mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-27 06:45:07 +02:00
8333768: Minor doc updates to java.lang.{Float, Double}
Reviewed-by: rgiulietti
This commit is contained in:
parent
245c086648
commit
bbc79a5e01
4 changed files with 111 additions and 31 deletions
|
@ -181,7 +181,7 @@ public final class StrictMath {
|
|||
|
||||
/**
|
||||
* Returns the arc sine of a value; the returned angle is in the
|
||||
* range -<i>pi</i>/2 through <i>pi</i>/2. Special cases:
|
||||
* range −<i>pi</i>/2 through <i>pi</i>/2. Special cases:
|
||||
* <ul><li>If the argument is NaN or its absolute value is greater
|
||||
* than 1, then the result is NaN.
|
||||
* <li>If the argument is zero, then the result is a zero with the
|
||||
|
@ -211,7 +211,7 @@ public final class StrictMath {
|
|||
|
||||
/**
|
||||
* Returns the arc tangent of a value; the returned angle is in the
|
||||
* range -<i>pi</i>/2 through <i>pi</i>/2. Special cases:
|
||||
* range −<i>pi</i>/2 through <i>pi</i>/2. Special cases:
|
||||
* <ul><li>If the argument is NaN, then the result is NaN.
|
||||
* <li>If the argument is zero, then the result is a zero with the
|
||||
* same sign as the argument.
|
||||
|
@ -524,7 +524,7 @@ public final class StrictMath {
|
|||
* coordinates ({@code x}, {@code y}) to polar
|
||||
* coordinates (r, <i>theta</i>).
|
||||
* This method computes the phase <i>theta</i> by computing an arc tangent
|
||||
* of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
|
||||
* of {@code y/x} in the range of −<i>pi</i> to <i>pi</i>. Special
|
||||
* cases:
|
||||
* <ul><li>If either argument is NaN, then the result is NaN.
|
||||
* <li>If the first argument is positive zero and the second argument
|
||||
|
@ -2093,7 +2093,7 @@ public final class StrictMath {
|
|||
/**
|
||||
* Returns the hyperbolic sine of a {@code double} value.
|
||||
* The hyperbolic sine of <i>x</i> is defined to be
|
||||
* (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2
|
||||
* (<i>e<sup>x</sup> − e<sup>−x</sup></i>)/2
|
||||
* where <i>e</i> is {@linkplain Math#E Euler's number}.
|
||||
*
|
||||
* <p>Special cases:
|
||||
|
@ -2120,7 +2120,7 @@ public final class StrictMath {
|
|||
/**
|
||||
* Returns the hyperbolic cosine of a {@code double} value.
|
||||
* The hyperbolic cosine of <i>x</i> is defined to be
|
||||
* (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2
|
||||
* (<i>e<sup>x</sup> + e<sup>−x</sup></i>)/2
|
||||
* where <i>e</i> is {@linkplain Math#E Euler's number}.
|
||||
*
|
||||
* <p>Special cases:
|
||||
|
@ -2146,7 +2146,7 @@ public final class StrictMath {
|
|||
/**
|
||||
* Returns the hyperbolic tangent of a {@code double} value.
|
||||
* The hyperbolic tangent of <i>x</i> is defined to be
|
||||
* (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>),
|
||||
* (<i>e<sup>x</sup> − e<sup>−x</sup></i>)/(<i>e<sup>x</sup> + e<sup>−x</sup></i>),
|
||||
* in other words, {@linkplain Math#sinh
|
||||
* sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note
|
||||
* that the absolute value of the exact tanh is always less than
|
||||
|
@ -2203,7 +2203,7 @@ public final class StrictMath {
|
|||
}
|
||||
|
||||
/**
|
||||
* Returns <i>e</i><sup>x</sup> -1. Note that for values of
|
||||
* Returns <i>e</i><sup>x</sup> −1. Note that for values of
|
||||
* <i>x</i> near 0, the exact sum of
|
||||
* {@code expm1(x)} + 1 is much closer to the true
|
||||
* result of <i>e</i><sup>x</sup> than {@code exp(x)}.
|
||||
|
@ -2224,7 +2224,7 @@ public final class StrictMath {
|
|||
* </ul>
|
||||
*
|
||||
* @param x the exponent to raise <i>e</i> to in the computation of
|
||||
* <i>e</i><sup>{@code x}</sup> -1.
|
||||
* <i>e</i><sup>{@code x}</sup> −1.
|
||||
* @return the value <i>e</i><sup>{@code x}</sup> - 1.
|
||||
* @since 1.5
|
||||
*/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue