8007294: ReduceFieldZeroing doesn't check for dependent load and can lead to incorrect execution

InitializeNode::can_capture_store() must check that the captured store doesn't overwrite a memory location that is loaded before the store.

Reviewed-by: kvn
This commit is contained in:
Roland Westrelin 2013-02-25 14:13:04 +01:00
parent c444c1faea
commit fe92862089
5 changed files with 206 additions and 7 deletions

View file

@ -320,6 +320,9 @@ Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
if (mem != old_mem) {
set_req(MemNode::Memory, mem);
if (can_reshape && old_mem->outcnt() == 0) {
igvn->_worklist.push(old_mem);
}
if (phase->type( mem ) == Type::TOP) return NodeSentinel;
return this;
}
@ -2319,9 +2322,9 @@ Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if (ReduceFieldZeroing && /*can_reshape &&*/
mem->is_Proj() && mem->in(0)->is_Initialize()) {
InitializeNode* init = mem->in(0)->as_Initialize();
intptr_t offset = init->can_capture_store(this, phase);
intptr_t offset = init->can_capture_store(this, phase, can_reshape);
if (offset > 0) {
Node* moved = init->capture_store(this, offset, phase);
Node* moved = init->capture_store(this, offset, phase, can_reshape);
// If the InitializeNode captured me, it made a raw copy of me,
// and I need to disappear.
if (moved != NULL) {
@ -3134,7 +3137,7 @@ bool InitializeNode::detect_init_independence(Node* n,
// an initialization. Returns zero if a check fails.
// On success, returns the (constant) offset to which the store applies,
// within the initialized memory.
intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
const int FAIL = 0;
if (st->req() != MemNode::ValueIn + 1)
return FAIL; // an inscrutable StoreNode (card mark?)
@ -3156,6 +3159,91 @@ intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase)
if (!detect_init_independence(val, true, complexity_count))
return FAIL; // stored value must be 'simple enough'
// The Store can be captured only if nothing after the allocation
// and before the Store is using the memory location that the store
// overwrites.
bool failed = false;
// If is_complete_with_arraycopy() is true the shape of the graph is
// well defined and is safe so no need for extra checks.
if (!is_complete_with_arraycopy()) {
// We are going to look at each use of the memory state following
// the allocation to make sure nothing reads the memory that the
// Store writes.
const TypePtr* t_adr = phase->type(adr)->isa_ptr();
int alias_idx = phase->C->get_alias_index(t_adr);
ResourceMark rm;
Unique_Node_List mems;
mems.push(mem);
Node* unique_merge = NULL;
for (uint next = 0; next < mems.size(); ++next) {
Node *m = mems.at(next);
for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
Node *n = m->fast_out(j);
if (n->outcnt() == 0) {
continue;
}
if (n == st) {
continue;
} else if (n->in(0) != NULL && n->in(0) != ctl) {
// If the control of this use is different from the control
// of the Store which is right after the InitializeNode then
// this node cannot be between the InitializeNode and the
// Store.
continue;
} else if (n->is_MergeMem()) {
if (n->as_MergeMem()->memory_at(alias_idx) == m) {
// We can hit a MergeMemNode (that will likely go away
// later) that is a direct use of the memory state
// following the InitializeNode on the same slice as the
// store node that we'd like to capture. We need to check
// the uses of the MergeMemNode.
mems.push(n);
}
} else if (n->is_Mem()) {
Node* other_adr = n->in(MemNode::Address);
if (other_adr == adr) {
failed = true;
break;
} else {
const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
if (other_t_adr != NULL) {
int other_alias_idx = phase->C->get_alias_index(other_t_adr);
if (other_alias_idx == alias_idx) {
// A load from the same memory slice as the store right
// after the InitializeNode. We check the control of the
// object/array that is loaded from. If it's the same as
// the store control then we cannot capture the store.
assert(!n->is_Store(), "2 stores to same slice on same control?");
Node* base = other_adr;
assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
base = base->in(AddPNode::Base);
if (base != NULL) {
base = base->uncast();
if (base->is_Proj() && base->in(0) == alloc) {
failed = true;
break;
}
}
}
}
}
} else {
failed = true;
break;
}
}
}
}
if (failed) {
if (!can_reshape) {
// We decided we couldn't capture the store during parsing. We
// should try again during the next IGVN once the graph is
// cleaner.
phase->C->record_for_igvn(st);
}
return FAIL;
}
return offset; // success
}
@ -3266,11 +3354,11 @@ Node* InitializeNode::make_raw_address(intptr_t offset,
// rawstore1 rawstore2)
//
Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
PhaseTransform* phase) {
PhaseTransform* phase, bool can_reshape) {
assert(stores_are_sane(phase), "");
if (start < 0) return NULL;
assert(can_capture_store(st, phase) == start, "sanity");
assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
Compile* C = phase->C;
int size_in_bytes = st->memory_size();