8333583: Crypto-XDH.generateSecret regression after JDK-8329538

Reviewed-by: sviswanathan, kvn, ascarpino
This commit is contained in:
Volodymyr Paprotski 2024-06-25 22:31:39 +00:00 committed by Sandhya Viswanathan
parent b3bf31a0a0
commit f101e153ce
9 changed files with 72 additions and 89 deletions

View file

@ -90,12 +90,11 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
* store the result in an IntegerPolynomial representation in a. Requires
* that a.length == numLimbs.
*/
protected int multByInt(long[] a, long b) {
protected void multByInt(long[] a, long b) {
for (int i = 0; i < a.length; i++) {
a[i] *= b;
}
reduce(a);
return 0;
}
/**
@ -104,7 +103,7 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
* a.length == b.length == r.length == numLimbs. It is allowed for a and r
* to be the same array.
*/
protected abstract int mult(long[] a, long[] b, long[] r);
protected abstract void mult(long[] a, long[] b, long[] r);
/**
* Multiply an IntegerPolynomial representation (a) with itself and store
@ -112,7 +111,7 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
* a.length == r.length == numLimbs. It is allowed for a and r
* to be the same array.
*/
protected abstract int square(long[] a, long[] r);
protected abstract void square(long[] a, long[] r);
IntegerPolynomial(int bitsPerLimb,
int numLimbs,
@ -622,8 +621,8 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
}
long[] newLimbs = new long[limbs.length];
int numAdds = mult(limbs, b.limbs, newLimbs);
return new ImmutableElement(newLimbs, numAdds);
mult(limbs, b.limbs, newLimbs);
return new ImmutableElement(newLimbs, 0);
}
@Override
@ -635,8 +634,8 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
}
long[] newLimbs = new long[limbs.length];
int numAdds = IntegerPolynomial.this.square(limbs, newLimbs);
return new ImmutableElement(newLimbs, numAdds);
IntegerPolynomial.this.square(limbs, newLimbs);
return new ImmutableElement(newLimbs, 0);
}
public void addModPowerTwo(IntegerModuloP arg, byte[] result) {
@ -751,7 +750,8 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
b.numAdds = 0;
}
numAdds = mult(limbs, b.limbs, limbs);
mult(limbs, b.limbs, limbs);
numAdds = 0;
return this;
}
@ -764,7 +764,8 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
}
int value = ((Limb)v).value;
numAdds += multByInt(limbs, value);
multByInt(limbs, value);
numAdds = 0;
return this;
}
@ -824,7 +825,8 @@ public abstract sealed class IntegerPolynomial implements IntegerFieldModuloP
numAdds = 0;
}
numAdds = IntegerPolynomial.this.square(limbs, limbs);
IntegerPolynomial.this.square(limbs, limbs);
numAdds = 0;
return this;
}

View file

@ -50,7 +50,7 @@ public final class IntegerPolynomial1305 extends IntegerPolynomial {
super(BITS_PER_LIMB, NUM_LIMBS, 1, MODULUS);
}
protected int mult(long[] a, long[] b, long[] r) {
protected void mult(long[] a, long[] b, long[] r) {
// Use grade-school multiplication into primitives to avoid the
// temporary array allocation. This is equivalent to the following
@ -73,7 +73,6 @@ public final class IntegerPolynomial1305 extends IntegerPolynomial {
long c8 = (a[4] * b[4]);
carryReduce(r, c0, c1, c2, c3, c4, c5, c6, c7, c8);
return 0;
}
private void carryReduce(long[] r, long c0, long c1, long c2, long c3,
@ -100,7 +99,7 @@ public final class IntegerPolynomial1305 extends IntegerPolynomial {
}
@Override
protected int square(long[] a, long[] r) {
protected void square(long[] a, long[] r) {
// Use grade-school multiplication with a simple squaring optimization.
// Multiply into primitives to avoid the temporary array allocation.
// This is equivalent to the following code:
@ -123,7 +122,6 @@ public final class IntegerPolynomial1305 extends IntegerPolynomial {
long c8 = (a[4] * a[4]);
carryReduce(r, c0, c1, c2, c3, c4, c5, c6, c7, c8);
return 0;
}
@Override

View file

@ -131,12 +131,11 @@ public sealed class IntegerPolynomialModBinP extends IntegerPolynomial {
}
@Override
protected int mult(long[] a, long[] b, long[] r) {
protected void mult(long[] a, long[] b, long[] r) {
long[] c = new long[2 * numLimbs];
multOnly(a, b, c);
carryReduce(c, r);
return 0;
}
private void modReduceInBits(long[] limbs, int index, int bits, long x) {
@ -189,7 +188,7 @@ public sealed class IntegerPolynomialModBinP extends IntegerPolynomial {
}
@Override
protected int square(long[] a, long[] r) {
protected void square(long[] a, long[] r) {
long[] c = new long[2 * numLimbs];
for (int i = 0; i < numLimbs; i++) {
@ -200,7 +199,6 @@ public sealed class IntegerPolynomialModBinP extends IntegerPolynomial {
}
carryReduce(c, r);
return 0;
}
/**

View file

@ -31,6 +31,7 @@ import sun.security.util.math.SmallValue;
import sun.security.util.math.IntegerFieldModuloP;
import java.math.BigInteger;
import jdk.internal.vm.annotation.IntrinsicCandidate;
import jdk.internal.vm.annotation.ForceInline;
// Reference:
// - [1] Shay Gueron and Vlad Krasnov "Fast Prime Field Elliptic Curve
@ -103,8 +104,8 @@ public final class MontgomeryIntegerPolynomialP256 extends IntegerPolynomial
setLimbsValuePositive(v, vLimbs);
// Convert to Montgomery domain
int numAdds = mult(vLimbs, h, montLimbs);
return new ImmutableElement(montLimbs, numAdds);
mult(vLimbs, h, montLimbs);
return new ImmutableElement(montLimbs, 0);
}
@Override
@ -114,24 +115,6 @@ public final class MontgomeryIntegerPolynomialP256 extends IntegerPolynomial
return super.getSmallValue(value);
}
/*
* This function is used by IntegerPolynomial.setProduct(SmallValue v) to
* multiply by a small constant (i.e. (int) 1,2,3,4). Instead of doing a
* montgomery conversion followed by a montgomery multiplication, just use
* the spare top (64-BITS_PER_LIMB) bits to multiply by a constant. (See [1]
* Section 4 )
*
* Will return an unreduced value
*/
@Override
protected int multByInt(long[] a, long b) {
assert (b < (1 << BITS_PER_LIMB));
for (int i = 0; i < a.length; i++) {
a[i] *= b;
}
return (int) (b - 1);
}
@Override
public ImmutableIntegerModuloP fromMontgomery(ImmutableIntegerModuloP n) {
assert n.getField() == MontgomeryIntegerPolynomialP256.ONE;
@ -163,10 +146,11 @@ public final class MontgomeryIntegerPolynomialP256 extends IntegerPolynomial
}
@Override
protected int square(long[] a, long[] r) {
return mult(a, a, r);
protected void square(long[] a, long[] r) {
mult(a, a, r);
}
/**
* Unrolled Word-by-Word Montgomery Multiplication r = a * b * 2^-260 (mod P)
*
@ -174,8 +158,15 @@ public final class MontgomeryIntegerPolynomialP256 extends IntegerPolynomial
* for a Montgomery Friendly modulus p". Note: Step 6. Skipped; Instead use
* numAdds to reuse existing overflow logic.
*/
@Override
protected void mult(long[] a, long[] b, long[] r) {
multImpl(a, b, r);
reducePositive(r);
}
@ForceInline
@IntrinsicCandidate
protected int mult(long[] a, long[] b, long[] r) {
private void multImpl(long[] a, long[] b, long[] r) {
long aa0 = a[0];
long aa1 = a[1];
long aa2 = a[2];
@ -408,36 +399,16 @@ public final class MontgomeryIntegerPolynomialP256 extends IntegerPolynomial
d4 += n4 & LIMB_MASK;
c5 += d1 + dd0 + (d0 >>> BITS_PER_LIMB);
c6 += d2 + dd1 + (c5 >>> BITS_PER_LIMB);
c7 += d3 + dd2 + (c6 >>> BITS_PER_LIMB);
c8 += d4 + dd3 + (c7 >>> BITS_PER_LIMB);
c9 = dd4 + (c8 >>> BITS_PER_LIMB);
c6 += d2 + dd1;
c7 += d3 + dd2;
c8 += d4 + dd3;
c9 = dd4;
c5 &= LIMB_MASK;
c6 &= LIMB_MASK;
c7 &= LIMB_MASK;
c8 &= LIMB_MASK;
// At this point, the result could overflow by one modulus.
c0 = c5 - modulus[0];
c1 = c6 - modulus[1] + (c0 >> BITS_PER_LIMB);
c0 &= LIMB_MASK;
c2 = c7 - modulus[2] + (c1 >> BITS_PER_LIMB);
c1 &= LIMB_MASK;
c3 = c8 - modulus[3] + (c2 >> BITS_PER_LIMB);
c2 &= LIMB_MASK;
c4 = c9 - modulus[4] + (c3 >> BITS_PER_LIMB);
c3 &= LIMB_MASK;
long mask = c4 >> BITS_PER_LIMB; // Signed shift!
r[0] = ((c5 & mask) | (c0 & ~mask));
r[1] = ((c6 & mask) | (c1 & ~mask));
r[2] = ((c7 & mask) | (c2 & ~mask));
r[3] = ((c8 & mask) | (c3 & ~mask));
r[4] = ((c9 & mask) | (c4 & ~mask));
return 0;
r[0] = c5;
r[1] = c6;
r[2] = c7;
r[3] = c8;
r[4] = c9;
}
@Override
@ -516,8 +487,8 @@ public final class MontgomeryIntegerPolynomialP256 extends IntegerPolynomial
super.encode(v, offset, length, highByte, vLimbs);
// Convert to Montgomery domain
int numAdds = mult(vLimbs, h, montLimbs);
return new ImmutableElement(montLimbs, numAdds);
mult(vLimbs, h, montLimbs);
return new ImmutableElement(montLimbs, 0);
}
/*
@ -556,4 +527,27 @@ public final class MontgomeryIntegerPolynomialP256 extends IntegerPolynomial
limbs[i - 5] += (v << 4) & LIMB_MASK;
limbs[i - 4] += v >> 48;
}
// Used when limbs a could overflow by one modulus.
@ForceInline
protected void reducePositive(long[] a) {
long aa0 = a[0];
long aa1 = a[1] + (aa0>>BITS_PER_LIMB);
long aa2 = a[2] + (aa1>>BITS_PER_LIMB);
long aa3 = a[3] + (aa2>>BITS_PER_LIMB);
long aa4 = a[4] + (aa3>>BITS_PER_LIMB);
long c0 = a[0] - modulus[0];
long c1 = a[1] - modulus[1] + (c0 >> BITS_PER_LIMB);
long c2 = a[2] - modulus[2] + (c1 >> BITS_PER_LIMB);
long c3 = a[3] - modulus[3] + (c2 >> BITS_PER_LIMB);
long c4 = a[4] - modulus[4] + (c3 >> BITS_PER_LIMB);
long mask = c4 >> BITS_PER_LIMB; // Signed shift!
a[0] = ((aa0 & mask) | (c0 & ~mask)) & LIMB_MASK;
a[1] = ((aa1 & mask) | (c1 & ~mask)) & LIMB_MASK;
a[2] = ((aa2 & mask) | (c2 & ~mask)) & LIMB_MASK;
a[3] = ((aa3 & mask) | (c3 & ~mask)) & LIMB_MASK;
a[4] = ((aa4 & mask) | (c4 & ~mask));
}
}