This commit is contained in:
Erik Helin 2014-04-04 10:24:48 +02:00
commit dda69c88e0
28 changed files with 441 additions and 531 deletions

View file

@ -337,56 +337,20 @@ endif
ifeq ($(DEBUG_BINARIES), true)
CFLAGS += -g
else
# Use the stabs format for debugging information (this is the default
# on gcc-2.91). It's good enough, has all the information about line
# numbers and local variables, and libjvm.so is only about 16M.
# Change this back to "-g" if you want the most expressive format.
# (warning: that could easily inflate libjvm.so to 150M!)
# Note: The Itanium gcc compiler crashes when using -gstabs.
DEBUG_CFLAGS/ia64 = -g
DEBUG_CFLAGS/amd64 = -g
DEBUG_CFLAGS/arm = -g
DEBUG_CFLAGS/ppc = -g
DEBUG_CFLAGS/ppc64 = -g
DEBUG_CFLAGS += $(DEBUG_CFLAGS/$(BUILDARCH))
ifeq ($(DEBUG_CFLAGS/$(BUILDARCH)),)
ifeq ($(USE_CLANG), true)
# Clang doesn't understand -gstabs
DEBUG_CFLAGS += -g
else
DEBUG_CFLAGS += -gstabs
endif
DEBUG_CFLAGS += -g
endif
ifeq ($(ENABLE_FULL_DEBUG_SYMBOLS),1)
FASTDEBUG_CFLAGS/ia64 = -g
FASTDEBUG_CFLAGS/amd64 = -g
FASTDEBUG_CFLAGS/arm = -g
FASTDEBUG_CFLAGS/ppc = -g
FASTDEBUG_CFLAGS/ppc64 = -g
FASTDEBUG_CFLAGS += $(DEBUG_CFLAGS/$(BUILDARCH))
FASTDEBUG_CFLAGS += $(FASTDEBUG_CFLAGS/$(BUILDARCH))
ifeq ($(FASTDEBUG_CFLAGS/$(BUILDARCH)),)
ifeq ($(USE_CLANG), true)
# Clang doesn't understand -gstabs
FASTDEBUG_CFLAGS += -g
else
FASTDEBUG_CFLAGS += -gstabs
endif
FASTDEBUG_CFLAGS += -g
endif
OPT_CFLAGS/ia64 = -g
OPT_CFLAGS/amd64 = -g
OPT_CFLAGS/arm = -g
OPT_CFLAGS/ppc = -g
OPT_CFLAGS/ppc64 = -g
OPT_CFLAGS += $(OPT_CFLAGS/$(BUILDARCH))
ifeq ($(OPT_CFLAGS/$(BUILDARCH)),)
ifeq ($(USE_CLANG), true)
# Clang doesn't understand -gstabs
OPT_CFLAGS += -g
else
OPT_CFLAGS += -gstabs
endif
OPT_CFLAGS += -g
endif
endif
endif

View file

@ -116,10 +116,6 @@ class MarkRefsIntoClosure: public CMSOopsInGenClosure {
MarkRefsIntoClosure(MemRegion span, CMSBitMap* bitMap);
virtual void do_oop(oop* p);
virtual void do_oop(narrowOop* p);
Prefetch::style prefetch_style() {
return Prefetch::do_read;
}
};
class Par_MarkRefsIntoClosure: public CMSOopsInGenClosure {
@ -132,10 +128,6 @@ class Par_MarkRefsIntoClosure: public CMSOopsInGenClosure {
Par_MarkRefsIntoClosure(MemRegion span, CMSBitMap* bitMap);
virtual void do_oop(oop* p);
virtual void do_oop(narrowOop* p);
Prefetch::style prefetch_style() {
return Prefetch::do_read;
}
};
// A variant of the above used in certain kinds of CMS
@ -152,10 +144,6 @@ class MarkRefsIntoVerifyClosure: public CMSOopsInGenClosure {
CMSBitMap* cms_bm);
virtual void do_oop(oop* p);
virtual void do_oop(narrowOop* p);
Prefetch::style prefetch_style() {
return Prefetch::do_read;
}
};
// The non-parallel version (the parallel version appears further below).
@ -181,10 +169,6 @@ class PushAndMarkClosure: public CMSOopClosure {
virtual void do_oop(narrowOop* p);
inline void do_oop_nv(oop* p) { PushAndMarkClosure::do_oop_work(p); }
inline void do_oop_nv(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
Prefetch::style prefetch_style() {
return Prefetch::do_read;
}
};
// In the parallel case, the bit map and the
@ -211,10 +195,6 @@ class Par_PushAndMarkClosure: public CMSOopClosure {
virtual void do_oop(narrowOop* p);
inline void do_oop_nv(oop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
inline void do_oop_nv(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
Prefetch::style prefetch_style() {
return Prefetch::do_read;
}
};
// The non-parallel version (the parallel version appears further below).
@ -245,9 +225,6 @@ class MarkRefsIntoAndScanClosure: public CMSOopsInGenClosure {
inline void do_oop_nv(oop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
inline void do_oop_nv(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
Prefetch::style prefetch_style() {
return Prefetch::do_read;
}
void set_freelistLock(Mutex* m) {
_freelistLock = m;
}
@ -282,9 +259,6 @@ class Par_MarkRefsIntoAndScanClosure: public CMSOopsInGenClosure {
inline void do_oop_nv(oop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
inline void do_oop_nv(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
Prefetch::style prefetch_style() {
return Prefetch::do_read;
}
void trim_queue(uint size);
};

View file

@ -851,42 +851,60 @@ void CompactibleFreeListSpace::object_iterate_mem(MemRegion mr,
UpwardsObjectClosure* cl) {
assert_locked(freelistLock());
NOT_PRODUCT(verify_objects_initialized());
Space::object_iterate_mem(mr, cl);
assert(!mr.is_empty(), "Should be non-empty");
// We use MemRegion(bottom(), end()) rather than used_region() below
// because the two are not necessarily equal for some kinds of
// spaces, in particular, certain kinds of free list spaces.
// We could use the more complicated but more precise:
// MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
// but the slight imprecision seems acceptable in the assertion check.
assert(MemRegion(bottom(), end()).contains(mr),
"Should be within used space");
HeapWord* prev = cl->previous(); // max address from last time
if (prev >= mr.end()) { // nothing to do
return;
}
// This assert will not work when we go from cms space to perm
// space, and use same closure. Easy fix deferred for later. XXX YSR
// assert(prev == NULL || contains(prev), "Should be within space");
bool last_was_obj_array = false;
HeapWord *blk_start_addr, *region_start_addr;
if (prev > mr.start()) {
region_start_addr = prev;
blk_start_addr = prev;
// The previous invocation may have pushed "prev" beyond the
// last allocated block yet there may be still be blocks
// in this region due to a particular coalescing policy.
// Relax the assertion so that the case where the unallocated
// block is maintained and "prev" is beyond the unallocated
// block does not cause the assertion to fire.
assert((BlockOffsetArrayUseUnallocatedBlock &&
(!is_in(prev))) ||
(blk_start_addr == block_start(region_start_addr)), "invariant");
} else {
region_start_addr = mr.start();
blk_start_addr = block_start(region_start_addr);
}
HeapWord* region_end_addr = mr.end();
MemRegion derived_mr(region_start_addr, region_end_addr);
while (blk_start_addr < region_end_addr) {
const size_t size = block_size(blk_start_addr);
if (block_is_obj(blk_start_addr)) {
last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
} else {
last_was_obj_array = false;
}
blk_start_addr += size;
}
if (!last_was_obj_array) {
assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
"Should be within (closed) used space");
assert(blk_start_addr > prev, "Invariant");
cl->set_previous(blk_start_addr); // min address for next time
}
}
// Callers of this iterator beware: The closure application should
// be robust in the face of uninitialized objects and should (always)
// return a correct size so that the next addr + size below gives us a
// valid block boundary. [See for instance,
// ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
// in ConcurrentMarkSweepGeneration.cpp.]
HeapWord*
CompactibleFreeListSpace::object_iterate_careful(ObjectClosureCareful* cl) {
assert_lock_strong(freelistLock());
HeapWord *addr, *last;
size_t size;
for (addr = bottom(), last = end();
addr < last; addr += size) {
FreeChunk* fc = (FreeChunk*)addr;
if (fc->is_free()) {
// Since we hold the free list lock, which protects direct
// allocation in this generation by mutators, a free object
// will remain free throughout this iteration code.
size = fc->size();
} else {
// Note that the object need not necessarily be initialized,
// because (for instance) the free list lock does NOT protect
// object initialization. The closure application below must
// therefore be correct in the face of uninitialized objects.
size = cl->do_object_careful(oop(addr));
if (size == 0) {
// An unparsable object found. Signal early termination.
return addr;
}
}
}
return NULL;
}
// Callers of this iterator beware: The closure application should
// be robust in the face of uninitialized objects and should (always)

View file

@ -338,10 +338,6 @@ class CompactibleFreeListSpace: public CompactibleSpace {
unallocated_block() : end());
}
bool is_in(const void* p) const {
return used_region().contains(p);
}
virtual bool is_free_block(const HeapWord* p) const;
// Resizing support
@ -363,6 +359,12 @@ class CompactibleFreeListSpace: public CompactibleSpace {
// obj_is_alive() to determine whether it is safe to iterate of
// an object.
void safe_object_iterate(ObjectClosure* blk);
// Iterate over all objects that intersect with mr, calling "cl->do_object"
// on each. There is an exception to this: if this closure has already
// been invoked on an object, it may skip such objects in some cases. This is
// Most likely to happen in an "upwards" (ascending address) iteration of
// MemRegions.
void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
// Requires that "mr" be entirely within the space.
@ -371,11 +373,8 @@ class CompactibleFreeListSpace: public CompactibleSpace {
// terminate the iteration and return the address of the start of the
// subregion that isn't done. Return of "NULL" indicates that the
// iteration completed.
virtual HeapWord*
object_iterate_careful_m(MemRegion mr,
ObjectClosureCareful* cl);
virtual HeapWord*
object_iterate_careful(ObjectClosureCareful* cl);
HeapWord* object_iterate_careful_m(MemRegion mr,
ObjectClosureCareful* cl);
// Override: provides a DCTO_CL specific to this kind of space.
DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,

View file

@ -1498,6 +1498,19 @@ class FalseBitMapClosure: public BitMapClosure {
}
};
// A version of ObjectClosure with "memory" (see _previous_address below)
class UpwardsObjectClosure: public BoolObjectClosure {
HeapWord* _previous_address;
public:
UpwardsObjectClosure() : _previous_address(NULL) { }
void set_previous(HeapWord* addr) { _previous_address = addr; }
HeapWord* previous() { return _previous_address; }
// A return value of "true" can be used by the caller to decide
// if this object's end should *NOT* be recorded in
// _previous_address above.
virtual bool do_object_bm(oop obj, MemRegion mr) = 0;
};
// This closure is used during the second checkpointing phase
// to rescan the marked objects on the dirty cards in the mod
// union table and the card table proper. It's invoked via

View file

@ -24,6 +24,7 @@
#include "precompiled.hpp"
#include "gc_implementation/g1/dirtyCardQueue.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "runtime/atomic.hpp"
#include "runtime/mutexLocker.hpp"

View file

@ -3529,6 +3529,29 @@ public:
}
};
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
const HeapRegion* hr,
const VerifyOption vo) const {
switch (vo) {
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
default: ShouldNotReachHere();
}
return false; // keep some compilers happy
}
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
const VerifyOption vo) const {
switch (vo) {
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
default: ShouldNotReachHere();
}
return false; // keep some compilers happy
}
void G1CollectedHeap::print_on(outputStream* st) const {
st->print(" %-20s", "garbage-first heap");
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
@ -6598,13 +6621,13 @@ public:
if (hr->is_young()) {
// TODO
} else if (hr->startsHumongous()) {
assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrs_index()));
_humongous_count.increment(1u, hr->capacity());
} else if (hr->is_empty()) {
assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->hrs_index()));
_free_count.increment(1u, hr->capacity());
} else {
assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrs_index()));
_old_count.increment(1u, hr->capacity());
}
return false;

View file

@ -706,19 +706,7 @@ public:
// This is a fast test on whether a reference points into the
// collection set or not. Assume that the reference
// points into the heap.
bool in_cset_fast_test(oop obj) {
assert(_in_cset_fast_test != NULL, "sanity");
assert(_g1_committed.contains((HeapWord*) obj), err_msg("Given reference outside of heap, is "PTR_FORMAT, (HeapWord*)obj));
// no need to subtract the bottom of the heap from obj,
// _in_cset_fast_test is biased
uintx index = cast_from_oop<uintx>(obj) >> HeapRegion::LogOfHRGrainBytes;
bool ret = _in_cset_fast_test[index];
// let's make sure the result is consistent with what the slower
// test returns
assert( ret || !obj_in_cs(obj), "sanity");
assert(!ret || obj_in_cs(obj), "sanity");
return ret;
}
inline bool in_cset_fast_test(oop obj);
void clear_cset_fast_test() {
assert(_in_cset_fast_test_base != NULL, "sanity");
@ -1250,9 +1238,7 @@ public:
}
}
void old_set_remove(HeapRegion* hr) {
_old_set.remove(hr);
}
inline void old_set_remove(HeapRegion* hr);
size_t non_young_capacity_bytes() {
return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
@ -1343,7 +1329,7 @@ public:
void heap_region_iterate(HeapRegionClosure* blk) const;
// Return the region with the given index. It assumes the index is valid.
HeapRegion* region_at(uint index) const { return _hrs.at(index); }
inline HeapRegion* region_at(uint index) const;
// Divide the heap region sequence into "chunks" of some size (the number
// of regions divided by the number of parallel threads times some
@ -1472,10 +1458,7 @@ public:
return true;
}
bool is_in_young(const oop obj) {
HeapRegion* hr = heap_region_containing(obj);
return hr != NULL && hr->is_young();
}
inline bool is_in_young(const oop obj);
#ifdef ASSERT
virtual bool is_in_partial_collection(const void* p);
@ -1488,9 +1471,7 @@ public:
// pre-value that needs to be remembered; for the remembered-set
// update logging post-barrier, we don't maintain remembered set
// information for young gen objects.
virtual bool can_elide_initializing_store_barrier(oop new_obj) {
return is_in_young(new_obj);
}
virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
// Returns "true" iff the given word_size is "very large".
static bool isHumongous(size_t word_size) {
@ -1584,23 +1565,9 @@ public:
// Added if it is NULL it isn't dead.
bool is_obj_dead(const oop obj) const {
const HeapRegion* hr = heap_region_containing(obj);
if (hr == NULL) {
if (obj == NULL) return false;
else return true;
}
else return is_obj_dead(obj, hr);
}
inline bool is_obj_dead(const oop obj) const;
bool is_obj_ill(const oop obj) const {
const HeapRegion* hr = heap_region_containing(obj);
if (hr == NULL) {
if (obj == NULL) return false;
else return true;
}
else return is_obj_ill(obj, hr);
}
inline bool is_obj_ill(const oop obj) const;
bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
@ -1694,26 +1661,10 @@ public:
bool is_obj_dead_cond(const oop obj,
const HeapRegion* hr,
const VerifyOption vo) const {
switch (vo) {
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
default: ShouldNotReachHere();
}
return false; // keep some compilers happy
}
const VerifyOption vo) const;
bool is_obj_dead_cond(const oop obj,
const VerifyOption vo) const {
switch (vo) {
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
default: ShouldNotReachHere();
}
return false; // keep some compilers happy
}
const VerifyOption vo) const;
// Printing
@ -1807,11 +1758,7 @@ protected:
DirtyCardQueue& dirty_card_queue() { return _dcq; }
G1SATBCardTableModRefBS* ctbs() { return _ct_bs; }
template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
if (!from->is_survivor()) {
_g1_rem->par_write_ref(from, p, tid);
}
}
template <class T> inline void immediate_rs_update(HeapRegion* from, T* p, int tid);
template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
// If the new value of the field points to the same region or
@ -1853,13 +1800,7 @@ public:
refs()->push(ref);
}
template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
if (G1DeferredRSUpdate) {
deferred_rs_update(from, p, tid);
} else {
immediate_rs_update(from, p, tid);
}
}
template <class T> inline void update_rs(HeapRegion* from, T* p, int tid);
HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
HeapWord* obj = NULL;
@ -1983,54 +1924,7 @@ private:
return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
}
void do_oop_partial_array(oop* p) {
assert(has_partial_array_mask(p), "invariant");
oop from_obj = clear_partial_array_mask(p);
assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
assert(from_obj->is_objArray(), "must be obj array");
objArrayOop from_obj_array = objArrayOop(from_obj);
// The from-space object contains the real length.
int length = from_obj_array->length();
assert(from_obj->is_forwarded(), "must be forwarded");
oop to_obj = from_obj->forwardee();
assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
objArrayOop to_obj_array = objArrayOop(to_obj);
// We keep track of the next start index in the length field of the
// to-space object.
int next_index = to_obj_array->length();
assert(0 <= next_index && next_index < length,
err_msg("invariant, next index: %d, length: %d", next_index, length));
int start = next_index;
int end = length;
int remainder = end - start;
// We'll try not to push a range that's smaller than ParGCArrayScanChunk.
if (remainder > 2 * ParGCArrayScanChunk) {
end = start + ParGCArrayScanChunk;
to_obj_array->set_length(end);
// Push the remainder before we process the range in case another
// worker has run out of things to do and can steal it.
oop* from_obj_p = set_partial_array_mask(from_obj);
push_on_queue(from_obj_p);
} else {
assert(length == end, "sanity");
// We'll process the final range for this object. Restore the length
// so that the heap remains parsable in case of evacuation failure.
to_obj_array->set_length(end);
}
_scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
// Process indexes [start,end). It will also process the header
// along with the first chunk (i.e., the chunk with start == 0).
// Note that at this point the length field of to_obj_array is not
// correct given that we are using it to keep track of the next
// start index. oop_iterate_range() (thankfully!) ignores the length
// field and only relies on the start / end parameters. It does
// however return the size of the object which will be incorrect. So
// we have to ignore it even if we wanted to use it.
to_obj_array->oop_iterate_range(&_scanner, start, end);
}
inline void do_oop_partial_array(oop* p);
// This method is applied to the fields of the objects that have just been copied.
template <class T> void do_oop_evac(T* p, HeapRegion* from) {
@ -2060,26 +1954,9 @@ public:
oop copy_to_survivor_space(oop const obj);
template <class T> void deal_with_reference(T* ref_to_scan) {
if (!has_partial_array_mask(ref_to_scan)) {
// Note: we can use "raw" versions of "region_containing" because
// "obj_to_scan" is definitely in the heap, and is not in a
// humongous region.
HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
do_oop_evac(ref_to_scan, r);
} else {
do_oop_partial_array((oop*)ref_to_scan);
}
}
template <class T> inline void deal_with_reference(T* ref_to_scan);
void deal_with_reference(StarTask ref) {
assert(verify_task(ref), "sanity");
if (ref.is_narrow()) {
deal_with_reference((narrowOop*)ref);
} else {
deal_with_reference((oop*)ref);
}
}
inline void deal_with_reference(StarTask ref);
public:
void trim_queue();

View file

@ -29,6 +29,7 @@
#include "gc_implementation/g1/g1CollectedHeap.hpp"
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
@ -36,6 +37,9 @@
// Inline functions for G1CollectedHeap
// Return the region with the given index. It assumes the index is valid.
inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrs.at(index); }
template <class T>
inline HeapRegion*
G1CollectedHeap::heap_region_containing(const T addr) const {
@ -55,6 +59,10 @@ G1CollectedHeap::heap_region_containing_raw(const T addr) const {
return res;
}
inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
_old_set.remove(hr);
}
inline bool G1CollectedHeap::obj_in_cs(oop obj) {
HeapRegion* r = _hrs.addr_to_region((HeapWord*) obj);
return r != NULL && r->in_collection_set();
@ -151,6 +159,24 @@ inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
}
// This is a fast test on whether a reference points into the
// collection set or not. Assume that the reference
// points into the heap.
inline bool G1CollectedHeap::in_cset_fast_test(oop obj) {
assert(_in_cset_fast_test != NULL, "sanity");
assert(_g1_committed.contains((HeapWord*) obj), err_msg("Given reference outside of heap, is "PTR_FORMAT, (HeapWord*)obj));
// no need to subtract the bottom of the heap from obj,
// _in_cset_fast_test is biased
uintx index = cast_from_oop<uintx>(obj) >> HeapRegion::LogOfHRGrainBytes;
bool ret = _in_cset_fast_test[index];
// let's make sure the result is consistent with what the slower
// test returns
assert( ret || !obj_in_cs(obj), "sanity");
assert(!ret || obj_in_cs(obj), "sanity");
return ret;
}
#ifndef PRODUCT
// Support for G1EvacuationFailureALot
@ -224,4 +250,121 @@ inline void G1CollectedHeap::reset_evacuation_should_fail() {
}
#endif // #ifndef PRODUCT
inline bool G1CollectedHeap::is_in_young(const oop obj) {
HeapRegion* hr = heap_region_containing(obj);
return hr != NULL && hr->is_young();
}
// We don't need barriers for initializing stores to objects
// in the young gen: for the SATB pre-barrier, there is no
// pre-value that needs to be remembered; for the remembered-set
// update logging post-barrier, we don't maintain remembered set
// information for young gen objects.
inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
return is_in_young(new_obj);
}
inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
const HeapRegion* hr = heap_region_containing(obj);
if (hr == NULL) {
if (obj == NULL) return false;
else return true;
}
else return is_obj_dead(obj, hr);
}
inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
const HeapRegion* hr = heap_region_containing(obj);
if (hr == NULL) {
if (obj == NULL) return false;
else return true;
}
else return is_obj_ill(obj, hr);
}
template <class T> inline void G1ParScanThreadState::immediate_rs_update(HeapRegion* from, T* p, int tid) {
if (!from->is_survivor()) {
_g1_rem->par_write_ref(from, p, tid);
}
}
template <class T> void G1ParScanThreadState::update_rs(HeapRegion* from, T* p, int tid) {
if (G1DeferredRSUpdate) {
deferred_rs_update(from, p, tid);
} else {
immediate_rs_update(from, p, tid);
}
}
inline void G1ParScanThreadState::do_oop_partial_array(oop* p) {
assert(has_partial_array_mask(p), "invariant");
oop from_obj = clear_partial_array_mask(p);
assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
assert(from_obj->is_objArray(), "must be obj array");
objArrayOop from_obj_array = objArrayOop(from_obj);
// The from-space object contains the real length.
int length = from_obj_array->length();
assert(from_obj->is_forwarded(), "must be forwarded");
oop to_obj = from_obj->forwardee();
assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
objArrayOop to_obj_array = objArrayOop(to_obj);
// We keep track of the next start index in the length field of the
// to-space object.
int next_index = to_obj_array->length();
assert(0 <= next_index && next_index < length,
err_msg("invariant, next index: %d, length: %d", next_index, length));
int start = next_index;
int end = length;
int remainder = end - start;
// We'll try not to push a range that's smaller than ParGCArrayScanChunk.
if (remainder > 2 * ParGCArrayScanChunk) {
end = start + ParGCArrayScanChunk;
to_obj_array->set_length(end);
// Push the remainder before we process the range in case another
// worker has run out of things to do and can steal it.
oop* from_obj_p = set_partial_array_mask(from_obj);
push_on_queue(from_obj_p);
} else {
assert(length == end, "sanity");
// We'll process the final range for this object. Restore the length
// so that the heap remains parsable in case of evacuation failure.
to_obj_array->set_length(end);
}
_scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
// Process indexes [start,end). It will also process the header
// along with the first chunk (i.e., the chunk with start == 0).
// Note that at this point the length field of to_obj_array is not
// correct given that we are using it to keep track of the next
// start index. oop_iterate_range() (thankfully!) ignores the length
// field and only relies on the start / end parameters. It does
// however return the size of the object which will be incorrect. So
// we have to ignore it even if we wanted to use it.
to_obj_array->oop_iterate_range(&_scanner, start, end);
}
template <class T> inline void G1ParScanThreadState::deal_with_reference(T* ref_to_scan) {
if (!has_partial_array_mask(ref_to_scan)) {
// Note: we can use "raw" versions of "region_containing" because
// "obj_to_scan" is definitely in the heap, and is not in a
// humongous region.
HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
do_oop_evac(ref_to_scan, r);
} else {
do_oop_partial_array((oop*)ref_to_scan);
}
}
inline void G1ParScanThreadState::deal_with_reference(StarTask ref) {
assert(verify_task(ref), "sanity");
if (ref.is_narrow()) {
deal_with_reference((narrowOop*)ref);
} else {
deal_with_reference((oop*)ref);
}
}
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP

View file

@ -472,9 +472,6 @@ HeapRegion::object_iterate_mem_careful(MemRegion mr,
} else if (!g1h->is_obj_dead(obj)) {
cl->do_object(obj);
}
if (cl->abort()) return cur;
// The check above must occur before the operation below, since an
// abort might invalidate the "size" operation.
cur += obj->size();
}
return NULL;

View file

@ -25,7 +25,7 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_SPARSEPRT_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_SPARSEPRT_HPP
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "memory/allocation.hpp"
#include "memory/cardTableModRefBS.hpp"

View file

@ -89,6 +89,15 @@ bool VM_GC_Operation::doit_prologue() {
assert(((_gc_cause != GCCause::_no_gc) &&
(_gc_cause != GCCause::_no_cause_specified)), "Illegal GCCause");
// To be able to handle a GC the VM initialization needs to be completed.
if (!is_init_completed()) {
vm_exit_during_initialization(
err_msg("GC triggered before VM initialization completed. Try increasing "
"NewSize, current value " UINTX_FORMAT "%s.",
byte_size_in_proper_unit(NewSize),
proper_unit_for_byte_size(NewSize)));
}
acquire_pending_list_lock();
// If the GC count has changed someone beat us to the collection
// Get the Heap_lock after the pending_list_lock.

View file

@ -748,6 +748,12 @@ class ArrayAllocator VALUE_OBJ_CLASS_SPEC {
bool _use_malloc;
size_t _size;
bool _free_in_destructor;
static bool should_use_malloc(size_t size) {
return size < ArrayAllocatorMallocLimit;
}
static char* allocate_inner(size_t& size, bool& use_malloc);
public:
ArrayAllocator(bool free_in_destructor = true) :
_addr(NULL), _use_malloc(false), _size(0), _free_in_destructor(free_in_destructor) { }
@ -759,6 +765,7 @@ class ArrayAllocator VALUE_OBJ_CLASS_SPEC {
}
E* allocate(size_t length);
E* reallocate(size_t new_length);
void free();
};

View file

@ -122,35 +122,57 @@ template <MEMFLAGS F> void CHeapObj<F>::operator delete [](void* p){
}
template <class E, MEMFLAGS F>
E* ArrayAllocator<E, F>::allocate(size_t length) {
assert(_addr == NULL, "Already in use");
char* ArrayAllocator<E, F>::allocate_inner(size_t &size, bool &use_malloc) {
char* addr = NULL;
_size = sizeof(E) * length;
_use_malloc = _size < ArrayAllocatorMallocLimit;
if (_use_malloc) {
_addr = AllocateHeap(_size, F);
if (_addr == NULL && _size >= (size_t)os::vm_allocation_granularity()) {
if (use_malloc) {
addr = AllocateHeap(size, F);
if (addr == NULL && size >= (size_t)os::vm_allocation_granularity()) {
// malloc failed let's try with mmap instead
_use_malloc = false;
use_malloc = false;
} else {
return (E*)_addr;
return addr;
}
}
int alignment = os::vm_allocation_granularity();
_size = align_size_up(_size, alignment);
size = align_size_up(size, alignment);
_addr = os::reserve_memory(_size, NULL, alignment, F);
if (_addr == NULL) {
vm_exit_out_of_memory(_size, OOM_MMAP_ERROR, "Allocator (reserve)");
addr = os::reserve_memory(size, NULL, alignment, F);
if (addr == NULL) {
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "Allocator (reserve)");
}
os::commit_memory_or_exit(_addr, _size, !ExecMem, "Allocator (commit)");
os::commit_memory_or_exit(addr, size, !ExecMem, "Allocator (commit)");
return addr;
}
template <class E, MEMFLAGS F>
E* ArrayAllocator<E, F>::allocate(size_t length) {
assert(_addr == NULL, "Already in use");
_size = sizeof(E) * length;
_use_malloc = should_use_malloc(_size);
_addr = allocate_inner(_size, _use_malloc);
return (E*)_addr;
}
template <class E, MEMFLAGS F>
E* ArrayAllocator<E, F>::reallocate(size_t new_length) {
size_t new_size = sizeof(E) * new_length;
bool use_malloc = should_use_malloc(new_size);
char* new_addr = allocate_inner(new_size, use_malloc);
memcpy(new_addr, _addr, MIN2(new_size, _size));
free();
_size = new_size;
_use_malloc = use_malloc;
_addr = new_addr;
return (E*)new_addr;
}
template<class E, MEMFLAGS F>
void ArrayAllocator<E, F>::free() {
if (_addr != NULL) {

View file

@ -28,7 +28,6 @@
#include "memory/sharedHeap.hpp"
volatile jint GC_locker::_jni_lock_count = 0;
volatile jint GC_locker::_lock_count = 0;
volatile bool GC_locker::_needs_gc = false;
volatile bool GC_locker::_doing_gc = false;
@ -102,7 +101,7 @@ void GC_locker::jni_lock(JavaThread* thread) {
// We check that at least one thread is in a critical region before
// blocking because blocked threads are woken up by a thread exiting
// a JNI critical region.
while ((needs_gc() && is_jni_active()) || _doing_gc) {
while (is_active_and_needs_gc() || _doing_gc) {
JNICritical_lock->wait();
}
thread->enter_critical();
@ -116,27 +115,20 @@ void GC_locker::jni_unlock(JavaThread* thread) {
_jni_lock_count--;
decrement_debug_jni_lock_count();
thread->exit_critical();
if (needs_gc() && !is_jni_active()) {
if (needs_gc() && !is_active_internal()) {
// We're the last thread out. Cause a GC to occur.
// GC will also check is_active, so this check is not
// strictly needed. It's added here to make it clear that
// the GC will NOT be performed if any other caller
// of GC_locker::lock() still needs GC locked.
if (!is_active_internal()) {
_doing_gc = true;
{
// Must give up the lock while at a safepoint
MutexUnlocker munlock(JNICritical_lock);
if (PrintJNIGCStalls && PrintGCDetails) {
ResourceMark rm; // JavaThread::name() allocates to convert to UTF8
gclog_or_tty->print_cr("%.3f: Thread \"%s\" is performing GC after exiting critical section, %d locked",
gclog_or_tty->time_stamp().seconds(), Thread::current()->name(), _jni_lock_count);
}
Universe::heap()->collect(GCCause::_gc_locker);
_doing_gc = true;
{
// Must give up the lock while at a safepoint
MutexUnlocker munlock(JNICritical_lock);
if (PrintJNIGCStalls && PrintGCDetails) {
ResourceMark rm; // JavaThread::name() allocates to convert to UTF8
gclog_or_tty->print_cr("%.3f: Thread \"%s\" is performing GC after exiting critical section, %d locked",
gclog_or_tty->time_stamp().seconds(), Thread::current()->name(), _jni_lock_count);
}
_doing_gc = false;
Universe::heap()->collect(GCCause::_gc_locker);
}
_doing_gc = false;
_needs_gc = false;
JNICritical_lock->notify_all();
}

View file

@ -54,8 +54,6 @@ class GC_locker: public AllStatic {
// safepointing and decremented during the slow path of GC_locker
// unlocking.
static volatile jint _jni_lock_count; // number of jni active instances.
static volatile jint _lock_count; // number of other active instances
static volatile bool _needs_gc; // heap is filling, we need a GC
// note: bool is typedef'd as jint
static volatile bool _doing_gc; // unlock_critical() is doing a GC
@ -66,12 +64,6 @@ class GC_locker: public AllStatic {
static volatile jint _debug_jni_lock_count;
#endif
// Accessors
static bool is_jni_active() {
assert(_needs_gc, "only valid when _needs_gc is set");
return _jni_lock_count > 0;
}
// At a safepoint, visit all threads and count the number of active
// critical sections. This is used to ensure that all active
// critical sections are exited before a new one is started.
@ -82,7 +74,7 @@ class GC_locker: public AllStatic {
static bool is_active_internal() {
verify_critical_count();
return _lock_count > 0 || _jni_lock_count > 0;
return _jni_lock_count > 0;
}
public:
@ -132,10 +124,6 @@ class GC_locker: public AllStatic {
// not a stable predicate.
static void stall_until_clear();
// Non-structured GC locking: currently needed for JNI. Use with care!
static void lock();
static void unlock();
// The following two methods are used for JNI critical regions.
// If we find that we failed to perform a GC because the GC_locker
// was active, arrange for one as soon as possible by allowing

View file

@ -27,22 +27,6 @@
#include "memory/gcLocker.hpp"
inline void GC_locker::lock() {
// cast away volatile
Atomic::inc(&_lock_count);
CHECK_UNHANDLED_OOPS_ONLY(
if (CheckUnhandledOops) { Thread::current()->_gc_locked_out_count++; })
assert(Universe::heap() == NULL ||
!Universe::heap()->is_gc_active(), "locking failed");
}
inline void GC_locker::unlock() {
// cast away volatile
Atomic::dec(&_lock_count);
CHECK_UNHANDLED_OOPS_ONLY(
if (CheckUnhandledOops) { Thread::current()->_gc_locked_out_count--; })
}
inline void GC_locker::lock_critical(JavaThread* thread) {
if (!thread->in_critical()) {
if (needs_gc()) {

View file

@ -115,9 +115,6 @@ class ScanClosure: public OopsInKlassOrGenClosure {
virtual void do_oop(narrowOop* p);
inline void do_oop_nv(oop* p);
inline void do_oop_nv(narrowOop* p);
Prefetch::style prefetch_style() {
return Prefetch::do_write;
}
};
// Closure for scanning DefNewGeneration.
@ -137,9 +134,6 @@ class FastScanClosure: public OopsInKlassOrGenClosure {
virtual void do_oop(narrowOop* p);
inline void do_oop_nv(oop* p);
inline void do_oop_nv(narrowOop* p);
Prefetch::style prefetch_style() {
return Prefetch::do_write;
}
};
class KlassScanClosure: public KlassClosure {

View file

@ -27,11 +27,8 @@
#include "memory/allocation.hpp"
#include "memory/memRegion.hpp"
#include "runtime/prefetch.hpp"
#include "utilities/top.hpp"
// The following classes are C++ `closures` for iterating over objects, roots and spaces
class CodeBlob;
class nmethod;
class ReferenceProcessor;
@ -39,22 +36,11 @@ class DataLayout;
class KlassClosure;
class ClassLoaderData;
// Closure provides abortability.
// The following classes are C++ `closures` for iterating over objects, roots and spaces
class Closure : public StackObj {
protected:
bool _abort;
void set_abort() { _abort = true; }
public:
Closure() : _abort(false) {}
// A subtype can use this mechanism to indicate to some iterator mapping
// functions that the iteration should cease.
bool abort() { return _abort; }
void clear_abort() { _abort = false; }
};
class Closure : public StackObj { };
// OopClosure is used for iterating through references to Java objects.
class OopClosure : public Closure {
public:
virtual void do_oop(oop* o) = 0;
@ -97,11 +83,6 @@ class ExtendedOopClosure : public OopClosure {
virtual void do_class_loader_data(ClassLoaderData* cld) { ShouldNotReachHere(); }
// Controls how prefetching is done for invocations of this closure.
Prefetch::style prefetch_style() { // Note that this is non-virtual.
return Prefetch::do_none;
}
// True iff this closure may be safely applied more than once to an oop
// location without an intervening "major reset" (like the end of a GC).
virtual bool idempotent() { return false; }
@ -177,19 +158,6 @@ public:
ObjectToOopClosure(ExtendedOopClosure* cl) : _cl(cl) {}
};
// A version of ObjectClosure with "memory" (see _previous_address below)
class UpwardsObjectClosure: public BoolObjectClosure {
HeapWord* _previous_address;
public:
UpwardsObjectClosure() : _previous_address(NULL) { }
void set_previous(HeapWord* addr) { _previous_address = addr; }
HeapWord* previous() { return _previous_address; }
// A return value of "true" can be used by the caller to decide
// if this object's end should *NOT* be recorded in
// _previous_address above.
virtual bool do_object_bm(oop obj, MemRegion mr) = 0;
};
// A version of ObjectClosure that is expected to be robust
// in the face of possibly uninitialized objects.
class ObjectClosureCareful : public ObjectClosure {

View file

@ -645,9 +645,6 @@ void MetaspaceShared::preload_and_dump(TRAPS) {
TraceTime timer("Dump Shared Spaces", TraceStartupTime);
ResourceMark rm;
// Lock out GC - is it necessary? I don't think we care.
No_GC_Verifier no_gc;
// Preload classes to be shared.
// Should use some os:: method rather than fopen() here. aB.
// Construct the path to the class list (in jre/lib)

View file

@ -302,10 +302,6 @@ void ContiguousSpace::clear(bool mangle_space) {
CompactibleSpace::clear(mangle_space);
}
bool ContiguousSpace::is_in(const void* p) const {
return _bottom <= p && p < _top;
}
bool ContiguousSpace::is_free_block(const HeapWord* p) const {
return p >= _top;
}
@ -547,115 +543,11 @@ void Space::oop_iterate(ExtendedOopClosure* blk) {
object_iterate(&blk2);
}
HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
guarantee(false, "NYI");
return bottom();
}
HeapWord* Space::object_iterate_careful_m(MemRegion mr,
ObjectClosureCareful* cl) {
guarantee(false, "NYI");
return bottom();
}
void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
assert(!mr.is_empty(), "Should be non-empty");
// We use MemRegion(bottom(), end()) rather than used_region() below
// because the two are not necessarily equal for some kinds of
// spaces, in particular, certain kinds of free list spaces.
// We could use the more complicated but more precise:
// MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
// but the slight imprecision seems acceptable in the assertion check.
assert(MemRegion(bottom(), end()).contains(mr),
"Should be within used space");
HeapWord* prev = cl->previous(); // max address from last time
if (prev >= mr.end()) { // nothing to do
return;
}
// This assert will not work when we go from cms space to perm
// space, and use same closure. Easy fix deferred for later. XXX YSR
// assert(prev == NULL || contains(prev), "Should be within space");
bool last_was_obj_array = false;
HeapWord *blk_start_addr, *region_start_addr;
if (prev > mr.start()) {
region_start_addr = prev;
blk_start_addr = prev;
// The previous invocation may have pushed "prev" beyond the
// last allocated block yet there may be still be blocks
// in this region due to a particular coalescing policy.
// Relax the assertion so that the case where the unallocated
// block is maintained and "prev" is beyond the unallocated
// block does not cause the assertion to fire.
assert((BlockOffsetArrayUseUnallocatedBlock &&
(!is_in(prev))) ||
(blk_start_addr == block_start(region_start_addr)), "invariant");
} else {
region_start_addr = mr.start();
blk_start_addr = block_start(region_start_addr);
}
HeapWord* region_end_addr = mr.end();
MemRegion derived_mr(region_start_addr, region_end_addr);
while (blk_start_addr < region_end_addr) {
const size_t size = block_size(blk_start_addr);
if (block_is_obj(blk_start_addr)) {
last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
} else {
last_was_obj_array = false;
}
blk_start_addr += size;
}
if (!last_was_obj_array) {
assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
"Should be within (closed) used space");
assert(blk_start_addr > prev, "Invariant");
cl->set_previous(blk_start_addr); // min address for next time
}
}
bool Space::obj_is_alive(const HeapWord* p) const {
assert (block_is_obj(p), "The address should point to an object");
return true;
}
void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
assert(!mr.is_empty(), "Should be non-empty");
assert(used_region().contains(mr), "Should be within used space");
HeapWord* prev = cl->previous(); // max address from last time
if (prev >= mr.end()) { // nothing to do
return;
}
// See comment above (in more general method above) in case you
// happen to use this method.
assert(prev == NULL || is_in_reserved(prev), "Should be within space");
bool last_was_obj_array = false;
HeapWord *obj_start_addr, *region_start_addr;
if (prev > mr.start()) {
region_start_addr = prev;
obj_start_addr = prev;
assert(obj_start_addr == block_start(region_start_addr), "invariant");
} else {
region_start_addr = mr.start();
obj_start_addr = block_start(region_start_addr);
}
HeapWord* region_end_addr = mr.end();
MemRegion derived_mr(region_start_addr, region_end_addr);
while (obj_start_addr < region_end_addr) {
oop obj = oop(obj_start_addr);
const size_t size = obj->size();
last_was_obj_array = cl->do_object_bm(obj, derived_mr);
obj_start_addr += size;
}
if (!last_was_obj_array) {
assert((bottom() <= obj_start_addr) && (obj_start_addr <= end()),
"Should be within (closed) used space");
assert(obj_start_addr > prev, "Invariant");
cl->set_previous(obj_start_addr); // min address for next time
}
}
#if INCLUDE_ALL_GCS
#define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \
\

View file

@ -120,6 +120,12 @@ class Space: public CHeapObj<mtGC> {
void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
// Returns true if this object has been allocated since a
// generation's "save_marks" call.
virtual bool obj_allocated_since_save_marks(const oop obj) const {
return (HeapWord*)obj >= saved_mark_word();
}
MemRegionClosure* preconsumptionDirtyCardClosure() const {
return _preconsumptionDirtyCardClosure;
}
@ -127,9 +133,9 @@ class Space: public CHeapObj<mtGC> {
_preconsumptionDirtyCardClosure = cl;
}
// Returns a subregion of the space containing all the objects in
// Returns a subregion of the space containing only the allocated objects in
// the space.
virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
virtual MemRegion used_region() const = 0;
// Returns a region that is guaranteed to contain (at least) all objects
// allocated at the time of the last call to "save_marks". If the space
@ -139,7 +145,7 @@ class Space: public CHeapObj<mtGC> {
// saved mark. Otherwise, the "obj_allocated_since_save_marks" method of
// the space must distinguish between objects in the region allocated before
// and after the call to save marks.
virtual MemRegion used_region_at_save_marks() const {
MemRegion used_region_at_save_marks() const {
return MemRegion(bottom(), saved_mark_word());
}
@ -172,7 +178,9 @@ class Space: public CHeapObj<mtGC> {
// expensive operation. To prevent performance problems
// on account of its inadvertent use in product jvm's,
// we restrict its use to assertion checks only.
virtual bool is_in(const void* p) const = 0;
bool is_in(const void* p) const {
return used_region().contains(p);
}
// Returns true iff the given reserved memory of the space contains the
// given address.
@ -204,24 +212,6 @@ class Space: public CHeapObj<mtGC> {
// objects whose internal references point to objects in the space.
virtual void safe_object_iterate(ObjectClosure* blk) = 0;
// Iterate over all objects that intersect with mr, calling "cl->do_object"
// on each. There is an exception to this: if this closure has already
// been invoked on an object, it may skip such objects in some cases. This is
// Most likely to happen in an "upwards" (ascending address) iteration of
// MemRegions.
virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
// Iterate over as many initialized objects in the space as possible,
// calling "cl.do_object_careful" on each. Return NULL if all objects
// in the space (at the start of the iteration) were iterated over.
// Return an address indicating the extent of the iteration in the
// event that the iteration had to return because of finding an
// uninitialized object in the space, or if the closure "cl"
// signaled early termination.
virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
virtual HeapWord* object_iterate_careful_m(MemRegion mr,
ObjectClosureCareful* cl);
// Create and return a new dirty card to oop closure. Can be
// overridden to return the appropriate type of closure
// depending on the type of space in which the closure will
@ -262,10 +252,6 @@ class Space: public CHeapObj<mtGC> {
// Allocation (return NULL if full). Enforces mutual exclusion internally.
virtual HeapWord* par_allocate(size_t word_size) = 0;
// Returns true if this object has been allocated since a
// generation's "save_marks" call.
virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
// Mark-sweep-compact support: all spaces can update pointers to objects
// moving as a part of compaction.
virtual void adjust_pointers();
@ -397,7 +383,7 @@ public:
// Perform operations on the space needed after a compaction
// has been performed.
virtual void reset_after_compaction() {}
virtual void reset_after_compaction() = 0;
// Returns the next space (in the current generation) to be compacted in
// the global compaction order. Also is used to select the next
@ -462,7 +448,7 @@ protected:
HeapWord* _end_of_live;
// Minimum size of a free block.
virtual size_t minimum_free_block_size() const = 0;
virtual size_t minimum_free_block_size() const { return 0; }
// This the function is invoked when an allocation of an object covering
// "start" to "end occurs crosses the threshold; returns the next
@ -778,7 +764,7 @@ class ContiguousSpace: public CompactibleSpace {
HeapWord* top() const { return _top; }
void set_top(HeapWord* value) { _top = value; }
virtual void set_saved_mark() { _saved_mark_word = top(); }
void set_saved_mark() { _saved_mark_word = top(); }
void reset_saved_mark() { _saved_mark_word = bottom(); }
WaterMark bottom_mark() { return WaterMark(this, bottom()); }
@ -813,35 +799,30 @@ class ContiguousSpace: public CompactibleSpace {
size_t used() const { return byte_size(bottom(), top()); }
size_t free() const { return byte_size(top(), end()); }
// Override from space.
bool is_in(const void* p) const;
virtual bool is_free_block(const HeapWord* p) const;
// In a contiguous space we have a more obvious bound on what parts
// contain objects.
MemRegion used_region() const { return MemRegion(bottom(), top()); }
MemRegion used_region_at_save_marks() const {
return MemRegion(bottom(), saved_mark_word());
}
// Allocation (return NULL if full)
virtual HeapWord* allocate(size_t word_size);
virtual HeapWord* par_allocate(size_t word_size);
virtual bool obj_allocated_since_save_marks(const oop obj) const {
return (HeapWord*)obj >= saved_mark_word();
}
// Iteration
void oop_iterate(ExtendedOopClosure* cl);
void object_iterate(ObjectClosure* blk);
// For contiguous spaces this method will iterate safely over objects
// in the space (i.e., between bottom and top) when at a safepoint.
void safe_object_iterate(ObjectClosure* blk);
void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
// iterates on objects up to the safe limit
// Iterate over as many initialized objects in the space as possible,
// calling "cl.do_object_careful" on each. Return NULL if all objects
// in the space (at the start of the iteration) were iterated over.
// Return an address indicating the extent of the iteration in the
// event that the iteration had to return because of finding an
// uninitialized object in the space, or if the closure "cl"
// signaled early termination.
HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
HeapWord* concurrent_iteration_safe_limit() {
assert(_concurrent_iteration_safe_limit <= top(),
@ -872,7 +853,6 @@ class ContiguousSpace: public CompactibleSpace {
// set new iteration safe limit
set_concurrent_iteration_safe_limit(compaction_top());
}
virtual size_t minimum_free_block_size() const { return 0; }
// Override.
DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,

View file

@ -632,7 +632,6 @@ jint universe_init() {
guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
"oop size is not not a multiple of HeapWord size");
TraceTime timer("Genesis", TraceStartupTime);
GC_locker::lock(); // do not allow gc during bootstrapping
JavaClasses::compute_hard_coded_offsets();
jint status = Universe::initialize_heap();
@ -1164,8 +1163,6 @@ bool universe_post_init() {
MemoryService::add_metaspace_memory_pools();
GC_locker::unlock(); // allow gc after bootstrapping
MemoryService::set_universe_heap(Universe::_collectedHeap);
return true;
}

View file

@ -3878,6 +3878,7 @@ void TestMetachunk_test();
void TestVirtualSpaceNode_test();
void TestNewSize_test();
void TestKlass_test();
void TestBitMap_test();
#if INCLUDE_ALL_GCS
void TestOldFreeSpaceCalculation_test();
void TestG1BiasedArray_test();
@ -3903,6 +3904,7 @@ void execute_internal_vm_tests() {
run_unit_test(test_loggc_filename());
run_unit_test(TestNewSize_test());
run_unit_test(TestKlass_test());
run_unit_test(TestBitMap_test());
#if INCLUDE_VM_STRUCTS
run_unit_test(VMStructs::test());
#endif

View file

@ -214,7 +214,6 @@ Thread::Thread() {
debug_only(_allow_allocation_count = 0;)
NOT_PRODUCT(_allow_safepoint_count = 0;)
NOT_PRODUCT(_skip_gcalot = false;)
CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
_jvmti_env_iteration_count = 0;
set_allocated_bytes(0);
_vm_operation_started_count = 0;

View file

@ -249,9 +249,6 @@ class Thread: public ThreadShadow {
// Used by SkipGCALot class.
NOT_PRODUCT(bool _skip_gcalot;) // Should we elide gc-a-lot?
// Record when GC is locked out via the GC_locker mechanism
CHECK_UNHANDLED_OOPS_ONLY(int _gc_locked_out_count;)
friend class No_Alloc_Verifier;
friend class No_Safepoint_Verifier;
friend class Pause_No_Safepoint_Verifier;
@ -397,7 +394,6 @@ class Thread: public ThreadShadow {
void clear_unhandled_oops() {
if (CheckUnhandledOops) unhandled_oops()->clear_unhandled_oops();
}
bool is_gc_locked_out() { return _gc_locked_out_count > 0; }
#endif // CHECK_UNHANDLED_OOPS
#ifndef PRODUCT

View file

@ -113,9 +113,7 @@ void UnhandledOops::unregister_unhandled_oop(oop* op) {
void UnhandledOops::clear_unhandled_oops() {
assert (CheckUnhandledOops, "should only be called with checking option");
if (_thread->is_gc_locked_out()) {
return;
}
for (int k = 0; k < _oop_list->length(); k++) {
UnhandledOopEntry entry = _oop_list->at(k);
// If an entry is on the unhandled oop list but isn't on the stack

View file

@ -24,6 +24,7 @@
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/copy.hpp"
#ifdef TARGET_OS_FAMILY_linux
@ -67,16 +68,14 @@ void BitMap::resize(idx_t size_in_bits, bool in_resource_area) {
idx_t new_size_in_words = size_in_words();
if (in_resource_area) {
_map = NEW_RESOURCE_ARRAY(bm_word_t, new_size_in_words);
Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) _map,
MIN2(old_size_in_words, new_size_in_words));
} else {
if (old_map != NULL) {
_map_allocator.free();
}
_map = _map_allocator.allocate(new_size_in_words);
_map = _map_allocator.reallocate(new_size_in_words);
}
Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) _map,
MIN2(old_size_in_words, new_size_in_words));
if (new_size_in_words > old_size_in_words) {
clear_range_of_words(old_size_in_words, size_in_words());
clear_range_of_words(old_size_in_words, new_size_in_words);
}
}
@ -536,6 +535,83 @@ void BitMap::print_on(outputStream* st) const {
tty->cr();
}
class TestBitMap : public AllStatic {
const static BitMap::idx_t BITMAP_SIZE = 1024;
static void fillBitMap(BitMap& map) {
map.set_bit(1);
map.set_bit(3);
map.set_bit(17);
map.set_bit(512);
}
static void testResize(bool in_resource_area) {
{
BitMap map(0, in_resource_area);
map.resize(BITMAP_SIZE, in_resource_area);
fillBitMap(map);
BitMap map2(BITMAP_SIZE, in_resource_area);
fillBitMap(map2);
assert(map.is_same(map2), "could be");
}
{
BitMap map(128, in_resource_area);
map.resize(BITMAP_SIZE, in_resource_area);
fillBitMap(map);
BitMap map2(BITMAP_SIZE, in_resource_area);
fillBitMap(map2);
assert(map.is_same(map2), "could be");
}
{
BitMap map(BITMAP_SIZE, in_resource_area);
map.resize(BITMAP_SIZE, in_resource_area);
fillBitMap(map);
BitMap map2(BITMAP_SIZE, in_resource_area);
fillBitMap(map2);
assert(map.is_same(map2), "could be");
}
}
static void testResizeResource() {
ResourceMark rm;
testResize(true);
}
static void testResizeNonResource() {
const uintx bitmap_bytes = BITMAP_SIZE / BitsPerByte;
// Test the default behavior
testResize(false);
{
// Make sure that AllocatorMallocLimit is larger than our allocation request
// forcing it to call standard malloc()
UIntFlagSetting fs(ArrayAllocatorMallocLimit, bitmap_bytes * 4);
testResize(false);
}
{
// Make sure that AllocatorMallocLimit is smaller than our allocation request
// forcing it to call mmap() (or equivalent)
UIntFlagSetting fs(ArrayAllocatorMallocLimit, bitmap_bytes / 4);
testResize(false);
}
}
public:
static void test() {
testResizeResource();
testResizeNonResource();
}
};
void TestBitMap_test() {
TestBitMap::test();
}
#endif