mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-20 19:14:38 +02:00
Merge
This commit is contained in:
commit
bc7e37f4df
24 changed files with 501 additions and 153 deletions
|
@ -1575,6 +1575,35 @@ void Assembler::movdqa(Address dst, XMMRegister src) {
|
||||||
emit_operand(src, dst);
|
emit_operand(src, dst);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void Assembler::movdqu(XMMRegister dst, Address src) {
|
||||||
|
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
|
||||||
|
InstructionMark im(this);
|
||||||
|
emit_byte(0xF3);
|
||||||
|
prefix(src, dst);
|
||||||
|
emit_byte(0x0F);
|
||||||
|
emit_byte(0x6F);
|
||||||
|
emit_operand(dst, src);
|
||||||
|
}
|
||||||
|
|
||||||
|
void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
|
||||||
|
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
|
||||||
|
emit_byte(0xF3);
|
||||||
|
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
|
||||||
|
emit_byte(0x0F);
|
||||||
|
emit_byte(0x6F);
|
||||||
|
emit_byte(0xC0 | encode);
|
||||||
|
}
|
||||||
|
|
||||||
|
void Assembler::movdqu(Address dst, XMMRegister src) {
|
||||||
|
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
|
||||||
|
InstructionMark im(this);
|
||||||
|
emit_byte(0xF3);
|
||||||
|
prefix(dst, src);
|
||||||
|
emit_byte(0x0F);
|
||||||
|
emit_byte(0x7F);
|
||||||
|
emit_operand(src, dst);
|
||||||
|
}
|
||||||
|
|
||||||
// Uses zero extension on 64bit
|
// Uses zero extension on 64bit
|
||||||
|
|
||||||
void Assembler::movl(Register dst, int32_t imm32) {
|
void Assembler::movl(Register dst, int32_t imm32) {
|
||||||
|
|
|
@ -1055,6 +1055,11 @@ private:
|
||||||
void movdqa(XMMRegister dst, Address src);
|
void movdqa(XMMRegister dst, Address src);
|
||||||
void movdqa(XMMRegister dst, XMMRegister src);
|
void movdqa(XMMRegister dst, XMMRegister src);
|
||||||
|
|
||||||
|
// Move Unaligned Double Quadword
|
||||||
|
void movdqu(Address dst, XMMRegister src);
|
||||||
|
void movdqu(XMMRegister dst, Address src);
|
||||||
|
void movdqu(XMMRegister dst, XMMRegister src);
|
||||||
|
|
||||||
void movl(Register dst, int32_t imm32);
|
void movl(Register dst, int32_t imm32);
|
||||||
void movl(Address dst, int32_t imm32);
|
void movl(Address dst, int32_t imm32);
|
||||||
void movl(Register dst, Register src);
|
void movl(Register dst, Register src);
|
||||||
|
|
|
@ -791,6 +791,69 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// Copy 64 bytes chunks
|
||||||
|
//
|
||||||
|
// Inputs:
|
||||||
|
// from - source array address
|
||||||
|
// to_from - destination array address - from
|
||||||
|
// qword_count - 8-bytes element count, negative
|
||||||
|
//
|
||||||
|
void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
|
||||||
|
assert( UseSSE >= 2, "supported cpu only" );
|
||||||
|
Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
|
||||||
|
// Copy 64-byte chunks
|
||||||
|
__ jmpb(L_copy_64_bytes);
|
||||||
|
__ align(16);
|
||||||
|
__ BIND(L_copy_64_bytes_loop);
|
||||||
|
|
||||||
|
if(UseUnalignedLoadStores) {
|
||||||
|
__ movdqu(xmm0, Address(from, 0));
|
||||||
|
__ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
|
||||||
|
__ movdqu(xmm1, Address(from, 16));
|
||||||
|
__ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
|
||||||
|
__ movdqu(xmm2, Address(from, 32));
|
||||||
|
__ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
|
||||||
|
__ movdqu(xmm3, Address(from, 48));
|
||||||
|
__ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
|
||||||
|
|
||||||
|
} else {
|
||||||
|
__ movq(xmm0, Address(from, 0));
|
||||||
|
__ movq(Address(from, to_from, Address::times_1, 0), xmm0);
|
||||||
|
__ movq(xmm1, Address(from, 8));
|
||||||
|
__ movq(Address(from, to_from, Address::times_1, 8), xmm1);
|
||||||
|
__ movq(xmm2, Address(from, 16));
|
||||||
|
__ movq(Address(from, to_from, Address::times_1, 16), xmm2);
|
||||||
|
__ movq(xmm3, Address(from, 24));
|
||||||
|
__ movq(Address(from, to_from, Address::times_1, 24), xmm3);
|
||||||
|
__ movq(xmm4, Address(from, 32));
|
||||||
|
__ movq(Address(from, to_from, Address::times_1, 32), xmm4);
|
||||||
|
__ movq(xmm5, Address(from, 40));
|
||||||
|
__ movq(Address(from, to_from, Address::times_1, 40), xmm5);
|
||||||
|
__ movq(xmm6, Address(from, 48));
|
||||||
|
__ movq(Address(from, to_from, Address::times_1, 48), xmm6);
|
||||||
|
__ movq(xmm7, Address(from, 56));
|
||||||
|
__ movq(Address(from, to_from, Address::times_1, 56), xmm7);
|
||||||
|
}
|
||||||
|
|
||||||
|
__ addl(from, 64);
|
||||||
|
__ BIND(L_copy_64_bytes);
|
||||||
|
__ subl(qword_count, 8);
|
||||||
|
__ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
|
||||||
|
__ addl(qword_count, 8);
|
||||||
|
__ jccb(Assembler::zero, L_exit);
|
||||||
|
//
|
||||||
|
// length is too short, just copy qwords
|
||||||
|
//
|
||||||
|
__ BIND(L_copy_8_bytes);
|
||||||
|
__ movq(xmm0, Address(from, 0));
|
||||||
|
__ movq(Address(from, to_from, Address::times_1), xmm0);
|
||||||
|
__ addl(from, 8);
|
||||||
|
__ decrement(qword_count);
|
||||||
|
__ jcc(Assembler::greater, L_copy_8_bytes);
|
||||||
|
__ BIND(L_exit);
|
||||||
|
}
|
||||||
|
|
||||||
// Copy 64 bytes chunks
|
// Copy 64 bytes chunks
|
||||||
//
|
//
|
||||||
// Inputs:
|
// Inputs:
|
||||||
|
@ -799,6 +862,7 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
// qword_count - 8-bytes element count, negative
|
// qword_count - 8-bytes element count, negative
|
||||||
//
|
//
|
||||||
void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
|
void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
|
||||||
|
assert( VM_Version::supports_mmx(), "supported cpu only" );
|
||||||
Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
|
Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
|
||||||
// Copy 64-byte chunks
|
// Copy 64-byte chunks
|
||||||
__ jmpb(L_copy_64_bytes);
|
__ jmpb(L_copy_64_bytes);
|
||||||
|
@ -876,7 +940,7 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
__ subptr(to, from); // to --> to_from
|
__ subptr(to, from); // to --> to_from
|
||||||
__ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
|
__ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
|
||||||
__ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
|
__ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
|
||||||
if (!aligned && (t == T_BYTE || t == T_SHORT)) {
|
if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
|
||||||
// align source address at 4 bytes address boundary
|
// align source address at 4 bytes address boundary
|
||||||
if (t == T_BYTE) {
|
if (t == T_BYTE) {
|
||||||
// One byte misalignment happens only for byte arrays
|
// One byte misalignment happens only for byte arrays
|
||||||
|
@ -906,20 +970,26 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
__ mov(count, rax); // restore 'count'
|
__ mov(count, rax); // restore 'count'
|
||||||
__ jmpb(L_copy_2_bytes); // all dwords were copied
|
__ jmpb(L_copy_2_bytes); // all dwords were copied
|
||||||
} else {
|
} else {
|
||||||
// align to 8 bytes, we know we are 4 byte aligned to start
|
if (!UseUnalignedLoadStores) {
|
||||||
__ testptr(from, 4);
|
// align to 8 bytes, we know we are 4 byte aligned to start
|
||||||
__ jccb(Assembler::zero, L_copy_64_bytes);
|
__ testptr(from, 4);
|
||||||
__ movl(rax, Address(from, 0));
|
__ jccb(Assembler::zero, L_copy_64_bytes);
|
||||||
__ movl(Address(from, to_from, Address::times_1, 0), rax);
|
__ movl(rax, Address(from, 0));
|
||||||
__ addptr(from, 4);
|
__ movl(Address(from, to_from, Address::times_1, 0), rax);
|
||||||
__ subl(count, 1<<shift);
|
__ addptr(from, 4);
|
||||||
|
__ subl(count, 1<<shift);
|
||||||
|
}
|
||||||
__ BIND(L_copy_64_bytes);
|
__ BIND(L_copy_64_bytes);
|
||||||
__ mov(rax, count);
|
__ mov(rax, count);
|
||||||
__ shrl(rax, shift+1); // 8 bytes chunk count
|
__ shrl(rax, shift+1); // 8 bytes chunk count
|
||||||
//
|
//
|
||||||
// Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
|
// Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
|
||||||
//
|
//
|
||||||
mmx_copy_forward(from, to_from, rax);
|
if (UseXMMForArrayCopy) {
|
||||||
|
xmm_copy_forward(from, to_from, rax);
|
||||||
|
} else {
|
||||||
|
mmx_copy_forward(from, to_from, rax);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
// copy tailing dword
|
// copy tailing dword
|
||||||
__ BIND(L_copy_4_bytes);
|
__ BIND(L_copy_4_bytes);
|
||||||
|
@ -1069,13 +1139,20 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
__ align(16);
|
__ align(16);
|
||||||
// Move 8 bytes
|
// Move 8 bytes
|
||||||
__ BIND(L_copy_8_bytes_loop);
|
__ BIND(L_copy_8_bytes_loop);
|
||||||
__ movq(mmx0, Address(from, count, sf, 0));
|
if (UseXMMForArrayCopy) {
|
||||||
__ movq(Address(to, count, sf, 0), mmx0);
|
__ movq(xmm0, Address(from, count, sf, 0));
|
||||||
|
__ movq(Address(to, count, sf, 0), xmm0);
|
||||||
|
} else {
|
||||||
|
__ movq(mmx0, Address(from, count, sf, 0));
|
||||||
|
__ movq(Address(to, count, sf, 0), mmx0);
|
||||||
|
}
|
||||||
__ BIND(L_copy_8_bytes);
|
__ BIND(L_copy_8_bytes);
|
||||||
__ subl(count, 2<<shift);
|
__ subl(count, 2<<shift);
|
||||||
__ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
|
__ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
|
||||||
__ addl(count, 2<<shift);
|
__ addl(count, 2<<shift);
|
||||||
__ emms();
|
if (!UseXMMForArrayCopy) {
|
||||||
|
__ emms();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
__ BIND(L_copy_4_bytes);
|
__ BIND(L_copy_4_bytes);
|
||||||
// copy prefix qword
|
// copy prefix qword
|
||||||
|
@ -1143,7 +1220,11 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
|
|
||||||
__ subptr(to, from); // to --> to_from
|
__ subptr(to, from); // to --> to_from
|
||||||
if (VM_Version::supports_mmx()) {
|
if (VM_Version::supports_mmx()) {
|
||||||
mmx_copy_forward(from, to_from, count);
|
if (UseXMMForArrayCopy) {
|
||||||
|
xmm_copy_forward(from, to_from, count);
|
||||||
|
} else {
|
||||||
|
mmx_copy_forward(from, to_from, count);
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
__ jmpb(L_copy_8_bytes);
|
__ jmpb(L_copy_8_bytes);
|
||||||
__ align(16);
|
__ align(16);
|
||||||
|
@ -1196,8 +1277,13 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
__ align(16);
|
__ align(16);
|
||||||
__ BIND(L_copy_8_bytes_loop);
|
__ BIND(L_copy_8_bytes_loop);
|
||||||
if (VM_Version::supports_mmx()) {
|
if (VM_Version::supports_mmx()) {
|
||||||
__ movq(mmx0, Address(from, count, Address::times_8));
|
if (UseXMMForArrayCopy) {
|
||||||
__ movq(Address(to, count, Address::times_8), mmx0);
|
__ movq(xmm0, Address(from, count, Address::times_8));
|
||||||
|
__ movq(Address(to, count, Address::times_8), xmm0);
|
||||||
|
} else {
|
||||||
|
__ movq(mmx0, Address(from, count, Address::times_8));
|
||||||
|
__ movq(Address(to, count, Address::times_8), mmx0);
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
__ fild_d(Address(from, count, Address::times_8));
|
__ fild_d(Address(from, count, Address::times_8));
|
||||||
__ fistp_d(Address(to, count, Address::times_8));
|
__ fistp_d(Address(to, count, Address::times_8));
|
||||||
|
@ -1206,7 +1292,7 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
__ decrement(count);
|
__ decrement(count);
|
||||||
__ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
|
__ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
|
||||||
|
|
||||||
if (VM_Version::supports_mmx()) {
|
if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
|
||||||
__ emms();
|
__ emms();
|
||||||
}
|
}
|
||||||
inc_copy_counter_np(T_LONG);
|
inc_copy_counter_np(T_LONG);
|
||||||
|
|
|
@ -1251,6 +1251,7 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// Copy big chunks forward
|
// Copy big chunks forward
|
||||||
//
|
//
|
||||||
// Inputs:
|
// Inputs:
|
||||||
|
@ -1268,14 +1269,22 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
Label L_loop;
|
Label L_loop;
|
||||||
__ align(16);
|
__ align(16);
|
||||||
__ BIND(L_loop);
|
__ BIND(L_loop);
|
||||||
__ movq(to, Address(end_from, qword_count, Address::times_8, -24));
|
if(UseUnalignedLoadStores) {
|
||||||
__ movq(Address(end_to, qword_count, Address::times_8, -24), to);
|
__ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
|
||||||
__ movq(to, Address(end_from, qword_count, Address::times_8, -16));
|
__ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
|
||||||
__ movq(Address(end_to, qword_count, Address::times_8, -16), to);
|
__ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
|
||||||
__ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
|
__ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
|
||||||
__ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
|
|
||||||
__ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
|
} else {
|
||||||
__ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
|
__ movq(to, Address(end_from, qword_count, Address::times_8, -24));
|
||||||
|
__ movq(Address(end_to, qword_count, Address::times_8, -24), to);
|
||||||
|
__ movq(to, Address(end_from, qword_count, Address::times_8, -16));
|
||||||
|
__ movq(Address(end_to, qword_count, Address::times_8, -16), to);
|
||||||
|
__ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
|
||||||
|
__ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
|
||||||
|
__ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
|
||||||
|
__ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
|
||||||
|
}
|
||||||
__ BIND(L_copy_32_bytes);
|
__ BIND(L_copy_32_bytes);
|
||||||
__ addptr(qword_count, 4);
|
__ addptr(qword_count, 4);
|
||||||
__ jcc(Assembler::lessEqual, L_loop);
|
__ jcc(Assembler::lessEqual, L_loop);
|
||||||
|
@ -1301,14 +1310,22 @@ class StubGenerator: public StubCodeGenerator {
|
||||||
Label L_loop;
|
Label L_loop;
|
||||||
__ align(16);
|
__ align(16);
|
||||||
__ BIND(L_loop);
|
__ BIND(L_loop);
|
||||||
__ movq(to, Address(from, qword_count, Address::times_8, 24));
|
if(UseUnalignedLoadStores) {
|
||||||
__ movq(Address(dest, qword_count, Address::times_8, 24), to);
|
__ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
|
||||||
__ movq(to, Address(from, qword_count, Address::times_8, 16));
|
__ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
|
||||||
__ movq(Address(dest, qword_count, Address::times_8, 16), to);
|
__ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
|
||||||
__ movq(to, Address(from, qword_count, Address::times_8, 8));
|
__ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
|
||||||
__ movq(Address(dest, qword_count, Address::times_8, 8), to);
|
|
||||||
__ movq(to, Address(from, qword_count, Address::times_8, 0));
|
} else {
|
||||||
__ movq(Address(dest, qword_count, Address::times_8, 0), to);
|
__ movq(to, Address(from, qword_count, Address::times_8, 24));
|
||||||
|
__ movq(Address(dest, qword_count, Address::times_8, 24), to);
|
||||||
|
__ movq(to, Address(from, qword_count, Address::times_8, 16));
|
||||||
|
__ movq(Address(dest, qword_count, Address::times_8, 16), to);
|
||||||
|
__ movq(to, Address(from, qword_count, Address::times_8, 8));
|
||||||
|
__ movq(Address(dest, qword_count, Address::times_8, 8), to);
|
||||||
|
__ movq(to, Address(from, qword_count, Address::times_8, 0));
|
||||||
|
__ movq(Address(dest, qword_count, Address::times_8, 0), to);
|
||||||
|
}
|
||||||
__ BIND(L_copy_32_bytes);
|
__ BIND(L_copy_32_bytes);
|
||||||
__ subptr(qword_count, 4);
|
__ subptr(qword_count, 4);
|
||||||
__ jcc(Assembler::greaterEqual, L_loop);
|
__ jcc(Assembler::greaterEqual, L_loop);
|
||||||
|
|
|
@ -242,9 +242,11 @@ void VM_Version::get_processor_features() {
|
||||||
_supports_cx8 = supports_cmpxchg8();
|
_supports_cx8 = supports_cmpxchg8();
|
||||||
// if the OS doesn't support SSE, we can't use this feature even if the HW does
|
// if the OS doesn't support SSE, we can't use this feature even if the HW does
|
||||||
if( !os::supports_sse())
|
if( !os::supports_sse())
|
||||||
_cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4|CPU_SSE4A);
|
_cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
|
||||||
if (UseSSE < 4)
|
if (UseSSE < 4) {
|
||||||
_cpuFeatures &= ~CPU_SSE4;
|
_cpuFeatures &= ~CPU_SSE4_1;
|
||||||
|
_cpuFeatures &= ~CPU_SSE4_2;
|
||||||
|
}
|
||||||
if (UseSSE < 3) {
|
if (UseSSE < 3) {
|
||||||
_cpuFeatures &= ~CPU_SSE3;
|
_cpuFeatures &= ~CPU_SSE3;
|
||||||
_cpuFeatures &= ~CPU_SSSE3;
|
_cpuFeatures &= ~CPU_SSSE3;
|
||||||
|
@ -261,7 +263,7 @@ void VM_Version::get_processor_features() {
|
||||||
}
|
}
|
||||||
|
|
||||||
char buf[256];
|
char buf[256];
|
||||||
jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
|
jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
|
||||||
cores_per_cpu(), threads_per_core(),
|
cores_per_cpu(), threads_per_core(),
|
||||||
cpu_family(), _model, _stepping,
|
cpu_family(), _model, _stepping,
|
||||||
(supports_cmov() ? ", cmov" : ""),
|
(supports_cmov() ? ", cmov" : ""),
|
||||||
|
@ -272,7 +274,8 @@ void VM_Version::get_processor_features() {
|
||||||
(supports_sse2() ? ", sse2" : ""),
|
(supports_sse2() ? ", sse2" : ""),
|
||||||
(supports_sse3() ? ", sse3" : ""),
|
(supports_sse3() ? ", sse3" : ""),
|
||||||
(supports_ssse3()? ", ssse3": ""),
|
(supports_ssse3()? ", ssse3": ""),
|
||||||
(supports_sse4() ? ", sse4" : ""),
|
(supports_sse4_1() ? ", sse4.1" : ""),
|
||||||
|
(supports_sse4_2() ? ", sse4.2" : ""),
|
||||||
(supports_mmx_ext() ? ", mmxext" : ""),
|
(supports_mmx_ext() ? ", mmxext" : ""),
|
||||||
(supports_3dnow() ? ", 3dnow" : ""),
|
(supports_3dnow() ? ", 3dnow" : ""),
|
||||||
(supports_3dnow2() ? ", 3dnowext" : ""),
|
(supports_3dnow2() ? ", 3dnowext" : ""),
|
||||||
|
@ -285,7 +288,7 @@ void VM_Version::get_processor_features() {
|
||||||
// older Pentiums which do not support it.
|
// older Pentiums which do not support it.
|
||||||
if( UseSSE > 4 ) UseSSE=4;
|
if( UseSSE > 4 ) UseSSE=4;
|
||||||
if( UseSSE < 0 ) UseSSE=0;
|
if( UseSSE < 0 ) UseSSE=0;
|
||||||
if( !supports_sse4() ) // Drop to 3 if no SSE4 support
|
if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
|
||||||
UseSSE = MIN2((intx)3,UseSSE);
|
UseSSE = MIN2((intx)3,UseSSE);
|
||||||
if( !supports_sse3() ) // Drop to 2 if no SSE3 support
|
if( !supports_sse3() ) // Drop to 2 if no SSE3 support
|
||||||
UseSSE = MIN2((intx)2,UseSSE);
|
UseSSE = MIN2((intx)2,UseSSE);
|
||||||
|
@ -375,6 +378,14 @@ void VM_Version::get_processor_features() {
|
||||||
MaxLoopPad = 11;
|
MaxLoopPad = 11;
|
||||||
}
|
}
|
||||||
#endif // COMPILER2
|
#endif // COMPILER2
|
||||||
|
if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
|
||||||
|
UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
|
||||||
|
}
|
||||||
|
if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
|
||||||
|
if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
|
||||||
|
UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -413,7 +424,7 @@ void VM_Version::get_processor_features() {
|
||||||
|
|
||||||
#ifndef PRODUCT
|
#ifndef PRODUCT
|
||||||
if (PrintMiscellaneous && Verbose) {
|
if (PrintMiscellaneous && Verbose) {
|
||||||
tty->print_cr("Logical CPUs per package: %u",
|
tty->print_cr("Logical CPUs per core: %u",
|
||||||
logical_processors_per_package());
|
logical_processors_per_package());
|
||||||
tty->print_cr("UseSSE=%d",UseSSE);
|
tty->print_cr("UseSSE=%d",UseSSE);
|
||||||
tty->print("Allocation: ");
|
tty->print("Allocation: ");
|
||||||
|
|
|
@ -68,9 +68,9 @@ public:
|
||||||
cmpxchg16: 1,
|
cmpxchg16: 1,
|
||||||
: 4,
|
: 4,
|
||||||
dca : 1,
|
dca : 1,
|
||||||
: 4,
|
sse4_1 : 1,
|
||||||
popcnt : 1,
|
sse4_2 : 1,
|
||||||
: 8;
|
: 11;
|
||||||
} bits;
|
} bits;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -177,8 +177,9 @@ protected:
|
||||||
CPU_SSE2 = (1 << 7),
|
CPU_SSE2 = (1 << 7),
|
||||||
CPU_SSE3 = (1 << 8), // sse3 comes from cpuid 1 (ECX)
|
CPU_SSE3 = (1 << 8), // sse3 comes from cpuid 1 (ECX)
|
||||||
CPU_SSSE3= (1 << 9),
|
CPU_SSSE3= (1 << 9),
|
||||||
CPU_SSE4 = (1 <<10),
|
CPU_SSE4A= (1 <<10),
|
||||||
CPU_SSE4A= (1 <<11)
|
CPU_SSE4_1 = (1 << 11),
|
||||||
|
CPU_SSE4_2 = (1 << 12)
|
||||||
} cpuFeatureFlags;
|
} cpuFeatureFlags;
|
||||||
|
|
||||||
// cpuid information block. All info derived from executing cpuid with
|
// cpuid information block. All info derived from executing cpuid with
|
||||||
|
@ -240,22 +241,14 @@ protected:
|
||||||
static CpuidInfo _cpuid_info;
|
static CpuidInfo _cpuid_info;
|
||||||
|
|
||||||
// Extractors and predicates
|
// Extractors and predicates
|
||||||
static bool is_extended_cpu_family() {
|
|
||||||
const uint32_t Extended_Cpu_Family = 0xf;
|
|
||||||
return _cpuid_info.std_cpuid1_rax.bits.family == Extended_Cpu_Family;
|
|
||||||
}
|
|
||||||
static uint32_t extended_cpu_family() {
|
static uint32_t extended_cpu_family() {
|
||||||
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.family;
|
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.family;
|
||||||
if (is_extended_cpu_family()) {
|
result += _cpuid_info.std_cpuid1_rax.bits.ext_family;
|
||||||
result += _cpuid_info.std_cpuid1_rax.bits.ext_family;
|
|
||||||
}
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
static uint32_t extended_cpu_model() {
|
static uint32_t extended_cpu_model() {
|
||||||
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.model;
|
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.model;
|
||||||
if (is_extended_cpu_family()) {
|
result |= _cpuid_info.std_cpuid1_rax.bits.ext_model << 4;
|
||||||
result |= _cpuid_info.std_cpuid1_rax.bits.ext_model << 4;
|
|
||||||
}
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
static uint32_t cpu_stepping() {
|
static uint32_t cpu_stepping() {
|
||||||
|
@ -293,6 +286,10 @@ protected:
|
||||||
result |= CPU_SSSE3;
|
result |= CPU_SSSE3;
|
||||||
if (is_amd() && _cpuid_info.ext_cpuid1_rcx.bits.sse4a != 0)
|
if (is_amd() && _cpuid_info.ext_cpuid1_rcx.bits.sse4a != 0)
|
||||||
result |= CPU_SSE4A;
|
result |= CPU_SSE4A;
|
||||||
|
if (_cpuid_info.std_cpuid1_rcx.bits.sse4_1 != 0)
|
||||||
|
result |= CPU_SSE4_1;
|
||||||
|
if (_cpuid_info.std_cpuid1_rcx.bits.sse4_2 != 0)
|
||||||
|
result |= CPU_SSE4_2;
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -380,7 +377,8 @@ public:
|
||||||
static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; }
|
static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; }
|
||||||
static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; }
|
static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; }
|
||||||
static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; }
|
static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; }
|
||||||
static bool supports_sse4() { return (_cpuFeatures & CPU_SSE4) != 0; }
|
static bool supports_sse4_1() { return (_cpuFeatures & CPU_SSE4_1) != 0; }
|
||||||
|
static bool supports_sse4_2() { return (_cpuFeatures & CPU_SSE4_2) != 0; }
|
||||||
//
|
//
|
||||||
// AMD features
|
// AMD features
|
||||||
//
|
//
|
||||||
|
|
|
@ -186,8 +186,10 @@ void VM_Version::get_processor_features() {
|
||||||
if (!VM_Version::supports_sse2()) {
|
if (!VM_Version::supports_sse2()) {
|
||||||
vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
|
vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
|
||||||
}
|
}
|
||||||
if (UseSSE < 4)
|
if (UseSSE < 4) {
|
||||||
_cpuFeatures &= ~CPU_SSE4;
|
_cpuFeatures &= ~CPU_SSE4_1;
|
||||||
|
_cpuFeatures &= ~CPU_SSE4_2;
|
||||||
|
}
|
||||||
if (UseSSE < 3) {
|
if (UseSSE < 3) {
|
||||||
_cpuFeatures &= ~CPU_SSE3;
|
_cpuFeatures &= ~CPU_SSE3;
|
||||||
_cpuFeatures &= ~CPU_SSSE3;
|
_cpuFeatures &= ~CPU_SSSE3;
|
||||||
|
@ -204,7 +206,7 @@ void VM_Version::get_processor_features() {
|
||||||
}
|
}
|
||||||
|
|
||||||
char buf[256];
|
char buf[256];
|
||||||
jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
|
jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
|
||||||
cores_per_cpu(), threads_per_core(),
|
cores_per_cpu(), threads_per_core(),
|
||||||
cpu_family(), _model, _stepping,
|
cpu_family(), _model, _stepping,
|
||||||
(supports_cmov() ? ", cmov" : ""),
|
(supports_cmov() ? ", cmov" : ""),
|
||||||
|
@ -215,7 +217,8 @@ void VM_Version::get_processor_features() {
|
||||||
(supports_sse2() ? ", sse2" : ""),
|
(supports_sse2() ? ", sse2" : ""),
|
||||||
(supports_sse3() ? ", sse3" : ""),
|
(supports_sse3() ? ", sse3" : ""),
|
||||||
(supports_ssse3()? ", ssse3": ""),
|
(supports_ssse3()? ", ssse3": ""),
|
||||||
(supports_sse4() ? ", sse4" : ""),
|
(supports_sse4_1() ? ", sse4.1" : ""),
|
||||||
|
(supports_sse4_2() ? ", sse4.2" : ""),
|
||||||
(supports_mmx_ext() ? ", mmxext" : ""),
|
(supports_mmx_ext() ? ", mmxext" : ""),
|
||||||
(supports_3dnow() ? ", 3dnow" : ""),
|
(supports_3dnow() ? ", 3dnow" : ""),
|
||||||
(supports_3dnow2() ? ", 3dnowext" : ""),
|
(supports_3dnow2() ? ", 3dnowext" : ""),
|
||||||
|
@ -228,7 +231,7 @@ void VM_Version::get_processor_features() {
|
||||||
// older Pentiums which do not support it.
|
// older Pentiums which do not support it.
|
||||||
if( UseSSE > 4 ) UseSSE=4;
|
if( UseSSE > 4 ) UseSSE=4;
|
||||||
if( UseSSE < 0 ) UseSSE=0;
|
if( UseSSE < 0 ) UseSSE=0;
|
||||||
if( !supports_sse4() ) // Drop to 3 if no SSE4 support
|
if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
|
||||||
UseSSE = MIN2((intx)3,UseSSE);
|
UseSSE = MIN2((intx)3,UseSSE);
|
||||||
if( !supports_sse3() ) // Drop to 2 if no SSE3 support
|
if( !supports_sse3() ) // Drop to 2 if no SSE3 support
|
||||||
UseSSE = MIN2((intx)2,UseSSE);
|
UseSSE = MIN2((intx)2,UseSSE);
|
||||||
|
@ -314,6 +317,14 @@ void VM_Version::get_processor_features() {
|
||||||
MaxLoopPad = 11;
|
MaxLoopPad = 11;
|
||||||
}
|
}
|
||||||
#endif // COMPILER2
|
#endif // COMPILER2
|
||||||
|
if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
|
||||||
|
UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
|
||||||
|
}
|
||||||
|
if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
|
||||||
|
if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
|
||||||
|
UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -355,7 +366,7 @@ void VM_Version::get_processor_features() {
|
||||||
|
|
||||||
#ifndef PRODUCT
|
#ifndef PRODUCT
|
||||||
if (PrintMiscellaneous && Verbose) {
|
if (PrintMiscellaneous && Verbose) {
|
||||||
tty->print_cr("Logical CPUs per package: %u",
|
tty->print_cr("Logical CPUs per core: %u",
|
||||||
logical_processors_per_package());
|
logical_processors_per_package());
|
||||||
tty->print_cr("UseSSE=%d",UseSSE);
|
tty->print_cr("UseSSE=%d",UseSSE);
|
||||||
tty->print("Allocation: ");
|
tty->print("Allocation: ");
|
||||||
|
|
|
@ -68,9 +68,9 @@ public:
|
||||||
cmpxchg16: 1,
|
cmpxchg16: 1,
|
||||||
: 4,
|
: 4,
|
||||||
dca : 1,
|
dca : 1,
|
||||||
: 4,
|
sse4_1 : 1,
|
||||||
popcnt : 1,
|
sse4_2 : 1,
|
||||||
: 8;
|
: 11;
|
||||||
} bits;
|
} bits;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -177,8 +177,9 @@ protected:
|
||||||
CPU_SSE2 = (1 << 7),
|
CPU_SSE2 = (1 << 7),
|
||||||
CPU_SSE3 = (1 << 8),
|
CPU_SSE3 = (1 << 8),
|
||||||
CPU_SSSE3= (1 << 9),
|
CPU_SSSE3= (1 << 9),
|
||||||
CPU_SSE4 = (1 <<10),
|
CPU_SSE4A= (1 <<10),
|
||||||
CPU_SSE4A= (1 <<11)
|
CPU_SSE4_1 = (1 << 11),
|
||||||
|
CPU_SSE4_2 = (1 << 12)
|
||||||
} cpuFeatureFlags;
|
} cpuFeatureFlags;
|
||||||
|
|
||||||
// cpuid information block. All info derived from executing cpuid with
|
// cpuid information block. All info derived from executing cpuid with
|
||||||
|
@ -240,22 +241,14 @@ protected:
|
||||||
static CpuidInfo _cpuid_info;
|
static CpuidInfo _cpuid_info;
|
||||||
|
|
||||||
// Extractors and predicates
|
// Extractors and predicates
|
||||||
static bool is_extended_cpu_family() {
|
|
||||||
const uint32_t Extended_Cpu_Family = 0xf;
|
|
||||||
return _cpuid_info.std_cpuid1_eax.bits.family == Extended_Cpu_Family;
|
|
||||||
}
|
|
||||||
static uint32_t extended_cpu_family() {
|
static uint32_t extended_cpu_family() {
|
||||||
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
|
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
|
||||||
if (is_extended_cpu_family()) {
|
result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
|
||||||
result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
|
|
||||||
}
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
static uint32_t extended_cpu_model() {
|
static uint32_t extended_cpu_model() {
|
||||||
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
|
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
|
||||||
if (is_extended_cpu_family()) {
|
result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
|
||||||
result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
|
|
||||||
}
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
static uint32_t cpu_stepping() {
|
static uint32_t cpu_stepping() {
|
||||||
|
@ -293,6 +286,10 @@ protected:
|
||||||
result |= CPU_SSSE3;
|
result |= CPU_SSSE3;
|
||||||
if (is_amd() && _cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
|
if (is_amd() && _cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
|
||||||
result |= CPU_SSE4A;
|
result |= CPU_SSE4A;
|
||||||
|
if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
|
||||||
|
result |= CPU_SSE4_1;
|
||||||
|
if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
|
||||||
|
result |= CPU_SSE4_2;
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -380,7 +377,8 @@ public:
|
||||||
static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; }
|
static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; }
|
||||||
static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; }
|
static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; }
|
||||||
static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; }
|
static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; }
|
||||||
static bool supports_sse4() { return (_cpuFeatures & CPU_SSE4) != 0; }
|
static bool supports_sse4_1() { return (_cpuFeatures & CPU_SSE4_1) != 0; }
|
||||||
|
static bool supports_sse4_2() { return (_cpuFeatures & CPU_SSE4_2) != 0; }
|
||||||
//
|
//
|
||||||
// AMD features
|
// AMD features
|
||||||
//
|
//
|
||||||
|
|
|
@ -4810,6 +4810,16 @@ operand immL0() %{
|
||||||
interface(CONST_INTER);
|
interface(CONST_INTER);
|
||||||
%}
|
%}
|
||||||
|
|
||||||
|
// Long Immediate zero
|
||||||
|
operand immL_M1() %{
|
||||||
|
predicate( n->get_long() == -1L );
|
||||||
|
match(ConL);
|
||||||
|
op_cost(0);
|
||||||
|
|
||||||
|
format %{ %}
|
||||||
|
interface(CONST_INTER);
|
||||||
|
%}
|
||||||
|
|
||||||
// Long immediate from 0 to 127.
|
// Long immediate from 0 to 127.
|
||||||
// Used for a shorter form of long mul by 10.
|
// Used for a shorter form of long mul by 10.
|
||||||
operand immL_127() %{
|
operand immL_127() %{
|
||||||
|
@ -8621,6 +8631,18 @@ instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
|
||||||
ins_pipe( ialu_reg_reg );
|
ins_pipe( ialu_reg_reg );
|
||||||
%}
|
%}
|
||||||
|
|
||||||
|
// Xor Register with Immediate -1
|
||||||
|
instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
|
||||||
|
match(Set dst (XorI dst imm));
|
||||||
|
|
||||||
|
size(2);
|
||||||
|
format %{ "NOT $dst" %}
|
||||||
|
ins_encode %{
|
||||||
|
__ notl($dst$$Register);
|
||||||
|
%}
|
||||||
|
ins_pipe( ialu_reg );
|
||||||
|
%}
|
||||||
|
|
||||||
// Xor Register with Immediate
|
// Xor Register with Immediate
|
||||||
instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
|
instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
|
||||||
match(Set dst (XorI dst src));
|
match(Set dst (XorI dst src));
|
||||||
|
@ -8938,6 +8960,18 @@ instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
|
||||||
ins_pipe( ialu_reg_reg_long );
|
ins_pipe( ialu_reg_reg_long );
|
||||||
%}
|
%}
|
||||||
|
|
||||||
|
// Xor Long Register with Immediate -1
|
||||||
|
instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
|
||||||
|
match(Set dst (XorL dst imm));
|
||||||
|
format %{ "NOT $dst.lo\n\t"
|
||||||
|
"NOT $dst.hi" %}
|
||||||
|
ins_encode %{
|
||||||
|
__ notl($dst$$Register);
|
||||||
|
__ notl(HIGH_FROM_LOW($dst$$Register));
|
||||||
|
%}
|
||||||
|
ins_pipe( ialu_reg_long );
|
||||||
|
%}
|
||||||
|
|
||||||
// Xor Long Register with Immediate
|
// Xor Long Register with Immediate
|
||||||
instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
|
instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
|
||||||
match(Set dst (XorL dst src));
|
match(Set dst (XorL dst src));
|
||||||
|
|
|
@ -9309,6 +9309,17 @@ instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
|
||||||
ins_pipe(ialu_reg_reg);
|
ins_pipe(ialu_reg_reg);
|
||||||
%}
|
%}
|
||||||
|
|
||||||
|
// Xor Register with Immediate -1
|
||||||
|
instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
|
||||||
|
match(Set dst (XorI dst imm));
|
||||||
|
|
||||||
|
format %{ "not $dst" %}
|
||||||
|
ins_encode %{
|
||||||
|
__ notl($dst$$Register);
|
||||||
|
%}
|
||||||
|
ins_pipe(ialu_reg);
|
||||||
|
%}
|
||||||
|
|
||||||
// Xor Register with Immediate
|
// Xor Register with Immediate
|
||||||
instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
|
instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
|
||||||
%{
|
%{
|
||||||
|
@ -9529,6 +9540,17 @@ instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
|
||||||
ins_pipe(ialu_reg_reg);
|
ins_pipe(ialu_reg_reg);
|
||||||
%}
|
%}
|
||||||
|
|
||||||
|
// Xor Register with Immediate -1
|
||||||
|
instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
|
||||||
|
match(Set dst (XorL dst imm));
|
||||||
|
|
||||||
|
format %{ "notq $dst" %}
|
||||||
|
ins_encode %{
|
||||||
|
__ notq($dst$$Register);
|
||||||
|
%}
|
||||||
|
ins_pipe(ialu_reg);
|
||||||
|
%}
|
||||||
|
|
||||||
// Xor Register with Immediate
|
// Xor Register with Immediate
|
||||||
instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
|
instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
|
||||||
%{
|
%{
|
||||||
|
|
|
@ -3756,7 +3756,7 @@ int set_lwp_priority (int ThreadID, int lwpid, int newPrio )
|
||||||
int maxClamped = MIN2(iaLimits.maxPrio, (int)iaInfo->ia_uprilim);
|
int maxClamped = MIN2(iaLimits.maxPrio, (int)iaInfo->ia_uprilim);
|
||||||
iaInfo->ia_upri = scale_to_lwp_priority(iaLimits.minPrio, maxClamped, newPrio);
|
iaInfo->ia_upri = scale_to_lwp_priority(iaLimits.minPrio, maxClamped, newPrio);
|
||||||
iaInfo->ia_uprilim = IA_NOCHANGE;
|
iaInfo->ia_uprilim = IA_NOCHANGE;
|
||||||
iaInfo->ia_nice = IA_NOCHANGE;
|
// iaInfo->ia_nice = IA_NOCHANGE;
|
||||||
iaInfo->ia_mode = IA_NOCHANGE;
|
iaInfo->ia_mode = IA_NOCHANGE;
|
||||||
if (ThreadPriorityVerbose) {
|
if (ThreadPriorityVerbose) {
|
||||||
tty->print_cr ("IA: [%d...%d] %d->%d\n",
|
tty->print_cr ("IA: [%d...%d] %d->%d\n",
|
||||||
|
|
|
@ -156,7 +156,8 @@ Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
||||||
if( add1_op == this_op && !con_right ) {
|
if( add1_op == this_op && !con_right ) {
|
||||||
Node *a12 = add1->in(2);
|
Node *a12 = add1->in(2);
|
||||||
const Type *t12 = phase->type( a12 );
|
const Type *t12 = phase->type( a12 );
|
||||||
if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
|
if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
|
||||||
|
!(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
|
||||||
assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
|
assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
|
||||||
add2 = add1->clone();
|
add2 = add1->clone();
|
||||||
add2->set_req(2, in(2));
|
add2->set_req(2, in(2));
|
||||||
|
@ -173,7 +174,8 @@ Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
||||||
if( add2_op == this_op && !con_left ) {
|
if( add2_op == this_op && !con_left ) {
|
||||||
Node *a22 = add2->in(2);
|
Node *a22 = add2->in(2);
|
||||||
const Type *t22 = phase->type( a22 );
|
const Type *t22 = phase->type( a22 );
|
||||||
if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
|
if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
|
||||||
|
!(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
|
||||||
assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
|
assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
|
||||||
Node *addx = add2->clone();
|
Node *addx = add2->clone();
|
||||||
addx->set_req(1, in(1));
|
addx->set_req(1, in(1));
|
||||||
|
@ -225,34 +227,63 @@ const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
|
||||||
//=============================================================================
|
//=============================================================================
|
||||||
//------------------------------Idealize---------------------------------------
|
//------------------------------Idealize---------------------------------------
|
||||||
Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
||||||
int op1 = in(1)->Opcode();
|
Node* in1 = in(1);
|
||||||
int op2 = in(2)->Opcode();
|
Node* in2 = in(2);
|
||||||
|
int op1 = in1->Opcode();
|
||||||
|
int op2 = in2->Opcode();
|
||||||
// Fold (con1-x)+con2 into (con1+con2)-x
|
// Fold (con1-x)+con2 into (con1+con2)-x
|
||||||
|
if ( op1 == Op_AddI && op2 == Op_SubI ) {
|
||||||
|
// Swap edges to try optimizations below
|
||||||
|
in1 = in2;
|
||||||
|
in2 = in(1);
|
||||||
|
op1 = op2;
|
||||||
|
op2 = in2->Opcode();
|
||||||
|
}
|
||||||
if( op1 == Op_SubI ) {
|
if( op1 == Op_SubI ) {
|
||||||
const Type *t_sub1 = phase->type( in(1)->in(1) );
|
const Type *t_sub1 = phase->type( in1->in(1) );
|
||||||
const Type *t_2 = phase->type( in(2) );
|
const Type *t_2 = phase->type( in2 );
|
||||||
if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
|
if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
|
||||||
return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
|
return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
|
||||||
in(1)->in(2) );
|
in1->in(2) );
|
||||||
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
|
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
|
||||||
if( op2 == Op_SubI ) {
|
if( op2 == Op_SubI ) {
|
||||||
// Check for dead cycle: d = (a-b)+(c-d)
|
// Check for dead cycle: d = (a-b)+(c-d)
|
||||||
assert( in(1)->in(2) != this && in(2)->in(2) != this,
|
assert( in1->in(2) != this && in2->in(2) != this,
|
||||||
"dead loop in AddINode::Ideal" );
|
"dead loop in AddINode::Ideal" );
|
||||||
Node *sub = new (phase->C, 3) SubINode(NULL, NULL);
|
Node *sub = new (phase->C, 3) SubINode(NULL, NULL);
|
||||||
sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
|
sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in1->in(1), in2->in(1) ) ));
|
||||||
sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
|
sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in1->in(2), in2->in(2) ) ));
|
||||||
return sub;
|
return sub;
|
||||||
}
|
}
|
||||||
|
// Convert "(a-b)+(b+c)" into "(a+c)"
|
||||||
|
if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
|
||||||
|
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
|
||||||
|
return new (phase->C, 3) AddINode(in1->in(1), in2->in(2));
|
||||||
|
}
|
||||||
|
// Convert "(a-b)+(c+b)" into "(a+c)"
|
||||||
|
if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
|
||||||
|
assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
|
||||||
|
return new (phase->C, 3) AddINode(in1->in(1), in2->in(1));
|
||||||
|
}
|
||||||
|
// Convert "(a-b)+(b-c)" into "(a-c)"
|
||||||
|
if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
|
||||||
|
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
|
||||||
|
return new (phase->C, 3) SubINode(in1->in(1), in2->in(2));
|
||||||
|
}
|
||||||
|
// Convert "(a-b)+(c-a)" into "(c-b)"
|
||||||
|
if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
|
||||||
|
assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
|
||||||
|
return new (phase->C, 3) SubINode(in2->in(1), in1->in(2));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Convert "x+(0-y)" into "(x-y)"
|
// Convert "x+(0-y)" into "(x-y)"
|
||||||
if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
|
if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
|
||||||
return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
|
return new (phase->C, 3) SubINode(in1, in2->in(2) );
|
||||||
|
|
||||||
// Convert "(0-y)+x" into "(x-y)"
|
// Convert "(0-y)+x" into "(x-y)"
|
||||||
if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
|
if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
|
||||||
return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
|
return new (phase->C, 3) SubINode( in2, in1->in(2) );
|
||||||
|
|
||||||
// Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
|
// Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
|
||||||
// Helps with array allocation math constant folding
|
// Helps with array allocation math constant folding
|
||||||
|
@ -266,15 +297,15 @@ Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
||||||
// Have not observed cases where type information exists to support
|
// Have not observed cases where type information exists to support
|
||||||
// positive y and (x <= -(y << z))
|
// positive y and (x <= -(y << z))
|
||||||
if( op1 == Op_URShiftI && op2 == Op_ConI &&
|
if( op1 == Op_URShiftI && op2 == Op_ConI &&
|
||||||
in(1)->in(2)->Opcode() == Op_ConI ) {
|
in1->in(2)->Opcode() == Op_ConI ) {
|
||||||
jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
|
jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
|
||||||
jint y = phase->type( in(2) )->is_int()->get_con();
|
jint y = phase->type( in2 )->is_int()->get_con();
|
||||||
|
|
||||||
if( z < 5 && -5 < y && y < 0 ) {
|
if( z < 5 && -5 < y && y < 0 ) {
|
||||||
const Type *t_in11 = phase->type(in(1)->in(1));
|
const Type *t_in11 = phase->type(in1->in(1));
|
||||||
if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
|
if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
|
||||||
Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
|
Node *a = phase->transform( new (phase->C, 3) AddINode( in1->in(1), phase->intcon(y<<z) ) );
|
||||||
return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
|
return new (phase->C, 3) URShiftINode( a, in1->in(2) );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -328,39 +359,73 @@ const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
|
||||||
//=============================================================================
|
//=============================================================================
|
||||||
//------------------------------Idealize---------------------------------------
|
//------------------------------Idealize---------------------------------------
|
||||||
Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
||||||
int op1 = in(1)->Opcode();
|
Node* in1 = in(1);
|
||||||
int op2 = in(2)->Opcode();
|
Node* in2 = in(2);
|
||||||
|
int op1 = in1->Opcode();
|
||||||
|
int op2 = in2->Opcode();
|
||||||
|
// Fold (con1-x)+con2 into (con1+con2)-x
|
||||||
|
if ( op1 == Op_AddL && op2 == Op_SubL ) {
|
||||||
|
// Swap edges to try optimizations below
|
||||||
|
in1 = in2;
|
||||||
|
in2 = in(1);
|
||||||
|
op1 = op2;
|
||||||
|
op2 = in2->Opcode();
|
||||||
|
}
|
||||||
// Fold (con1-x)+con2 into (con1+con2)-x
|
// Fold (con1-x)+con2 into (con1+con2)-x
|
||||||
if( op1 == Op_SubL ) {
|
if( op1 == Op_SubL ) {
|
||||||
const Type *t_sub1 = phase->type( in(1)->in(1) );
|
const Type *t_sub1 = phase->type( in1->in(1) );
|
||||||
const Type *t_2 = phase->type( in(2) );
|
const Type *t_2 = phase->type( in2 );
|
||||||
if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
|
if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
|
||||||
return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
|
return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
|
||||||
in(1)->in(2) );
|
in1->in(2) );
|
||||||
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
|
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
|
||||||
if( op2 == Op_SubL ) {
|
if( op2 == Op_SubL ) {
|
||||||
// Check for dead cycle: d = (a-b)+(c-d)
|
// Check for dead cycle: d = (a-b)+(c-d)
|
||||||
assert( in(1)->in(2) != this && in(2)->in(2) != this,
|
assert( in1->in(2) != this && in2->in(2) != this,
|
||||||
"dead loop in AddLNode::Ideal" );
|
"dead loop in AddLNode::Ideal" );
|
||||||
Node *sub = new (phase->C, 3) SubLNode(NULL, NULL);
|
Node *sub = new (phase->C, 3) SubLNode(NULL, NULL);
|
||||||
sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
|
sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in1->in(1), in2->in(1) ) ));
|
||||||
sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
|
sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in1->in(2), in2->in(2) ) ));
|
||||||
return sub;
|
return sub;
|
||||||
}
|
}
|
||||||
|
// Convert "(a-b)+(b+c)" into "(a+c)"
|
||||||
|
if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
|
||||||
|
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
|
||||||
|
return new (phase->C, 3) AddLNode(in1->in(1), in2->in(2));
|
||||||
|
}
|
||||||
|
// Convert "(a-b)+(c+b)" into "(a+c)"
|
||||||
|
if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
|
||||||
|
assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
|
||||||
|
return new (phase->C, 3) AddLNode(in1->in(1), in2->in(1));
|
||||||
|
}
|
||||||
|
// Convert "(a-b)+(b-c)" into "(a-c)"
|
||||||
|
if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
|
||||||
|
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
|
||||||
|
return new (phase->C, 3) SubLNode(in1->in(1), in2->in(2));
|
||||||
|
}
|
||||||
|
// Convert "(a-b)+(c-a)" into "(c-b)"
|
||||||
|
if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
|
||||||
|
assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
|
||||||
|
return new (phase->C, 3) SubLNode(in2->in(1), in1->in(2));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Convert "x+(0-y)" into "(x-y)"
|
// Convert "x+(0-y)" into "(x-y)"
|
||||||
if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
|
if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
|
||||||
return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
|
return new (phase->C, 3) SubLNode( in1, in2->in(2) );
|
||||||
|
|
||||||
|
// Convert "(0-y)+x" into "(x-y)"
|
||||||
|
if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
|
||||||
|
return new (phase->C, 3) SubLNode( in2, in1->in(2) );
|
||||||
|
|
||||||
// Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
|
// Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
|
||||||
// into "(X<<1)+Y" and let shift-folding happen.
|
// into "(X<<1)+Y" and let shift-folding happen.
|
||||||
if( op2 == Op_AddL &&
|
if( op2 == Op_AddL &&
|
||||||
in(2)->in(1) == in(1) &&
|
in2->in(1) == in1 &&
|
||||||
op1 != Op_ConL &&
|
op1 != Op_ConL &&
|
||||||
0 ) {
|
0 ) {
|
||||||
Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
|
Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in1,phase->intcon(1)));
|
||||||
return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
|
return new (phase->C, 3) AddLNode(shift,in2->in(2));
|
||||||
}
|
}
|
||||||
|
|
||||||
return AddNode::Ideal(phase, can_reshape);
|
return AddNode::Ideal(phase, can_reshape);
|
||||||
|
|
|
@ -1817,6 +1817,12 @@ Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
||||||
return progress; // Return any progress
|
return progress; // Return any progress
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//------------------------------is_tripcount-----------------------------------
|
||||||
|
bool PhiNode::is_tripcount() const {
|
||||||
|
return (in(0) != NULL && in(0)->is_CountedLoop() &&
|
||||||
|
in(0)->as_CountedLoop()->phi() == this);
|
||||||
|
}
|
||||||
|
|
||||||
//------------------------------out_RegMask------------------------------------
|
//------------------------------out_RegMask------------------------------------
|
||||||
const RegMask &PhiNode::in_RegMask(uint i) const {
|
const RegMask &PhiNode::in_RegMask(uint i) const {
|
||||||
return i ? out_RegMask() : RegMask::Empty;
|
return i ? out_RegMask() : RegMask::Empty;
|
||||||
|
@ -1832,9 +1838,7 @@ const RegMask &PhiNode::out_RegMask() const {
|
||||||
#ifndef PRODUCT
|
#ifndef PRODUCT
|
||||||
void PhiNode::dump_spec(outputStream *st) const {
|
void PhiNode::dump_spec(outputStream *st) const {
|
||||||
TypeNode::dump_spec(st);
|
TypeNode::dump_spec(st);
|
||||||
if (in(0) != NULL &&
|
if (is_tripcount()) {
|
||||||
in(0)->is_CountedLoop() &&
|
|
||||||
in(0)->as_CountedLoop()->phi() == this) {
|
|
||||||
st->print(" #tripcount");
|
st->print(" #tripcount");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -162,6 +162,8 @@ public:
|
||||||
return NULL; // not a copy!
|
return NULL; // not a copy!
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool is_tripcount() const;
|
||||||
|
|
||||||
// Determine a unique non-trivial input, if any.
|
// Determine a unique non-trivial input, if any.
|
||||||
// Ignore casts if it helps. Return NULL on failure.
|
// Ignore casts if it helps. Return NULL on failure.
|
||||||
Node* unique_input(PhaseTransform *phase);
|
Node* unique_input(PhaseTransform *phase);
|
||||||
|
|
|
@ -110,10 +110,13 @@ static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor
|
||||||
} else if( dividend->Opcode() == Op_AndI ) {
|
} else if( dividend->Opcode() == Op_AndI ) {
|
||||||
// An AND mask of sufficient size clears the low bits and
|
// An AND mask of sufficient size clears the low bits and
|
||||||
// I can avoid rounding.
|
// I can avoid rounding.
|
||||||
const TypeInt *andconi = phase->type( dividend->in(2) )->isa_int();
|
const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
|
||||||
if( andconi && andconi->is_con(-d) ) {
|
if( andconi_t && andconi_t->is_con() ) {
|
||||||
dividend = dividend->in(1);
|
jint andconi = andconi_t->get_con();
|
||||||
needs_rounding = false;
|
if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
|
||||||
|
dividend = dividend->in(1);
|
||||||
|
needs_rounding = false;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -316,10 +319,13 @@ static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divis
|
||||||
} else if( dividend->Opcode() == Op_AndL ) {
|
} else if( dividend->Opcode() == Op_AndL ) {
|
||||||
// An AND mask of sufficient size clears the low bits and
|
// An AND mask of sufficient size clears the low bits and
|
||||||
// I can avoid rounding.
|
// I can avoid rounding.
|
||||||
const TypeLong *andconl = phase->type( dividend->in(2) )->isa_long();
|
const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
|
||||||
if( andconl && andconl->is_con(-d)) {
|
if( andconl_t && andconl_t->is_con() ) {
|
||||||
dividend = dividend->in(1);
|
jlong andconl = andconl_t->get_con();
|
||||||
needs_rounding = false;
|
if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
|
||||||
|
dividend = dividend->in(1);
|
||||||
|
needs_rounding = false;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -704,11 +710,18 @@ const Type *DivDNode::Value( PhaseTransform *phase ) const {
|
||||||
if( t2 == TypeD::ONE )
|
if( t2 == TypeD::ONE )
|
||||||
return t1;
|
return t1;
|
||||||
|
|
||||||
// If divisor is a constant and not zero, divide them numbers
|
#if defined(IA32)
|
||||||
if( t1->base() == Type::DoubleCon &&
|
if (!phase->C->method()->is_strict())
|
||||||
t2->base() == Type::DoubleCon &&
|
// Can't trust native compilers to properly fold strict double
|
||||||
t2->getd() != 0.0 ) // could be negative zero
|
// division with round-to-zero on this platform.
|
||||||
return TypeD::make( t1->getd()/t2->getd() );
|
#endif
|
||||||
|
{
|
||||||
|
// If divisor is a constant and not zero, divide them numbers
|
||||||
|
if( t1->base() == Type::DoubleCon &&
|
||||||
|
t2->base() == Type::DoubleCon &&
|
||||||
|
t2->getd() != 0.0 ) // could be negative zero
|
||||||
|
return TypeD::make( t1->getd()/t2->getd() );
|
||||||
|
}
|
||||||
|
|
||||||
// If the dividend is a constant zero
|
// If the dividend is a constant zero
|
||||||
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
|
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
|
||||||
|
|
|
@ -679,6 +679,10 @@ void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_
|
||||||
CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
|
CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
|
||||||
post_head->set_post_loop(main_head);
|
post_head->set_post_loop(main_head);
|
||||||
|
|
||||||
|
// Reduce the post-loop trip count.
|
||||||
|
CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
|
||||||
|
post_end->_prob = PROB_FAIR;
|
||||||
|
|
||||||
// Build the main-loop normal exit.
|
// Build the main-loop normal exit.
|
||||||
IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
|
IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
|
||||||
_igvn.register_new_node_with_optimizer( new_main_exit );
|
_igvn.register_new_node_with_optimizer( new_main_exit );
|
||||||
|
@ -748,6 +752,9 @@ void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_
|
||||||
pre_head->set_pre_loop(main_head);
|
pre_head->set_pre_loop(main_head);
|
||||||
Node *pre_incr = old_new[incr->_idx];
|
Node *pre_incr = old_new[incr->_idx];
|
||||||
|
|
||||||
|
// Reduce the pre-loop trip count.
|
||||||
|
pre_end->_prob = PROB_FAIR;
|
||||||
|
|
||||||
// Find the pre-loop normal exit.
|
// Find the pre-loop normal exit.
|
||||||
Node* pre_exit = pre_end->proj_out(false);
|
Node* pre_exit = pre_end->proj_out(false);
|
||||||
assert( pre_exit->Opcode() == Op_IfFalse, "" );
|
assert( pre_exit->Opcode() == Op_IfFalse, "" );
|
||||||
|
@ -767,8 +774,8 @@ void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_
|
||||||
register_new_node( min_cmp , new_pre_exit );
|
register_new_node( min_cmp , new_pre_exit );
|
||||||
register_new_node( min_bol , new_pre_exit );
|
register_new_node( min_bol , new_pre_exit );
|
||||||
|
|
||||||
// Build the IfNode
|
// Build the IfNode (assume the main-loop is executed always).
|
||||||
IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_FAIR, COUNT_UNKNOWN );
|
IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
|
||||||
_igvn.register_new_node_with_optimizer( min_iff );
|
_igvn.register_new_node_with_optimizer( min_iff );
|
||||||
set_idom(min_iff, new_pre_exit, dd_main_head);
|
set_idom(min_iff, new_pre_exit, dd_main_head);
|
||||||
set_loop(min_iff, loop->_parent);
|
set_loop(min_iff, loop->_parent);
|
||||||
|
@ -1583,10 +1590,10 @@ bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
|
||||||
|
|
||||||
//=============================================================================
|
//=============================================================================
|
||||||
//------------------------------iteration_split_impl---------------------------
|
//------------------------------iteration_split_impl---------------------------
|
||||||
void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
|
bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
|
||||||
// Check and remove empty loops (spam micro-benchmarks)
|
// Check and remove empty loops (spam micro-benchmarks)
|
||||||
if( policy_do_remove_empty_loop(phase) )
|
if( policy_do_remove_empty_loop(phase) )
|
||||||
return; // Here we removed an empty loop
|
return true; // Here we removed an empty loop
|
||||||
|
|
||||||
bool should_peel = policy_peeling(phase); // Should we peel?
|
bool should_peel = policy_peeling(phase); // Should we peel?
|
||||||
|
|
||||||
|
@ -1596,7 +1603,8 @@ void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_
|
||||||
// This removes loop-invariant tests (usually null checks).
|
// This removes loop-invariant tests (usually null checks).
|
||||||
if( !_head->is_CountedLoop() ) { // Non-counted loop
|
if( !_head->is_CountedLoop() ) { // Non-counted loop
|
||||||
if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
|
if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
|
||||||
return;
|
// Partial peel succeeded so terminate this round of loop opts
|
||||||
|
return false;
|
||||||
}
|
}
|
||||||
if( should_peel ) { // Should we peel?
|
if( should_peel ) { // Should we peel?
|
||||||
#ifndef PRODUCT
|
#ifndef PRODUCT
|
||||||
|
@ -1606,14 +1614,14 @@ void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_
|
||||||
} else if( should_unswitch ) {
|
} else if( should_unswitch ) {
|
||||||
phase->do_unswitching(this, old_new);
|
phase->do_unswitching(this, old_new);
|
||||||
}
|
}
|
||||||
return;
|
return true;
|
||||||
}
|
}
|
||||||
CountedLoopNode *cl = _head->as_CountedLoop();
|
CountedLoopNode *cl = _head->as_CountedLoop();
|
||||||
|
|
||||||
if( !cl->loopexit() ) return; // Ignore various kinds of broken loops
|
if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
|
||||||
|
|
||||||
// Do nothing special to pre- and post- loops
|
// Do nothing special to pre- and post- loops
|
||||||
if( cl->is_pre_loop() || cl->is_post_loop() ) return;
|
if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
|
||||||
|
|
||||||
// Compute loop trip count from profile data
|
// Compute loop trip count from profile data
|
||||||
compute_profile_trip_cnt(phase);
|
compute_profile_trip_cnt(phase);
|
||||||
|
@ -1626,11 +1634,11 @@ void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_
|
||||||
// Here we did some unrolling and peeling. Eventually we will
|
// Here we did some unrolling and peeling. Eventually we will
|
||||||
// completely unroll this loop and it will no longer be a loop.
|
// completely unroll this loop and it will no longer be a loop.
|
||||||
phase->do_maximally_unroll(this,old_new);
|
phase->do_maximally_unroll(this,old_new);
|
||||||
return;
|
return true;
|
||||||
}
|
}
|
||||||
if (should_unswitch) {
|
if (should_unswitch) {
|
||||||
phase->do_unswitching(this, old_new);
|
phase->do_unswitching(this, old_new);
|
||||||
return;
|
return true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1691,14 +1699,16 @@ void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_
|
||||||
if( should_peel ) // Might want to peel but do nothing else
|
if( should_peel ) // Might want to peel but do nothing else
|
||||||
phase->do_peeling(this,old_new);
|
phase->do_peeling(this,old_new);
|
||||||
}
|
}
|
||||||
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
//=============================================================================
|
//=============================================================================
|
||||||
//------------------------------iteration_split--------------------------------
|
//------------------------------iteration_split--------------------------------
|
||||||
void IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
|
bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
|
||||||
// Recursively iteration split nested loops
|
// Recursively iteration split nested loops
|
||||||
if( _child ) _child->iteration_split( phase, old_new );
|
if( _child && !_child->iteration_split( phase, old_new ))
|
||||||
|
return false;
|
||||||
|
|
||||||
// Clean out prior deadwood
|
// Clean out prior deadwood
|
||||||
DCE_loop_body();
|
DCE_loop_body();
|
||||||
|
@ -1720,7 +1730,9 @@ void IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new )
|
||||||
_allow_optimizations &&
|
_allow_optimizations &&
|
||||||
!tail()->is_top() ) { // Also ignore the occasional dead backedge
|
!tail()->is_top() ) { // Also ignore the occasional dead backedge
|
||||||
if (!_has_call) {
|
if (!_has_call) {
|
||||||
iteration_split_impl( phase, old_new );
|
if (!iteration_split_impl( phase, old_new )) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
} else if (policy_unswitching(phase)) {
|
} else if (policy_unswitching(phase)) {
|
||||||
phase->do_unswitching(this, old_new);
|
phase->do_unswitching(this, old_new);
|
||||||
}
|
}
|
||||||
|
@ -1729,5 +1741,7 @@ void IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new )
|
||||||
// Minor offset re-organization to remove loop-fallout uses of
|
// Minor offset re-organization to remove loop-fallout uses of
|
||||||
// trip counter.
|
// trip counter.
|
||||||
if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
|
if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
|
||||||
if( _next ) _next->iteration_split( phase, old_new );
|
if( _next && !_next->iteration_split( phase, old_new ))
|
||||||
|
return false;
|
||||||
|
return true;
|
||||||
}
|
}
|
||||||
|
|
|
@ -325,12 +325,14 @@ public:
|
||||||
// Returns TRUE if loop tree is structurally changed.
|
// Returns TRUE if loop tree is structurally changed.
|
||||||
bool beautify_loops( PhaseIdealLoop *phase );
|
bool beautify_loops( PhaseIdealLoop *phase );
|
||||||
|
|
||||||
// Perform iteration-splitting on inner loops. Split iterations to avoid
|
// Perform iteration-splitting on inner loops. Split iterations to
|
||||||
// range checks or one-shot null checks.
|
// avoid range checks or one-shot null checks. Returns false if the
|
||||||
void iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
|
// current round of loop opts should stop.
|
||||||
|
bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
|
||||||
|
|
||||||
// Driver for various flavors of iteration splitting
|
// Driver for various flavors of iteration splitting. Returns false
|
||||||
void iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
|
// if the current round of loop opts should stop.
|
||||||
|
bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
|
||||||
|
|
||||||
// Given dominators, try to find loops with calls that must always be
|
// Given dominators, try to find loops with calls that must always be
|
||||||
// executed (call dominates loop tail). These loops do not need non-call
|
// executed (call dominates loop tail). These loops do not need non-call
|
||||||
|
|
|
@ -1903,9 +1903,6 @@ void PhaseIdealLoop::clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, N
|
||||||
// Use in a phi is considered a use in the associated predecessor block
|
// Use in a phi is considered a use in the associated predecessor block
|
||||||
use_c = use->in(0)->in(j);
|
use_c = use->in(0)->in(j);
|
||||||
}
|
}
|
||||||
if (use_c->is_CountedLoop()) {
|
|
||||||
use_c = use_c->in(LoopNode::EntryControl);
|
|
||||||
}
|
|
||||||
set_ctrl(n_clone, use_c);
|
set_ctrl(n_clone, use_c);
|
||||||
assert(!loop->is_member(get_loop(use_c)), "should be outside loop");
|
assert(!loop->is_member(get_loop(use_c)), "should be outside loop");
|
||||||
get_loop(use_c)->_body.push(n_clone);
|
get_loop(use_c)->_body.push(n_clone);
|
||||||
|
|
|
@ -152,6 +152,14 @@ const Type *MulNode::Value( PhaseTransform *phase ) const {
|
||||||
if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
|
if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
|
||||||
return bottom_type();
|
return bottom_type();
|
||||||
|
|
||||||
|
#if defined(IA32)
|
||||||
|
// Can't trust native compilers to properly fold strict double
|
||||||
|
// multiplication with round-to-zero on this platform.
|
||||||
|
if (op == Op_MulD && phase->C->method()->is_strict()) {
|
||||||
|
return TypeD::DOUBLE;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
return mul_ring(t1,t2); // Local flavor of type multiplication
|
return mul_ring(t1,t2); // Local flavor of type multiplication
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -360,7 +368,7 @@ const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
|
||||||
// Compute the product type of two double ranges into this node.
|
// Compute the product type of two double ranges into this node.
|
||||||
const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
|
const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
|
||||||
if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
|
if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
|
||||||
// We must be adding 2 double constants.
|
// We must be multiplying 2 double constants.
|
||||||
return TypeD::make( t0->getd() * t1->getd() );
|
return TypeD::make( t0->getd() * t1->getd() );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -1320,7 +1320,8 @@ public:
|
||||||
Node *pop() {
|
Node *pop() {
|
||||||
if( _clock_index >= size() ) _clock_index = 0;
|
if( _clock_index >= size() ) _clock_index = 0;
|
||||||
Node *b = at(_clock_index);
|
Node *b = at(_clock_index);
|
||||||
map( _clock_index++, Node_List::pop());
|
map( _clock_index, Node_List::pop());
|
||||||
|
if (size() != 0) _clock_index++; // Always start from 0
|
||||||
_in_worklist >>= b->_idx;
|
_in_worklist >>= b->_idx;
|
||||||
return b;
|
return b;
|
||||||
}
|
}
|
||||||
|
|
|
@ -34,7 +34,7 @@ static bool is_single_register(uint x) {
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
//------------------------------may_be_copy_of_callee-----------------------------
|
//---------------------------may_be_copy_of_callee-----------------------------
|
||||||
// Check to see if we can possibly be a copy of a callee-save value.
|
// Check to see if we can possibly be a copy of a callee-save value.
|
||||||
bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
|
bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
|
||||||
// Short circuit if there are no callee save registers
|
// Short circuit if there are no callee save registers
|
||||||
|
@ -225,6 +225,20 @@ int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &v
|
||||||
|
|
||||||
// Scan all registers to see if this value is around already
|
// Scan all registers to see if this value is around already
|
||||||
for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
|
for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
|
||||||
|
if (reg == (uint)nk_reg) {
|
||||||
|
// Found ourselves so check if there is only one user of this
|
||||||
|
// copy and keep on searching for a better copy if so.
|
||||||
|
bool ignore_self = true;
|
||||||
|
x = n->in(k);
|
||||||
|
DUIterator_Fast imax, i = x->fast_outs(imax);
|
||||||
|
Node* first = x->fast_out(i); i++;
|
||||||
|
while (i < imax && ignore_self) {
|
||||||
|
Node* use = x->fast_out(i); i++;
|
||||||
|
if (use != first) ignore_self = false;
|
||||||
|
}
|
||||||
|
if (ignore_self) continue;
|
||||||
|
}
|
||||||
|
|
||||||
Node *vv = value[reg];
|
Node *vv = value[reg];
|
||||||
if( !single ) { // Doubles check for aligned-adjacent pair
|
if( !single ) { // Doubles check for aligned-adjacent pair
|
||||||
if( (reg&1)==0 ) continue; // Wrong half of a pair
|
if( (reg&1)==0 ) continue; // Wrong half of a pair
|
||||||
|
|
|
@ -206,6 +206,14 @@ Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
|
||||||
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
|
||||||
return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
|
return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
|
||||||
|
|
||||||
|
// Convert "(A+X) - (X+B)" into "A - B"
|
||||||
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
|
||||||
|
return new (phase->C, 3) SubINode( in1->in(1), in2->in(2) );
|
||||||
|
|
||||||
|
// Convert "(X+A) - (B+X)" into "A - B"
|
||||||
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
|
||||||
|
return new (phase->C, 3) SubINode( in1->in(2), in2->in(1) );
|
||||||
|
|
||||||
// Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
|
// Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
|
||||||
// nicer to optimize than subtract.
|
// nicer to optimize than subtract.
|
||||||
if( op2 == Op_SubI && in2->outcnt() == 1) {
|
if( op2 == Op_SubI && in2->outcnt() == 1) {
|
||||||
|
|
|
@ -997,6 +997,12 @@ class CommandLineFlags {
|
||||||
product(bool, UseXmmI2F, false, \
|
product(bool, UseXmmI2F, false, \
|
||||||
"Use SSE2 CVTDQ2PS instruction to convert Integer to Float") \
|
"Use SSE2 CVTDQ2PS instruction to convert Integer to Float") \
|
||||||
\
|
\
|
||||||
|
product(bool, UseXMMForArrayCopy, false, \
|
||||||
|
"Use SSE2 MOVQ instruction for Arraycopy") \
|
||||||
|
\
|
||||||
|
product(bool, UseUnalignedLoadStores, false, \
|
||||||
|
"Use SSE2 MOVDQU instruction for Arraycopy") \
|
||||||
|
\
|
||||||
product(intx, FieldsAllocationStyle, 1, \
|
product(intx, FieldsAllocationStyle, 1, \
|
||||||
"0 - type based with oops first, 1 - with oops last") \
|
"0 - type based with oops first, 1 - with oops last") \
|
||||||
\
|
\
|
||||||
|
@ -2555,7 +2561,7 @@ class CommandLineFlags {
|
||||||
develop(intx, MaxRecursiveInlineLevel, 1, \
|
develop(intx, MaxRecursiveInlineLevel, 1, \
|
||||||
"maximum number of nested recursive calls that are inlined") \
|
"maximum number of nested recursive calls that are inlined") \
|
||||||
\
|
\
|
||||||
develop(intx, InlineSmallCode, 1000, \
|
product(intx, InlineSmallCode, 1000, \
|
||||||
"Only inline already compiled methods if their code size is " \
|
"Only inline already compiled methods if their code size is " \
|
||||||
"less than this") \
|
"less than this") \
|
||||||
\
|
\
|
||||||
|
|
|
@ -29,6 +29,8 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
public class Test6700047 {
|
public class Test6700047 {
|
||||||
|
static byte[] dummy = new byte[256];
|
||||||
|
|
||||||
public static void main(String[] args) {
|
public static void main(String[] args) {
|
||||||
for (int i = 0; i < 100000; i++) {
|
for (int i = 0; i < 100000; i++) {
|
||||||
intToLeftPaddedAsciiBytes();
|
intToLeftPaddedAsciiBytes();
|
||||||
|
@ -53,6 +55,7 @@ public class Test6700047 {
|
||||||
if (offset > 0) {
|
if (offset > 0) {
|
||||||
for(int j = 0; j < offset; j++) {
|
for(int j = 0; j < offset; j++) {
|
||||||
result++;
|
result++;
|
||||||
|
dummy[i] = 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue