8237143: Eliminate DirtyCardQ_cbl_mon

Replace locked data structures with lock-free data structures.

Reviewed-by: tschatzl, sangheki
This commit is contained in:
Kim Barrett 2020-02-06 19:09:07 -05:00
parent e37a6aed88
commit ccbd819a01
10 changed files with 569 additions and 198 deletions

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -36,7 +36,6 @@
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/thread.inline.hpp"
#include "utilities/macros.hpp"
@ -59,7 +58,7 @@ G1BarrierSet::G1BarrierSet(G1CardTable* card_table) :
_satb_mark_queue_buffer_allocator("SATB Buffer Allocator", G1SATBBufferSize),
_dirty_card_queue_buffer_allocator("DC Buffer Allocator", G1UpdateBufferSize),
_satb_mark_queue_set(&_satb_mark_queue_buffer_allocator),
_dirty_card_queue_set(DirtyCardQ_CBL_mon, &_dirty_card_queue_buffer_allocator),
_dirty_card_queue_set(&_dirty_card_queue_buffer_allocator),
_shared_dirty_card_queue(&_dirty_card_queue_set)
{}

View file

@ -2776,8 +2776,6 @@ size_t G1CollectedHeap::pending_card_num() {
Threads::threads_do(&count_from_threads);
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
dcqs.verify_num_cards();
return dcqs.num_cards() + count_from_threads._cards;
}

View file

@ -89,6 +89,11 @@ jint G1ConcurrentRefineThreadControl::initialize(G1ConcurrentRefine* cr, uint nu
}
}
}
if (num_max_threads > 0) {
G1BarrierSet::dirty_card_queue_set().set_primary_refinement_thread(_threads[0]);
}
return JNI_OK;
}
@ -108,7 +113,7 @@ void G1ConcurrentRefineThreadControl::maybe_activate_next(uint cur_worker_id) {
_threads[worker_id] = create_refinement_thread(worker_id, false);
thread_to_activate = _threads[worker_id];
}
if (thread_to_activate != NULL && !thread_to_activate->is_active()) {
if (thread_to_activate != NULL) {
thread_to_activate->activate();
}
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -29,9 +29,8 @@
#include "gc/g1/g1DirtyCardQueue.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "logging/log.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/atomic.hpp"
#include "runtime/thread.hpp"
G1ConcurrentRefineThread::G1ConcurrentRefineThread(G1ConcurrentRefine* cr, uint worker_id) :
ConcurrentGCThread(),
@ -40,56 +39,53 @@ G1ConcurrentRefineThread::G1ConcurrentRefineThread(G1ConcurrentRefine* cr, uint
_total_refinement_time(),
_total_refined_cards(0),
_worker_id(worker_id),
_active(false),
_monitor(NULL),
_notifier(new Semaphore(0)),
_should_notify(true),
_cr(cr)
{
// Each thread has its own monitor. The i-th thread is responsible for signaling
// to thread i+1 if the number of buffers in the queue exceeds a threshold for this
// thread. Monitors are also used to wake up the threads during termination.
// The 0th (primary) worker is notified by mutator threads and has a special monitor.
if (!is_primary()) {
_monitor = new Monitor(Mutex::nonleaf, "Refinement monitor", true,
Monitor::_safepoint_check_never);
} else {
_monitor = DirtyCardQ_CBL_mon;
}
// set name
set_name("G1 Refine#%d", worker_id);
create_and_start();
}
void G1ConcurrentRefineThread::wait_for_completed_buffers() {
MonitorLocker ml(_monitor, Mutex::_no_safepoint_check_flag);
while (!should_terminate() && !is_active()) {
ml.wait();
assert(this == Thread::current(), "precondition");
while (Atomic::load_acquire(&_should_notify)) {
_notifier->wait();
}
}
bool G1ConcurrentRefineThread::is_active() {
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
return is_primary() ? dcqs.process_completed_buffers() : _active;
}
void G1ConcurrentRefineThread::activate() {
MutexLocker x(_monitor, Mutex::_no_safepoint_check_flag);
if (!is_primary()) {
set_active(true);
} else {
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
dcqs.set_process_completed_buffers(true);
assert(this != Thread::current(), "precondition");
// Notify iff transitioning from needing activation to not. This helps
// keep the semaphore count bounded and minimizes the work done by
// activators when the thread is already active.
if (Atomic::load_acquire(&_should_notify) &&
Atomic::cmpxchg(&_should_notify, true, false)) {
_notifier->signal();
}
_monitor->notify();
}
void G1ConcurrentRefineThread::deactivate() {
MutexLocker x(_monitor, Mutex::_no_safepoint_check_flag);
if (!is_primary()) {
set_active(false);
bool G1ConcurrentRefineThread::maybe_deactivate(bool more_work) {
assert(this == Thread::current(), "precondition");
if (more_work) {
// Suppress unnecessary notifications.
Atomic::release_store(&_should_notify, false);
return false;
} else if (Atomic::load_acquire(&_should_notify)) {
// Deactivate if no notifications since enabled (see below).
return true;
} else {
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
dcqs.set_process_completed_buffers(false);
// Try for more refinement work with notifications enabled, to close
// race; there could be a plethora of suppressed activation attempts
// after we found no work but before we enable notifications here
// (so there could be lots of work for this thread to do), followed
// by a long time without activation after enabling notifications.
// But first, clear any pending signals to prevent accumulation.
while (_notifier->trywait()) {}
Atomic::release_store(&_should_notify, true);
return false;
}
}
@ -119,14 +115,13 @@ void G1ConcurrentRefineThread::run_service() {
}
Ticks start_time = Ticks::now();
if (!_cr->do_refinement_step(_worker_id, &_total_refined_cards)) {
break; // No cards to process.
}
bool more_work = _cr->do_refinement_step(_worker_id, &_total_refined_cards);
_total_refinement_time += (Ticks::now() - start_time);
if (maybe_deactivate(more_work)) break;
}
}
deactivate();
log_debug(gc, refine)("Deactivated worker %d, off threshold: " SIZE_FORMAT
", current: " SIZE_FORMAT ", refined cards: "
SIZE_FORMAT ", total refined cards: " SIZE_FORMAT,
@ -146,6 +141,5 @@ void G1ConcurrentRefineThread::run_service() {
}
void G1ConcurrentRefineThread::stop_service() {
MutexLocker x(_monitor, Mutex::_no_safepoint_check_flag);
_monitor->notify();
activate();
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -45,24 +45,33 @@ class G1ConcurrentRefineThread: public ConcurrentGCThread {
uint _worker_id;
bool _active;
Monitor* _monitor;
// _notifier and _should_notify form a single-reader / multi-writer
// notification mechanism. The owning concurrent refinement thread is the
// single reader. The writers are (other) threads that call activate() on
// the thread. The i-th concurrent refinement thread is responsible for
// activating thread i+1 if the number of buffers in the queue exceeds a
// threshold for that i+1th thread. The 0th (primary) thread is activated
// by threads that add cards to the dirty card queue set when the primary
// thread's threshold is exceeded. activate() is also used to wake up the
// threads during termination, so even the non-primary thread case is
// multi-writer.
Semaphore* _notifier;
volatile bool _should_notify;
// Called when no refinement work found for this thread.
// Returns true if should deactivate.
bool maybe_deactivate(bool more_work);
G1ConcurrentRefine* _cr;
void wait_for_completed_buffers();
void set_active(bool x) { _active = x; }
// Deactivate this thread.
void deactivate();
virtual void run_service();
virtual void stop_service();
bool is_primary() { return (_worker_id == 0); }
void run_service();
void stop_service();
public:
G1ConcurrentRefineThread(G1ConcurrentRefine* cg1r, uint worker_id);
bool is_active();
// Activate this thread.
void activate();

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -26,6 +26,7 @@
#include "gc/g1/g1BufferNodeList.hpp"
#include "gc/g1/g1CardTableEntryClosure.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentRefineThread.hpp"
#include "gc/g1/g1DirtyCardQueue.hpp"
#include "gc/g1/g1FreeIdSet.hpp"
#include "gc/g1/g1RedirtyCardsQueue.hpp"
@ -33,15 +34,14 @@
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "gc/shared/workgroup.hpp"
#include "memory/iterator.hpp"
#include "runtime/flags/flagSetting.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/atomic.hpp"
#include "runtime/os.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadSMR.hpp"
#include "utilities/globalCounter.inline.hpp"
#include "utilities/macros.hpp"
#include "utilities/quickSort.hpp"
G1DirtyCardQueue::G1DirtyCardQueue(G1DirtyCardQueueSet* qset) :
@ -68,18 +68,16 @@ void G1DirtyCardQueue::handle_completed_buffer() {
// Assumed to be zero by concurrent threads.
static uint par_ids_start() { return 0; }
G1DirtyCardQueueSet::G1DirtyCardQueueSet(Monitor* cbl_mon,
BufferNode::Allocator* allocator) :
G1DirtyCardQueueSet::G1DirtyCardQueueSet(BufferNode::Allocator* allocator) :
PtrQueueSet(allocator),
_cbl_mon(cbl_mon),
_completed_buffers_head(NULL),
_completed_buffers_tail(NULL),
_primary_refinement_thread(NULL),
_num_cards(0),
_completed(),
_paused(),
_free_ids(par_ids_start(), num_par_ids()),
_process_cards_threshold(ProcessCardsThresholdNever),
_process_completed_buffers(false),
_max_cards(MaxCardsUnlimited),
_max_cards_padding(0),
_free_ids(par_ids_start(), num_par_ids()),
_mutator_refined_cards_counters(NEW_C_HEAP_ARRAY(size_t, num_par_ids(), mtGC))
{
::memset(_mutator_refined_cards_counters, 0, num_par_ids() * sizeof(size_t));
@ -108,75 +106,304 @@ void G1DirtyCardQueueSet::handle_zero_index_for_thread(Thread* t) {
G1ThreadLocalData::dirty_card_queue(t).handle_zero_index();
}
void G1DirtyCardQueueSet::enqueue_completed_buffer(BufferNode* cbn) {
MonitorLocker ml(_cbl_mon, Mutex::_no_safepoint_check_flag);
cbn->set_next(NULL);
if (_completed_buffers_tail == NULL) {
assert(_completed_buffers_head == NULL, "Well-formedness");
_completed_buffers_head = cbn;
_completed_buffers_tail = cbn;
} else {
_completed_buffers_tail->set_next(cbn);
_completed_buffers_tail = cbn;
#ifdef ASSERT
G1DirtyCardQueueSet::Queue::~Queue() {
assert(_head == NULL, "precondition");
assert(_tail == NULL, "precondition");
}
_num_cards += buffer_size() - cbn->index();
#endif // ASSERT
if (!process_completed_buffers() &&
(num_cards() > process_cards_threshold())) {
set_process_completed_buffers(true);
ml.notify_all();
BufferNode* G1DirtyCardQueueSet::Queue::top() const {
return Atomic::load(&_head);
}
// An append operation atomically exchanges the new tail with the queue tail.
// It then sets the "next" value of the old tail to the head of the list being
// appended; it is an invariant that the old tail's "next" value is NULL.
// But if the old tail is NULL then the queue was empty. In this case the
// head of the list being appended is instead stored in the queue head; it is
// an invariant that the queue head is NULL in this case.
//
// This means there is a period between the exchange and the old tail update
// where the queue sequence is split into two parts, the list from the queue
// head to the old tail, and the list being appended. If there are concurrent
// push/append operations, each may introduce another such segment. But they
// all eventually get resolved by their respective updates of their old tail's
// "next" value. This also means that pop operations must handle a buffer
// with a NULL "next" value specially.
//
// A push operation is just a degenerate append, where the buffer being pushed
// is both the head and the tail of the list being appended.
void G1DirtyCardQueueSet::Queue::append(BufferNode& first, BufferNode& last) {
assert(last.next() == NULL, "precondition");
BufferNode* old_tail = Atomic::xchg(&_tail, &last);
if (old_tail == NULL) { // Was empty.
assert(Atomic::load(&_head) == NULL, "invariant");
Atomic::store(&_head, &first);
} else {
assert(old_tail->next() == NULL, "invariant");
old_tail->set_next(&first);
}
}
// pop gets the queue head as the candidate result (returning NULL if the
// queue head was NULL), and then gets that result node's "next" value. If
// that "next" value is NULL and the queue head hasn't changed, then there
// is only one element in the accessible part of the list (the sequence from
// head to a node with a NULL "next" value). We can't return that element,
// because it may be the old tail of a concurrent push/append that has not
// yet had its "next" field set to the new tail. So return NULL in this case.
// Otherwise, attempt to cmpxchg that "next" value into the queue head,
// retrying the whole operation if that fails. This is the "usual" lock-free
// pop from the head of a singly linked list, with the additional restriction
// on taking the last element.
BufferNode* G1DirtyCardQueueSet::Queue::pop() {
Thread* current_thread = Thread::current();
while (true) {
// Use a critical section per iteration, rather than over the whole
// operation. We're not guaranteed to make progress, because of possible
// contention on the queue head. Lingering in one CS the whole time could
// lead to excessive allocation of buffers, because the CS blocks return
// of released buffers to the free list for reuse.
GlobalCounter::CriticalSection cs(current_thread);
BufferNode* result = Atomic::load_acquire(&_head);
// Check for empty queue. Only needs to be done on first iteration,
// since we never take the last element, but it's messy to make use
// of that and we expect one iteration to be the common case.
if (result == NULL) return NULL;
BufferNode* next = Atomic::load_acquire(BufferNode::next_ptr(*result));
if (next != NULL) {
next = Atomic::cmpxchg(&_head, result, next);
if (next == result) {
// Former head successfully taken; it is not the last.
assert(Atomic::load(&_tail) != result, "invariant");
assert(result->next() != NULL, "invariant");
result->set_next(NULL);
return result;
}
// cmpxchg failed; try again.
} else if (result == Atomic::load_acquire(&_head)) {
// If follower of head is NULL and head hasn't changed, then only
// the one element is currently accessible. We don't take the last
// accessible element, because there may be a concurrent add using it.
// The check for unchanged head isn't needed for correctness, but the
// retry on change may sometimes let us get a buffer after all.
return NULL;
}
// Head changed; try again.
}
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::Queue::take_all() {
assert_at_safepoint();
HeadTail result(Atomic::load(&_head), Atomic::load(&_tail));
Atomic::store(&_head, (BufferNode*)NULL);
Atomic::store(&_tail, (BufferNode*)NULL);
return result;
}
void G1DirtyCardQueueSet::enqueue_completed_buffer(BufferNode* cbn) {
assert(cbn != NULL, "precondition");
// Increment _num_cards before adding to queue, so queue removal doesn't
// need to deal with _num_cards possibly going negative.
size_t new_num_cards = Atomic::add(&_num_cards, buffer_size() - cbn->index());
_completed.push(*cbn);
if ((new_num_cards > process_cards_threshold()) &&
(_primary_refinement_thread != NULL)) {
_primary_refinement_thread->activate();
}
verify_num_cards();
}
BufferNode* G1DirtyCardQueueSet::get_completed_buffer(size_t stop_at) {
MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
enqueue_previous_paused_buffers();
if (num_cards() <= stop_at) {
// Check for insufficient cards to satisfy request. We only do this once,
// up front, rather than on each iteration below, since the test is racy
// regardless of when we do it.
if (Atomic::load_acquire(&_num_cards) <= stop_at) {
return NULL;
}
assert(num_cards() > 0, "invariant");
assert(_completed_buffers_head != NULL, "invariant");
assert(_completed_buffers_tail != NULL, "invariant");
BufferNode* bn = _completed_buffers_head;
_num_cards -= buffer_size() - bn->index();
_completed_buffers_head = bn->next();
if (_completed_buffers_head == NULL) {
assert(num_cards() == 0, "invariant");
_completed_buffers_tail = NULL;
set_process_completed_buffers(false);
BufferNode* result = _completed.pop();
if (result != NULL) {
Atomic::sub(&_num_cards, buffer_size() - result->index());
}
verify_num_cards();
bn->set_next(NULL);
return bn;
return result;
}
#ifdef ASSERT
void G1DirtyCardQueueSet::verify_num_cards() const {
size_t actual = 0;
BufferNode* cur = _completed_buffers_head;
while (cur != NULL) {
BufferNode* cur = _completed.top();
for ( ; cur != NULL; cur = cur->next()) {
actual += buffer_size() - cur->index();
cur = cur->next();
}
assert(actual == _num_cards,
assert(actual == Atomic::load(&_num_cards),
"Num entries in completed buffers should be " SIZE_FORMAT " but are " SIZE_FORMAT,
_num_cards, actual);
Atomic::load(&_num_cards), actual);
}
#endif // ASSERT
G1DirtyCardQueueSet::PausedBuffers::PausedList::PausedList() :
_head(NULL), _tail(NULL),
_safepoint_id(SafepointSynchronize::safepoint_id())
{}
#ifdef ASSERT
G1DirtyCardQueueSet::PausedBuffers::PausedList::~PausedList() {
assert(Atomic::load(&_head) == NULL, "precondition");
assert(_tail == NULL, "precondition");
}
#endif // ASSERT
bool G1DirtyCardQueueSet::PausedBuffers::PausedList::is_next() const {
assert_not_at_safepoint();
return _safepoint_id == SafepointSynchronize::safepoint_id();
}
void G1DirtyCardQueueSet::PausedBuffers::PausedList::add(BufferNode* node) {
assert_not_at_safepoint();
assert(is_next(), "precondition");
BufferNode* old_head = Atomic::xchg(&_head, node);
if (old_head == NULL) {
assert(_tail == NULL, "invariant");
_tail = node;
} else {
node->set_next(old_head);
}
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::PausedList::take() {
BufferNode* head = Atomic::load(&_head);
BufferNode* tail = _tail;
Atomic::store(&_head, (BufferNode*)NULL);
_tail = NULL;
return HeadTail(head, tail);
}
G1DirtyCardQueueSet::PausedBuffers::PausedBuffers() : _plist(NULL) {}
#ifdef ASSERT
G1DirtyCardQueueSet::PausedBuffers::~PausedBuffers() {
assert(is_empty(), "invariant");
}
#endif // ASSERT
bool G1DirtyCardQueueSet::PausedBuffers::is_empty() const {
return Atomic::load(&_plist) == NULL;
}
void G1DirtyCardQueueSet::PausedBuffers::add(BufferNode* node) {
assert_not_at_safepoint();
PausedList* plist = Atomic::load_acquire(&_plist);
if (plist != NULL) {
// Already have a next list, so use it. We know it's a next list because
// of the precondition that take_previous() has already been called.
assert(plist->is_next(), "invariant");
} else {
// Try to install a new next list.
plist = new PausedList();
PausedList* old_plist = Atomic::cmpxchg(&_plist, (PausedList*)NULL, plist);
if (old_plist != NULL) {
// Some other thread installed a new next list. Use it instead.
delete plist;
plist = old_plist;
}
}
plist->add(node);
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::take_previous() {
assert_not_at_safepoint();
PausedList* previous;
{
// Deal with plist in a critical section, to prevent it from being
// deleted out from under us by a concurrent take_previous().
GlobalCounter::CriticalSection cs(Thread::current());
previous = Atomic::load_acquire(&_plist);
if ((previous == NULL) || // Nothing to take.
previous->is_next() || // Not from a previous safepoint.
// Some other thread stole it.
(Atomic::cmpxchg(&_plist, previous, (PausedList*)NULL) != previous)) {
return HeadTail();
}
}
// We now own previous.
HeadTail result = previous->take();
// There might be other threads examining previous (in concurrent
// take_previous()). Synchronize to wait until any such threads are
// done with such examination before deleting.
GlobalCounter::write_synchronize();
delete previous;
return result;
}
G1DirtyCardQueueSet::HeadTail G1DirtyCardQueueSet::PausedBuffers::take_all() {
assert_at_safepoint();
HeadTail result;
PausedList* plist = Atomic::load(&_plist);
if (plist != NULL) {
Atomic::store(&_plist, (PausedList*)NULL);
result = plist->take();
delete plist;
}
return result;
}
void G1DirtyCardQueueSet::record_paused_buffer(BufferNode* node) {
assert_not_at_safepoint();
assert(node->next() == NULL, "precondition");
// Cards for paused buffers are included in count, to contribute to
// notification checking after the coming safepoint if it doesn't GC.
// Note that this means the queue's _num_cards differs from the number
// of cards in the queued buffers when there are paused buffers.
Atomic::add(&_num_cards, buffer_size() - node->index());
_paused.add(node);
}
void G1DirtyCardQueueSet::enqueue_paused_buffers_aux(const HeadTail& paused) {
if (paused._head != NULL) {
assert(paused._tail != NULL, "invariant");
// Cards from paused buffers are already recorded in the queue count.
_completed.append(*paused._head, *paused._tail);
}
}
void G1DirtyCardQueueSet::enqueue_previous_paused_buffers() {
assert_not_at_safepoint();
// The fast-path still satisfies the precondition for record_paused_buffer
// and PausedBuffers::add, even with a racy test. If there are paused
// buffers from a previous safepoint, is_empty() will return false; there
// will have been a safepoint between recording and test, so there can't be
// a false negative (is_empty() returns true) while such buffers are present.
// If is_empty() is false, there are two cases:
//
// (1) There were paused buffers from a previous safepoint. A concurrent
// caller may take and enqueue them first, but that's okay; the precondition
// for a possible later record_paused_buffer by this thread will still hold.
//
// (2) There are paused buffers for a requested next safepoint.
//
// In each of those cases some effort may be spent detecting and dealing
// with those circumstances; any wasted effort in such cases is expected to
// be well compensated by the fast path.
if (!_paused.is_empty()) {
enqueue_paused_buffers_aux(_paused.take_previous());
}
}
void G1DirtyCardQueueSet::enqueue_all_paused_buffers() {
assert_at_safepoint();
enqueue_paused_buffers_aux(_paused.take_all());
}
#endif
void G1DirtyCardQueueSet::abandon_completed_buffers() {
BufferNode* buffers_to_delete = NULL;
{
MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
buffers_to_delete = _completed_buffers_head;
_completed_buffers_head = NULL;
_completed_buffers_tail = NULL;
_num_cards = 0;
set_process_completed_buffers(false);
}
enqueue_all_paused_buffers();
verify_num_cards();
G1BufferNodeList list = take_all_completed_buffers();
BufferNode* buffers_to_delete = list._head;
while (buffers_to_delete != NULL) {
BufferNode* bn = buffers_to_delete;
buffers_to_delete = bn->next();
@ -186,46 +413,30 @@ void G1DirtyCardQueueSet::abandon_completed_buffers() {
}
void G1DirtyCardQueueSet::notify_if_necessary() {
MonitorLocker ml(_cbl_mon, Mutex::_no_safepoint_check_flag);
if (num_cards() > process_cards_threshold()) {
set_process_completed_buffers(true);
ml.notify_all();
if ((_primary_refinement_thread != NULL) &&
(num_cards() > process_cards_threshold())) {
_primary_refinement_thread->activate();
}
}
// Merge lists of buffers. Notify the processing threads.
// The source queue is emptied as a result. The queues
// must share the monitor.
// Merge lists of buffers. The source queue set is emptied as a
// result. The queue sets must share the same allocator.
void G1DirtyCardQueueSet::merge_bufferlists(G1RedirtyCardsQueueSet* src) {
assert(allocator() == src->allocator(), "precondition");
const G1BufferNodeList from = src->take_all_completed_buffers();
if (from._head == NULL) return;
MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
if (_completed_buffers_tail == NULL) {
assert(_completed_buffers_head == NULL, "Well-formedness");
_completed_buffers_head = from._head;
_completed_buffers_tail = from._tail;
} else {
assert(_completed_buffers_head != NULL, "Well formedness");
_completed_buffers_tail->set_next(from._head);
_completed_buffers_tail = from._tail;
if (from._head != NULL) {
Atomic::add(&_num_cards, from._entry_count);
_completed.append(*from._head, *from._tail);
}
_num_cards += from._entry_count;
assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL ||
_completed_buffers_head != NULL && _completed_buffers_tail != NULL,
"Sanity");
verify_num_cards();
}
G1BufferNodeList G1DirtyCardQueueSet::take_all_completed_buffers() {
MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
G1BufferNodeList result(_completed_buffers_head, _completed_buffers_tail, _num_cards);
_completed_buffers_head = NULL;
_completed_buffers_tail = NULL;
_num_cards = 0;
return result;
enqueue_all_paused_buffers();
verify_num_cards();
HeadTail buffers = _completed.take_all();
size_t num_cards = Atomic::load(&_num_cards);
Atomic::store(&_num_cards, size_t(0));
return G1BufferNodeList(buffers._head, buffers._tail, num_cards);
}
class G1RefineBufferedCards : public StackObj {
@ -368,14 +579,20 @@ bool G1DirtyCardQueueSet::refine_buffer(BufferNode* node,
bool G1DirtyCardQueueSet::process_or_enqueue_completed_buffer(BufferNode* node) {
if (Thread::current()->is_Java_thread()) {
// If the number of buffers exceeds the limit, make this Java
// thread do the processing itself. We don't lock to access
// buffer count or padding; it is fine to be imprecise here. The
// add of padding could overflow, which is treated as unlimited.
// thread do the processing itself. Calculation is racy but we
// don't need precision here. The add of padding could overflow,
// which is treated as unlimited.
size_t limit = max_cards() + max_cards_padding();
if ((num_cards() > limit) && (limit >= max_cards())) {
if (mut_process_buffer(node)) {
return true;
}
// Buffer was incompletely processed because of a pending safepoint
// request. Unlike with refinement thread processing, for mutator
// processing the buffer did not come from the completed buffer queue,
// so it is okay to add it to the queue rather than to the paused set.
// Indeed, it can't be added to the paused set because we didn't pass
// through enqueue_previous_paused_buffers.
}
}
enqueue_completed_buffer(node);
@ -407,14 +624,15 @@ bool G1DirtyCardQueueSet::refine_completed_buffer_concurrently(uint worker_id,
deallocate_buffer(node);
return true;
} else {
// Return partially processed buffer to the queue.
enqueue_completed_buffer(node);
// Buffer incompletely processed because there is a pending safepoint.
// Record partially processed buffer, to be finished later.
record_paused_buffer(node);
return true;
}
}
void G1DirtyCardQueueSet::abandon_logs() {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
assert_at_safepoint();
abandon_completed_buffers();
// Since abandon is done only at safepoints, we can safely manipulate
@ -433,7 +651,7 @@ void G1DirtyCardQueueSet::concatenate_logs() {
// Iterate over all the threads, if we find a partial log add it to
// the global list of logs. Temporarily turn off the limit on the number
// of outstanding buffers.
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
assert_at_safepoint();
size_t old_limit = max_cards();
set_max_cards(MaxCardsUnlimited);
@ -448,5 +666,7 @@ void G1DirtyCardQueueSet::concatenate_logs() {
Threads::threads_do(&closure);
G1BarrierSet::shared_dirty_card_queue().flush();
enqueue_all_paused_buffers();
verify_num_cards();
set_max_cards(old_limit);
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -29,11 +29,12 @@
#include "gc/g1/g1FreeIdSet.hpp"
#include "gc/shared/ptrQueue.hpp"
#include "memory/allocation.hpp"
#include "memory/padded.hpp"
class G1ConcurrentRefineThread;
class G1DirtyCardQueueSet;
class G1RedirtyCardsQueueSet;
class Thread;
class Monitor;
// A ptrQueue whose elements are "oops", pointers to object heads.
class G1DirtyCardQueue: public PtrQueue {
@ -66,15 +67,178 @@ public:
};
class G1DirtyCardQueueSet: public PtrQueueSet {
Monitor* _cbl_mon; // Protects the list and count members.
BufferNode* _completed_buffers_head;
BufferNode* _completed_buffers_tail;
// Head and tail of a list of BufferNodes, linked through their next()
// fields. Similar to G1BufferNodeList, but without the _entry_count.
struct HeadTail {
BufferNode* _head;
BufferNode* _tail;
HeadTail() : _head(NULL), _tail(NULL) {}
HeadTail(BufferNode* head, BufferNode* tail) : _head(head), _tail(tail) {}
};
// Number of actual cards in the list of completed buffers.
// A lock-free FIFO of BufferNodes, linked through their next() fields.
// This class has a restriction that pop() cannot return the last buffer
// in the queue, or what was the last buffer for a concurrent push/append
// operation. It is expected that there will be a later push/append that
// will make that buffer available to a future pop(), or there will
// eventually be a complete transfer via take_all().
class Queue {
BufferNode* volatile _head;
DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(BufferNode*));
BufferNode* volatile _tail;
DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(BufferNode*));
NONCOPYABLE(Queue);
public:
Queue() : _head(NULL), _tail(NULL) {}
DEBUG_ONLY(~Queue();)
// Return the first buffer in the queue.
// Thread-safe, but the result may change immediately.
BufferNode* top() const;
// Thread-safe add the buffer to the end of the queue.
void push(BufferNode& node) { append(node, node); }
// Thread-safe add the buffers from first to last to the end of the queue.
void append(BufferNode& first, BufferNode& last);
// Thread-safe attempt to remove and return the first buffer in the queue.
// Returns NULL if the queue is empty, or if only one buffer is found.
// Uses GlobalCounter critical sections to address the ABA problem; this
// works with the buffer allocator's use of GlobalCounter synchronization.
BufferNode* pop();
// Take all the buffers from the queue, leaving the queue empty.
// Not thread-safe.
HeadTail take_all();
};
// Concurrent refinement may stop processing in the middle of a buffer if
// there is a pending safepoint, to avoid long delays to safepoint. A
// partially processed buffer needs to be recorded for processing by the
// safepoint if it's a GC safepoint; otherwise it needs to be recorded for
// further concurrent refinement work after the safepoint. But if the
// buffer was obtained from the completed buffer queue then it can't simply
// be added back to the queue, as that would introduce a new source of ABA
// for the queue.
//
// The PausedBuffer object is used to record such buffers for the upcoming
// safepoint, and provides access to the buffers recorded for previous
// safepoints. Before obtaining a buffer from the completed buffers queue,
// we first transfer any buffers from previous safepoints to the queue.
// This is ABA-safe because threads cannot be in the midst of a queue pop
// across a safepoint.
//
// The paused buffers are conceptually an extension of the completed buffers
// queue, and operations which need to deal with all of the queued buffers
// (such as concatenate_logs) also need to deal with any paused buffers. In
// general, if a safepoint performs a GC then the paused buffers will be
// processed as part of it, and there won't be any paused buffers after a
// GC safepoint.
class PausedBuffers {
class PausedList : public CHeapObj<mtGC> {
BufferNode* volatile _head;
BufferNode* _tail;
size_t _safepoint_id;
NONCOPYABLE(PausedList);
public:
PausedList();
DEBUG_ONLY(~PausedList();)
// Return true if this list was created to hold buffers for the
// next safepoint.
// precondition: not at safepoint.
bool is_next() const;
// Thread-safe add the buffer to the list.
// precondition: not at safepoint.
// precondition: is_next().
void add(BufferNode* node);
// Take all the buffers from the list. Not thread-safe.
HeadTail take();
};
// The most recently created list, which might be for either the next or
// a previous safepoint, or might be NULL if the next list hasn't been
// created yet. We only need one list because of the requirement that
// threads calling add() must first ensure there are no paused buffers
// from a previous safepoint. There might be many list instances existing
// at the same time though; there can be many threads competing to create
// and install the next list, and meanwhile there can be a thread dealing
// with the previous list.
PausedList* volatile _plist;
DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(PausedList*));
NONCOPYABLE(PausedBuffers);
public:
PausedBuffers();
DEBUG_ONLY(~PausedBuffers();)
// Test whether there are any paused lists.
// Thread-safe, but the answer may change immediately.
bool is_empty() const;
// Thread-safe add the buffer to paused list for next safepoint.
// precondition: not at safepoint.
// precondition: does not have paused buffers from a previous safepoint.
void add(BufferNode* node);
// Thread-safe take all paused buffers for previous safepoints.
// precondition: not at safepoint.
HeadTail take_previous();
// Take all the paused buffers.
// precondition: at safepoint.
HeadTail take_all();
};
// The primary refinement thread, for activation when the processing
// threshold is reached. NULL if there aren't any refinement threads.
G1ConcurrentRefineThread* _primary_refinement_thread;
DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(G1ConcurrentRefineThread*));
// Upper bound on the number of cards in the completed and paused buffers.
volatile size_t _num_cards;
DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(size_t));
// Buffers ready for refinement.
Queue _completed; // Has inner padding, including trailer.
// Buffers for which refinement is temporarily paused.
PausedBuffers _paused; // Has inner padding, including trailer.
G1FreeIdSet _free_ids;
// Activation threshold for the primary refinement thread.
size_t _process_cards_threshold;
volatile bool _process_completed_buffers;
// If the queue contains more cards than configured here, the
// mutator must start doing some of the concurrent refinement work.
size_t _max_cards;
size_t _max_cards_padding;
static const size_t MaxCardsUnlimited = SIZE_MAX;
// Array of cumulative dirty cards refined by mutator threads.
// Array has an entry per id in _free_ids.
size_t* _mutator_refined_cards_counters;
// Verify _num_cards == sum of cards in the completed queue.
void verify_num_cards() const NOT_DEBUG_RETURN;
// Thread-safe add a buffer to paused list for next safepoint.
// precondition: not at safepoint.
// precondition: does not have paused buffers from a previous safepoint.
void record_paused_buffer(BufferNode* node);
void enqueue_paused_buffers_aux(const HeadTail& paused);
// Thread-safe transfer paused buffers for previous safepoints to the queue.
// precondition: not at safepoint.
void enqueue_previous_paused_buffers();
// Transfer all paused buffers to the queue.
// precondition: at safepoint.
void enqueue_all_paused_buffers();
void abandon_completed_buffers();
@ -90,22 +254,18 @@ class G1DirtyCardQueueSet: public PtrQueueSet {
bool mut_process_buffer(BufferNode* node);
// If the queue contains more cards than configured here, the
// mutator must start doing some of the concurrent refinement work.
size_t _max_cards;
size_t _max_cards_padding;
static const size_t MaxCardsUnlimited = SIZE_MAX;
G1FreeIdSet _free_ids;
// Array of cumulative dirty cards refined by mutator threads.
// Array has an entry per id in _free_ids.
size_t* _mutator_refined_cards_counters;
// If the number of completed buffers is > stop_at, then remove and
// return a completed buffer from the list. Otherwise, return NULL.
BufferNode* get_completed_buffer(size_t stop_at = 0);
public:
G1DirtyCardQueueSet(Monitor* cbl_mon, BufferNode::Allocator* allocator);
G1DirtyCardQueueSet(BufferNode::Allocator* allocator);
~G1DirtyCardQueueSet();
void set_primary_refinement_thread(G1ConcurrentRefineThread* thread) {
_primary_refinement_thread = thread;
}
// The number of parallel ids that can be claimed to allow collector or
// mutator threads to do card-processing work.
static uint num_par_ids();
@ -119,20 +279,11 @@ public:
virtual void enqueue_completed_buffer(BufferNode* node);
// If the number of completed buffers is > stop_at, then remove and
// return a completed buffer from the list. Otherwise, return NULL.
BufferNode* get_completed_buffer(size_t stop_at = 0);
// The number of cards in completed buffers. Read without synchronization.
// Upper bound on the number of cards currently in in this queue set.
// Read without synchronization. The value may be high because there
// is a concurrent modification of the set of buffers.
size_t num_cards() const { return _num_cards; }
// Verify that _num_cards is equal to the sum of actual cards
// in the completed buffers.
void verify_num_cards() const NOT_DEBUG_RETURN;
bool process_completed_buffers() { return _process_completed_buffers; }
void set_process_completed_buffers(bool x) { _process_completed_buffers = x; }
// Get/Set the number of cards that triggers log processing.
// Log processing should be done when the number of cards exceeds the
// threshold.
@ -156,8 +307,8 @@ public:
// false.
//
// Stops processing a buffer if SuspendibleThreadSet::should_yield(),
// returning the incompletely processed buffer to the completed buffer
// list, for later processing of the remainder.
// recording the incompletely processed buffer for later processing of
// the remainder.
//
// Increments *total_refined_cards by the number of cards processed and
// removed from the buffer.

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -210,8 +210,6 @@ class BufferNode {
return offset_of(BufferNode, _buffer);
}
static BufferNode* volatile* next_ptr(BufferNode& bn) { return &bn._next; }
// Allocate a new BufferNode with the "buffer" having size elements.
static BufferNode* allocate(size_t size);
@ -219,6 +217,7 @@ class BufferNode {
static void deallocate(BufferNode* node);
public:
static BufferNode* volatile* next_ptr(BufferNode& bn) { return &bn._next; }
typedef LockFreeStack<BufferNode, &next_ptr> Stack;
BufferNode* next() const { return _next; }

View file

@ -73,7 +73,6 @@ Monitor* CGC_lock = NULL;
Monitor* STS_lock = NULL;
Monitor* FullGCCount_lock = NULL;
Monitor* G1OldGCCount_lock = NULL;
Monitor* DirtyCardQ_CBL_mon = NULL;
Mutex* Shared_DirtyCardQ_lock = NULL;
Mutex* MarkStackFreeList_lock = NULL;
Mutex* MarkStackChunkList_lock = NULL;
@ -211,7 +210,6 @@ void mutex_init() {
if (UseG1GC) {
def(G1OldGCCount_lock , PaddedMonitor, leaf, true, _safepoint_check_always);
def(DirtyCardQ_CBL_mon , PaddedMonitor, access, true, _safepoint_check_never);
def(Shared_DirtyCardQ_lock , PaddedMutex , access + 1, true, _safepoint_check_never);
def(FreeList_lock , PaddedMutex , leaf , true, _safepoint_check_never);

View file

@ -69,8 +69,6 @@ extern Monitor* CGC_lock; // used for coordination betwee
extern Monitor* STS_lock; // used for joining/leaving SuspendibleThreadSet.
extern Monitor* FullGCCount_lock; // in support of "concurrent" full gc
extern Monitor* G1OldGCCount_lock; // in support of "concurrent" full gc
extern Monitor* DirtyCardQ_CBL_mon; // Protects dirty card Q
// completed buffer queue.
extern Mutex* Shared_DirtyCardQ_lock; // Lock protecting dirty card
// queue shared by
// non-Java threads.