8190974: Parallel stream execution within a custom ForkJoinPool should obey the parallelism

Reviewed-by: martin, tvaleev
This commit is contained in:
Paul Sandoz 2017-11-08 10:27:10 -08:00
parent 1644953c27
commit cc59ccb7d4
4 changed files with 179 additions and 15 deletions

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,6 +27,7 @@ package java.util.stream;
import java.util.Spliterator;
import java.util.concurrent.CountedCompleter;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinWorkerThread;
/**
* Abstract base class for most fork-join tasks used to implement stream ops.
@ -88,13 +89,7 @@ abstract class AbstractTask<P_IN, P_OUT, R,
K extends AbstractTask<P_IN, P_OUT, R, K>>
extends CountedCompleter<R> {
/**
* Default target factor of leaf tasks for parallel decomposition.
* To allow load balancing, we over-partition, currently to approximately
* four tasks per processor, which enables others to help out
* if leaf tasks are uneven or some processors are otherwise busy.
*/
static final int LEAF_TARGET = ForkJoinPool.getCommonPoolParallelism() << 2;
private static final int LEAF_TARGET = ForkJoinPool.getCommonPoolParallelism() << 2;
/** The pipeline helper, common to all tasks in a computation */
protected final PipelineHelper<P_OUT> helper;
@ -156,6 +151,22 @@ abstract class AbstractTask<P_IN, P_OUT, R,
this.targetSize = parent.targetSize;
}
/**
* Default target of leaf tasks for parallel decomposition.
* To allow load balancing, we over-partition, currently to approximately
* four tasks per processor, which enables others to help out
* if leaf tasks are uneven or some processors are otherwise busy.
*/
public static int getLeafTarget() {
Thread t = Thread.currentThread();
if (t instanceof ForkJoinWorkerThread) {
return ((ForkJoinWorkerThread) t).getPool().getParallelism() << 2;
}
else {
return LEAF_TARGET;
}
}
/**
* Constructs a new node of type T whose parent is the receiver; must call
* the AbstractTask(T, Spliterator) constructor with the receiver and the
@ -181,7 +192,7 @@ abstract class AbstractTask<P_IN, P_OUT, R,
* @return suggested target leaf size
*/
public static long suggestTargetSize(long sizeEstimate) {
long est = sizeEstimate / LEAF_TARGET;
long est = sizeEstimate / getLeafTarget();
return est > 0L ? est : 1L;
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -28,7 +28,6 @@ import java.util.Objects;
import java.util.Spliterator;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.CountedCompleter;
import java.util.concurrent.ForkJoinTask;
import java.util.function.Consumer;
import java.util.function.DoubleConsumer;
import java.util.function.IntConsumer;
@ -378,7 +377,7 @@ final class ForEachOps {
this.spliterator = spliterator;
this.targetSize = AbstractTask.suggestTargetSize(spliterator.estimateSize());
// Size map to avoid concurrent re-sizes
this.completionMap = new ConcurrentHashMap<>(Math.max(16, AbstractTask.LEAF_TARGET << 1));
this.completionMap = new ConcurrentHashMap<>(Math.max(16, AbstractTask.getLeafTarget() << 1));
this.action = action;
this.leftPredecessor = null;
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -897,7 +897,7 @@ class StreamSpliterators {
* Note: The source spliterator may report {@code ORDERED} since that
* spliterator be the result of a previous pipeline stage that was
* collected to a {@code Node}. It is the order of the pipeline stage
* that governs whether the this slice spliterator is to be used or not.
* that governs whether this slice spliterator is to be used or not.
*/
abstract static class UnorderedSliceSpliterator<T, T_SPLITR extends Spliterator<T>> {
static final int CHUNK_SIZE = 1 << 7;
@ -914,7 +914,7 @@ class StreamSpliterators {
this.unlimited = limit < 0;
this.skipThreshold = limit >= 0 ? limit : 0;
this.chunkSize = limit >= 0 ? (int)Math.min(CHUNK_SIZE,
((skip + limit) / AbstractTask.LEAF_TARGET) + 1) : CHUNK_SIZE;
((skip + limit) / AbstractTask.getLeafTarget()) + 1) : CHUNK_SIZE;
this.permits = new AtomicLong(limit >= 0 ? skip + limit : skip);
}