/* * Copyright (c) 1996, 2024, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved * * The original version of this source code and documentation is copyrighted * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These * materials are provided under terms of a License Agreement between Taligent * and Sun. This technology is protected by multiple US and International * patents. This notice and attribution to Taligent may not be removed. * Taligent is a registered trademark of Taligent, Inc. * */ package java.text; import java.io.IOException; import java.io.InvalidObjectException; import java.io.ObjectInputStream; import java.math.BigDecimal; import java.math.BigInteger; import java.math.RoundingMode; import java.text.spi.NumberFormatProvider; import java.util.ArrayList; import java.util.Currency; import java.util.Locale; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicLong; import sun.util.locale.provider.LocaleProviderAdapter; import sun.util.locale.provider.ResourceBundleBasedAdapter; /** * {@code DecimalFormat} is a concrete subclass of * {@code NumberFormat} that formats decimal numbers in a localized manner. * It has a variety of features designed to make it possible to parse and format * numbers in any locale, including support for Western, Arabic, and Indic digits. * It also supports different kinds of numbers, including integers (123), fixed-point * numbers (123.4), scientific notation (1.23E4), percentages (12%), and * currency amounts ($123). * *
If the factory methods are not desired, use one of the constructors such * as {@link #DecimalFormat(String) DecimalFormat(String pattern)}. See the {@link * ##patterns Pattern} section for more information on the {@code pattern} parameter. * *
When parsing, these digits as well as all Unicode decimal digits, as * defined by {@link Character#digit Character.digit}, are recognized. * *
Not a Number ({@code NaN}) is formatted as a string, * which is typically given as "NaN". This string is determined by {@link * DecimalFormatSymbols#getNaN()}. This is the only value for which the prefixes * and suffixes are not attached. * *
Infinity is formatted as a string, which is typically given as * "∞" ({@code U+221E}), with the positive or negative prefixes and suffixes * attached. This string is determined by {@link DecimalFormatSymbols#getInfinity()}. * *
Negative zero ({@code "-0"}) parses to *
* Decimal formats are generally not synchronized. * It is recommended to create separate format instances for each thread. * If multiple threads access a format concurrently, it must be synchronized * externally. * *
{@code DecimalFormat} patterns have the following syntax: *
* ** Pattern: * PositivePattern * PositivePattern ; NegativePattern * PositivePattern: * Prefixopt Number Suffixopt * NegativePattern: * Prefixopt Number Suffixopt * Prefix: * Any characters except the {@linkplain ##special_pattern_character * special pattern characters} * Suffix: * Any characters except the {@linkplain ##special_pattern_character * special pattern characters} * Number: * Integer Exponentopt * Integer . Fraction Exponentopt * Integer: * MinimumInteger * # * # Integer * # , Integer * MinimumInteger: * 0 * 0 MinimumInteger * 0 , MinimumInteger * Fraction: * MinimumFractionopt OptionalFractionopt * MinimumFraction: * 0 MinimumFractionopt * OptionalFraction: * # OptionalFractionopt * Exponent: * E MinimumExponent * MinimumExponent: * 0 MinimumExponentopt *
The special characters in the table below are interpreted syntactically when * used in the DecimalFormat pattern. * They must be quoted, unless noted otherwise, if they are to appear in the * prefix or suffix as literals. * *
The characters in the {@code Symbol} column are used in non-localized * patterns. The corresponding characters in the {@code Localized Symbol} column are used * in localized patterns, with the characters in {@code Symbol} losing their * syntactical meaning. Two exceptions are the currency sign ({@code U+00A4}) and * quote ({@code U+0027}), which are not localized. *
* Non-localized patterns should be used when calling {@link #applyPattern(String)}. * Localized patterns should be used when calling {@link #applyLocalizedPattern(String)}. * *
** **
* * ** * *Symbol * Localized Symbol * Location * Meaning * * {@code 0} * {@link DecimalFormatSymbols#getZeroDigit()} * Number * Digit * * {@code #} * {@link DecimalFormatSymbols#getDigit()} * Number * Digit, zero shows as absent * * {@code .} * {@link DecimalFormatSymbols#getDecimalSeparator()} * Number * Decimal separator or monetary decimal separator * * {@code - (U+002D)} * {@link DecimalFormatSymbols#getMinusSign()} * Number * Minus sign * * {@code ,} * {@link DecimalFormatSymbols#getGroupingSeparator()} * Number * Grouping separator or monetary grouping separator * * {@code E} * {@link DecimalFormatSymbols#getExponentSeparator()} * Number * Separates mantissa and exponent in scientific notation. This value * is case sensistive. Need not be quoted in prefix or suffix. * * {@code ;} * {@link DecimalFormatSymbols#getPatternSeparator()} * Subpattern boundary * Separates positive and negative subpatterns * * {@code %} * {@link DecimalFormatSymbols#getPercent()} * Prefix or suffix * Multiply by 100 and show as percentage * * ‰ ({@code U+2030}) * {@link DecimalFormatSymbols#getPerMill()} * Prefix or suffix * Multiply by 1000 and show as per mille value * * ¤ ({@code U+00A4}) * n/a (not localized) * Prefix or suffix * Currency sign, replaced by currency symbol. If * doubled, replaced by international currency symbol. * If present in a pattern, the monetary decimal/grouping separators * are used instead of the decimal/grouping separators. * * *{@code ' (U+0027)} * n/a (not localized) * Prefix or suffix * Used to quote special characters in a prefix or suffix, * for example, {@code "'#'#"} formats 123 to * {@code "#123"}. To create a single quote * itself, use two in a row: {@code "# o''clock"}. *
The prefixes, suffixes, and various symbols used for infinity, digits, * grouping separators, decimal separators, etc. may be set to arbitrary * values, and they will appear properly during formatting. However, care must * be taken that the symbols and strings do not conflict, or parsing will be * unreliable. For example, either the positive and negative prefixes or the * suffixes must be distinct for {@code DecimalFormat.parse()} to be able * to distinguish positive from negative values. (If they are identical, then * {@code DecimalFormat} will behave as if no negative subpattern was * specified.) Another example is that the decimal separator and grouping * separator should be distinct characters, or parsing will be impossible. * *
The grouping separator is commonly used for thousands, but in some * locales it separates ten-thousands. The grouping size is a constant number * of digits between the grouping characters, such as 3 for 100,000,000 or 4 for * 1,0000,0000. If you supply a pattern with multiple grouping characters, the * interval between the last one and the end of the integer is the one that is * used. For example, {@code "#,##,###,####"} == {@code "######,####"} == * {@code "##,####,####"}. * *
Numbers in scientific notation are expressed as the product of a mantissa * and a power of ten, for example, 1234 can be expressed as 1.234 x 10^3. The * mantissa is often in the range 1.0 ≤ x {@literal <} 10.0, but it need not * be. * {@code DecimalFormat} can be instructed to format and parse scientific * notation only via a pattern; there is currently no factory method * that creates a scientific notation format. In a pattern, the exponent * character immediately followed by one or more digit characters indicates * scientific notation. Example: {@code "0.###E0"} formats the number * 1234 as {@code "1.234E3"}. * *
* * This means that generally, a mantissa will have up to the combined maximum integer * and fraction digits, if the original number itself has enough significant digits. However, * if there are more minimum pattern digits than significant digits in the original number, * the mantissa will have significant digits that equals the combined * minimum integer and fraction digits. The number of significant digits * does not affect parsing. * ** Mantissa Digits: * min(max(Minimum Pattern Digits, Original Number Digits), Maximum Pattern Digits) * Minimum pattern Digits: * Minimum Integer Digits + Minimum Fraction Digits * Maximum pattern Digits: * Maximum Integer Digits + Maximum Fraction Digits * Original Number Digits: * The amount of significant digits in the number to be formatted *
It should be noted, that the integer portion of the mantissa will give * any excess digits to the fraction portion, whether it be for precision or * for satisfying the total amount of combined minimum digits. * *
This behavior can be observed in the following example, * {@snippet lang=java : * DecimalFormat df = new DecimalFormat("#000.000##E0"); * df.format(12); // returns "12.0000E0" * df.format(123456789) // returns "1.23456789E8" * } * *
* Each attribute key of the AttributedCharacterIterator will be of type
* {@code NumberFormat.Field}, with the attribute value being the
* same as the attribute key.
*
* @throws NullPointerException if obj is null.
* @throws IllegalArgumentException when the Format cannot format the
* given object.
* @throws ArithmeticException if rounding is needed with rounding
* mode being set to RoundingMode.UNNECESSARY
* @param obj The object to format
* @return AttributedCharacterIterator describing the formatted value.
* @since 1.4
*/
@Override
public AttributedCharacterIterator formatToCharacterIterator(Object obj) {
CharacterIteratorFieldDelegate delegate =
new CharacterIteratorFieldDelegate();
StringBuf sb = StringBufFactory.of();
switch (obj) {
case Double d -> format(d.doubleValue(), sb, delegate);
case Float f -> format(f.doubleValue(), sb, delegate);
case Long l -> format(l.longValue(), sb, delegate);
case Integer i -> format(i.longValue(), sb, delegate);
case Short s -> format(s.longValue(), sb, delegate);
case Byte b -> format(b.longValue(), sb, delegate);
case AtomicInteger ai -> format(ai.longValue(), sb, delegate);
case AtomicLong al -> format(al.longValue(), sb, delegate);
case BigDecimal bd -> format(bd, sb, delegate);
case BigInteger bi -> format(bi, sb, delegate, false);
case null -> throw new NullPointerException(
"formatToCharacterIterator must be passed non-null object");
default -> throw new IllegalArgumentException(
"Cannot format given Object as a Number");
}
return delegate.getIterator(sb.toString());
}
// ==== Begin fast-path formatting logic for double =========================
/* Fast-path formatting will be used for format(double ...) methods iff a
* number of conditions are met (see checkAndSetFastPathStatus()):
* - Only if instance properties meet the right predefined conditions.
* - The abs value of the double to format is <= Integer.MAX_VALUE.
*
* The basic approach is to split the binary to decimal conversion of a
* double value into two phases:
* * The conversion of the integer portion of the double.
* * The conversion of the fractional portion of the double
* (limited to two or three digits).
*
* The isolation and conversion of the integer portion of the double is
* straightforward. The conversion of the fraction is more subtle and relies
* on some rounding properties of double to the decimal precisions in
* question. Using the terminology of BigDecimal, this fast-path algorithm
* is applied when a double value has a magnitude less than Integer.MAX_VALUE
* and rounding is to nearest even and the destination format has two or
* three digits of *scale* (digits after the decimal point).
*
* Under a rounding to nearest even policy, the returned result is a digit
* string of a number in the (in this case decimal) destination format
* closest to the exact numerical value of the (in this case binary) input
* value. If two destination format numbers are equally distant, the one
* with the last digit even is returned. To compute such a correctly rounded
* value, some information about digits beyond the smallest returned digit
* position needs to be consulted.
*
* In general, a guard digit, a round digit, and a sticky *bit* are needed
* beyond the returned digit position. If the discarded portion of the input
* is sufficiently large, the returned digit string is incremented. In round
* to nearest even, this threshold to increment occurs near the half-way
* point between digits. The sticky bit records if there are any remaining
* trailing digits of the exact input value in the new format; the sticky bit
* is consulted only in close to half-way rounding cases.
*
* Given the computation of the digit and bit values, rounding is then
* reduced to a table lookup problem. For decimal, the even/odd cases look
* like this:
*
* Last Round Sticky
* 6 5 0 => 6 // exactly halfway, return even digit.
* 6 5 1 => 7 // a little bit more than halfway, round up.
* 7 5 0 => 8 // exactly halfway, round up to even.
* 7 5 1 => 8 // a little bit more than halfway, round up.
* With analogous entries for other even and odd last-returned digits.
*
* However, decimal negative powers of 5 smaller than 0.5 are *not* exactly
* representable as binary fraction. In particular, 0.005 (the round limit
* for a two-digit scale) and 0.0005 (the round limit for a three-digit
* scale) are not representable. Therefore, for input values near these cases
* the sticky bit is known to be set which reduces the rounding logic to:
*
* Last Round Sticky
* 6 5 1 => 7 // a little bit more than halfway, round up.
* 7 5 1 => 8 // a little bit more than halfway, round up.
*
* In other words, if the round digit is 5, the sticky bit is known to be
* set. If the round digit is something other than 5, the sticky bit is not
* relevant. Therefore, some of the logic about whether or not to increment
* the destination *decimal* value can occur based on tests of *binary*
* computations of the binary input number.
*/
/**
* Check validity of using fast-path for this instance. If fast-path is valid
* for this instance, sets fast-path state as true and initializes fast-path
* utility fields as needed.
*
* This method is supposed to be called rarely, otherwise that will break the
* fast-path performance. That means avoiding frequent changes of the
* properties of the instance, since for most properties, each time a change
* happens, a call to this method is needed at the next format call.
*
* FAST-PATH RULES:
* Similar to the default DecimalFormat instantiation case.
* More precisely:
* - HALF_EVEN rounding mode,
* - isGroupingUsed() is true,
* - groupingSize of 3,
* - multiplier is 1,
* - Decimal separator not mandatory,
* - No use of exponential notation,
* - minimumIntegerDigits is exactly 1 and maximumIntegerDigits at least 10
* - For number of fractional digits, the exact values found in the default case:
* Currency : min = max = 2.
* Decimal : min = 0. max = 3.
*
*/
private boolean checkAndSetFastPathStatus() {
boolean fastPathWasOn = isFastPath;
if ((roundingMode == RoundingMode.HALF_EVEN) &&
(isGroupingUsed()) &&
(groupingSize == 3) &&
(multiplier == 1) &&
(!decimalSeparatorAlwaysShown) &&
(!useExponentialNotation)) {
// The fast-path algorithm is semi-hardcoded against
// minimumIntegerDigits and maximumIntegerDigits.
isFastPath = ((minimumIntegerDigits == 1) &&
(maximumIntegerDigits >= 10));
// The fast-path algorithm is hardcoded against
// minimumFractionDigits and maximumFractionDigits.
if (isFastPath) {
if (isCurrencyFormat) {
if ((minimumFractionDigits != 2) ||
(maximumFractionDigits != 2))
isFastPath = false;
} else if ((minimumFractionDigits != 0) ||
(maximumFractionDigits != 3))
isFastPath = false;
}
} else
isFastPath = false;
resetFastPathData(fastPathWasOn);
fastPathCheckNeeded = false;
/*
* Returns true after successfully checking the fast path condition and
* setting the fast path data. The return value is used by the
* fastFormat() method to decide whether to call the resetFastPathData
* method to reinitialize fast path data or is it already initialized
* in this method.
*/
return true;
}
private void resetFastPathData(boolean fastPathWasOn) {
// Since some instance properties may have changed while still falling
// in the fast-path case, we need to reinitialize fastPathData anyway.
if (isFastPath) {
// We need to instantiate fastPathData if not already done.
if (fastPathData == null) {
fastPathData = new FastPathData();
}
// Sets up the locale specific constants used when formatting.
// '0' is our default representation of zero.
fastPathData.zeroDelta = symbols.getZeroDigit() - '0';
fastPathData.groupingChar = isCurrencyFormat ?
symbols.getMonetaryGroupingSeparator() :
symbols.getGroupingSeparator();
// Sets up fractional constants related to currency/decimal pattern.
fastPathData.fractionalMaxIntBound = (isCurrencyFormat)
? 99 : 999;
fastPathData.fractionalScaleFactor = (isCurrencyFormat)
? 100.0d : 1000.0d;
// Records the need for adding prefix or suffix
fastPathData.positiveAffixesRequired
= !positivePrefix.isEmpty() || !positiveSuffix.isEmpty();
fastPathData.negativeAffixesRequired
= !negativePrefix.isEmpty() || !negativeSuffix.isEmpty();
// Creates a cached char container for result, with max possible size.
int maxNbIntegralDigits = 10;
int maxNbGroups = 3;
int containerSize
= Math.max(positivePrefix.length(), negativePrefix.length())
+ maxNbIntegralDigits + maxNbGroups + 1
+ maximumFractionDigits
+ Math.max(positiveSuffix.length(), negativeSuffix.length());
fastPathData.fastPathContainer = new char[containerSize];
// Sets up prefix and suffix char arrays constants.
fastPathData.charsPositiveSuffix = positiveSuffix.toCharArray();
fastPathData.charsNegativeSuffix = negativeSuffix.toCharArray();
fastPathData.charsPositivePrefix = positivePrefix.toCharArray();
fastPathData.charsNegativePrefix = negativePrefix.toCharArray();
// Sets up fixed index positions for integral and fractional digits.
// Sets up decimal point in cached result container.
int longestPrefixLength
= Math.max(positivePrefix.length(),
negativePrefix.length());
int decimalPointIndex
= maxNbIntegralDigits + maxNbGroups + longestPrefixLength;
fastPathData.integralLastIndex = decimalPointIndex - 1;
fastPathData.fractionalFirstIndex = decimalPointIndex + 1;
fastPathData.fastPathContainer[decimalPointIndex]
= isCurrencyFormat
? symbols.getMonetaryDecimalSeparator()
: symbols.getDecimalSeparator();
} else if (fastPathWasOn) {
// Previous state was fast-path and is no more.
// Resets cached array constants.
fastPathData.fastPathContainer = null;
fastPathData.charsPositiveSuffix = null;
fastPathData.charsNegativeSuffix = null;
fastPathData.charsPositivePrefix = null;
fastPathData.charsNegativePrefix = null;
}
}
/**
* Returns true if rounding-up must be done on {@code scaledFractionalPartAsInt},
* false otherwise.
*
* This is a utility method that takes correct half-even rounding decision on
* passed fractional value at the scaled decimal point (2 digits for currency
* case and 3 for decimal case), when the approximated fractional part after
* scaled decimal point is exactly 0.5d. This is done by means of exact
* calculations on the {@code fractionalPart} floating-point value.
*
* This method is supposed to be called by private {@code fastDoubleFormat}
* method only.
*
* The algorithms used for the exact calculations are :
*
* The FastTwoSum algorithm, from T.J.Dekker, described in the
* papers "A Floating-Point Technique for Extending the Available
* Precision" by Dekker, and in "Adaptive Precision Floating-Point
* Arithmetic and Fast Robust Geometric Predicates" from J.Shewchuk.
*
* A modified version of Sum2S cascaded summation described in
* "Accurate Sum and Dot Product" from Takeshi Ogita and All. As
* Ogita says in this paper this is an equivalent of the Kahan-Babuska's
* summation algorithm because we order the terms by magnitude before summing
* them. For this reason we can use the FastTwoSum algorithm rather
* than the more expensive Knuth's TwoSum.
*
* We do this to avoid a more expensive exact "TwoProduct" algorithm,
* like those described in Shewchuk's paper above. See comments in the code
* below.
*
* @param fractionalPart The fractional value on which we take rounding
* decision.
* @param scaledFractionalPartAsInt The integral part of the scaled
* fractional value.
*
* @return the decision that must be taken regarding half-even rounding.
*/
private boolean exactRoundUp(double fractionalPart,
int scaledFractionalPartAsInt) {
/* exactRoundUp() method is called by fastDoubleFormat() only.
* The precondition expected to be verified by the passed parameters is :
* scaledFractionalPartAsInt ==
* (int) (fractionalPart * fastPathData.fractionalScaleFactor).
* This is ensured by fastDoubleFormat() code.
*/
/* We first calculate roundoff error made by fastDoubleFormat() on
* the scaled fractional part. We do this with exact calculation on the
* passed fractionalPart. Rounding decision will then be taken from roundoff.
*/
/* ---- TwoProduct(fractionalPart, scale factor (i.e. 1000.0d or 100.0d)).
*
* The below is an optimized exact "TwoProduct" calculation of passed
* fractional part with scale factor, using Ogita's Sum2S cascaded
* summation adapted as Kahan-Babuska equivalent by using FastTwoSum
* (much faster) rather than Knuth's TwoSum.
*
* We can do this because we order the summation from smallest to
* greatest, so that FastTwoSum can be used without any additional error.
*
* The "TwoProduct" exact calculation needs 17 flops. We replace this by
* a cascaded summation of FastTwoSum calculations, each involving an
* exact multiply by a power of 2.
*
* Doing so saves overall 4 multiplications and 1 addition compared to
* using traditional "TwoProduct".
*
* The scale factor is either 100 (currency case) or 1000 (decimal case).
* - when 1000, we replace it by (1024 - 16 - 8) = 1000.
* - when 100, we replace it by (128 - 32 + 4) = 100.
* Every multiplication by a power of 2 (1024, 128, 32, 16, 8, 4) is exact.
*
*/
double approxMax; // Will always be positive.
double approxMedium; // Will always be negative.
double approxMin;
double fastTwoSumApproximation = 0.0d;
double fastTwoSumRoundOff = 0.0d;
double bVirtual = 0.0d;
if (isCurrencyFormat) {
// Scale is 100 = 128 - 32 + 4.
// Multiply by 2**n is a shift. No roundoff. No error.
approxMax = fractionalPart * 128.00d;
approxMedium = - (fractionalPart * 32.00d);
approxMin = fractionalPart * 4.00d;
} else {
// Scale is 1000 = 1024 - 16 - 8.
// Multiply by 2**n is a shift. No roundoff. No error.
approxMax = fractionalPart * 1024.00d;
approxMedium = - (fractionalPart * 16.00d);
approxMin = - (fractionalPart * 8.00d);
}
// Shewchuk/Dekker's FastTwoSum(approxMedium, approxMin).
assert(-approxMedium >= Math.abs(approxMin));
fastTwoSumApproximation = approxMedium + approxMin;
bVirtual = fastTwoSumApproximation - approxMedium;
fastTwoSumRoundOff = approxMin - bVirtual;
double approxS1 = fastTwoSumApproximation;
double roundoffS1 = fastTwoSumRoundOff;
// Shewchuk/Dekker's FastTwoSum(approxMax, approxS1);
assert(approxMax >= Math.abs(approxS1));
fastTwoSumApproximation = approxMax + approxS1;
bVirtual = fastTwoSumApproximation - approxMax;
fastTwoSumRoundOff = approxS1 - bVirtual;
double roundoff1000 = fastTwoSumRoundOff;
double approx1000 = fastTwoSumApproximation;
double roundoffTotal = roundoffS1 + roundoff1000;
// Shewchuk/Dekker's FastTwoSum(approx1000, roundoffTotal);
assert(approx1000 >= Math.abs(roundoffTotal));
fastTwoSumApproximation = approx1000 + roundoffTotal;
bVirtual = fastTwoSumApproximation - approx1000;
// Now we have got the roundoff for the scaled fractional
double scaledFractionalRoundoff = roundoffTotal - bVirtual;
// ---- TwoProduct(fractionalPart, scale (i.e. 1000.0d or 100.0d)) end.
/* ---- Taking the rounding decision
*
* We take rounding decision based on roundoff and half-even rounding
* rule.
*
* The above TwoProduct gives us the exact roundoff on the approximated
* scaled fractional, and we know that this approximation is exactly
* 0.5d, since that has already been tested by the caller
* (fastDoubleFormat).
*
* Decision comes first from the sign of the calculated exact roundoff.
* - Since being exact roundoff, it cannot be positive with a scaled
* fractional less than 0.5d, as well as negative with a scaled
* fractional greater than 0.5d. That leaves us with following 3 cases.
* - positive, thus scaled fractional == 0.500....0fff ==> round-up.
* - negative, thus scaled fractional == 0.499....9fff ==> don't round-up.
* - is zero, thus scaled fractioanl == 0.5 ==> half-even rounding applies :
* we round-up only if the integral part of the scaled fractional is odd.
*
*/
if (scaledFractionalRoundoff > 0.0) {
return true;
} else if (scaledFractionalRoundoff < 0.0) {
return false;
} else if ((scaledFractionalPartAsInt & 1) != 0) {
return true;
}
return false;
// ---- Taking the rounding decision end
}
/**
* Collects integral digits from passed {@code number}, while setting
* grouping chars as needed. Updates {@code firstUsedIndex} accordingly.
*
* Loops downward starting from {@code backwardIndex} position (inclusive).
*
* @param number The int value from which we collect digits.
* @param digitsBuffer The char array container where digits and grouping chars
* are stored.
* @param backwardIndex the position from which we start storing digits in
* digitsBuffer.
*
*/
private void collectIntegralDigits(int number,
char[] digitsBuffer,
int backwardIndex) {
int index = backwardIndex;
int q;
int r;
while (number > 999) {
// Generates 3 digits per iteration.
q = number / 1000;
r = number - (q << 10) + (q << 4) + (q << 3); // -1024 +16 +8 = 1000.
number = q;
digitsBuffer[index--] = DigitArrays.DigitOnes1000[r];
digitsBuffer[index--] = DigitArrays.DigitTens1000[r];
digitsBuffer[index--] = DigitArrays.DigitHundreds1000[r];
digitsBuffer[index--] = fastPathData.groupingChar;
}
// Collects last 3 or less digits.
digitsBuffer[index] = DigitArrays.DigitOnes1000[number];
if (number > 9) {
digitsBuffer[--index] = DigitArrays.DigitTens1000[number];
if (number > 99)
digitsBuffer[--index] = DigitArrays.DigitHundreds1000[number];
}
fastPathData.firstUsedIndex = index;
}
/**
* Collects the 2 (currency) or 3 (decimal) fractional digits from passed
* {@code number}, starting at {@code startIndex} position
* inclusive. There is no punctuation to set here (no grouping chars).
* Updates {@code fastPathData.lastFreeIndex} accordingly.
*
*
* @param number The int value from which we collect digits.
* @param digitsBuffer The char array container where digits are stored.
* @param startIndex the position from which we start storing digits in
* digitsBuffer.
*
*/
private void collectFractionalDigits(int number,
char[] digitsBuffer,
int startIndex) {
int index = startIndex;
char digitOnes = DigitArrays.DigitOnes1000[number];
char digitTens = DigitArrays.DigitTens1000[number];
if (isCurrencyFormat) {
// Currency case. Always collects fractional digits.
digitsBuffer[index++] = digitTens;
digitsBuffer[index++] = digitOnes;
} else if (number != 0) {
// Decimal case. Hundreds will always be collected
digitsBuffer[index++] = DigitArrays.DigitHundreds1000[number];
// Ending zeros won't be collected.
if (digitOnes != '0') {
digitsBuffer[index++] = digitTens;
digitsBuffer[index++] = digitOnes;
} else if (digitTens != '0')
digitsBuffer[index++] = digitTens;
} else
// This is decimal pattern and fractional part is zero.
// We must remove decimal point from result.
index--;
fastPathData.lastFreeIndex = index;
}
/**
* Internal utility.
* Adds the passed {@code prefix} and {@code suffix} to {@code container}.
*
* @param container Char array container which to prepend/append the
* prefix/suffix.
* @param prefix Char sequence to prepend as a prefix.
* @param suffix Char sequence to append as a suffix.
*
*/
// private void addAffixes(boolean isNegative, char[] container) {
private void addAffixes(char[] container, char[] prefix, char[] suffix) {
// We add affixes only if needed (affix length > 0).
int pl = prefix.length;
int sl = suffix.length;
if (pl != 0) prependPrefix(prefix, pl, container);
if (sl != 0) appendSuffix(suffix, sl, container);
}
/**
* Prepends the passed {@code prefix} chars to given result
* {@code container}. Updates {@code fastPathData.firstUsedIndex}
* accordingly.
*
* @param prefix The prefix characters to prepend to result.
* @param len The number of chars to prepend.
* @param container Char array container which to prepend the prefix
*/
private void prependPrefix(char[] prefix,
int len,
char[] container) {
fastPathData.firstUsedIndex -= len;
int startIndex = fastPathData.firstUsedIndex;
// If prefix to prepend is only 1 char long, just assigns this char.
// If prefix is less or equal 4, we use a dedicated algorithm that
// has shown to run faster than System.arraycopy.
// If more than 4, we use System.arraycopy.
if (len == 1)
container[startIndex] = prefix[0];
else if (len <= 4) {
int dstLower = startIndex;
int dstUpper = dstLower + len - 1;
int srcUpper = len - 1;
container[dstLower] = prefix[0];
container[dstUpper] = prefix[srcUpper];
if (len > 2)
container[++dstLower] = prefix[1];
if (len == 4)
container[--dstUpper] = prefix[2];
} else
System.arraycopy(prefix, 0, container, startIndex, len);
}
/**
* Appends the passed {@code suffix} chars to given result
* {@code container}. Updates {@code fastPathData.lastFreeIndex}
* accordingly.
*
* @param suffix The suffix characters to append to result.
* @param len The number of chars to append.
* @param container Char array container which to append the suffix
*/
private void appendSuffix(char[] suffix,
int len,
char[] container) {
int startIndex = fastPathData.lastFreeIndex;
// If suffix to append is only 1 char long, just assigns this char.
// If suffix is less or equal 4, we use a dedicated algorithm that
// has shown to run faster than System.arraycopy.
// If more than 4, we use System.arraycopy.
if (len == 1)
container[startIndex] = suffix[0];
else if (len <= 4) {
int dstLower = startIndex;
int dstUpper = dstLower + len - 1;
int srcUpper = len - 1;
container[dstLower] = suffix[0];
container[dstUpper] = suffix[srcUpper];
if (len > 2)
container[++dstLower] = suffix[1];
if (len == 4)
container[--dstUpper] = suffix[2];
} else
System.arraycopy(suffix, 0, container, startIndex, len);
fastPathData.lastFreeIndex += len;
}
/**
* Converts digit chars from {@code digitsBuffer} to current locale.
*
* Must be called before adding affixes since we refer to
* {@code fastPathData.firstUsedIndex} and {@code fastPathData.lastFreeIndex},
* and do not support affixes (for speed reason).
*
* We loop backward starting from last used index in {@code fastPathData}.
*
* @param digitsBuffer The char array container where the digits are stored.
*/
private void localizeDigits(char[] digitsBuffer) {
// We will localize only the digits, using the groupingSize,
// and taking into account fractional part.
// First take into account fractional part.
int digitsCounter =
fastPathData.lastFreeIndex - fastPathData.fractionalFirstIndex;
// The case when there is no fractional digits.
if (digitsCounter < 0)
digitsCounter = groupingSize;
// Only the digits remains to localize.
for (int cursor = fastPathData.lastFreeIndex - 1;
cursor >= fastPathData.firstUsedIndex;
cursor--) {
if (digitsCounter != 0) {
// This is a digit char, we must localize it.
digitsBuffer[cursor] += (char)fastPathData.zeroDelta;
digitsCounter--;
} else {
// Decimal separator or grouping char. Reinit counter only.
digitsCounter = groupingSize;
}
}
}
/**
* This is the main entry point for the fast-path format algorithm.
*
* At this point we are sure to be in the expected conditions to run it.
* This algorithm builds the formatted result and puts it in the dedicated
* {@code fastPathData.fastPathContainer}.
*
* @param d the double value to be formatted.
* @param negative Flag precising if {@code d} is negative.
*/
private void fastDoubleFormat(double d,
boolean negative) {
char[] container = fastPathData.fastPathContainer;
/*
* The principle of the algorithm is to :
* - Break the passed double into its integral and fractional parts
* converted into integers.
* - Then decide if rounding up must be applied or not by following
* the half-even rounding rule, first using approximated scaled
* fractional part.
* - For the difficult cases (approximated scaled fractional part
* being exactly 0.5d), we refine the rounding decision by calling
* exactRoundUp utility method that both calculates the exact roundoff
* on the approximation and takes correct rounding decision.
* - We round-up the fractional part if needed, possibly propagating the
* rounding to integral part if we meet a "all-nine" case for the
* scaled fractional part.
* - We then collect digits from the resulting integral and fractional
* parts, also setting the required grouping chars on the fly.
* - Then we localize the collected digits if needed, and
* - Finally prepend/append prefix/suffix if any is needed.
*/
// Exact integral part of d.
int integralPartAsInt = (int) d;
// Exact fractional part of d (since we subtract it's integral part).
double exactFractionalPart = d - (double) integralPartAsInt;
// Approximated scaled fractional part of d (due to multiplication).
double scaledFractional =
exactFractionalPart * fastPathData.fractionalScaleFactor;
// Exact integral part of scaled fractional above.
int fractionalPartAsInt = (int) scaledFractional;
// Exact fractional part of scaled fractional above.
scaledFractional = scaledFractional - (double) fractionalPartAsInt;
// Only when scaledFractional is exactly 0.5d do we have to do exact
// calculations and take fine-grained rounding decision, since
// approximated results above may lead to incorrect decision.
// Otherwise comparing against 0.5d (strictly greater or less) is ok.
boolean roundItUp = false;
if (scaledFractional >= 0.5d) {
if (scaledFractional == 0.5d)
// Rounding need fine-grained decision.
roundItUp = exactRoundUp(exactFractionalPart, fractionalPartAsInt);
else
roundItUp = true;
if (roundItUp) {
// Rounds up both fractional part (and also integral if needed).
if (fractionalPartAsInt < fastPathData.fractionalMaxIntBound) {
fractionalPartAsInt++;
} else {
// Propagates rounding to integral part since "all nines" case.
fractionalPartAsInt = 0;
integralPartAsInt++;
}
}
}
// Collecting digits.
collectFractionalDigits(fractionalPartAsInt, container,
fastPathData.fractionalFirstIndex);
collectIntegralDigits(integralPartAsInt, container,
fastPathData.integralLastIndex);
// Localizing digits.
if (fastPathData.zeroDelta != 0)
localizeDigits(container);
// Adding prefix and suffix.
if (negative) {
if (fastPathData.negativeAffixesRequired)
addAffixes(container,
fastPathData.charsNegativePrefix,
fastPathData.charsNegativeSuffix);
} else if (fastPathData.positiveAffixesRequired)
addAffixes(container,
fastPathData.charsPositivePrefix,
fastPathData.charsPositiveSuffix);
}
/**
* A fast-path shortcut of format(double) to be called by NumberFormat, or by
* format(double, ...) public methods.
*
* If instance can be applied fast-path and passed double is not NaN or
* Infinity, is in the integer range, we call {@code fastDoubleFormat}
* after changing {@code d} to its positive value if necessary.
*
* Otherwise returns null by convention since fast-path can't be exercized.
*
* @param d The double value to be formatted
*
* @return the formatted result for {@code d} as a string.
*/
String fastFormat(double d) {
boolean isDataSet = false;
// (Re-)Evaluates fast-path status if needed.
if (fastPathCheckNeeded) {
isDataSet = checkAndSetFastPathStatus();
}
if (!isFastPath )
// DecimalFormat instance is not in a fast-path state.
return null;
if (!Double.isFinite(d))
// Should not use fast-path for Infinity and NaN.
return null;
// Extracts and records sign of double value, possibly changing it
// to a positive one, before calling fastDoubleFormat().
boolean negative = false;
if (d < 0.0d) {
negative = true;
d = -d;
} else if (d == 0.0d) {
negative = (Math.copySign(1.0d, d) == -1.0d);
d = +0.0d;
}
if (d > MAX_INT_AS_DOUBLE)
// Filters out values that are outside expected fast-path range
return null;
else {
if (!isDataSet) {
/*
* If the fast path data is not set through
* checkAndSetFastPathStatus() and fulfil the
* fast path conditions then reset the data
* directly through resetFastPathData()
*/
resetFastPathData(isFastPath);
}
fastDoubleFormat(d, negative);
}
// Returns a new string from updated fastPathContainer.
return new String(fastPathData.fastPathContainer,
fastPathData.firstUsedIndex,
fastPathData.lastFreeIndex - fastPathData.firstUsedIndex);
}
/**
* Utility method that sets the {@code DigitList} used by this {@code DecimalFormat}
* instance.
*
* @param number the number to format
* @param isNegative true, if the number is negative; false otherwise
* @param maxDigits the max digits
* @throws AssertionError if provided a Number subclass that is not supported
* by {@code DigitList}
*/
void setDigitList(Number number, boolean isNegative, int maxDigits) {
switch (number) {
case Double d -> digitList.set(isNegative, d, maxDigits, true);
case BigDecimal bd -> digitList.set(isNegative, bd, maxDigits, true);
case Long l -> digitList.set(isNegative, l, maxDigits);
case BigInteger bi -> digitList.set(isNegative, bi, maxDigits);
default -> throw new AssertionError(
String.format("DigitList does not support %s", number.getClass().getName()));
}
}
/**
* {@return the {@code DigitList} used by this {@code DecimalFormat} instance}
* Declared as package-private, intended for {@code CompactNumberFormat}.
*/
DigitList getDigitList() {
return digitList;
}
// ======== End fast-path formatting logic for double =========================
/**
* Complete the formatting of a finite number. On entry, the digitList must
* be filled in with the correct digits.
*/
private StringBuf subformat(StringBuf result, FieldDelegate delegate,
boolean isNegative, boolean isInteger,
int maxIntDigits, int minIntDigits,
int maxFraDigits, int minFraDigits) {
// Process prefix
if (isNegative) {
append(result, negativePrefix, delegate,
getNegativePrefixFieldPositions(), Field.SIGN);
} else {
append(result, positivePrefix, delegate,
getPositivePrefixFieldPositions(), Field.SIGN);
}
// Process number
subformatNumber(result, delegate, isNegative, isInteger,
maxIntDigits, minIntDigits, maxFraDigits, minFraDigits);
// Process suffix
if (isNegative) {
append(result, negativeSuffix, delegate,
getNegativeSuffixFieldPositions(), Field.SIGN);
} else {
append(result, positiveSuffix, delegate,
getPositiveSuffixFieldPositions(), Field.SIGN);
}
return result;
}
/**
* Subformats number part using the {@code DigitList} of this
* {@code DecimalFormat} instance.
* @param result where the text is to be appended
* @param delegate notified of the location of sub fields
* @param isNegative true, if the number is negative; false otherwise
* @param isInteger true, if the number is an integer; false otherwise
* @param maxIntDigits maximum integer digits
* @param minIntDigits minimum integer digits
* @param maxFraDigits maximum fraction digits
* @param minFraDigits minimum fraction digits
*/
void subformatNumber(StringBuf result, FieldDelegate delegate,
boolean isNegative, boolean isInteger,
int maxIntDigits, int minIntDigits,
int maxFraDigits, int minFraDigits) {
char grouping = isCurrencyFormat ?
symbols.getMonetaryGroupingSeparator() :
symbols.getGroupingSeparator();
char zero = symbols.getZeroDigit();
int zeroDelta = zero - '0'; // '0' is the DigitList representation of zero
char decimal = isCurrencyFormat ?
symbols.getMonetaryDecimalSeparator() :
symbols.getDecimalSeparator();
/* Per bug 4147706, DecimalFormat must respect the sign of numbers which
* format as zero. This allows sensible computations and preserves
* relations such as signum(1/x) = signum(x), where x is +Infinity or
* -Infinity. Prior to this fix, we always formatted zero values as if
* they were positive. Liu 7/6/98.
*/
if (digitList.isZero()) {
digitList.decimalAt = 0; // Normalize
}
if (useExponentialNotation) {
int iFieldStart = result.length();
int iFieldEnd = -1;
int fFieldStart = -1;
// Minimum integer digits are handled in exponential format by
// adjusting the exponent. For example, 0.01234 with 3 minimum
// integer digits is "123.4E-4".
// Maximum integer digits are interpreted as indicating the
// repeating range. This is useful for engineering notation, in
// which the exponent is restricted to a multiple of 3. For
// example, 0.01234 with 3 maximum integer digits is "12.34e-3".
// If maximum integer digits are > 1 and are larger than
// minimum integer digits, then minimum integer digits are
// ignored.
int exponent = digitList.decimalAt;
int repeat = maxIntDigits;
int minimumIntegerDigits = minIntDigits;
if (repeat > 1 && repeat > minIntDigits) {
// A repeating range is defined; adjust to it as follows.
// If repeat == 3, we have 6,5,4=>3; 3,2,1=>0; 0,-1,-2=>-3;
// -3,-4,-5=>-6, etc. This takes into account that the
// exponent we have here is off by one from what we expect;
// it is for the format 0.MMMMMx10^n.
if (exponent >= 1) {
exponent = ((exponent - 1) / repeat) * repeat;
} else {
// integer division rounds towards 0
exponent = ((exponent - repeat) / repeat) * repeat;
}
minimumIntegerDigits = 1;
} else {
// No repeating range is defined; use minimum integer digits.
exponent -= minimumIntegerDigits;
}
// We now output a minimum number of digits, and more if there
// are more digits, up to the maximum number of digits. We
// place the decimal point after the "integer" digits, which
// are the first (decimalAt - exponent) digits.
int minimumDigits = minIntDigits + minFraDigits;
if (minimumDigits < 0) { // overflow?
minimumDigits = Integer.MAX_VALUE;
}
// The number of integer digits is handled specially if the number
// is zero, since then there may be no digits.
int integerDigits = digitList.isZero() ? minimumIntegerDigits :
digitList.decimalAt - exponent;
if (minimumDigits < integerDigits) {
minimumDigits = integerDigits;
}
int totalDigits = digitList.count;
if (minimumDigits > totalDigits) {
totalDigits = minimumDigits;
}
boolean addedDecimalSeparator = false;
for (int i=0; i
* If one of the {@code FieldPosition}s in {@code positions}
* identifies a {@code SIGN} attribute, it is mapped to
* {@code signAttribute}. This is used
* to map the {@code SIGN} attribute to the {@code EXPONENT}
* attribute as necessary.
*
* This is used by {@code subformat} to add the prefix/suffix.
*/
private void append(StringBuf result, String string,
FieldDelegate delegate,
FieldPosition[] positions,
Format.Field signAttribute) {
int start = result.length();
if (!string.isEmpty()) {
result.append(string);
for (int counter = 0, max = positions.length; counter < max;
counter++) {
FieldPosition fp = positions[counter];
Format.Field attribute = fp.getFieldAttribute();
if (attribute == Field.SIGN) {
attribute = signAttribute;
}
delegate.formatted(attribute, attribute,
start + fp.getBeginIndex(),
start + fp.getEndIndex(), result);
}
}
}
/**
* {@inheritDoc NumberFormat}
*
* Parsing can be done in either a strict or lenient manner, by default it is lenient.
*
* Parsing fails when lenient, if the prefix and/or suffix are non-empty
* and cannot be found due to parsing ending early, or the first character
* after the prefix cannot be parsed.
*
* Parsing fails when strict, if in {@code text},
*
* The subclass returned depends on the value of {@link #isParseBigDecimal}
* as well as on the string being parsed.
*
* Callers may use the {@code Number} methods
* {@code doubleValue}, {@code longValue}, etc., to obtain
* the type they want.
*
* {@code DecimalFormat} parses all Unicode characters that represent
* decimal digits, as defined by {@code Character.digit()}. In
* addition, {@code DecimalFormat} also recognizes as digits the ten
* consecutive characters starting with the localized zero digit defined in
* the {@code DecimalFormatSymbols} object.
*
* @param text the string to be parsed
* @param pos A {@code ParsePosition} object with index and error
* index information as described above.
* @return the parsed value, or {@code null} if the parse fails
* @throws NullPointerException if {@code text} or
* {@code pos} is null.
*/
@Override
public Number parse(String text, ParsePosition pos) {
// special case NaN
if (text.regionMatches(pos.index, symbols.getNaN(), 0, symbols.getNaN().length())) {
pos.index = pos.index + symbols.getNaN().length();
return Double.valueOf(Double.NaN);
}
boolean[] status = new boolean[STATUS_LENGTH];
if (!subparse(text, pos, positivePrefix, negativePrefix, digitList, false, status)) {
return null;
}
// special case INFINITY
if (status[STATUS_INFINITE]) {
if (status[STATUS_POSITIVE] == (multiplier >= 0)) {
return Double.valueOf(Double.POSITIVE_INFINITY);
} else {
return Double.valueOf(Double.NEGATIVE_INFINITY);
}
}
if (multiplier == 0) {
if (digitList.isZero()) {
return Double.valueOf(Double.NaN);
} else if (status[STATUS_POSITIVE]) {
return Double.valueOf(Double.POSITIVE_INFINITY);
} else {
return Double.valueOf(Double.NEGATIVE_INFINITY);
}
}
if (isParseBigDecimal()) {
BigDecimal bigDecimalResult = digitList.getBigDecimal();
if (multiplier != 1) {
try {
bigDecimalResult = bigDecimalResult.divide(getBigDecimalMultiplier());
}
catch (ArithmeticException e) { // non-terminating decimal expansion
bigDecimalResult = bigDecimalResult.divide(getBigDecimalMultiplier(), roundingMode);
}
}
if (!status[STATUS_POSITIVE]) {
bigDecimalResult = bigDecimalResult.negate();
}
return bigDecimalResult;
} else {
boolean gotDouble = true;
boolean gotLongMinimum = false;
double doubleResult = 0.0;
long longResult = 0;
// Finally, have DigitList parse the digits into a value.
if (digitList.fitsIntoLong(status[STATUS_POSITIVE], isParseIntegerOnly())) {
gotDouble = false;
longResult = digitList.getLong();
if (longResult < 0) { // got Long.MIN_VALUE
gotLongMinimum = true;
}
} else {
doubleResult = digitList.getDouble();
}
// Divide by multiplier. We have to be careful here not to do
// unneeded conversions between double and long.
if (multiplier != 1) {
if (gotDouble) {
doubleResult /= multiplier;
} else {
// Avoid converting to double if we can
if (longResult % multiplier == 0) {
longResult /= multiplier;
} else {
doubleResult = ((double)longResult) / multiplier;
gotDouble = true;
}
}
}
if (!status[STATUS_POSITIVE] && !gotLongMinimum) {
doubleResult = -doubleResult;
longResult = -longResult;
}
// At this point, if we divided the result by the multiplier, the
// result may fit into a long. We check for this case and return
// a long if possible.
// We must do this AFTER applying the negative (if appropriate)
// in order to handle the case of LONG_MIN; otherwise, if we do
// this with a positive value -LONG_MIN, the double is > 0, but
// the long is < 0. We also must retain a double in the case of
// -0.0, which will compare as == to a long 0 cast to a double
// (bug 4162852).
if (multiplier != 1 && gotDouble) {
longResult = (long)doubleResult;
gotDouble = ((doubleResult != (double)longResult) ||
(doubleResult == 0.0 && 1/doubleResult < 0.0)) &&
!isParseIntegerOnly();
}
// cast inside of ?: because of binary numeric promotion, JLS 15.25
return gotDouble ? (Number)doubleResult : (Number)longResult;
}
}
/**
* Return a BigInteger multiplier.
*/
private BigInteger getBigIntegerMultiplier() {
if (bigIntegerMultiplier == null) {
bigIntegerMultiplier = BigInteger.valueOf(multiplier);
}
return bigIntegerMultiplier;
}
private transient BigInteger bigIntegerMultiplier;
/**
* Return a BigDecimal multiplier.
*/
private BigDecimal getBigDecimalMultiplier() {
if (bigDecimalMultiplier == null) {
bigDecimalMultiplier = new BigDecimal(multiplier);
}
return bigDecimalMultiplier;
}
private transient BigDecimal bigDecimalMultiplier;
private static final int STATUS_INFINITE = 0;
private static final int STATUS_POSITIVE = 1;
private static final int STATUS_LENGTH = 2;
/**
* Parse the given text into a number. The text is parsed beginning at
* parsePosition, until an unparseable character is seen.
* @param text The string to parse.
* @param parsePosition The position at which to being parsing. Upon
* return, the first unparseable character.
* @param digits The DigitList to set to the parsed value.
* @param isExponent If true, parse an exponent. This means no
* infinite values and integer only.
* @param status Upon return contains boolean status flags indicating
* whether the value was infinite and whether it was positive.
*/
private final boolean subparse(String text, ParsePosition parsePosition,
String positivePrefix, String negativePrefix,
DigitList digits, boolean isExponent,
boolean[] status) {
int position = parsePosition.index;
int oldStart = parsePosition.index;
boolean gotPositive, gotNegative;
// check for positivePrefix; take longest
gotPositive = text.regionMatches(position, positivePrefix, 0,
positivePrefix.length());
gotNegative = text.regionMatches(position, negativePrefix, 0,
negativePrefix.length());
if (gotPositive && gotNegative) {
if (positivePrefix.length() > negativePrefix.length()) {
gotNegative = false;
} else if (positivePrefix.length() < negativePrefix.length()) {
gotPositive = false;
}
}
if (gotPositive) {
position += positivePrefix.length();
} else if (gotNegative) {
position += negativePrefix.length();
} else {
parsePosition.errorIndex = position;
return false;
}
// position will serve as new index when success, otherwise it will
// serve as errorIndex when failure
NumericPosition pos = subparseNumber(text, position, digits, true, isExponent, status);
position = pos.fullPos;
// First character after the prefix was un-parseable or parsing integer
// only with no integer portion. Should fail regardless if lenient or strict.
if (position == -1) {
parsePosition.index = oldStart;
parsePosition.errorIndex = oldStart;
return false;
}
// When strict, text should end with the suffix.
// When lenient, text only needs to contain the suffix.
if (!isExponent) {
if (gotPositive) {
boolean containsPosSuffix =
text.regionMatches(position, positiveSuffix, 0, positiveSuffix.length());
boolean endsWithPosSuffix =
containsPosSuffix && text.length() == position + positiveSuffix.length();
gotPositive = parseStrict ? endsWithPosSuffix : containsPosSuffix;
}
if (gotNegative) {
boolean containsNegSuffix =
text.regionMatches(position, negativeSuffix, 0, negativeSuffix.length());
boolean endsWithNegSuffix =
containsNegSuffix && text.length() == position + negativeSuffix.length();
gotNegative = parseStrict ? endsWithNegSuffix : containsNegSuffix;
}
// If both match, take longest
if (gotPositive && gotNegative) {
if (positiveSuffix.length() > negativeSuffix.length()) {
gotNegative = false;
} else if (positiveSuffix.length() < negativeSuffix.length()) {
gotPositive = false;
}
}
// Fail if neither or both
if (gotPositive == gotNegative) {
parsePosition.errorIndex = position;
return false;
}
// When parsing integer only, index should be int pos
// If intPos is -1, the entire value was integer and index should be full pos
if (isParseIntegerOnly() && pos.intPos != -1) {
parsePosition.index = pos.intPos;
} else {
// increment the index by the suffix
parsePosition.index = position +
(gotPositive ? positiveSuffix.length() : negativeSuffix.length());
}
} else {
parsePosition.index = position;
}
status[STATUS_POSITIVE] = gotPositive;
if (parsePosition.index == oldStart) {
parsePosition.errorIndex = position;
return false;
}
return true;
}
/**
* NumericPosition is a helper record class that stores two indices of interest.
* {@code fullPos} is either the first unparseable character or -1 in case
* of no valid number parsed. {@code intPos} reflects the position of
* a parsed decimal symbol, if one exists. When parsing with {@code isParseIntegerOnly()},
* {@code fullPos} is used to match the suffix, and reset the {@code ParsePosition}
* index to {@code intPos}.
*
* @param fullPos an index that reflects the full traversal of the numerical String
* @param intPos an index that reflects the position of a parsed decimal symbol.
*/
record NumericPosition(int fullPos, int intPos) {}
/**
* Parses a number from the given {@code text}. The text is parsed
* beginning at {@code position}, until an unparseable character is seen.
*
* @param text the string to parse
* @param position the position at which parsing begins
* @param digits the DigitList to set to the parsed value
* @param checkExponent whether to check for exponential number
* @param isExponent if the exponential part is encountered
* @param status upon return contains boolean status flags indicating
* whether the value is infinite and whether it is
* positive
* @return returns a {@code NumericPosition} that stores both a full
* traversal index, and an int only index.
*/
NumericPosition subparseNumber(String text, int position,
DigitList digits, boolean checkExponent,
boolean isExponent, boolean[] status) {
// process digits or Inf, find decimal position
status[STATUS_INFINITE] = false;
int intIndex = -1;
if (!isExponent && text.regionMatches(position, symbols.getInfinity(), 0,
symbols.getInfinity().length())) {
position += symbols.getInfinity().length();
status[STATUS_INFINITE] = true;
} else {
// We now have a string of digits, possibly with grouping symbols,
// and decimal points. We want to process these into a DigitList.
// We don't want to put a bunch of leading zeros into the DigitList
// though, so we keep track of the location of the decimal point,
// put only significant digits into the DigitList, and adjust the
// exponent as needed.
digits.decimalAt = digits.count = 0;
char zero = symbols.getZeroDigit();
char decimal = isCurrencyFormat ?
symbols.getMonetaryDecimalSeparator() :
symbols.getDecimalSeparator();
char grouping = isCurrencyFormat ?
symbols.getMonetaryGroupingSeparator() :
symbols.getGroupingSeparator();
String exponentString = symbols.getExponentSeparator();
boolean sawDecimal = false;
boolean sawDigit = false;
// Storing as long allows us to maintain accuracy of exponent
// when the exponent value as well as the decimalAt nears
// Integer.MAX/MIN value. However, the final expressed value is an int
long exponent = 0;
boolean[] expStat = new boolean[STATUS_LENGTH];
// We have to track digitCount ourselves, because digits.count will
// pin when the maximum allowable digits is reached.
int digitCount = 0;
int prevSeparatorIndex = -groupingSize;
int startPos = position; // Rely on startPos as index after prefix
int backup = -1;
for (; position < text.length(); ++position) {
char ch = text.charAt(position);
/* We recognize all digit ranges, not only the Latin digit range
* '0'..'9'. We do so by using the Character.digit() method,
* which converts a valid Unicode digit to the range 0..9.
*
* The character 'ch' may be a digit. If so, place its value
* from 0 to 9 in 'digit'. First try using the locale digit,
* which may or MAY NOT be a standard Unicode digit range. If
* this fails, try using the standard Unicode digit ranges by
* calling Character.digit(). If this also fails, digit will
* have a value outside the range 0..9.
*/
int digit = ch - zero;
if (digit < 0 || digit > 9) {
digit = Character.digit(ch, 10);
}
// Enforce the grouping size on the first group
if (parseStrict && isGroupingUsed() && position == startPos + groupingSize
&& prevSeparatorIndex == -groupingSize && !sawDecimal
&& digit >= 0 && digit <= 9) {
return new NumericPosition(position, intIndex);
}
if (digit == 0) {
// Cancel out backup setting (see grouping handler below)
backup = -1; // Do this BEFORE continue statement below!!!
sawDigit = true;
// Handle leading zeros
if (digits.count == 0) {
// Ignore leading zeros in integer part of number.
if (!sawDecimal) {
continue;
}
// If we have seen the decimal, but no significant
// digits yet, then we account for leading zeros by
// decrementing the digits.decimalAt into negative
// values.
--digits.decimalAt;
} else {
++digitCount;
if (!sawDecimal || !isParseIntegerOnly()) {
digits.append((char)(digit + '0'));
}
}
} else if (digit > 0 && digit <= 9) { // [sic] digit==0 handled above
sawDigit = true;
++digitCount;
if (!sawDecimal || !isParseIntegerOnly()) {
digits.append((char) (digit + '0'));
}
// Cancel out backup setting (see grouping handler below)
backup = -1;
} else if (!isExponent && ch == decimal) {
if (isParseIntegerOnly() && startPos == position) {
// Parsing int only with no integer portion, fail
return new NumericPosition(-1, intIndex);
}
// Check grouping size on decimal separator
if (parseStrict && isGroupingViolation(position, prevSeparatorIndex)) {
return new NumericPosition(
groupingViolationIndex(position, prevSeparatorIndex), intIndex);
}
// If we're only parsing integers, or if we ALREADY saw the
// decimal, then don't parse this one.
if (sawDecimal) {
break;
}
intIndex = position;
digits.decimalAt = digitCount; // Not digits.count!
sawDecimal = true;
} else if (!isExponent && ch == grouping && isGroupingUsed()) {
if (parseStrict) {
// text should not start with grouping when strict
if (position == startPos) {
return new NumericPosition(startPos, intIndex);
}
// when strict, fail if grouping occurs after decimal OR
// current group violates grouping size
if (sawDecimal || (isGroupingViolation(position, prevSeparatorIndex))) {
return new NumericPosition(
groupingViolationIndex(position, prevSeparatorIndex), intIndex);
}
prevSeparatorIndex = position; // track previous
} else {
// when lenient, only exit if grouping occurs after decimal
// subsequent grouping symbols are allowed when lenient
if (sawDecimal) {
break;
}
}
// Ignore grouping characters, if we are using them, but
// require that they be followed by a digit. Otherwise
// we backup and reprocess them.
backup = position;
} else if (checkExponent && !isExponent
&& text.regionMatches(position, exponentString, 0, exponentString.length())) {
// Process the exponent by recursively calling this method.
ParsePosition pos = new ParsePosition(position + exponentString.length());
DigitList exponentDigits = new DigitList();
if (subparse(text, pos, "", symbols.getMinusSignText(), exponentDigits, true, expStat)) {
// We parse the exponent with isExponent == true, thus fitsIntoLong()
// only returns false here if the exponent DigitList value exceeds
// Long.MAX_VALUE. We do not need to worry about false being
// returned for faulty values as they are ignored by DigitList.
if (exponentDigits.fitsIntoLong(expStat[STATUS_POSITIVE], true)) {
exponent = exponentDigits.getLong();
if (!expStat[STATUS_POSITIVE]) {
exponent = -exponent;
}
} else {
exponent = expStat[STATUS_POSITIVE] ?
Long.MAX_VALUE : Long.MIN_VALUE;
}
position = pos.index; // Advance past the exponent
}
break; // Whether we fail or succeed, we exit this loop
} else {
break;
}
}
// (When strict), within the loop we enforce grouping when encountering
// decimal/grouping symbols. Once outside loop, we need to check
// the final grouping, ex: "1,234". Only check the final grouping
// if we have not seen a decimal separator, to prevent a non needed check,
// for ex: "1,234.", "1,234.12"
if (parseStrict) {
if (!sawDecimal && isGroupingViolation(position, prevSeparatorIndex)) {
// -1, since position is incremented by one too many when loop is finished
// "1,234%" and "1,234" both end with pos = 5, since '%' breaks
// the loop before incrementing position. In both cases, check
// should be done at pos = 4
return new NumericPosition(
groupingViolationIndex(position - 1, prevSeparatorIndex), intIndex);
}
}
// If a grouping symbol is not followed by a digit, it must be
// backed up to either exit early or fail depending on leniency
if (backup != -1) {
position = backup;
}
// If there was no decimal point we have an integer
if (!sawDecimal) {
digits.decimalAt = digitCount; // Not digits.count!
}
// If parsing integer only, adjust exponent if it occurs
// in integer portion, otherwise ignore it
if (!sawDecimal || !isParseIntegerOnly()) {
digits.decimalAt = shiftDecimalAt(digits.decimalAt, exponent);
}
// If none of the text string was recognized. For example, parse
// "x" with pattern "#0.00" (return index and error index both 0)
// parse "$" with pattern "$#0.00". (return index 0 and error
// index 1).
if (!sawDigit && digitCount == 0) {
return new NumericPosition(-1, intIndex);
}
}
return new NumericPosition(position, intIndex);
}
// Calculate the final decimal position based off the exponent value
// and the existing decimalAt position. If overflow/underflow, the value
// should be set as either Integer.MAX/MIN
private int shiftDecimalAt(int decimalAt, long exponent) {
try {
exponent = Math.addExact(decimalAt, exponent);
} catch (ArithmeticException ex) {
// If we under/overflow a Long do not bother with the decimalAt
// As it can only shift up to Integer.MAX/MIN which has no affect
if (exponent > 0 && decimalAt > 0) {
return Integer.MAX_VALUE;
} else {
return Integer.MIN_VALUE;
}
}
try {
decimalAt = Math.toIntExact(exponent);
} catch (ArithmeticException ex) {
decimalAt = exponent > 0 ? Integer.MAX_VALUE : Integer.MIN_VALUE;
}
return decimalAt;
}
// Checks to make sure grouping size is not violated. Used when strict.
private boolean isGroupingViolation(int pos, int prevGroupingPos) {
assert parseStrict : "Grouping violations should only occur when strict";
return isGroupingUsed() && // Only violates if using grouping
// Checks if a previous grouping symbol was seen.
prevGroupingPos != -groupingSize &&
// The check itself, - 1 to account for grouping/decimal symbol
pos - 1 != prevGroupingPos + groupingSize;
}
// Calculates the index that violated the grouping size
// Violation can be over or under the grouping size
// under - Current group has a grouping size of less than the expected
// over - Current group has a grouping size of more than the expected
private int groupingViolationIndex(int pos, int prevGroupingPos) {
// Both examples assume grouping size of 3 and 0 indexed
// under ex: "1,23,4". (4) OR "1,,2". (2) When under, violating char is grouping symbol
// over ex: "1,2345,6. (5) When over, violating char is the excess digit
// This method is only evaluated when a grouping symbol is found, thus
// we can take the minimum of either the current pos, or where we expect
// the current group to have ended
return Math.min(pos, prevGroupingPos + groupingSize + 1);
}
/**
* Returns a copy of the decimal format symbols, which is generally not
* changed by the programmer or user.
* @return a copy of the desired DecimalFormatSymbols
* @see java.text.DecimalFormatSymbols
*/
public DecimalFormatSymbols getDecimalFormatSymbols() {
try {
// don't allow multiple references
return (DecimalFormatSymbols) symbols.clone();
} catch (Exception foo) {
return null; // should never happen
}
}
/**
* Sets the decimal format symbols, which is generally not changed
* by the programmer or user.
* @param newSymbols desired DecimalFormatSymbols
* @see java.text.DecimalFormatSymbols
*/
public void setDecimalFormatSymbols(DecimalFormatSymbols newSymbols) {
try {
// don't allow multiple references
symbols = (DecimalFormatSymbols) newSymbols.clone();
expandAffixes();
fastPathCheckNeeded = true;
} catch (Exception foo) {
// should never happen
}
}
/**
* Get the positive prefix.
* Examples: +123, $123, sFr123
*
* @return the positive prefix
*/
public String getPositivePrefix () {
return positivePrefix;
}
/**
* Set the positive prefix.
* Examples: +123, $123, sFr123
*
* @param newValue the new positive prefix
*/
public void setPositivePrefix (String newValue) {
positivePrefix = newValue;
posPrefixPattern = null;
positivePrefixFieldPositions = null;
fastPathCheckNeeded = true;
}
/**
* Returns the FieldPositions of the fields in the prefix used for
* positive numbers. This is not used if the user has explicitly set
* a positive prefix via {@code setPositivePrefix}. This is
* lazily created.
*
* @return FieldPositions in positive prefix
*/
private FieldPosition[] getPositivePrefixFieldPositions() {
if (positivePrefixFieldPositions == null) {
if (posPrefixPattern != null) {
positivePrefixFieldPositions = expandAffix(posPrefixPattern);
} else {
positivePrefixFieldPositions = EmptyFieldPositionArray;
}
}
return positivePrefixFieldPositions;
}
/**
* Get the negative prefix.
* Examples: -123, ($123) (with negative suffix), sFr-123
*
* @return the negative prefix
*/
public String getNegativePrefix () {
return negativePrefix;
}
/**
* Set the negative prefix.
* Examples: -123, ($123) (with negative suffix), sFr-123
*
* @param newValue the new negative prefix
*/
public void setNegativePrefix (String newValue) {
negativePrefix = newValue;
negPrefixPattern = null;
fastPathCheckNeeded = true;
}
/**
* Returns the FieldPositions of the fields in the prefix used for
* negative numbers. This is not used if the user has explicitly set
* a negative prefix via {@code setNegativePrefix}. This is
* lazily created.
*
* @return FieldPositions in positive prefix
*/
private FieldPosition[] getNegativePrefixFieldPositions() {
if (negativePrefixFieldPositions == null) {
if (negPrefixPattern != null) {
negativePrefixFieldPositions = expandAffix(negPrefixPattern);
} else {
negativePrefixFieldPositions = EmptyFieldPositionArray;
}
}
return negativePrefixFieldPositions;
}
/**
* Get the positive suffix.
* Example: 123%
*
* @return the positive suffix
*/
public String getPositiveSuffix () {
return positiveSuffix;
}
/**
* Set the positive suffix.
* Example: 123%
*
* @param newValue the new positive suffix
*/
public void setPositiveSuffix (String newValue) {
positiveSuffix = newValue;
posSuffixPattern = null;
fastPathCheckNeeded = true;
}
/**
* Returns the FieldPositions of the fields in the suffix used for
* positive numbers. This is not used if the user has explicitly set
* a positive suffix via {@code setPositiveSuffix}. This is
* lazily created.
*
* @return FieldPositions in positive prefix
*/
private FieldPosition[] getPositiveSuffixFieldPositions() {
if (positiveSuffixFieldPositions == null) {
if (posSuffixPattern != null) {
positiveSuffixFieldPositions = expandAffix(posSuffixPattern);
} else {
positiveSuffixFieldPositions = EmptyFieldPositionArray;
}
}
return positiveSuffixFieldPositions;
}
/**
* Get the negative suffix.
* Examples: -123%, ($123) (with positive suffixes)
*
* @return the negative suffix
*/
public String getNegativeSuffix () {
return negativeSuffix;
}
/**
* Set the negative suffix.
* Examples: 123%
*
* @param newValue the new negative suffix
*/
public void setNegativeSuffix (String newValue) {
negativeSuffix = newValue;
negSuffixPattern = null;
fastPathCheckNeeded = true;
}
/**
* Returns the FieldPositions of the fields in the suffix used for
* negative numbers. This is not used if the user has explicitly set
* a negative suffix via {@code setNegativeSuffix}. This is
* lazily created.
*
* @return FieldPositions in positive prefix
*/
private FieldPosition[] getNegativeSuffixFieldPositions() {
if (negativeSuffixFieldPositions == null) {
if (negSuffixPattern != null) {
negativeSuffixFieldPositions = expandAffix(negSuffixPattern);
} else {
negativeSuffixFieldPositions = EmptyFieldPositionArray;
}
}
return negativeSuffixFieldPositions;
}
/**
* Gets the multiplier for use in percent, per mille, and similar
* formats.
*
* @return the multiplier
* @see #setMultiplier(int)
*/
public int getMultiplier () {
return multiplier;
}
/**
* Sets the multiplier for use in percent, per mille, and similar
* formats.
* For a percent format, set the multiplier to 100 and the suffixes to
* have '%' (for Arabic, use the Arabic percent sign).
* For a per mille format, set the multiplier to 1000 and the suffixes to
* have '{@code U+2030}'.
*
* Example: with multiplier 100, 1.23 is formatted as "123", and
* "123" is parsed into 1.23. If {@code isParseIntegerOnly()} returns {@code true},
* "123" is parsed into 1.
*
* @param newValue the new multiplier
* @see #getMultiplier
*/
public void setMultiplier (int newValue) {
multiplier = newValue;
bigDecimalMultiplier = null;
bigIntegerMultiplier = null;
fastPathCheckNeeded = true;
}
/**
* {@inheritDoc}
*/
@Override
public void setGroupingUsed(boolean newValue) {
super.setGroupingUsed(newValue);
fastPathCheckNeeded = true;
}
/**
* Return the grouping size. Grouping size is the number of digits between
* grouping separators in the integer portion of a number. For example,
* in the number "123,456.78", the grouping size is 3. Grouping size of
* zero designates that grouping is not used, which provides the same
* formatting as if calling {@link #setGroupingUsed(boolean)
* setGroupingUsed(false)}.
*
* @return the grouping size
* @see #setGroupingSize
* @see java.text.NumberFormat#isGroupingUsed
* @see java.text.DecimalFormatSymbols#getGroupingSeparator
*/
public int getGroupingSize () {
return groupingSize;
}
/**
* Set the grouping size. Grouping size is the number of digits between
* grouping separators in the integer portion of a number. For example,
* in the number "123,456.78", the grouping size is 3. Grouping size of
* zero designates that grouping is not used, which provides the same
* formatting as if calling {@link #setGroupingUsed(boolean)
* setGroupingUsed(false)}.
*
* The value passed in is converted to a byte, which may lose information.
* Values that are negative or greater than
* {@link java.lang.Byte#MAX_VALUE Byte.MAX_VALUE}, will throw an
* {@code IllegalArgumentException}.
*
* @param newValue the new grouping size
* @see #getGroupingSize
* @see java.text.NumberFormat#setGroupingUsed
* @see java.text.DecimalFormatSymbols#setGroupingSeparator
* @throws IllegalArgumentException if {@code newValue} is negative or
* greater than {@link java.lang.Byte#MAX_VALUE Byte.MAX_VALUE}
*/
public void setGroupingSize (int newValue) {
if (newValue < 0 || newValue > Byte.MAX_VALUE) {
throw new IllegalArgumentException(
"newValue is out of valid range. value: " + newValue);
}
groupingSize = (byte)newValue;
fastPathCheckNeeded = true;
}
/**
* Allows you to get the behavior of the decimal separator with integers.
* (The decimal separator will always appear with decimals.)
* Example: Decimal ON: 12345 → 12345.; OFF: 12345 → 12345
*
* @return {@code true} if the decimal separator is always shown;
* {@code false} otherwise
*/
public boolean isDecimalSeparatorAlwaysShown() {
return decimalSeparatorAlwaysShown;
}
/**
* Allows you to set the behavior of the decimal separator with integers.
* (The decimal separator will always appear with decimals.)
* Example: Decimal ON: 12345 → 12345.; OFF: 12345 → 12345
*
* @param newValue {@code true} if the decimal separator is always shown;
* {@code false} otherwise
*/
public void setDecimalSeparatorAlwaysShown(boolean newValue) {
decimalSeparatorAlwaysShown = newValue;
fastPathCheckNeeded = true;
}
/**
* {@inheritDoc NumberFormat}
*
* @see #setStrict(boolean)
* @see #parse(String, ParsePosition)
* @since 23
*/
@Override
public boolean isStrict() {
return parseStrict;
}
/**
* {@inheritDoc NumberFormat}
*
* @see #isStrict()
* @see #parse(String, ParsePosition)
* @since 23
*/
@Override
public void setStrict(boolean strict) {
parseStrict = strict;
}
/**
* Returns whether the {@link #parse(java.lang.String, java.text.ParsePosition)}
* method returns {@code BigDecimal}. The default value is false.
*
* @return {@code true} if the parse method returns BigDecimal;
* {@code false} otherwise
* @see #setParseBigDecimal
* @since 1.5
*/
public boolean isParseBigDecimal() {
return parseBigDecimal;
}
/**
* Sets whether the {@link #parse(java.lang.String, java.text.ParsePosition)}
* method returns {@code BigDecimal}.
*
* @param newValue {@code true} if the parse method returns BigDecimal;
* {@code false} otherwise
* @see #isParseBigDecimal
* @since 1.5
*/
public void setParseBigDecimal(boolean newValue) {
parseBigDecimal = newValue;
}
/**
* Standard override; no change in semantics.
*/
@Override
public Object clone() {
DecimalFormat other = (DecimalFormat) super.clone();
other.symbols = (DecimalFormatSymbols) symbols.clone();
other.digitList = (DigitList) digitList.clone();
// Fast-path is almost stateless algorithm. The only logical state is the
// isFastPath flag. In addition fastPathCheckNeeded is a sentinel flag
// that forces recalculation of all fast-path fields when set to true.
//
// There is thus no need to clone all the fast-path fields.
// We just only need to set fastPathCheckNeeded to true when cloning,
// and init fastPathData to null as if it were a truly new instance.
// Every fast-path field will be recalculated (only once) at next usage of
// fast-path algorithm.
other.fastPathCheckNeeded = true;
other.isFastPath = false;
other.fastPathData = null;
return other;
}
/**
* Compares the specified object with this {@code DecimalFormat} for equality.
* Returns true if the object is also a {@code DecimalFormat} and the
* two formats would format any value the same.
*
* @implSpec This method performs an equality check with a notion of class
* identity based on {@code getClass()}, rather than {@code instanceof}.
* Therefore, in the equals methods in subclasses, no instance of this class
* should compare as equal to an instance of a subclass.
* @param obj object to be compared for equality
* @return {@code true} if the specified object is equal to this {@code DecimalFormat}
* @see Object#equals(Object)
*/
@Override
public boolean equals(Object obj)
{
if (this == obj) {
return true;
}
if (!super.equals(obj))
return false; // super does null and class checks
DecimalFormat other = (DecimalFormat) obj;
return ((posPrefixPattern == other.posPrefixPattern &&
positivePrefix.equals(other.positivePrefix))
|| (posPrefixPattern != null &&
posPrefixPattern.equals(other.posPrefixPattern)))
&& ((posSuffixPattern == other.posSuffixPattern &&
positiveSuffix.equals(other.positiveSuffix))
|| (posSuffixPattern != null &&
posSuffixPattern.equals(other.posSuffixPattern)))
&& ((negPrefixPattern == other.negPrefixPattern &&
negativePrefix.equals(other.negativePrefix))
|| (negPrefixPattern != null &&
negPrefixPattern.equals(other.negPrefixPattern)))
&& ((negSuffixPattern == other.negSuffixPattern &&
negativeSuffix.equals(other.negativeSuffix))
|| (negSuffixPattern != null &&
negSuffixPattern.equals(other.negSuffixPattern)))
&& multiplier == other.multiplier
&& groupingSize == other.groupingSize
&& decimalSeparatorAlwaysShown == other.decimalSeparatorAlwaysShown
&& parseBigDecimal == other.parseBigDecimal
&& useExponentialNotation == other.useExponentialNotation
&& (!useExponentialNotation ||
minExponentDigits == other.minExponentDigits)
&& maximumIntegerDigits == other.maximumIntegerDigits
&& minimumIntegerDigits == other.minimumIntegerDigits
&& maximumFractionDigits == other.maximumFractionDigits
&& minimumFractionDigits == other.minimumFractionDigits
&& roundingMode == other.roundingMode
&& symbols.equals(other.symbols)
&& parseStrict == other.parseStrict;
}
/**
* {@return the hash code for this {@code DecimalFormat}}
*
* @implSpec This method calculates the hash code value using the values returned from
* {@link #getPositivePrefix()} and {@link NumberFormat#hashCode()}.
* @see Object#hashCode()
* @see NumberFormat#hashCode()
*/
@Override
public int hashCode() {
return super.hashCode() * 37 + positivePrefix.hashCode();
// just enough fields for a reasonable distribution
}
/**
* {@return a string identifying this {@code DecimalFormat}, for debugging}
*/
@Override
public String toString() {
return
"""
DecimalFormat [locale: "%s", pattern: "%s"]
""".formatted(symbols.getLocale().getDisplayName(), toPattern());
}
/**
* Synthesizes a pattern string that represents the current state
* of this Format object.
*
* @return a pattern string
* @see #applyPattern
*/
public String toPattern() {
return toPattern( false );
}
/**
* Synthesizes a localized pattern string that represents the current
* state of this Format object.
*
* @return a localized pattern string
* @see #applyPattern
*/
public String toLocalizedPattern() {
return toPattern( true );
}
/**
* Expand the affix pattern strings into the expanded affix strings. If any
* affix pattern string is null, do not expand it. This method should be
* called any time the symbols or the affix patterns change in order to keep
* the expanded affix strings up to date.
*/
private void expandAffixes() {
// Reuse one StringBuilder for better performance
StringBuilder buffer = new StringBuilder();
if (posPrefixPattern != null) {
positivePrefix = expandAffix(posPrefixPattern, buffer);
positivePrefixFieldPositions = null;
}
if (posSuffixPattern != null) {
positiveSuffix = expandAffix(posSuffixPattern, buffer);
positiveSuffixFieldPositions = null;
}
if (negPrefixPattern != null) {
negativePrefix = expandAffix(negPrefixPattern, buffer);
negativePrefixFieldPositions = null;
}
if (negSuffixPattern != null) {
negativeSuffix = expandAffix(negSuffixPattern, buffer);
negativeSuffixFieldPositions = null;
}
}
/**
* Expand an affix pattern into an affix string. All characters in the
* pattern are literal unless prefixed by QUOTE. The following characters
* after QUOTE are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
* PATTERN_MINUS, and CURRENCY_SIGN. If CURRENCY_SIGN is doubled (QUOTE +
* CURRENCY_SIGN + CURRENCY_SIGN), it is interpreted as an ISO 4217
* currency code. Any other character after a QUOTE represents itself.
* QUOTE must be followed by another character; QUOTE may not occur by
* itself at the end of the pattern.
*
* @param pattern the non-null, possibly empty pattern
* @param buffer a scratch StringBuilder; its contents will be lost
* @return the expanded equivalent of pattern
*/
private String expandAffix(String pattern, StringBuilder buffer) {
buffer.setLength(0);
for (int i=0; i
* The number of maximum integer digits is usually not derived from the pattern.
* See the note in the {@link ##patterns Patterns} section for more detail.
* For negative numbers, use a second pattern, separated by a semicolon
* Example {@code "#,#00.0#"} → 1,234.56
* This means a minimum of 2 integer digits, 1 fraction digit, and
* a maximum of 2 fraction digits.
* Example: {@code "#,#00.0#;(#,#00.0#)"} for negatives in
* parentheses.
* In negative patterns, the minimum and maximum counts are ignored;
* these are presumed to be set in the positive pattern.
*
* @param pattern a new pattern
* @throws NullPointerException if {@code pattern} is null
* @throws IllegalArgumentException if the given pattern is invalid.
*/
public void applyPattern(String pattern) {
applyPattern(pattern, false);
}
/**
* Apply the given pattern to this Format object. The pattern
* is assumed to be in a localized notation. A pattern is a
* short-hand specification for the various formatting properties.
* These properties can also be changed individually through the
* various setter methods.
*
* The number of maximum integer digits is usually not derived from the pattern.
* See the note in the {@link ##patterns Patterns} section for more detail.
* For negative numbers, use a second pattern, separated by a semicolon
* Example {@code "#,#00.0#"} → 1,234.56
* This means a minimum of 2 integer digits, 1 fraction digit, and
* a maximum of 2 fraction digits.
* Example: {@code "#,#00.0#;(#,#00.0#)"} for negatives in
* parentheses.
* In negative patterns, the minimum and maximum counts are ignored;
* these are presumed to be set in the positive pattern.
*
* @param pattern a new pattern
* @throws NullPointerException if {@code pattern} is null
* @throws IllegalArgumentException if the given pattern is invalid.
*/
public void applyLocalizedPattern(String pattern) {
applyPattern(pattern, true);
}
/**
* Does the real work of applying a pattern.
*/
private void applyPattern(String pattern, boolean localized) {
char zeroDigit = PATTERN_ZERO_DIGIT;
char groupingSeparator = PATTERN_GROUPING_SEPARATOR;
char decimalSeparator = PATTERN_DECIMAL_SEPARATOR;
char percent = PATTERN_PERCENT;
char perMill = PATTERN_PER_MILLE;
char digit = PATTERN_DIGIT;
char separator = PATTERN_SEPARATOR;
String exponent = PATTERN_EXPONENT;
char minus = PATTERN_MINUS;
if (localized) {
zeroDigit = symbols.getZeroDigit();
groupingSeparator = symbols.getGroupingSeparator();
decimalSeparator = symbols.getDecimalSeparator();
percent = symbols.getPercent();
perMill = symbols.getPerMill();
digit = symbols.getDigit();
separator = symbols.getPatternSeparator();
exponent = symbols.getExponentSeparator();
minus = symbols.getMinusSign();
}
boolean gotNegative = false;
decimalSeparatorAlwaysShown = false;
isCurrencyFormat = false;
useExponentialNotation = false;
int start = 0;
for (int j = 1; j >= 0 && start < pattern.length(); --j) {
boolean inQuote = false;
StringBuilder prefix = new StringBuilder();
StringBuilder suffix = new StringBuilder();
int decimalPos = -1;
int multiplier = 1;
int digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0;
byte groupingCount = -1;
// The phase ranges from 0 to 2. Phase 0 is the prefix. Phase 1 is
// the section of the pattern with digits, decimal separator,
// grouping characters. Phase 2 is the suffix. In phases 0 and 2,
// percent, per mille, and currency symbols are recognized and
// translated. The separation of the characters into phases is
// strictly enforced; if phase 1 characters are to appear in the
// suffix, for example, they must be quoted.
int phase = 0;
// The affix is either the prefix or the suffix.
StringBuilder affix = prefix;
for (int pos = start; pos < pattern.length(); ++pos) {
char ch = pattern.charAt(pos);
switch (phase) {
case 0:
case 2:
// Process the prefix / suffix characters
if (inQuote) {
// A quote within quotes indicates either the closing
// quote or two quotes, which is a quote literal. That
// is, we have the second quote in 'do' or 'don''t'.
if (ch == QUOTE) {
if ((pos+1) < pattern.length() &&
pattern.charAt(pos+1) == QUOTE) {
++pos;
affix.append("''"); // 'don''t'
} else {
inQuote = false; // 'do'
}
continue;
}
} else {
// Process unquoted characters seen in prefix or suffix
// phase.
if (ch == digit ||
ch == zeroDigit ||
ch == groupingSeparator ||
ch == decimalSeparator) {
phase = 1;
--pos; // Reprocess this character
continue;
} else if (ch == CURRENCY_SIGN) {
// Use lookahead to determine if the currency sign
// is doubled or not.
boolean doubled = (pos + 1) < pattern.length() &&
pattern.charAt(pos + 1) == CURRENCY_SIGN;
if (doubled) { // Skip over the doubled character
++pos;
}
isCurrencyFormat = true;
affix.append(doubled ? "'\u00A4\u00A4" : "'\u00A4");
continue;
} else if (ch == QUOTE) {
// A quote outside quotes indicates either the
// opening quote or two quotes, which is a quote
// literal. That is, we have the first quote in 'do'
// or o''clock.
if ((pos+1) < pattern.length() &&
pattern.charAt(pos+1) == QUOTE) {
++pos;
affix.append("''"); // o''clock
} else {
inQuote = true; // 'do'
}
continue;
} else if (ch == separator) {
// Don't allow separators before we see digit
// characters of phase 1, and don't allow separators
// in the second pattern (j == 0).
if (phase == 0 || j == 0) {
throw new IllegalArgumentException("Unquoted special character '" +
ch + "' in pattern \"" + pattern + '"');
}
start = pos + 1;
pos = pattern.length();
continue;
}
// Next handle characters which are appended directly.
else if (ch == percent) {
if (multiplier != 1) {
throw new IllegalArgumentException("Too many percent/per mille characters in pattern \"" +
pattern + '"');
}
multiplier = 100;
affix.append("'%");
continue;
} else if (ch == perMill) {
if (multiplier != 1) {
throw new IllegalArgumentException("Too many percent/per mille characters in pattern \"" +
pattern + '"');
}
multiplier = 1000;
affix.append("'\u2030");
continue;
} else if (ch == minus) {
affix.append("'-");
continue;
}
}
// Note that if we are within quotes, or if this is an
// unquoted, non-special character, then we usually fall
// through to here.
affix.append(ch);
break;
case 1:
// The negative subpattern (j = 0) serves only to specify the
// negative prefix and suffix, so all the phase 1 characters
// e.g. digits, zeroDigit, groupingSeparator,
// decimalSeparator, exponent are ignored
if (j == 0) {
while (pos < pattern.length()) {
char negPatternChar = pattern.charAt(pos);
if (negPatternChar == digit
|| negPatternChar == zeroDigit
|| negPatternChar == groupingSeparator
|| negPatternChar == decimalSeparator) {
++pos;
} else if (pattern.regionMatches(pos, exponent,
0, exponent.length())) {
pos = pos + exponent.length();
} else {
// Not a phase 1 character, consider it as
// suffix and parse it in phase 2
--pos; //process it again in outer loop
phase = 2;
affix = suffix;
break;
}
}
continue;
}
// Process the digits, decimal, and grouping characters. We
// record five pieces of information. We expect the digits
// to occur in the pattern ####0000.####, and we record the
// number of left digits, zero (central) digits, and right
// digits. The position of the last grouping character is
// recorded (should be somewhere within the first two blocks
// of characters), as is the position of the decimal point,
// if any (should be in the zero digits). If there is no
// decimal point, then there should be no right digits.
if (ch == digit) {
if (zeroDigitCount > 0) {
++digitRightCount;
} else {
++digitLeftCount;
}
if (groupingCount >= 0 && decimalPos < 0) {
++groupingCount;
}
} else if (ch == zeroDigit) {
if (digitRightCount > 0) {
throw new IllegalArgumentException("Unexpected '0' in pattern \"" +
pattern + '"');
}
++zeroDigitCount;
if (groupingCount >= 0 && decimalPos < 0) {
++groupingCount;
}
} else if (ch == groupingSeparator) {
groupingCount = 0;
} else if (ch == decimalSeparator) {
if (decimalPos >= 0) {
throw new IllegalArgumentException("Multiple decimal separators in pattern \"" +
pattern + '"');
}
decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
} else if (pattern.regionMatches(pos, exponent, 0, exponent.length())){
if (useExponentialNotation) {
throw new IllegalArgumentException("Multiple exponential " +
"symbols in pattern \"" + pattern + '"');
}
useExponentialNotation = true;
minExponentDigits = 0;
// Use lookahead to parse out the exponential part
// of the pattern, then jump into phase 2.
pos = pos+exponent.length();
while (pos < pattern.length() &&
pattern.charAt(pos) == zeroDigit) {
++minExponentDigits;
++pos;
}
if ((digitLeftCount + zeroDigitCount) < 1 ||
minExponentDigits < 1) {
throw new IllegalArgumentException("Malformed exponential " +
"pattern \"" + pattern + '"');
}
// Transition to phase 2
phase = 2;
affix = suffix;
--pos;
continue;
} else {
phase = 2;
affix = suffix;
--pos;
continue;
}
break;
}
}
// Handle patterns with no '0' pattern character. These patterns
// are legal, but must be interpreted. "##.###" -> "#0.###".
// ".###" -> ".0##".
/* We allow patterns of the form "####" to produce a zeroDigitCount
* of zero (got that?); although this seems like it might make it
* possible for format() to produce empty strings, format() checks
* for this condition and outputs a zero digit in this situation.
* Having a zeroDigitCount of zero yields a minimum integer digits
* of zero, which allows proper round-trip patterns. That is, we
* don't want "#" to become "#0" when toPattern() is called (even
* though that's what it really is, semantically).
*/
if (zeroDigitCount == 0 && digitLeftCount > 0 && decimalPos >= 0) {
// Handle "###.###" and "###." and ".###"
int n = decimalPos;
if (n == 0) { // Handle ".###"
++n;
}
digitRightCount = digitLeftCount - n;
digitLeftCount = n - 1;
zeroDigitCount = 1;
}
// Do syntax checking on the digits.
if ((decimalPos < 0 && digitRightCount > 0) ||
(decimalPos >= 0 && (decimalPos < digitLeftCount ||
decimalPos > (digitLeftCount + zeroDigitCount))) ||
groupingCount == 0 || inQuote) {
throw new IllegalArgumentException("Malformed pattern \"" +
pattern + '"');
}
if (j == 1) {
posPrefixPattern = prefix.toString();
posSuffixPattern = suffix.toString();
negPrefixPattern = posPrefixPattern; // assume these for now
negSuffixPattern = posSuffixPattern;
int digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
/* The effectiveDecimalPos is the position the decimal is at or
* would be at if there is no decimal. Note that if decimalPos<0,
* then digitTotalCount == digitLeftCount + zeroDigitCount.
*/
int effectiveDecimalPos = decimalPos >= 0 ?
decimalPos : digitTotalCount;
setMinimumIntegerDigits(effectiveDecimalPos - digitLeftCount);
setMaximumIntegerDigits(useExponentialNotation ?
digitLeftCount + getMinimumIntegerDigits() :
MAXIMUM_INTEGER_DIGITS);
setMaximumFractionDigits(decimalPos >= 0 ?
(digitTotalCount - decimalPos) : 0);
setMinimumFractionDigits(decimalPos >= 0 ?
(digitLeftCount + zeroDigitCount - decimalPos) : 0);
setGroupingUsed(groupingCount > 0);
this.groupingSize = (groupingCount > 0) ? groupingCount : 0;
this.multiplier = multiplier;
setDecimalSeparatorAlwaysShown(decimalPos == 0 ||
decimalPos == digitTotalCount);
} else {
negPrefixPattern = prefix.toString();
negSuffixPattern = suffix.toString();
gotNegative = true;
}
}
if (pattern.isEmpty()) {
posPrefixPattern = posSuffixPattern = "";
setMinimumIntegerDigits(0);
setMaximumIntegerDigits(MAXIMUM_INTEGER_DIGITS);
setMinimumFractionDigits(0);
// As maxFracDigits are fully displayed unlike maxIntDigits
// Prevent OOME by setting to a much more reasonable value.
setMaximumFractionDigits(DOUBLE_FRACTION_DIGITS);
}
// If there was no negative pattern, or if the negative pattern is
// identical to the positive pattern, then prepend the minus sign to
// the positive pattern to form the negative pattern.
if (!gotNegative ||
(negPrefixPattern.equals(posPrefixPattern)
&& negSuffixPattern.equals(posSuffixPattern))) {
negSuffixPattern = posSuffixPattern;
negPrefixPattern = "'-" + posPrefixPattern;
}
expandAffixes();
}
/**
* Sets the maximum number of digits allowed in the integer portion of a
* number. Negative input values are replaced with 0.
* @see NumberFormat#setMaximumIntegerDigits
* @see ##digit_limits Integer and Fraction Digit Limits
*/
@Override
public void setMaximumIntegerDigits(int newValue) {
maximumIntegerDigits = Math.clamp(newValue, 0, MAXIMUM_INTEGER_DIGITS);
super.setMaximumIntegerDigits(Math.min(maximumIntegerDigits, DOUBLE_INTEGER_DIGITS));
if (minimumIntegerDigits > maximumIntegerDigits) {
minimumIntegerDigits = maximumIntegerDigits;
super.setMinimumIntegerDigits(Math.min(minimumIntegerDigits, DOUBLE_INTEGER_DIGITS));
}
fastPathCheckNeeded = true;
}
/**
* Sets the minimum number of digits allowed in the integer portion of a
* number. Negative input values are replaced with 0.
* @see NumberFormat#setMinimumIntegerDigits
* @see ##digit_limits Integer and Fraction Digit Limits
*/
@Override
public void setMinimumIntegerDigits(int newValue) {
minimumIntegerDigits = Math.clamp(newValue, 0, MAXIMUM_INTEGER_DIGITS);
super.setMinimumIntegerDigits(Math.min(minimumIntegerDigits, DOUBLE_INTEGER_DIGITS));
if (minimumIntegerDigits > maximumIntegerDigits) {
maximumIntegerDigits = minimumIntegerDigits;
super.setMaximumIntegerDigits(Math.min(maximumIntegerDigits, DOUBLE_INTEGER_DIGITS));
}
fastPathCheckNeeded = true;
}
/**
* Sets the maximum number of digits allowed in the fraction portion of a
* number. Negative input values are replaced with 0.
* @see NumberFormat#setMaximumFractionDigits
* @see ##digit_limits Integer and Fraction Digit Limits
*/
@Override
public void setMaximumFractionDigits(int newValue) {
maximumFractionDigits = Math.clamp(newValue, 0, MAXIMUM_FRACTION_DIGITS);
super.setMaximumFractionDigits(Math.min(maximumFractionDigits, DOUBLE_FRACTION_DIGITS));
if (minimumFractionDigits > maximumFractionDigits) {
minimumFractionDigits = maximumFractionDigits;
super.setMinimumFractionDigits(Math.min(minimumFractionDigits, DOUBLE_FRACTION_DIGITS));
}
fastPathCheckNeeded = true;
}
/**
* Sets the minimum number of digits allowed in the fraction portion of a
* number. Negative input values are replaced with 0.
* @see NumberFormat#setMinimumFractionDigits
* @see ##digit_limits Integer and Fraction Digit Limits
*/
@Override
public void setMinimumFractionDigits(int newValue) {
minimumFractionDigits = Math.clamp(newValue, 0, MAXIMUM_FRACTION_DIGITS);
super.setMinimumFractionDigits(Math.min(minimumFractionDigits, DOUBLE_FRACTION_DIGITS));
if (minimumFractionDigits > maximumFractionDigits) {
maximumFractionDigits = minimumFractionDigits;
super.setMaximumFractionDigits(Math.min(maximumFractionDigits, DOUBLE_FRACTION_DIGITS));
}
fastPathCheckNeeded = true;
}
/**
* Gets the maximum number of digits allowed in the integer portion of a
* number. The maximum number of integer digits can be set by either {@link #setMaximumIntegerDigits(int)}
* or {@link #applyPattern(String)}. See the {@link ##patterns Pattern Section} for
* comprehensive rules regarding maximum integer digits in patterns.
* @see #setMaximumIntegerDigits
* @see ##digit_limits Integer and Fraction Digit Limits
*/
@Override
public int getMaximumIntegerDigits() {
return maximumIntegerDigits;
}
/**
* Gets the minimum number of digits allowed in the integer portion of a
* number.
* @see #setMinimumIntegerDigits
* @see ##digit_limits Integer and Fraction Digit Limits
*/
@Override
public int getMinimumIntegerDigits() {
return minimumIntegerDigits;
}
/**
* Gets the maximum number of digits allowed in the fraction portion of a
* number.
* @see #setMaximumFractionDigits
* @see ##digit_limits Integer and Fraction Digit Limits
*/
@Override
public int getMaximumFractionDigits() {
return maximumFractionDigits;
}
/**
* Gets the minimum number of digits allowed in the fraction portion of a
* number.
* @see #setMinimumFractionDigits
* @see ##digit_limits Integer and Fraction Digit Limits
*/
@Override
public int getMinimumFractionDigits() {
return minimumFractionDigits;
}
/**
* Gets the currency used by this decimal format when formatting
* currency values.
* The currency is obtained by calling
* {@link DecimalFormatSymbols#getCurrency DecimalFormatSymbols.getCurrency}
* on this number format's symbols.
*
* @return the currency used by this decimal format, or {@code null}
* @since 1.4
*/
@Override
public Currency getCurrency() {
return symbols.getCurrency();
}
/**
* Sets the currency used by this number format when formatting
* currency values. This does not update the minimum or maximum
* number of fraction digits used by the number format.
* The currency is set by calling
* {@link DecimalFormatSymbols#setCurrency DecimalFormatSymbols.setCurrency}
* on this number format's symbols.
*
* @param currency the new currency to be used by this decimal format
* @throws NullPointerException if {@code currency} is null
* @since 1.4
*/
@Override
public void setCurrency(Currency currency) {
if (currency != symbols.getCurrency()) {
symbols.setCurrency(currency);
if (isCurrencyFormat) {
expandAffixes();
}
}
fastPathCheckNeeded = true;
}
/**
* Gets the {@link java.math.RoundingMode} used in this DecimalFormat.
*
* @return The {@code RoundingMode} used for this DecimalFormat.
* @see #setRoundingMode(RoundingMode)
* @since 1.6
*/
@Override
public RoundingMode getRoundingMode() {
return roundingMode;
}
/**
* Sets the {@link java.math.RoundingMode} used in this DecimalFormat.
*
* @param roundingMode The {@code RoundingMode} to be used
* @see #getRoundingMode()
* @throws NullPointerException if {@code roundingMode} is null.
* @since 1.6
*/
@Override
public void setRoundingMode(RoundingMode roundingMode) {
if (roundingMode == null) {
throw new NullPointerException();
}
this.roundingMode = roundingMode;
digitList.setRoundingMode(roundingMode);
fastPathCheckNeeded = true;
}
/**
* Reads the default serializable fields from the stream and performs
* validations and adjustments for older serialized versions. The
* validations and adjustments are:
* Stream versions older than 2 will not have the affix pattern variables
* {@code posPrefixPattern} etc. As a result, they will be initialized
* to {@code null}, which means the affix strings will be taken as
* literal values. This is exactly what we want, since that corresponds to
* the pre-version-2 behavior.
*/
@java.io.Serial
private void readObject(ObjectInputStream stream)
throws IOException, ClassNotFoundException
{
stream.defaultReadObject();
digitList = new DigitList();
// We force complete fast-path reinitialization when the instance is
// deserialized. See clone() comment on fastPathCheckNeeded.
fastPathCheckNeeded = true;
isFastPath = false;
fastPathData = null;
if (serialVersionOnStream < 4) {
setRoundingMode(RoundingMode.HALF_EVEN);
} else {
setRoundingMode(getRoundingMode());
}
// We only need to check the maximum counts because NumberFormat
// .readObject has already ensured that the maximum is greater than the
// minimum count.
if (super.getMaximumIntegerDigits() > DOUBLE_INTEGER_DIGITS ||
super.getMaximumFractionDigits() > DOUBLE_FRACTION_DIGITS) {
throw new InvalidObjectException("Digit count out of range");
}
if (serialVersionOnStream < 3) {
setMaximumIntegerDigits(super.getMaximumIntegerDigits());
setMinimumIntegerDigits(super.getMinimumIntegerDigits());
setMaximumFractionDigits(super.getMaximumFractionDigits());
setMinimumFractionDigits(super.getMinimumFractionDigits());
}
if (serialVersionOnStream < 1) {
// Didn't have exponential fields
useExponentialNotation = false;
}
// Restore the invariant value if groupingSize is invalid.
if (groupingSize < 0) {
groupingSize = 3;
}
serialVersionOnStream = currentSerialVersion;
}
//----------------------------------------------------------------------
// INSTANCE VARIABLES
//----------------------------------------------------------------------
private transient DigitList digitList = new DigitList();
/**
* The symbol used as a prefix when formatting positive numbers, e.g. "+".
*
* @serial
* @see #getPositivePrefix
*/
private String positivePrefix = "";
/**
* The symbol used as a suffix when formatting positive numbers.
* This is often an empty string.
*
* @serial
* @see #getPositiveSuffix
*/
private String positiveSuffix = "";
/**
* The symbol used as a prefix when formatting negative numbers, e.g. "-".
*
* @serial
* @see #getNegativePrefix
*/
private String negativePrefix = "-";
/**
* The symbol used as a suffix when formatting negative numbers.
* This is often an empty string.
*
* @serial
* @see #getNegativeSuffix
*/
private String negativeSuffix = "";
/**
* The prefix pattern for non-negative numbers. This variable corresponds
* to {@code positivePrefix}.
*
* This pattern is expanded by the method {@code expandAffix()} to
* {@code positivePrefix} to update the latter to reflect changes in
* {@code symbols}. If this variable is {@code null} then
* {@code positivePrefix} is taken as a literal value that does not
* change when {@code symbols} changes. This variable is always
* {@code null} for {@code DecimalFormat} objects older than
* stream version 2 restored from stream.
*
* @serial
* @since 1.3
*/
private String posPrefixPattern;
/**
* The suffix pattern for non-negative numbers. This variable corresponds
* to {@code positiveSuffix}. This variable is analogous to
* {@code posPrefixPattern}; see that variable for further
* documentation.
*
* @serial
* @since 1.3
*/
private String posSuffixPattern;
/**
* The prefix pattern for negative numbers. This variable corresponds
* to {@code negativePrefix}. This variable is analogous to
* {@code posPrefixPattern}; see that variable for further
* documentation.
*
* @serial
* @since 1.3
*/
private String negPrefixPattern;
/**
* The suffix pattern for negative numbers. This variable corresponds
* to {@code negativeSuffix}. This variable is analogous to
* {@code posPrefixPattern}; see that variable for further
* documentation.
*
* @serial
* @since 1.3
*/
private String negSuffixPattern;
/**
* The multiplier for use in percent, per mille, etc.
*
* @serial
* @see #getMultiplier
*/
private int multiplier = 1;
/**
* The number of digits between grouping separators in the integer
* portion of a number. Must be non-negative and less than or equal to
* {@link java.lang.Byte#MAX_VALUE Byte.MAX_VALUE} if
* {@code NumberFormat.groupingUsed} is true.
*
* @serial
* @see #getGroupingSize
* @see java.text.NumberFormat#isGroupingUsed
*/
private byte groupingSize = 3; // invariant, 0 - 127, if groupingUsed
/**
* If true, forces the decimal separator to always appear in a formatted
* number, even if the fractional part of the number is zero.
*
* @serial
* @see #isDecimalSeparatorAlwaysShown
*/
private boolean decimalSeparatorAlwaysShown = false;
/**
* If true, parse returns BigDecimal wherever possible.
*
* @serial
* @see #isParseBigDecimal
* @since 1.5
*/
private boolean parseBigDecimal = false;
/**
* True if this object represents a currency format. This determines
* whether the monetary decimal/grouping separators are used instead of the normal ones.
*/
private transient boolean isCurrencyFormat = false;
/**
* The {@code DecimalFormatSymbols} object used by this format.
* It contains the symbols used to format numbers, e.g. the grouping separator,
* decimal separator, and so on.
*
* @serial
* @see #setDecimalFormatSymbols
* @see java.text.DecimalFormatSymbols
*/
private DecimalFormatSymbols symbols = null; // LIU new DecimalFormatSymbols();
/**
* True to force the use of exponential (i.e. scientific) notation when formatting
* numbers.
*
* @serial
* @since 1.2
*/
private boolean useExponentialNotation; // Newly persistent in the Java 2 platform v.1.2
/**
* True if this {@code DecimalFormat} will parse numbers with strict
* leniency.
*
* @serial
* @since 23
*/
private boolean parseStrict = false;
/**
* FieldPositions describing the positive prefix String. This is
* lazily created. Use {@code getPositivePrefixFieldPositions}
* when needed.
*/
private transient FieldPosition[] positivePrefixFieldPositions;
/**
* FieldPositions describing the positive suffix String. This is
* lazily created. Use {@code getPositiveSuffixFieldPositions}
* when needed.
*/
private transient FieldPosition[] positiveSuffixFieldPositions;
/**
* FieldPositions describing the negative prefix String. This is
* lazily created. Use {@code getNegativePrefixFieldPositions}
* when needed.
*/
private transient FieldPosition[] negativePrefixFieldPositions;
/**
* FieldPositions describing the negative suffix String. This is
* lazily created. Use {@code getNegativeSuffixFieldPositions}
* when needed.
*/
private transient FieldPosition[] negativeSuffixFieldPositions;
/**
* The minimum number of digits used to display the exponent when a number is
* formatted in exponential notation. This field is ignored if
* {@code useExponentialNotation} is not true.
*
* @serial
* @since 1.2
*/
private byte minExponentDigits; // Newly persistent in the Java 2 platform v.1.2
/**
* The maximum number of digits allowed in the integer portion of a
* {@code BigInteger} or {@code BigDecimal} number.
* {@code maximumIntegerDigits} must be greater than or equal to
* {@code minimumIntegerDigits}.
*
* @serial
* @see #getMaximumIntegerDigits
* @since 1.5
*/
@SuppressWarnings("this-escape")
private int maximumIntegerDigits = super.getMaximumIntegerDigits();
/**
* The minimum number of digits allowed in the integer portion of a
* {@code BigInteger} or {@code BigDecimal} number.
* {@code minimumIntegerDigits} must be less than or equal to
* {@code maximumIntegerDigits}.
*
* @serial
* @see #getMinimumIntegerDigits
* @since 1.5
*/
@SuppressWarnings("this-escape")
private int minimumIntegerDigits = super.getMinimumIntegerDigits();
/**
* The maximum number of digits allowed in the fractional portion of a
* {@code BigInteger} or {@code BigDecimal} number.
* {@code maximumFractionDigits} must be greater than or equal to
* {@code minimumFractionDigits}.
*
* @serial
* @see #getMaximumFractionDigits
* @since 1.5
*/
@SuppressWarnings("this-escape")
private int maximumFractionDigits = super.getMaximumFractionDigits();
/**
* The minimum number of digits allowed in the fractional portion of a
* {@code BigInteger} or {@code BigDecimal} number.
* {@code minimumFractionDigits} must be less than or equal to
* {@code maximumFractionDigits}.
*
* @serial
* @see #getMinimumFractionDigits
* @since 1.5
*/
@SuppressWarnings("this-escape")
private int minimumFractionDigits = super.getMinimumFractionDigits();
/**
* The {@link java.math.RoundingMode} used in this DecimalFormat.
*
* @serial
* @since 1.6
*/
private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
// ------ DecimalFormat fields for fast-path for double algorithm ------
/**
* Helper inner utility class for storing the data used in the fast-path
* algorithm. Almost all fields related to fast-path are encapsulated in
* this class.
*
* Any {@code DecimalFormat} instance has a {@code fastPathData}
* reference field that is null unless both the properties of the instance
* are such that the instance is in the "fast-path" state, and a format call
* has been done at least once while in this state.
*
* Almost all fields are related to the "fast-path" state only and don't
* change until one of the instance properties is changed.
*
* {@code firstUsedIndex} and {@code lastFreeIndex} are the only
* two fields that are used and modified while inside a call to
* {@code fastDoubleFormat}.
*
*/
private static class FastPathData {
// --- Temporary fields used in fast-path, shared by several methods.
/** The first unused index at the end of the formatted result. */
int lastFreeIndex;
/** The first used index at the beginning of the formatted result */
int firstUsedIndex;
// --- State fields related to fast-path status. Changes due to a
// property change only. Set by checkAndSetFastPathStatus() only.
/** Difference between locale zero and default zero representation. */
int zeroDelta;
/** Locale char for grouping separator. */
char groupingChar;
/** Fixed index position of last integral digit of formatted result */
int integralLastIndex;
/** Fixed index position of first fractional digit of formatted result */
int fractionalFirstIndex;
/** Fractional constants depending on decimal|currency state */
double fractionalScaleFactor;
int fractionalMaxIntBound;
/** The char array buffer that will contain the formatted result */
char[] fastPathContainer;
/** Suffixes recorded as char array for efficiency. */
char[] charsPositivePrefix;
char[] charsNegativePrefix;
char[] charsPositiveSuffix;
char[] charsNegativeSuffix;
boolean positiveAffixesRequired = true;
boolean negativeAffixesRequired = true;
}
/** The format fast-path status of the instance. Logical state. */
private transient boolean isFastPath = false;
/** Flag stating need of check and reinit fast-path status on next format call. */
private transient boolean fastPathCheckNeeded = true;
/** DecimalFormat reference to its FastPathData */
private transient FastPathData fastPathData;
//----------------------------------------------------------------------
static final int currentSerialVersion = 4;
/**
* The internal serial version which says which version was written.
* Possible values are:
*
*
*
*
*
*
*
*
*
* @since 1.2
* @serial
*/
private int serialVersionOnStream = currentSerialVersion;
//----------------------------------------------------------------------
// CONSTANTS
//----------------------------------------------------------------------
// ------ Fast-Path for double Constants ------
/** Maximum valid integer value for applying fast-path algorithm */
private static final double MAX_INT_AS_DOUBLE = (double) Integer.MAX_VALUE;
/**
* The digit arrays used in the fast-path methods for collecting digits.
* Using 3 constants arrays of chars ensures a very fast collection of digits
*/
private static class DigitArrays {
static final char[] DigitOnes1000 = new char[1000];
static final char[] DigitTens1000 = new char[1000];
static final char[] DigitHundreds1000 = new char[1000];
// initialize on demand holder class idiom for arrays of digits
static {
int tenIndex = 0;
int hundredIndex = 0;
char digitOne = '0';
char digitTen = '0';
char digitHundred = '0';
for (int i = 0; i < 1000; i++ ) {
DigitOnes1000[i] = digitOne;
if (digitOne == '9')
digitOne = '0';
else
digitOne++;
DigitTens1000[i] = digitTen;
if (i == (tenIndex + 9)) {
tenIndex += 10;
if (digitTen == '9')
digitTen = '0';
else
digitTen++;
}
DigitHundreds1000[i] = digitHundred;
if (i == (hundredIndex + 99)) {
digitHundred++;
hundredIndex += 100;
}
}
}
}
// ------ Fast-Path for double Constants end ------
// Constants for characters used in programmatic (unlocalized) patterns.
private static final char PATTERN_ZERO_DIGIT = '0';
private static final char PATTERN_GROUPING_SEPARATOR = ',';
private static final char PATTERN_DECIMAL_SEPARATOR = '.';
private static final char PATTERN_PER_MILLE = '\u2030';
private static final char PATTERN_PERCENT = '%';
private static final char PATTERN_DIGIT = '#';
private static final char PATTERN_SEPARATOR = ';';
private static final String PATTERN_EXPONENT = "E";
private static final char PATTERN_MINUS = '-';
/**
* The CURRENCY_SIGN is the standard Unicode symbol for currency. It
* is used in patterns and substituted with either the currency symbol,
* or if it is doubled, with the international currency symbol. If the
* CURRENCY_SIGN is seen in a pattern, then the decimal/grouping separators
* are replaced with the monetary decimal/grouping separators.
*
* The CURRENCY_SIGN is not localized.
*/
private static final char CURRENCY_SIGN = '\u00A4';
private static final char QUOTE = '\'';
private static FieldPosition[] EmptyFieldPositionArray = new FieldPosition[0];
// Upper limit on integer and fraction digits for a Java double
static final int DOUBLE_INTEGER_DIGITS = 309;
static final int DOUBLE_FRACTION_DIGITS = 340;
// Upper limit on integer and fraction digits for BigDecimal and BigInteger
static final int MAXIMUM_INTEGER_DIGITS = Integer.MAX_VALUE;
static final int MAXIMUM_FRACTION_DIGITS = Integer.MAX_VALUE;
// Proclaim JDK 1.1 serial compatibility.
@java.io.Serial
static final long serialVersionUID = 864413376551465018L;
}