mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-27 14:54:52 +02:00
8171277: Elliptic Curves for Security in Crypto
Implementations of X25519 and X448 key agreement in SunEC Reviewed-by: mullan
This commit is contained in:
parent
f15ab37909
commit
f5a247a85f
28 changed files with 7938 additions and 95 deletions
|
@ -0,0 +1,271 @@
|
|||
/*
|
||||
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation. Oracle designates this
|
||||
* particular file as subject to the "Classpath" exception as provided
|
||||
* by Oracle in the LICENSE file that accompanied this code.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
package sun.security.ec;
|
||||
|
||||
import sun.security.util.math.IntegerFieldModuloP;
|
||||
import sun.security.util.math.ImmutableIntegerModuloP;
|
||||
import sun.security.util.math.IntegerModuloP;
|
||||
import sun.security.util.math.MutableIntegerModuloP;
|
||||
import sun.security.util.math.SmallValue;
|
||||
import sun.security.util.math.intpoly.IntegerPolynomial25519;
|
||||
import sun.security.util.math.intpoly.IntegerPolynomial448;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.security.ProviderException;
|
||||
import java.security.SecureRandom;
|
||||
|
||||
public class XECOperations {
|
||||
|
||||
private final XECParameters params;
|
||||
private final IntegerFieldModuloP field;
|
||||
private final ImmutableIntegerModuloP zero;
|
||||
private final ImmutableIntegerModuloP one;
|
||||
private final SmallValue a24;
|
||||
private final ImmutableIntegerModuloP basePoint;
|
||||
|
||||
public XECOperations(XECParameters c) {
|
||||
this.params = c;
|
||||
|
||||
BigInteger p = params.getP();
|
||||
this.field = getIntegerFieldModulo(p);
|
||||
this.zero = field.getElement(BigInteger.ZERO).fixed();
|
||||
this.one = field.get1().fixed();
|
||||
this.a24 = field.getSmallValue(params.getA24());
|
||||
this.basePoint = field.getElement(
|
||||
BigInteger.valueOf(c.getBasePoint()));
|
||||
}
|
||||
|
||||
public XECParameters getParameters() {
|
||||
return params;
|
||||
}
|
||||
|
||||
public byte[] generatePrivate(SecureRandom random) {
|
||||
byte[] result = new byte[this.params.getBytes()];
|
||||
random.nextBytes(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute a public key from an encoded private key. This method will
|
||||
* modify the supplied array in order to prune it.
|
||||
*/
|
||||
public BigInteger computePublic(byte[] k) {
|
||||
pruneK(k);
|
||||
return pointMultiply(k, this.basePoint).asBigInteger();
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* Multiply an encoded scalar with a point as a BigInteger and return an
|
||||
* encoded point. The array k holding the scalar will be pruned by
|
||||
* modifying it in place.
|
||||
*
|
||||
* @param k an encoded scalar
|
||||
* @param u the u-coordinate of a point as a BigInteger
|
||||
* @return the encoded product
|
||||
*/
|
||||
public byte[] encodedPointMultiply(byte[] k, BigInteger u) {
|
||||
pruneK(k);
|
||||
ImmutableIntegerModuloP elemU = field.getElement(u);
|
||||
return pointMultiply(k, elemU).asByteArray(params.getBytes());
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* Multiply an encoded scalar with an encoded point and return an encoded
|
||||
* point. The array k holding the scalar will be pruned by
|
||||
* modifying it in place.
|
||||
*
|
||||
* @param k an encoded scalar
|
||||
* @param u an encoded point
|
||||
* @return the encoded product
|
||||
*/
|
||||
public byte[] encodedPointMultiply(byte[] k, byte[] u) {
|
||||
pruneK(k);
|
||||
ImmutableIntegerModuloP elemU = decodeU(u);
|
||||
return pointMultiply(k, elemU).asByteArray(params.getBytes());
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the field element corresponding to an encoded u-coordinate.
|
||||
* This method prunes u by modifying it in place.
|
||||
*
|
||||
* @param u
|
||||
* @param bits
|
||||
* @return
|
||||
*/
|
||||
private ImmutableIntegerModuloP decodeU(byte[] u, int bits) {
|
||||
|
||||
maskHighOrder(u, bits);
|
||||
|
||||
return field.getElement(u);
|
||||
}
|
||||
|
||||
/**
|
||||
* Mask off the high order bits of an encoded integer in an array. The
|
||||
* array is modified in place.
|
||||
*
|
||||
* @param arr an array containing an encoded integer
|
||||
* @param bits the number of bits to keep
|
||||
* @return the number, in range [1,8], of bits kept in the highest byte
|
||||
*/
|
||||
private static byte maskHighOrder(byte[] arr, int bits) {
|
||||
|
||||
int lastByteIndex = arr.length - 1;
|
||||
byte bitsMod8 = (byte) (bits % 8);
|
||||
byte highBits = bitsMod8 == 0 ? 8 : bitsMod8;
|
||||
byte msbMaskOff = (byte) ((1 << highBits) - 1);
|
||||
arr[lastByteIndex] &= msbMaskOff;
|
||||
|
||||
return highBits;
|
||||
}
|
||||
|
||||
/**
|
||||
* Prune an encoded scalar value by modifying it in place. The extra
|
||||
* high-order bits are masked off, the highest valid bit it set, and the
|
||||
* number is rounded down to a multiple of the cofactor.
|
||||
*
|
||||
* @param k an encoded scalar value
|
||||
* @param bits the number of bits in the scalar
|
||||
* @param logCofactor the base-2 logarithm of the cofactor
|
||||
*/
|
||||
private static void pruneK(byte[] k, int bits, int logCofactor) {
|
||||
|
||||
int lastByteIndex = k.length - 1;
|
||||
|
||||
// mask off unused high-order bits
|
||||
byte highBits = maskHighOrder(k, bits);
|
||||
|
||||
// set the highest bit
|
||||
byte msbMaskOn = (byte) (1 << (highBits - 1));
|
||||
k[lastByteIndex] |= msbMaskOn;
|
||||
|
||||
// round down to a multiple of the cofactor
|
||||
byte lsbMaskOff = (byte) (0xFF << logCofactor);
|
||||
k[0] &= lsbMaskOff;
|
||||
}
|
||||
|
||||
private void pruneK(byte[] k) {
|
||||
pruneK(k, params.getBits(), params.getLogCofactor());
|
||||
}
|
||||
|
||||
private ImmutableIntegerModuloP decodeU(byte [] u) {
|
||||
return decodeU(u, params.getBits());
|
||||
}
|
||||
|
||||
// Constant-time conditional swap
|
||||
private static void cswap(int swap, MutableIntegerModuloP x1,
|
||||
MutableIntegerModuloP x2) {
|
||||
|
||||
x1.conditionalSwapWith(x2, swap);
|
||||
}
|
||||
|
||||
private static IntegerFieldModuloP getIntegerFieldModulo(BigInteger p) {
|
||||
|
||||
if (p.equals(IntegerPolynomial25519.MODULUS)) {
|
||||
return new IntegerPolynomial25519();
|
||||
}
|
||||
else if (p.equals(IntegerPolynomial448.MODULUS)) {
|
||||
return new IntegerPolynomial448();
|
||||
}
|
||||
|
||||
throw new ProviderException("Unsupported prime: " + p.toString());
|
||||
}
|
||||
|
||||
private int bitAt(byte[] arr, int index) {
|
||||
int byteIndex = index / 8;
|
||||
int bitIndex = index % 8;
|
||||
return (arr[byteIndex] & (1 << bitIndex)) >> bitIndex;
|
||||
}
|
||||
|
||||
/*
|
||||
* Constant-time Montgomery ladder that computes k*u and returns the
|
||||
* result as a field element.
|
||||
*/
|
||||
private IntegerModuloP pointMultiply(byte[] k,
|
||||
ImmutableIntegerModuloP u) {
|
||||
|
||||
ImmutableIntegerModuloP x_1 = u;
|
||||
MutableIntegerModuloP x_2 = this.one.mutable();
|
||||
MutableIntegerModuloP z_2 = this.zero.mutable();
|
||||
MutableIntegerModuloP x_3 = u.mutable();
|
||||
MutableIntegerModuloP z_3 = this.one.mutable();
|
||||
int swap = 0;
|
||||
|
||||
// Variables below are reused to avoid unnecessary allocation
|
||||
// They will be assigned in the loop, so initial value doesn't matter
|
||||
MutableIntegerModuloP m1 = this.zero.mutable();
|
||||
MutableIntegerModuloP DA = this.zero.mutable();
|
||||
MutableIntegerModuloP E = this.zero.mutable();
|
||||
MutableIntegerModuloP a24_times_E = this.zero.mutable();
|
||||
|
||||
// Comments describe the equivalent operations from RFC 7748
|
||||
// In comments, A(m1) means the variable m1 holds the value A
|
||||
for (int t = params.getBits() - 1; t >= 0; t--) {
|
||||
int k_t = bitAt(k, t);
|
||||
swap = swap ^ k_t;
|
||||
cswap(swap, x_2, x_3);
|
||||
cswap(swap, z_2, z_3);
|
||||
swap = k_t;
|
||||
|
||||
// A(m1) = x_2 + z_2
|
||||
m1.setValue(x_2).setSum(z_2);
|
||||
// D = x_3 - z_3
|
||||
// DA = D * A(m1)
|
||||
DA.setValue(x_3).setDifference(z_3).setProduct(m1);
|
||||
// AA(m1) = A(m1)^2
|
||||
m1.setSquare();
|
||||
// B(x_2) = x_2 - z_2
|
||||
x_2.setDifference(z_2);
|
||||
// C = x_3 + z_3
|
||||
// CB(x_3) = C * B(x_2)
|
||||
x_3.setSum(z_3).setProduct(x_2);
|
||||
// BB(x_2) = B^2
|
||||
x_2.setSquare();
|
||||
// E = AA(m1) - BB(x_2)
|
||||
E.setValue(m1).setDifference(x_2);
|
||||
// compute a24 * E using SmallValue
|
||||
a24_times_E.setValue(E);
|
||||
a24_times_E.setProduct(this.a24);
|
||||
|
||||
// assign results to x_3, z_3, x_2, z_2
|
||||
// x_2 = AA(m1) * BB
|
||||
x_2.setProduct(m1);
|
||||
// z_2 = E * (AA(m1) + a24 * E)
|
||||
z_2.setValue(m1).setSum(a24_times_E).setProduct(E);
|
||||
// z_3 = x_1*(DA - CB(x_3))^2
|
||||
z_3.setValue(DA).setDifference(x_3).setSquare().setProduct(x_1);
|
||||
// x_3 = (CB(x_3) + DA)^2
|
||||
x_3.setSum(DA).setSquare();
|
||||
}
|
||||
|
||||
cswap(swap, x_2, x_3);
|
||||
cswap(swap, z_2, z_3);
|
||||
|
||||
// return (x_2 * z_2^(p - 2))
|
||||
return x_2.setProduct(z_2.multiplicativeInverse());
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue