8333768: Minor doc updates to java.lang.{Float, Double}

Reviewed-by: rgiulietti
This commit is contained in:
Joe Darcy 2024-07-18 16:33:48 +00:00
parent 245c086648
commit bbc79a5e01
4 changed files with 111 additions and 31 deletions

View file

@ -181,7 +181,7 @@ public final class StrictMath {
/**
* Returns the arc sine of a value; the returned angle is in the
* range -<i>pi</i>/2 through <i>pi</i>/2. Special cases:
* range &minus;<i>pi</i>/2 through <i>pi</i>/2. Special cases:
* <ul><li>If the argument is NaN or its absolute value is greater
* than 1, then the result is NaN.
* <li>If the argument is zero, then the result is a zero with the
@ -211,7 +211,7 @@ public final class StrictMath {
/**
* Returns the arc tangent of a value; the returned angle is in the
* range -<i>pi</i>/2 through <i>pi</i>/2. Special cases:
* range &minus;<i>pi</i>/2 through <i>pi</i>/2. Special cases:
* <ul><li>If the argument is NaN, then the result is NaN.
* <li>If the argument is zero, then the result is a zero with the
* same sign as the argument.
@ -524,7 +524,7 @@ public final class StrictMath {
* coordinates ({@code x},&nbsp;{@code y}) to polar
* coordinates (r,&nbsp;<i>theta</i>).
* This method computes the phase <i>theta</i> by computing an arc tangent
* of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
* of {@code y/x} in the range of &minus;<i>pi</i> to <i>pi</i>. Special
* cases:
* <ul><li>If either argument is NaN, then the result is NaN.
* <li>If the first argument is positive zero and the second argument
@ -2093,7 +2093,7 @@ public final class StrictMath {
/**
* Returns the hyperbolic sine of a {@code double} value.
* The hyperbolic sine of <i>x</i> is defined to be
* (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
* (<i>e<sup>x</sup>&nbsp;&minus;&nbsp;e<sup>&minus;x</sup></i>)/2
* where <i>e</i> is {@linkplain Math#E Euler's number}.
*
* <p>Special cases:
@ -2120,7 +2120,7 @@ public final class StrictMath {
/**
* Returns the hyperbolic cosine of a {@code double} value.
* The hyperbolic cosine of <i>x</i> is defined to be
* (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
* (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>&minus;x</sup></i>)/2
* where <i>e</i> is {@linkplain Math#E Euler's number}.
*
* <p>Special cases:
@ -2146,7 +2146,7 @@ public final class StrictMath {
/**
* Returns the hyperbolic tangent of a {@code double} value.
* The hyperbolic tangent of <i>x</i> is defined to be
* (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
* (<i>e<sup>x</sup>&nbsp;&minus;&nbsp;e<sup>&minus;x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>&minus;x</sup></i>),
* in other words, {@linkplain Math#sinh
* sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note
* that the absolute value of the exact tanh is always less than
@ -2203,7 +2203,7 @@ public final class StrictMath {
}
/**
* Returns <i>e</i><sup>x</sup>&nbsp;-1. Note that for values of
* Returns <i>e</i><sup>x</sup>&nbsp;&minus;1. Note that for values of
* <i>x</i> near 0, the exact sum of
* {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
* result of <i>e</i><sup>x</sup> than {@code exp(x)}.
@ -2224,7 +2224,7 @@ public final class StrictMath {
* </ul>
*
* @param x the exponent to raise <i>e</i> to in the computation of
* <i>e</i><sup>{@code x}</sup>&nbsp;-1.
* <i>e</i><sup>{@code x}</sup>&nbsp;&minus;1.
* @return the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
* @since 1.5
*/