8174222: LambdaMetafactory: validate inputs and improve documentation

Reviewed-by: mchung
This commit is contained in:
Dan Smith 2021-06-07 23:21:24 +00:00
parent 5e557d8650
commit fc08af58cb
8 changed files with 800 additions and 436 deletions

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,6 +27,8 @@ package java.lang.invoke;
import java.io.Serializable;
import java.util.Arrays;
import java.lang.reflect.Array;
import java.util.Objects;
/**
* <p>Methods to facilitate the creation of simple "function objects" that
@ -39,41 +41,47 @@ import java.util.Arrays;
* <p>Indirect access to the behavior specified by the provided {@code MethodHandle}
* proceeds in order through three phases:
* <ul>
* <li><em>Linkage</em> occurs when the methods in this class are invoked.
* <li><p><em>Linkage</em> occurs when the methods in this class are invoked.
* They take as arguments an interface to be implemented (typically a
* <em>functional interface</em>, one with a single abstract method), a
* name and signature of a method from that interface to be implemented, a
* method handle describing the desired implementation behavior
* for that method, and possibly other additional metadata, and produce a
* {@link CallSite} whose target can be used to create suitable function
* objects. Linkage may involve dynamically loading a new class that
* implements the target interface. The {@code CallSite} can be considered a
* "factory" for function objects and so these linkage methods are referred
* to as "metafactories".</li>
* {@linkplain MethodHandleInfo direct method handle} describing the desired
* implementation behavior for that method, and possibly other additional
* metadata, and produce a {@link CallSite} whose target can be used to
* create suitable function objects.
*
* <li><em>Capture</em> occurs when the {@code CallSite}'s target is
* <p>Linkage may involve dynamically loading a new class that implements
* the target interface, or re-using a suitable existing class.
*
* <p>The {@code CallSite} can be considered a "factory" for function
* objects and so these linkage methods are referred to as
* "metafactories".</li>
*
* <li><p><em>Capture</em> occurs when the {@code CallSite}'s target is
* invoked, typically through an {@code invokedynamic} call site,
* producing a function object. This may occur many times for
* a single factory {@code CallSite}. Capture may involve allocation of a
* new function object, or may return an existing function object. The
* behavior {@code MethodHandle} may have additional parameters beyond those
* of the specified interface method; these are referred to as <em>captured
* parameters</em>, which must be provided as arguments to the
* {@code CallSite} target, and which may be early-bound to the behavior
* {@code MethodHandle}. The number of captured parameters and their types
* are determined during linkage.
* The identity of a function object produced by invoking the
* {@code CallSite}'s target is unpredictable, and therefore
* identity-sensitive operations (such as reference equality, object
* locking, and {@code System.identityHashCode()} may produce different
* results in different implementations, or even upon different invocations
* in the same implementation.</li>
* producing a function object. This may occur many times for
* a single factory {@code CallSite}.
*
* <li><em>Invocation</em> occurs when an implemented interface method
* is invoked on a function object. This may occur many times for a single
* function object. The method referenced by the behavior {@code MethodHandle}
* is invoked with the captured arguments and any additional arguments
* provided on invocation, as if by {@link MethodHandle#invoke(Object...)}.</li>
* <p>If the behavior {@code MethodHandle} has additional parameters beyond
* those of the specified interface method, these are referred to as
* <em>captured parameters</em>, which must be provided as arguments to the
* {@code CallSite} target. The expected number and types of captured
* parameters are determined during linkage.
*
* <p>Capture may involve allocation of a new function object, or may return
* a suitable existing function object. The identity of a function object
* produced by capture is unpredictable, and therefore identity-sensitive
* operations (such as reference equality, object locking, and {@code
* System.identityHashCode()}) may produce different results in different
* implementations, or even upon different invocations in the same
* implementation.</li>
*
* <li><p><em>Invocation</em> occurs when an implemented interface method is
* invoked on a function object. This may occur many times for a single
* function object. The method referenced by the implementation
* {@code MethodHandle} is invoked, passing to it the captured arguments and
* the invocation arguments. The result of the method is returned.
* </li>
* </ul>
*
* <p>It is sometimes useful to restrict the set of inputs or results permitted
@ -81,7 +89,7 @@ import java.util.Arrays;
* is parameterized as {@code Predicate<String>}, the input must be a
* {@code String}, even though the method to implement allows any {@code Object}.
* At linkage time, an additional {@link MethodType} parameter describes the
* "instantiated" method type; on invocation, the arguments and eventual result
* "dynamic" method type; on invocation, the arguments and eventual result
* are checked against this {@code MethodType}.
*
* <p>This class provides two forms of linkage methods: a standard version
@ -94,7 +102,7 @@ import java.util.Arrays;
* manage the following attributes of function objects:
*
* <ul>
* <li><em>Bridging.</em> It is sometimes useful to implement multiple
* <li><em>Multiple methods.</em> It is sometimes useful to implement multiple
* variations of the method signature, involving argument or return type
* adaptation. This occurs when multiple distinct VM signatures for a method
* are logically considered to be the same method by the language. The
@ -121,24 +129,22 @@ import java.util.Arrays;
*
* <p>Assume the linkage arguments are as follows:
* <ul>
* <li>{@code invokedType} (describing the {@code CallSite} signature) has
* <li>{@code factoryType} (describing the {@code CallSite} signature) has
* K parameters of types (D1..Dk) and return type Rd;</li>
* <li>{@code samMethodType} (describing the implemented method type) has N
* <li>{@code interfaceMethodType} (describing the implemented method type) has N
* parameters, of types (U1..Un) and return type Ru;</li>
* <li>{@code implMethod} (the {@code MethodHandle} providing the
* implementation has M parameters, of types (A1..Am) and return type Ra
* <li>{@code implementation} (the {@code MethodHandle} providing the
* implementation) has M parameters, of types (A1..Am) and return type Ra
* (if the method describes an instance method, the method type of this
* method handle already includes an extra first argument corresponding to
* the receiver);</li>
* <li>{@code instantiatedMethodType} (allowing restrictions on invocation)
* <li>{@code dynamicMethodType} (allowing restrictions on invocation)
* has N parameters, of types (T1..Tn) and return type Rt.</li>
* </ul>
*
* <p>Then the following linkage invariants must hold:
* <ul>
* <li>Rd is an interface</li>
* <li>{@code implMethod} is a <em>direct method handle</em></li>
* <li>{@code samMethodType} and {@code instantiatedMethodType} have the same
* <li>{@code interfaceMethodType} and {@code dynamicMethodType} have the same
* arity N, and for i=1..N, Ti and Ui are the same type, or Ti and Ui are
* both reference types and Ti is a subtype of Ui</li>
* <li>Either Rt and Ru are the same type, or both are reference types and
@ -150,7 +156,7 @@ import java.util.Arrays;
* adaptable to Rt</li>
* </ul>
*
* <p>Further, at capture time, if {@code implMethod} corresponds to an instance
* <p>Further, at capture time, if {@code implementation} corresponds to an instance
* method, and there are any capture arguments ({@code K > 0}), then the first
* capture argument (corresponding to the receiver) must be non-null.
*
@ -218,30 +224,30 @@ import java.util.Arrays;
* method signature describing the number and static types (but not the values)
* of the dynamic arguments and the static return type of the invokedynamic site.
*
* @implNote The implementation method is described with a method handle. In
* theory, any method handle could be used. Currently supported are direct method
* handles representing invocation of virtual, interface, constructor and static
* methods.
* <p>The implementation method is described with a direct method handle
* referencing a method or constructor. In theory, any method handle could be
* used, but this is not compatible with some implementation techniques and
* would complicate the work implementations must do.
*
* @since 1.8
*/
public final class LambdaMetafactory {
private LambdaMetafactory() {}
/** Flag for alternate metafactories indicating the lambda object
/** Flag for {@link #altMetafactory} indicating the lambda object
* must be serializable */
public static final int FLAG_SERIALIZABLE = 1 << 0;
/**
* Flag for alternate metafactories indicating the lambda object implements
* other marker interfaces
* besides Serializable
* Flag for {@link #altMetafactory} indicating the lambda object implements
* other interfaces besides {@code Serializable}
*/
public static final int FLAG_MARKERS = 1 << 1;
/**
* Flag for alternate metafactories indicating the lambda object requires
* additional bridge methods
* additional methods that invoke the {@code implementation}
*/
public static final int FLAG_BRIDGES = 1 << 2;
@ -249,7 +255,7 @@ public final class LambdaMetafactory {
private static final MethodType[] EMPTY_MT_ARRAY = new MethodType[0];
// LambdaMetafactory bootstrap methods are startup sensitive, and may be
// special cased in java.lang.invokeBootstrapMethodInvoker to ensure
// special cased in java.lang.invoke.BootstrapMethodInvoker to ensure
// methods are invoked with exact type information to avoid generating
// code for runtime checks. Take care any changes or additions here are
// reflected there as appropriate.
@ -269,9 +275,9 @@ public final class LambdaMetafactory {
*
* <p>When the target of the {@code CallSite} returned from this method is
* invoked, the resulting function objects are instances of a class which
* implements the interface named by the return type of {@code invokedType},
* declares a method with the name given by {@code invokedName} and the
* signature given by {@code samMethodType}. It may also override additional
* implements the interface named by the return type of {@code factoryType},
* declares a method with the name given by {@code interfaceMethodName} and the
* signature given by {@code interfaceMethodType}. It may also override additional
* methods from {@code Object}.
*
* @param caller Represents a lookup context with the accessibility
@ -280,50 +286,57 @@ public final class LambdaMetafactory {
* full privilege access}.
* When used with {@code invokedynamic}, this is stacked
* automatically by the VM.
* @param invokedName The name of the method to implement. When used with
* {@code invokedynamic}, this is provided by the
* {@code NameAndType} of the {@code InvokeDynamic}
* structure and is stacked automatically by the VM.
* @param invokedType The expected signature of the {@code CallSite}. The
* @param interfaceMethodName The name of the method to implement. When used with
* {@code invokedynamic}, this is provided by the
* {@code NameAndType} of the {@code InvokeDynamic}
* structure and is stacked automatically by the VM.
* @param factoryType The expected signature of the {@code CallSite}. The
* parameter types represent the types of capture variables;
* the return type is the interface to implement. When
* used with {@code invokedynamic}, this is provided by
* the {@code NameAndType} of the {@code InvokeDynamic}
* structure and is stacked automatically by the VM.
* In the event that the implementation method is an
* instance method and this signature has any parameters,
* the first parameter in the invocation signature must
* correspond to the receiver.
* @param samMethodType Signature and return type of method to be implemented
* by the function object.
* @param implMethod A direct method handle describing the implementation
* method which should be called (with suitable adaptation
* of argument types, return types, and with captured
* arguments prepended to the invocation arguments) at
* invocation time.
* @param instantiatedMethodType The signature and return type that should
* be enforced dynamically at invocation time.
* This may be the same as {@code samMethodType},
* or may be a specialization of it.
* @param interfaceMethodType Signature and return type of method to be
* implemented by the function object.
* @param implementation A direct method handle describing the implementation
* method which should be called (with suitable adaptation
* of argument types and return types, and with captured
* arguments prepended to the invocation arguments) at
* invocation time.
* @param dynamicMethodType The signature and return type that should
* be enforced dynamically at invocation time.
* In simple use cases this is the same as
* {@code interfaceMethodType}.
* @return a CallSite whose target can be used to perform capture, generating
* instances of the interface named by {@code invokedType}
* @throws LambdaConversionException If any of the linkage invariants
* described {@link LambdaMetafactory above}
* are violated, or the lookup context
* does not have private access privileges.
* instances of the interface named by {@code factoryType}
* @throws LambdaConversionException If {@code caller} does not have full privilege
* access, or if {@code interfaceMethodName} is not a valid JVM
* method name, or if the return type of {@code factoryType} is not
* an interface, or if {@code implementation} is not a direct method
* handle referencing a method or constructor, or if the linkage
* invariants are violated, as defined {@link LambdaMetafactory above}.
* @throws NullPointerException If any argument is {@code null}.
* @throws SecurityException If a security manager is present, and it
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
* from {@code caller} to the package of {@code implementation}.
*/
public static CallSite metafactory(MethodHandles.Lookup caller,
String invokedName,
MethodType invokedType,
MethodType samMethodType,
MethodHandle implMethod,
MethodType instantiatedMethodType)
String interfaceMethodName,
MethodType factoryType,
MethodType interfaceMethodType,
MethodHandle implementation,
MethodType dynamicMethodType)
throws LambdaConversionException {
AbstractValidatingLambdaMetafactory mf;
mf = new InnerClassLambdaMetafactory(caller, invokedType,
invokedName, samMethodType,
implMethod, instantiatedMethodType,
false, EMPTY_CLASS_ARRAY, EMPTY_MT_ARRAY);
mf = new InnerClassLambdaMetafactory(Objects.requireNonNull(caller),
Objects.requireNonNull(factoryType),
Objects.requireNonNull(interfaceMethodName),
Objects.requireNonNull(interfaceMethodType),
Objects.requireNonNull(implementation),
Objects.requireNonNull(dynamicMethodType),
false,
EMPTY_CLASS_ARRAY,
EMPTY_MT_ARRAY);
mf.validateMetafactoryArgs();
return mf.buildCallSite();
}
@ -350,8 +363,8 @@ public final class LambdaMetafactory {
*
* <pre>{@code
* CallSite altMetafactory(MethodHandles.Lookup caller,
* String invokedName,
* MethodType invokedType,
* String interfaceMethodName,
* MethodType factoryType,
* Object... args)
* }</pre>
*
@ -359,16 +372,16 @@ public final class LambdaMetafactory {
*
* <pre>{@code
* CallSite altMetafactory(MethodHandles.Lookup caller,
* String invokedName,
* MethodType invokedType,
* MethodType samMethodType,
* MethodHandle implMethod,
* MethodType instantiatedMethodType,
* String interfaceMethodName,
* MethodType factoryType,
* MethodType interfaceMethodType,
* MethodHandle implementation,
* MethodType dynamicMethodType,
* int flags,
* int markerInterfaceCount, // IF flags has MARKERS set
* Class... markerInterfaces, // IF flags has MARKERS set
* int bridgeCount, // IF flags has BRIDGES set
* MethodType... bridges // IF flags has BRIDGES set
* int altInterfaceCount, // IF flags has MARKERS set
* Class... altInterfaces, // IF flags has MARKERS set
* int altMethodCount, // IF flags has BRIDGES set
* MethodType... altMethods // IF flags has BRIDGES set
* )
* }</pre>
*
@ -380,25 +393,25 @@ public final class LambdaMetafactory {
* <li>{@code flags} indicates additional options; this is a bitwise
* OR of desired flags. Defined flags are {@link #FLAG_BRIDGES},
* {@link #FLAG_MARKERS}, and {@link #FLAG_SERIALIZABLE}.</li>
* <li>{@code markerInterfaceCount} is the number of additional interfaces
* <li>{@code altInterfaceCount} is the number of additional interfaces
* the function object should implement, and is present if and only if the
* {@code FLAG_MARKERS} flag is set.</li>
* <li>{@code markerInterfaces} is a variable-length list of additional
* interfaces to implement, whose length equals {@code markerInterfaceCount},
* <li>{@code altInterfaces} is a variable-length list of additional
* interfaces to implement, whose length equals {@code altInterfaceCount},
* and is present if and only if the {@code FLAG_MARKERS} flag is set.</li>
* <li>{@code bridgeCount} is the number of additional method signatures
* <li>{@code altMethodCount} is the number of additional method signatures
* the function object should implement, and is present if and only if
* the {@code FLAG_BRIDGES} flag is set.</li>
* <li>{@code bridges} is a variable-length list of additional
* methods signatures to implement, whose length equals {@code bridgeCount},
* <li>{@code altMethods} is a variable-length list of additional
* methods signatures to implement, whose length equals {@code altMethodCount},
* and is present if and only if the {@code FLAG_BRIDGES} flag is set.</li>
* </ul>
*
* <p>Each class named by {@code markerInterfaces} is subject to the same
* restrictions as {@code Rd}, the return type of {@code invokedType},
* <p>Each class named by {@code altInterfaces} is subject to the same
* restrictions as {@code Rd}, the return type of {@code factoryType},
* as described {@link LambdaMetafactory above}. Each {@code MethodType}
* named by {@code bridges} is subject to the same restrictions as
* {@code samMethodType}, as described {@link LambdaMetafactory above}.
* named by {@code altMethods} is subject to the same restrictions as
* {@code interfaceMethodType}, as described {@link LambdaMetafactory above}.
*
* <p>When FLAG_SERIALIZABLE is set in {@code flags}, the function objects
* will implement {@code Serializable}, and will have a {@code writeReplace}
@ -411,10 +424,10 @@ public final class LambdaMetafactory {
* the following properties:
* <ul>
* <li>The class implements the interface named by the return type
* of {@code invokedType} and any interfaces named by {@code markerInterfaces}</li>
* <li>The class declares methods with the name given by {@code invokedName},
* and the signature given by {@code samMethodType} and additional signatures
* given by {@code bridges}</li>
* of {@code factoryType} and any interfaces named by {@code altInterfaces}</li>
* <li>The class declares methods with the name given by {@code interfaceMethodName},
* and the signature given by {@code interfaceMethodType} and additional signatures
* given by {@code altMethods}</li>
* <li>The class may override methods from {@code Object}, and may
* implement methods related to serialization.</li>
* </ul>
@ -425,80 +438,122 @@ public final class LambdaMetafactory {
* full privilege access}.
* When used with {@code invokedynamic}, this is stacked
* automatically by the VM.
* @param invokedName The name of the method to implement. When used with
* {@code invokedynamic}, this is provided by the
* {@code NameAndType} of the {@code InvokeDynamic}
* structure and is stacked automatically by the VM.
* @param invokedType The expected signature of the {@code CallSite}. The
* @param interfaceMethodName The name of the method to implement. When used with
* {@code invokedynamic}, this is provided by the
* {@code NameAndType} of the {@code InvokeDynamic}
* structure and is stacked automatically by the VM.
* @param factoryType The expected signature of the {@code CallSite}. The
* parameter types represent the types of capture variables;
* the return type is the interface to implement. When
* used with {@code invokedynamic}, this is provided by
* the {@code NameAndType} of the {@code InvokeDynamic}
* structure and is stacked automatically by the VM.
* In the event that the implementation method is an
* instance method and this signature has any parameters,
* the first parameter in the invocation signature must
* correspond to the receiver.
* @param args An {@code Object[]} array containing the required
* arguments {@code samMethodType}, {@code implMethod},
* {@code instantiatedMethodType}, {@code flags}, and any
* optional arguments, as described
* {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)} above}
* @param args An array of {@code Object} containing the required
* arguments {@code interfaceMethodType}, {@code implementation},
* {@code dynamicMethodType}, {@code flags}, and any
* optional arguments, as described above
* @return a CallSite whose target can be used to perform capture, generating
* instances of the interface named by {@code invokedType}
* @throws LambdaConversionException If any of the linkage invariants
* described {@link LambdaMetafactory above}
* are violated, or the lookup context
* does not have private access privileges.
* instances of the interface named by {@code factoryType}
* @throws LambdaConversionException If {@code caller} does not have full privilege
* access, or if {@code interfaceMethodName} is not a valid JVM
* method name, or if the return type of {@code factoryType} is not
* an interface, or if any of {@code altInterfaces} is not an
* interface, or if {@code implementation} is not a direct method
* handle referencing a method or constructor, or if the linkage
* invariants are violated, as defined {@link LambdaMetafactory above}.
* @throws NullPointerException If any argument, or any component of {@code args},
* is {@code null}.
* @throws IllegalArgumentException If the number or types of the components
* of {@code args} do not follow the above rules, or if
* {@code altInterfaceCount} or {@code altMethodCount} are negative
* integers.
* @throws SecurityException If a security manager is present, and it
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
* from {@code caller} to the package of {@code implementation}.
*/
public static CallSite altMetafactory(MethodHandles.Lookup caller,
String invokedName,
MethodType invokedType,
String interfaceMethodName,
MethodType factoryType,
Object... args)
throws LambdaConversionException {
MethodType samMethodType = (MethodType)args[0];
MethodHandle implMethod = (MethodHandle)args[1];
MethodType instantiatedMethodType = (MethodType)args[2];
int flags = (Integer) args[3];
Class<?>[] markerInterfaces;
MethodType[] bridges;
int argIndex = 4;
Objects.requireNonNull(caller);
Objects.requireNonNull(interfaceMethodName);
Objects.requireNonNull(factoryType);
Objects.requireNonNull(args);
int argIndex = 0;
MethodType interfaceMethodType = extractArg(args, argIndex++, MethodType.class);
MethodHandle implementation = extractArg(args, argIndex++, MethodHandle.class);
MethodType dynamicMethodType = extractArg(args, argIndex++, MethodType.class);
int flags = extractArg(args, argIndex++, Integer.class);
Class<?>[] altInterfaces = EMPTY_CLASS_ARRAY;
MethodType[] altMethods = EMPTY_MT_ARRAY;
if ((flags & FLAG_MARKERS) != 0) {
int markerCount = (Integer) args[argIndex++];
markerInterfaces = new Class<?>[markerCount];
System.arraycopy(args, argIndex, markerInterfaces, 0, markerCount);
argIndex += markerCount;
int altInterfaceCount = extractArg(args, argIndex++, Integer.class);
if (altInterfaceCount < 0) {
throw new IllegalArgumentException("negative argument count");
}
if (altInterfaceCount > 0) {
altInterfaces = extractArgs(args, argIndex, Class.class, altInterfaceCount);
argIndex += altInterfaceCount;
}
}
else
markerInterfaces = EMPTY_CLASS_ARRAY;
if ((flags & FLAG_BRIDGES) != 0) {
int bridgeCount = (Integer) args[argIndex++];
bridges = new MethodType[bridgeCount];
System.arraycopy(args, argIndex, bridges, 0, bridgeCount);
argIndex += bridgeCount;
int altMethodCount = extractArg(args, argIndex++, Integer.class);
if (altMethodCount < 0) {
throw new IllegalArgumentException("negative argument count");
}
if (altMethodCount > 0) {
altMethods = extractArgs(args, argIndex, MethodType.class, altMethodCount);
argIndex += altMethodCount;
}
}
if (argIndex < args.length) {
throw new IllegalArgumentException("too many arguments");
}
else
bridges = EMPTY_MT_ARRAY;
boolean isSerializable = ((flags & FLAG_SERIALIZABLE) != 0);
if (isSerializable) {
boolean foundSerializableSupertype = Serializable.class.isAssignableFrom(invokedType.returnType());
for (Class<?> c : markerInterfaces)
boolean foundSerializableSupertype = Serializable.class.isAssignableFrom(factoryType.returnType());
for (Class<?> c : altInterfaces)
foundSerializableSupertype |= Serializable.class.isAssignableFrom(c);
if (!foundSerializableSupertype) {
markerInterfaces = Arrays.copyOf(markerInterfaces, markerInterfaces.length + 1);
markerInterfaces[markerInterfaces.length-1] = Serializable.class;
altInterfaces = Arrays.copyOf(altInterfaces, altInterfaces.length + 1);
altInterfaces[altInterfaces.length-1] = Serializable.class;
}
}
AbstractValidatingLambdaMetafactory mf
= new InnerClassLambdaMetafactory(caller, invokedType,
invokedName, samMethodType,
implMethod,
instantiatedMethodType,
= new InnerClassLambdaMetafactory(caller,
factoryType,
interfaceMethodName,
interfaceMethodType,
implementation,
dynamicMethodType,
isSerializable,
markerInterfaces, bridges);
altInterfaces,
altMethods);
mf.validateMetafactoryArgs();
return mf.buildCallSite();
}
private static <T> T extractArg(Object[] args, int index, Class<T> type) {
if (index >= args.length) {
throw new IllegalArgumentException("missing argument");
}
Object result = Objects.requireNonNull(args[index]);
if (!type.isInstance(result)) {
throw new IllegalArgumentException("argument has wrong type");
}
return type.cast(result);
}
private static <T> T[] extractArgs(Object[] args, int index, Class<T> type, int count) {
@SuppressWarnings("unchecked")
T[] result = (T[]) Array.newInstance(type, count);
for (int i = 0; i < count; i++) {
result[i] = extractArg(args, index + i, type);
}
return result;
}
}