/* * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shared/gcId.hpp" #include "gc/shared/workgroup.hpp" #include "gc/shared/workerManager.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "memory/iterator.hpp" #include "runtime/atomic.hpp" #include "runtime/os.hpp" #include "runtime/semaphore.hpp" #include "runtime/thread.inline.hpp" // WorkGang dispatcher implemented with semaphores. // // Semaphores don't require the worker threads to re-claim the lock when they wake up. // This helps lowering the latency when starting and stopping the worker threads. class GangTaskDispatcher : public CHeapObj { // The task currently being dispatched to the GangWorkers. AbstractGangTask* _task; volatile uint _started; volatile uint _not_finished; // Semaphore used to start the GangWorkers. Semaphore* _start_semaphore; // Semaphore used to notify the coordinator that all workers are done. Semaphore* _end_semaphore; public: GangTaskDispatcher() : _task(NULL), _started(0), _not_finished(0), _start_semaphore(new Semaphore()), _end_semaphore(new Semaphore()) { } ~GangTaskDispatcher() { delete _start_semaphore; delete _end_semaphore; } // Coordinator API. // Distributes the task out to num_workers workers. // Returns when the task has been completed by all workers. void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) { // No workers are allowed to read the state variables until they have been signaled. _task = task; _not_finished = num_workers; // Dispatch 'num_workers' number of tasks. _start_semaphore->signal(num_workers); // Wait for the last worker to signal the coordinator. _end_semaphore->wait(); // No workers are allowed to read the state variables after the coordinator has been signaled. assert(_not_finished == 0, "%d not finished workers?", _not_finished); _task = NULL; _started = 0; } // Worker API. // Waits for a task to become available to the worker. // Returns when the worker has been assigned a task. WorkData worker_wait_for_task() { // Wait for the coordinator to dispatch a task. _start_semaphore->wait(); uint num_started = Atomic::add(&_started, 1u); // Subtract one to get a zero-indexed worker id. uint worker_id = num_started - 1; return WorkData(_task, worker_id); } // Signal to the coordinator that the worker is done with the assigned task. void worker_done_with_task() { // Mark that the worker is done with the task. // The worker is not allowed to read the state variables after this line. uint not_finished = Atomic::sub(&_not_finished, 1u); // The last worker signals to the coordinator that all work is completed. if (not_finished == 0) { _end_semaphore->signal(); } } }; // Definitions of WorkGang methods. WorkGang::WorkGang(const char* name, uint workers) : _workers(NULL), _total_workers(workers), _active_workers(UseDynamicNumberOfGCThreads ? 1U : workers), _created_workers(0), _name(name), _dispatcher(new GangTaskDispatcher()) { } WorkGang::~WorkGang() { delete _dispatcher; } // The current implementation will exit if the allocation // of any worker fails. void WorkGang::initialize_workers() { log_develop_trace(gc, workgang)("Constructing work gang %s with %u threads", name(), total_workers()); _workers = NEW_C_HEAP_ARRAY(GangWorker*, total_workers(), mtInternal); add_workers(true); } GangWorker* WorkGang::install_worker(uint worker_id) { GangWorker* new_worker = allocate_worker(worker_id); set_thread(worker_id, new_worker); return new_worker; } void WorkGang::add_workers(bool initializing) { uint previous_created_workers = _created_workers; _created_workers = WorkerManager::add_workers(this, _active_workers, _total_workers, _created_workers, os::gc_thread, initializing); _active_workers = MIN2(_created_workers, _active_workers); WorkerManager::log_worker_creation(this, previous_created_workers, _active_workers, _created_workers, initializing); } GangWorker* WorkGang::worker(uint i) const { // Array index bounds checking. GangWorker* result = NULL; assert(_workers != NULL, "No workers for indexing"); assert(i < total_workers(), "Worker index out of bounds"); result = _workers[i]; assert(result != NULL, "Indexing to null worker"); return result; } void WorkGang::threads_do(ThreadClosure* tc) const { assert(tc != NULL, "Null ThreadClosure"); uint workers = created_workers(); for (uint i = 0; i < workers; i++) { tc->do_thread(worker(i)); } } GangWorker* WorkGang::allocate_worker(uint worker_id) { return new GangWorker(this, worker_id); } void WorkGang::run_task(AbstractGangTask* task) { run_task(task, active_workers()); } void WorkGang::run_task(AbstractGangTask* task, uint num_workers) { guarantee(num_workers <= total_workers(), "Trying to execute task %s with %u workers which is more than the amount of total workers %u.", task->name(), num_workers, total_workers()); guarantee(num_workers > 0, "Trying to execute task %s with zero workers", task->name()); uint old_num_workers = _active_workers; update_active_workers(num_workers); _dispatcher->coordinator_execute_on_workers(task, num_workers); update_active_workers(old_num_workers); } GangWorker::GangWorker(WorkGang* gang, uint id) { _gang = gang; set_id(id); set_name("%s#%d", gang->name(), id); } void GangWorker::run() { initialize(); loop(); } void GangWorker::initialize() { assert(_gang != NULL, "No gang to run in"); os::set_priority(this, NearMaxPriority); log_develop_trace(gc, workgang)("Running gang worker for gang %s id %u", gang()->name(), id()); assert(!Thread::current()->is_VM_thread(), "VM thread should not be part" " of a work gang"); } WorkData GangWorker::wait_for_task() { return gang()->dispatcher()->worker_wait_for_task(); } void GangWorker::signal_task_done() { gang()->dispatcher()->worker_done_with_task(); } void GangWorker::run_task(WorkData data) { GCIdMark gc_id_mark(data._task->gc_id()); log_develop_trace(gc, workgang)("Running work gang: %s task: %s worker: %u", name(), data._task->name(), data._worker_id); data._task->work(data._worker_id); log_develop_trace(gc, workgang)("Finished work gang: %s task: %s worker: %u thread: " PTR_FORMAT, name(), data._task->name(), data._worker_id, p2i(Thread::current())); } void GangWorker::loop() { while (true) { WorkData data = wait_for_task(); run_task(data); signal_task_done(); } } // *** WorkGangBarrierSync WorkGangBarrierSync::WorkGangBarrierSync() : _monitor(Mutex::nosafepoint, "WorkGangBarrierSync_lock"), _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) { } void WorkGangBarrierSync::set_n_workers(uint n_workers) { _n_workers = n_workers; _n_completed = 0; _should_reset = false; _aborted = false; } bool WorkGangBarrierSync::enter() { MonitorLocker ml(monitor(), Mutex::_no_safepoint_check_flag); if (should_reset()) { // The should_reset() was set and we are the first worker to enter // the sync barrier. We will zero the n_completed() count which // effectively resets the barrier. zero_completed(); set_should_reset(false); } inc_completed(); if (n_completed() == n_workers()) { // At this point we would like to reset the barrier to be ready in // case it is used again. However, we cannot set n_completed() to // 0, even after the notify_all(), given that some other workers // might still be waiting for n_completed() to become == // n_workers(). So, if we set n_completed() to 0, those workers // will get stuck (as they will wake up, see that n_completed() != // n_workers() and go back to sleep). Instead, we raise the // should_reset() flag and the barrier will be reset the first // time a worker enters it again. set_should_reset(true); ml.notify_all(); } else { while (n_completed() != n_workers() && !aborted()) { ml.wait(); } } return !aborted(); } void WorkGangBarrierSync::abort() { MutexLocker x(monitor(), Mutex::_no_safepoint_check_flag); set_aborted(); monitor()->notify_all(); } // SubTasksDone functions. SubTasksDone::SubTasksDone(uint n) : _tasks(NULL), _n_tasks(n) { _tasks = NEW_C_HEAP_ARRAY(bool, n, mtInternal); for (uint i = 0; i < _n_tasks; i++) { _tasks[i] = false; } } #ifdef ASSERT void SubTasksDone::all_tasks_claimed_impl(uint skipped[], size_t skipped_size) { if (Atomic::cmpxchg(&_verification_done, false, true)) { // another thread has done the verification return; } // all non-skipped tasks are claimed for (uint i = 0; i < _n_tasks; ++i) { if (!_tasks[i]) { auto is_skipped = false; for (size_t j = 0; j < skipped_size; ++j) { if (i == skipped[j]) { is_skipped = true; break; } } assert(is_skipped, "%d not claimed.", i); } } // all skipped tasks are *not* claimed for (size_t i = 0; i < skipped_size; ++i) { auto task_index = skipped[i]; assert(task_index < _n_tasks, "Array in range."); assert(!_tasks[task_index], "%d is both claimed and skipped.", task_index); } } #endif bool SubTasksDone::try_claim_task(uint t) { assert(t < _n_tasks, "bad task id."); return !_tasks[t] && !Atomic::cmpxchg(&_tasks[t], false, true); } SubTasksDone::~SubTasksDone() { assert(_verification_done, "all_tasks_claimed must have been called."); FREE_C_HEAP_ARRAY(bool, _tasks); } // *** SequentialSubTasksDone bool SequentialSubTasksDone::try_claim_task(uint& t) { t = _num_claimed; if (t < _num_tasks) { t = Atomic::add(&_num_claimed, 1u) - 1; } return t < _num_tasks; }