related to that of its child(ren)
template <class Chunk>
void BinaryTreeDictionary<Chunk>::verifyTree() const {
guarantee(root() == NULL || totalFreeBlocks() == 0 ||
totalSize() != 0, "_totalSize should't be 0?");
void BinaryTreeDictionary<Chunk>::verify_tree() const {
guarantee(root() == NULL || total_free_blocks() == 0 ||
total_size() != 0, "_total_size should't be 0?");
guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
verifyTreeHelper(root());
verify_tree_helper(root());
}
template <class Chunk>
size_t BinaryTreeDictionary<Chunk>::verifyPrevFreePtrs(TreeList<Chunk>* tl) {
size_t BinaryTreeDictionary<Chunk>::verify_prev_free_ptrs(TreeList<Chunk>* tl) {
size_t ct = 0;
for (Chunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
ct++;
assert(curFC->prev() == NULL || curFC->prev()->isFree(),
assert(curFC->prev() == NULL || curFC->prev()->is_free(),
"Chunk should be free");
}
return ct;
@ -1301,7 +1301,7 @@ size_t BinaryTreeDictionary<Chunk>::verifyPrevFreePtrs(TreeList<Chunk>* tl) {
// caution on very deep trees; and watch out for stack overflow errors;
// In general, to be used only for debugging.
template <class Chunk>
void BinaryTreeDictionary<Chunk>::verifyTreeHelper(TreeList<Chunk>* tl) const {
void BinaryTreeDictionary<Chunk>::verify_tree_helper(TreeList<Chunk>* tl) const {
if (tl == NULL)
return;
guarantee(tl->size() != 0, "A list must has a size");
@ -1313,26 +1313,26 @@ void BinaryTreeDictionary<Chunk>::verifyTreeHelper(TreeList<Chunk>* tl) const {
"parent !> left");
guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
"parent !< left");
guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
"list inconsistency");
guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
"list count is inconsistent");
guarantee(tl->count() > 1 || tl->head() == tl->tail(),
"list is incorrectly constructed");
size_t count = verifyPrevFreePtrs(tl);
size_t count = verify_prev_free_ptrs(tl);
guarantee(count == (size_t)tl->count(), "Node count is incorrect");
if (tl->head() != NULL) {
tl->head_as_TreeChunk()->verifyTreeChunkList();
tl->head_as_TreeChunk()->verify_tree_chunk_list();
}
verifyTreeHelper(tl->left());
verifyTreeHelper(tl->right());
verify_tree_helper(tl->left());
verify_tree_helper(tl->right());
}
template <class Chunk>
void BinaryTreeDictionary<Chunk>::verify() const {
verifyTree();
guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
verify_tree();
guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
}
#ifndef SERIALGC