mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-28 15:24:43 +02:00
7158457: division by zero in adaptiveweightedaverage
Add ceiling to AdaptiveWeightedAverage Reviewed-by: ysr, iveresov
This commit is contained in:
parent
17b26a6a0c
commit
c23595da74
2 changed files with 24 additions and 8 deletions
|
@ -31,9 +31,15 @@ float AdaptiveWeightedAverage::compute_adaptive_average(float new_sample,
|
|||
float average) {
|
||||
// We smooth the samples by not using weight() directly until we've
|
||||
// had enough data to make it meaningful. We'd like the first weight
|
||||
// used to be 1, the second to be 1/2, etc until we have 100/weight
|
||||
// samples.
|
||||
unsigned count_weight = 100/count();
|
||||
// used to be 1, the second to be 1/2, etc until we have
|
||||
// OLD_THRESHOLD/weight samples.
|
||||
unsigned count_weight = 0;
|
||||
|
||||
// Avoid division by zero if the counter wraps (7158457)
|
||||
if (!is_old()) {
|
||||
count_weight = OLD_THRESHOLD/count();
|
||||
}
|
||||
|
||||
unsigned adaptive_weight = (MAX2(weight(), count_weight));
|
||||
|
||||
float new_avg = exp_avg(average, new_sample, adaptive_weight);
|
||||
|
@ -43,8 +49,6 @@ float AdaptiveWeightedAverage::compute_adaptive_average(float new_sample,
|
|||
|
||||
void AdaptiveWeightedAverage::sample(float new_sample) {
|
||||
increment_count();
|
||||
assert(count() != 0,
|
||||
"Wraparound -- history would be incorrectly discarded");
|
||||
|
||||
// Compute the new weighted average
|
||||
float new_avg = compute_adaptive_average(new_sample, average());
|
||||
|
|
|
@ -50,11 +50,20 @@ class AdaptiveWeightedAverage : public CHeapObj {
|
|||
unsigned _weight; // The weight used to smooth the averages
|
||||
// A higher weight favors the most
|
||||
// recent data.
|
||||
bool _is_old; // Has enough historical data
|
||||
|
||||
const static unsigned OLD_THRESHOLD = 100;
|
||||
|
||||
protected:
|
||||
float _last_sample; // The last value sampled.
|
||||
|
||||
void increment_count() { _sample_count++; }
|
||||
void increment_count() {
|
||||
_sample_count++;
|
||||
if (!_is_old && _sample_count > OLD_THRESHOLD) {
|
||||
_is_old = true;
|
||||
}
|
||||
}
|
||||
|
||||
void set_average(float avg) { _average = avg; }
|
||||
|
||||
// Helper function, computes an adaptive weighted average
|
||||
|
@ -64,13 +73,15 @@ class AdaptiveWeightedAverage : public CHeapObj {
|
|||
public:
|
||||
// Input weight must be between 0 and 100
|
||||
AdaptiveWeightedAverage(unsigned weight, float avg = 0.0) :
|
||||
_average(avg), _sample_count(0), _weight(weight), _last_sample(0.0) {
|
||||
_average(avg), _sample_count(0), _weight(weight), _last_sample(0.0),
|
||||
_is_old(false) {
|
||||
}
|
||||
|
||||
void clear() {
|
||||
_average = 0;
|
||||
_sample_count = 0;
|
||||
_last_sample = 0;
|
||||
_is_old = false;
|
||||
}
|
||||
|
||||
// Useful for modifying static structures after startup.
|
||||
|
@ -84,7 +95,8 @@ class AdaptiveWeightedAverage : public CHeapObj {
|
|||
float average() const { return _average; }
|
||||
unsigned weight() const { return _weight; }
|
||||
unsigned count() const { return _sample_count; }
|
||||
float last_sample() const { return _last_sample; }
|
||||
float last_sample() const { return _last_sample; }
|
||||
bool is_old() const { return _is_old; }
|
||||
|
||||
// Update data with a new sample.
|
||||
void sample(float new_sample);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue