8301392: Port fdlibm log1p to Java

Reviewed-by: bpb
This commit is contained in:
Joe Darcy 2023-02-02 20:36:34 +00:00
parent f696785fd3
commit ee0f5b5ed0
4 changed files with 409 additions and 15 deletions

View file

@ -60,6 +60,7 @@ package java.lang;
class FdLibm {
// Constants used by multiple algorithms
private static final double INFINITY = Double.POSITIVE_INFINITY;
private static final double TWO54 = 0x1.0p54; // 1.80143985094819840000e+16
private FdLibm() {
throw new UnsupportedOperationException("No FdLibm instances for you.");
@ -779,11 +780,10 @@ class FdLibm {
* shown.
*/
static class Log10 {
private static double two54 = 0x1.0p54; // 1.80143985094819840000e+16;
private static double ivln10 = 0x1.bcb7b1526e50ep-2; // 4.34294481903251816668e-01
private static final double ivln10 = 0x1.bcb7b1526e50ep-2; // 4.34294481903251816668e-01
private static double log10_2hi = 0x1.34413509f6p-2; // 3.01029995663611771306e-01;
private static double log10_2lo = 0x1.9fef311f12b36p-42; // 3.69423907715893078616e-13;
private static final double log10_2hi = 0x1.34413509f6p-2; // 3.01029995663611771306e-01;
private static final double log10_2lo = 0x1.9fef311f12b36p-42; // 3.69423907715893078616e-13;
private Log10() {
throw new UnsupportedOperationException();
@ -799,13 +799,13 @@ class FdLibm {
k=0;
if (hx < 0x0010_0000) { /* x < 2**-1022 */
if (((hx & 0x7fff_ffff) | lx) == 0) {
return -two54/0.0; /* log(+-0)=-inf */
return -TWO54/0.0; /* log(+-0)=-inf */
}
if (hx < 0) {
return (x - x)/0.0; /* log(-#) = NaN */
}
k -= 54;
x *= two54; /* subnormal number, scale up x */
x *= TWO54; /* subnormal number, scale up x */
hx = __HI(x);
}
@ -822,4 +822,167 @@ class FdLibm {
return z + y * log10_2hi;
}
}
/**
* Returns the natural logarithm of the sum of the argument and 1.
*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k!=0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log1p(f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
* (the values of Lp1 to Lp7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lp1*s +...+Lp7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log1p(f) = f - (hfsq - s*(hfsq+R)).
*
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if(u==1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
static class Log1p {
private static final double ln2_hi = 0x1.62e42feep-1; // 6.93147180369123816490e-01
private static final double ln2_lo = 0x1.a39ef35793c76p-33; // 1.90821492927058770002e-10
private static final double Lp1 = 0x1.5555555555593p-1; // 6.666666666666735130e-01
private static final double Lp2 = 0x1.999999997fa04p-2; // 3.999999999940941908e-01
private static final double Lp3 = 0x1.2492494229359p-2; // 2.857142874366239149e-01
private static final double Lp4 = 0x1.c71c51d8e78afp-3; // 2.222219843214978396e-01
private static final double Lp5 = 0x1.7466496cb03dep-3; // 1.818357216161805012e-01
private static final double Lp6 = 0x1.39a09d078c69fp-3; // 1.531383769920937332e-01
private static final double Lp7 = 0x1.2f112df3e5244p-3; // 1.479819860511658591e-01
public static double compute(double x) {
double hfsq, f=0, c=0, s, z, R, u;
int k, hx, hu=0, ax;
hx = __HI(x); /* high word of x */
ax = hx & 0x7fff_ffff;
k = 1;
if (hx < 0x3FDA_827A) { /* x < 0.41422 */
if (ax >= 0x3ff0_0000) { /* x <= -1.0 */
if (x == -1.0) /* log1p(-1)=-inf */
return -INFINITY;
else
return Double.NaN; /* log1p(x < -1) = NaN */
}
if (ax < 0x3e20_0000) { /* |x| < 2**-29 */
if (TWO54 + x > 0.0 /* raise inexact */
&& ax < 0x3c90_0000) /* |x| < 2**-54 */
return x;
else
return x - x*x*0.5;
}
if (hx > 0 || hx <= 0xbfd2_bec3) { /* -0.2929 < x < 0.41422 */
k=0;
f=x;
hu=1;
}
}
if (hx >= 0x7ff0_0000) {
return x + x;
}
if (k != 0) {
if (hx < 0x4340_0000) {
u = 1.0 + x;
hu = __HI(u); /* high word of u */
k = (hu >> 20) - 1023;
c = (k > 0)? 1.0 - (u-x) : x-(u-1.0); /* correction term */
c /= u;
} else {
u = x;
hu = __HI(u); /* high word of u */
k = (hu >> 20) - 1023;
c = 0;
}
hu &= 0x000f_ffff;
if (hu < 0x6_a09e) {
u = __HI(u, hu | 0x3ff0_0000); /* normalize u */
} else {
k += 1;
u = __HI(u, hu | 0x3fe0_0000); /* normalize u/2 */
hu = (0x0010_0000 - hu) >> 2;
}
f = u - 1.0;
}
hfsq = 0.5*f*f;
if (hu == 0) { /* |f| < 2**-20 */
if (f == 0.0) {
if (k == 0) {
return 0.0;
} else {
c += k * ln2_lo;
return k * ln2_hi + c;
}
}
R = hfsq * (1.0 - 0.66666666666666666*f);
if (k == 0) {
return f - R;
} else {
return k * ln2_hi - ((R-(k * ln2_lo+c)) - f);
}
}
s = f/(2.0 + f);
z = s * s;
R = z * (Lp1 + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z*Lp7))))));
if (k == 0) {
return f - (hfsq - s*(hfsq + R));
} else {
return k * ln2_hi - ((hfsq - (s*(hfsq + R) + (k * ln2_lo+c))) - f);
}
}
}
}