/*
* Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang.invoke;
import jdk.internal.access.JavaLangAccess;
import jdk.internal.access.SharedSecrets;
import jdk.internal.vm.annotation.Stable;
import sun.invoke.util.Wrapper;
import java.lang.invoke.MethodHandles.Lookup;
import java.util.Objects;
import static java.lang.invoke.MethodType.methodType;
/**
*
Methods to facilitate the creation of String concatenation methods, that
* can be used to efficiently concatenate a known number of arguments of known
* types, possibly after type adaptation and partial evaluation of arguments.
* These methods are typically used as bootstrap methods for {@code
* invokedynamic} call sites, to support the string concatenation
* feature of the Java Programming Language.
*
*
Indirect access to the behavior specified by the provided {@code
* MethodHandle} proceeds in order through two phases:
*
*
* - Linkage occurs when the methods in this class are invoked.
* They take as arguments a method type describing the concatenated arguments
* count and types, and optionally the String recipe, plus the
* constants that participate in the String concatenation. The details on
* accepted recipe shapes are described further below. Linkage may involve
* dynamically loading a new class that implements the expected concatenation
* behavior. The {@code CallSite} holds the {@code MethodHandle} pointing to the
* exact concatenation method. The concatenation methods may be shared among
* different {@code CallSite}s, e.g. if linkage methods produce them as pure
* functions.
*
* - Invocation occurs when a generated concatenation method is
* invoked with the exact dynamic arguments. This may occur many times for a
* single concatenation method. The method referenced by the behavior {@code
* MethodHandle} is invoked with the static arguments and any additional dynamic
* arguments provided on invocation, as if by {@link MethodHandle#invoke(Object...)}.
*
*
* This class provides two forms of linkage methods: a simple version
* ({@link #makeConcat(java.lang.invoke.MethodHandles.Lookup, String,
* MethodType)}) using only the dynamic arguments, and an advanced version
* ({@link #makeConcatWithConstants(java.lang.invoke.MethodHandles.Lookup,
* String, MethodType, String, Object...)} using the advanced forms of capturing
* the constant arguments. The advanced strategy can produce marginally better
* invocation bytecode, at the expense of exploding the number of shapes of
* string concatenation methods present at runtime, because those shapes would
* include constant static arguments as well.
*
* @author Aleksey Shipilev
* @author Remi Forax
* @author Peter Levart
*
* @apiNote
*
There is a JVM limit (classfile structural constraint): no method
* can call with more than 255 slots. This limits the number of static and
* dynamic arguments one can pass to bootstrap method. Since there are potential
* concatenation strategies that use {@code MethodHandle} combinators, we need
* to reserve a few empty slots on the parameter lists to capture the
* temporal results. This is why bootstrap methods in this factory do not accept
* more than 200 argument slots. Users requiring more than 200 argument slots in
* concatenation are expected to split the large concatenation in smaller
* expressions.
*
* @since 9
*/
public final class StringConcatFactory {
/**
* Tag used to demarcate an ordinary argument.
*/
private static final char TAG_ARG = '\u0001';
/**
* Tag used to demarcate a constant.
*/
private static final char TAG_CONST = '\u0002';
/**
* Maximum number of argument slots in String Concat call.
*
* While the maximum number of argument slots that indy call can handle is 253,
* we do not use all those slots, to let the strategies with MethodHandle
* combinators to use some arguments.
*/
private static final int MAX_INDY_CONCAT_ARG_SLOTS = 200;
private static final JavaLangAccess JLA = SharedSecrets.getJavaLangAccess();
// StringConcatFactory bootstrap methods are startup sensitive, and may be
// special cased in java.lang.invoke.BootstrapMethodInvoker to ensure
// methods are invoked with exact type information to avoid generating
// code for runtime checks. Take care any changes or additions here are
// reflected there as appropriate.
/**
* Facilitates the creation of optimized String concatenation methods, that
* can be used to efficiently concatenate a known number of arguments of
* known types, possibly after type adaptation and partial evaluation of
* arguments. Typically used as a bootstrap method for {@code
* invokedynamic} call sites, to support the string concatenation
* feature of the Java Programming Language.
*
*
When the target of the {@code CallSite} returned from this method is
* invoked, it returns the result of String concatenation, taking all
* function arguments passed to the linkage method as inputs for
* concatenation. The target signature is given by {@code concatType}.
* For a target accepting:
*
* - zero inputs, concatenation results in an empty string;
* - one input, concatenation results in the single
* input converted as per JLS {@jls 5.1.11} "String Conversion"; otherwise
* - two or more inputs, the inputs are concatenated as per
* requirements stated in JLS {@jls 15.18.1} "String Concatenation Operator +".
* The inputs are converted as per JLS {@jls 5.1.11} "String Conversion",
* and combined from left to right.
*
*
* Assume the linkage arguments are as follows:
*
*
* - {@code concatType}, describing the {@code CallSite} signature
*
*
* Then the following linkage invariants must hold:
*
*
* - The number of parameter slots in {@code concatType} is
* less than or equal to 200
* - The return type in {@code concatType} is assignable from {@link java.lang.String}
*
*
* @param lookup Represents a lookup context with the accessibility
* privileges of the caller. Specifically, the lookup
* context must have
* {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess()
* full privilege access}.
* When used with {@code invokedynamic}, this is stacked
* automatically by the VM.
* @param name The name of the method to implement. This name is
* arbitrary, and has no meaning for this linkage method.
* When used with {@code invokedynamic}, this is provided by
* the {@code NameAndType} of the {@code InvokeDynamic}
* structure and is stacked automatically by the VM.
* @param concatType The expected signature of the {@code CallSite}. The
* parameter types represent the types of concatenation
* arguments; the return type is always assignable from {@link
* java.lang.String}. When used with {@code invokedynamic},
* this is provided by the {@code NameAndType} of the {@code
* InvokeDynamic} structure and is stacked automatically by
* the VM.
* @return a CallSite whose target can be used to perform String
* concatenation, with dynamic concatenation arguments described by the given
* {@code concatType}.
* @throws StringConcatException If any of the linkage invariants described
* here are violated, or the lookup context
* does not have private access privileges.
* @throws NullPointerException If any of the incoming arguments is null.
* This will never happen when a bootstrap method
* is called with invokedynamic.
*
* @jls 5.1.11 String Conversion
* @jls 15.18.1 String Concatenation Operator +
*/
public static CallSite makeConcat(MethodHandles.Lookup lookup,
String name,
MethodType concatType) throws StringConcatException {
// This bootstrap method is unlikely to be used in practice,
// avoid optimizing it at the expense of makeConcatWithConstants
// Mock the recipe to reuse the concat generator code
String recipe = "\u0001".repeat(concatType.parameterCount());
return makeConcatWithConstants(lookup, name, concatType, recipe);
}
/**
* Facilitates the creation of optimized String concatenation methods, that
* can be used to efficiently concatenate a known number of arguments of
* known types, possibly after type adaptation and partial evaluation of
* arguments. Typically used as a bootstrap method for {@code
* invokedynamic} call sites, to support the string concatenation
* feature of the Java Programming Language.
*
* When the target of the {@code CallSite} returned from this method is
* invoked, it returns the result of String concatenation, taking all
* function arguments and constants passed to the linkage method as inputs for
* concatenation. The target signature is given by {@code concatType}, and
* does not include constants.
* For a target accepting:
*
* - zero inputs, concatenation results in an empty string;
* - one input, concatenation results in the single
* input converted as per JLS {@jls 5.1.11} "String Conversion"; otherwise
* - two or more inputs, the inputs are concatenated as per
* requirements stated in JLS {@jls 15.18.1} "String Concatenation Operator +".
* The inputs are converted as per JLS {@jls 5.1.11} "String Conversion",
* and combined from left to right.
*
*
* The concatenation recipe is a String description for the way to
* construct a concatenated String from the arguments and constants. The
* recipe is processed from left to right, and each character represents an
* input to concatenation. Recipe characters mean:
*
*
*
* - \1 (Unicode point 0001): an ordinary argument. This
* input is passed through dynamic argument, and is provided during the
* concatenation method invocation. This input can be null.
*
* - \2 (Unicode point 0002): a constant. This input passed
* through static bootstrap argument. This constant can be any value
* representable in constant pool. If necessary, the factory would call
* {@code toString} to perform a one-time String conversion.
*
* - Any other char value: a single character constant.
*
*
* Assume the linkage arguments are as follows:
*
*
* - {@code concatType}, describing the {@code CallSite} signature
* - {@code recipe}, describing the String recipe
* - {@code constants}, the vararg array of constants
*
*
* Then the following linkage invariants must hold:
*
*
* - The number of parameter slots in {@code concatType} is less than
* or equal to 200
*
* - The parameter count in {@code concatType} is equal to number of \1 tags
* in {@code recipe}
*
* - The return type in {@code concatType} is assignable
* from {@link java.lang.String}, and matches the return type of the
* returned {@link MethodHandle}
*
* - The number of elements in {@code constants} is equal to number of \2
* tags in {@code recipe}
*
*
* @param lookup Represents a lookup context with the accessibility
* privileges of the caller. Specifically, the lookup
* context must have
* {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess()
* full privilege access}.
* When used with {@code invokedynamic}, this is stacked
* automatically by the VM.
* @param name The name of the method to implement. This name is
* arbitrary, and has no meaning for this linkage method.
* When used with {@code invokedynamic}, this is provided
* by the {@code NameAndType} of the {@code InvokeDynamic}
* structure and is stacked automatically by the VM.
* @param concatType The expected signature of the {@code CallSite}. The
* parameter types represent the types of dynamic concatenation
* arguments; the return type is always assignable from {@link
* java.lang.String}. When used with {@code
* invokedynamic}, this is provided by the {@code
* NameAndType} of the {@code InvokeDynamic} structure and
* is stacked automatically by the VM.
* @param recipe Concatenation recipe, described above.
* @param constants A vararg parameter representing the constants passed to
* the linkage method.
* @return a CallSite whose target can be used to perform String
* concatenation, with dynamic concatenation arguments described by the given
* {@code concatType}.
* @throws StringConcatException If any of the linkage invariants described
* here are violated, or the lookup context
* does not have private access privileges.
* @throws NullPointerException If any of the incoming arguments is null, or
* any constant in {@code recipe} is null.
* This will never happen when a bootstrap method
* is called with invokedynamic.
* @apiNote Code generators have three distinct ways to process a constant
* string operand S in a string concatenation expression. First, S can be
* materialized as a reference (using ldc) and passed as an ordinary argument
* (recipe '\1'). Or, S can be stored in the constant pool and passed as a
* constant (recipe '\2') . Finally, if S contains neither of the recipe
* tag characters ('\1', '\2') then S can be interpolated into the recipe
* itself, causing its characters to be inserted into the result.
*
* @jls 5.1.11 String Conversion
* @jls 15.18.1 String Concatenation Operator +
*/
public static CallSite makeConcatWithConstants(MethodHandles.Lookup lookup,
String name,
MethodType concatType,
String recipe,
Object... constants)
throws StringConcatException
{
Objects.requireNonNull(lookup, "Lookup is null");
Objects.requireNonNull(name, "Name is null");
Objects.requireNonNull(concatType, "Concat type is null");
Objects.requireNonNull(constants, "Constants are null");
for (Object o : constants) {
Objects.requireNonNull(o, "Cannot accept null constants");
}
if ((lookup.lookupModes() & MethodHandles.Lookup.PRIVATE) == 0) {
throw new StringConcatException("Invalid caller: " +
lookup.lookupClass().getName());
}
String[] constantStrings = parseRecipe(concatType, recipe, constants);
if (!concatType.returnType().isAssignableFrom(String.class)) {
throw new StringConcatException(
"The return type should be compatible with String, but it is " +
concatType.returnType());
}
if (concatType.parameterSlotCount() > MAX_INDY_CONCAT_ARG_SLOTS) {
throw new StringConcatException("Too many concat argument slots: " +
concatType.parameterSlotCount() +
", can only accept " +
MAX_INDY_CONCAT_ARG_SLOTS);
}
try {
return new ConstantCallSite(
generateMHInlineCopy(concatType, constantStrings)
.viewAsType(concatType, true));
} catch (Error e) {
// Pass through any error
throw e;
} catch (Throwable t) {
throw new StringConcatException("Generator failed", t);
}
}
private static String[] parseRecipe(MethodType concatType,
String recipe,
Object[] constants)
throws StringConcatException
{
Objects.requireNonNull(recipe, "Recipe is null");
int paramCount = concatType.parameterCount();
// Array containing interleaving String constants, starting with
// the first prefix and ending with the final prefix:
//
// consts[0] + arg0 + consts[1] + arg 1 + ... + consts[paramCount].
//
// consts will be null if there's no constant to insert at a position.
// An empty String constant will be replaced by null.
String[] consts = new String[paramCount + 1];
int cCount = 0;
int oCount = 0;
StringBuilder acc = new StringBuilder();
for (int i = 0; i < recipe.length(); i++) {
char c = recipe.charAt(i);
if (c == TAG_CONST) {
if (cCount == constants.length) {
// Not enough constants
throw constantMismatch(constants, cCount);
}
// Accumulate constant args along with any constants encoded
// into the recipe
acc.append(constants[cCount++]);
} else if (c == TAG_ARG) {
// Check for overflow
if (oCount >= paramCount) {
throw argumentMismatch(concatType, oCount);
}
// Flush any accumulated characters into a constant
consts[oCount++] = acc.length() > 0 ? acc.toString() : null;
acc.setLength(0);
} else {
// Not a special character, this is a constant embedded into
// the recipe itself.
acc.append(c);
}
}
if (oCount != concatType.parameterCount()) {
throw argumentMismatch(concatType, oCount);
}
if (cCount < constants.length) {
throw constantMismatch(constants, cCount);
}
// Flush the remaining characters as constant:
consts[oCount] = acc.length() > 0 ? acc.toString() : null;
return consts;
}
private static StringConcatException argumentMismatch(MethodType concatType,
int oCount) {
return new StringConcatException(
"Mismatched number of concat arguments: recipe wants " +
oCount +
" arguments, but signature provides " +
concatType.parameterCount());
}
private static StringConcatException constantMismatch(Object[] constants,
int cCount) {
return new StringConcatException(
"Mismatched number of concat constants: recipe wants " +
cCount +
" constants, but only " +
constants.length +
" are passed");
}
/**
* This strategy replicates what StringBuilders are doing: it builds the
* byte[] array on its own and passes that byte[] array to String
* constructor. This strategy requires access to some private APIs in JDK,
* most notably, the private String constructor that accepts byte[] arrays
* without copying.
*/
private static MethodHandle generateMHInlineCopy(MethodType mt, String[] constants) {
int paramCount = mt.parameterCount();
String suffix = constants[paramCount];
// Fast-path trivial concatenations
if (paramCount == 0) {
return MethodHandles.insertArguments(newStringifier(), 0, suffix == null ? "" : suffix);
}
if (paramCount == 1) {
String prefix = constants[0];
// Empty constants will be
if (prefix == null) {
if (suffix == null) {
return unaryConcat(mt.parameterType(0));
} else if (!mt.hasPrimitives()) {
return MethodHandles.insertArguments(simpleConcat(), 1, suffix);
} // else fall-through
} else if (suffix == null && !mt.hasPrimitives()) {
// Non-primitive argument
return MethodHandles.insertArguments(simpleConcat(), 0, prefix);
} // fall-through if there's both a prefix and suffix
}
if (paramCount == 2 && !mt.hasPrimitives() && suffix == null
&& constants[0] == null && constants[1] == null) {
// Two reference arguments, no surrounding constants
return simpleConcat();
}
// else... fall-through to slow-path
// Create filters and obtain filtered parameter types. Filters would be used in the beginning
// to convert the incoming arguments into the arguments we can process (e.g. Objects -> Strings).
// The filtered argument type list is used all over in the combinators below.
Class>[] ptypes = mt.erase().parameterArray();
MethodHandle[] filters = null;
for (int i = 0; i < ptypes.length; i++) {
Class> cl = ptypes[i];
MethodHandle filter = null;
if (cl == byte.class || cl == short.class) {
// use int for subword integral types; still need special mixers
// and prependers for char, boolean
ptypes[i] = int.class;
} else if (cl == Object.class) {
filter = objectStringifier();
} else if (cl == float.class) {
filter = floatStringifier();
} else if (cl == double.class) {
filter = doubleStringifier();
}
if (filter != null) {
if (filters == null) {
filters = new MethodHandle[ptypes.length];
}
filters[i] = filter;
ptypes[i] = String.class;
}
}
// Start building the combinator tree. The tree "starts" with ()String, and "finishes"
// with the (byte[], long)String shape to invoke newString in StringConcatHelper. The combinators are
// assembled bottom-up, which makes the code arguably hard to read.
// Drop all remaining parameter types, leave only helper arguments:
MethodHandle mh = MethodHandles.dropArgumentsTrusted(newString(), 2, ptypes);
// Calculate the initialLengthCoder value by looking at all constant values and summing up
// their lengths and adjusting the encoded coder bit if needed
long initialLengthCoder = INITIAL_CODER;
for (String constant : constants) {
if (constant != null) {
initialLengthCoder = JLA.stringConcatMix(initialLengthCoder, constant);
}
}
// Mix in prependers. This happens when (byte[], long) = (storage, indexCoder) is already
// known from the combinators below. We are assembling the string backwards, so the index coded
// into indexCoder is the *ending* index.
mh = filterInPrependers(mh, constants, ptypes);
// Fold in byte[] instantiation at argument 0
MethodHandle newArrayCombinator;
if (suffix != null) {
// newArray variant that deals with prepending any trailing constant
//
// initialLengthCoder is adjusted to have the correct coder
// and length: The newArrayWithSuffix method expects only the coder of the
// suffix to be encoded into indexCoder
initialLengthCoder -= suffix.length();
newArrayCombinator = newArrayWithSuffix(suffix);
} else {
newArrayCombinator = newArray();
}
mh = MethodHandles.foldArgumentsWithCombiner(mh, 0, newArrayCombinator,
1 // index
);
// Start combining length and coder mixers.
//
// Length is easy: constant lengths can be computed on the spot, and all non-constant
// shapes have been either converted to Strings, or explicit methods for getting the
// string length out of primitives are provided.
//
// Coders are more interesting. Only Object, String and char arguments (and constants)
// can have non-Latin1 encoding. It is easier to blindly convert constants to String,
// and deduce the coder from there. Arguments would be either converted to Strings
// during the initial filtering, or handled by specializations in MIXERS.
//
// The method handle shape before all mixers are combined in is:
// (long, )String = ("indexCoder", )
//
// We will bind the initialLengthCoder value to the last mixer (the one that will be
// executed first), then fold that in. This leaves the shape after all mixers are
// combined in as:
// ()String = ()
mh = filterAndFoldInMixers(mh, initialLengthCoder, ptypes);
// The method handle shape here is ().
// Apply filters, converting the arguments:
if (filters != null) {
mh = MethodHandles.filterArguments(mh, 0, filters);
}
return mh;
}
// We need one prepender per argument, but also need to fold in constants. We do so by greedily
// creating prependers that fold in surrounding constants into the argument prepender. This reduces
// the number of unique MH combinator tree shapes we'll create in an application.
// Additionally we do this in chunks to reduce the number of combinators bound to the root tree,
// which simplifies the shape and makes construction of similar trees use less unique LF classes
private static MethodHandle filterInPrependers(MethodHandle mh, String[] constants, Class>[] ptypes) {
int pos;
int[] argPositions = null;
MethodHandle prepend;
for (pos = 0; pos < ptypes.length - 3; pos += 4) {
prepend = prepender(pos, constants, ptypes, 4);
argPositions = filterPrependArgPositions(argPositions, pos, 4);
mh = MethodHandles.filterArgumentsWithCombiner(mh, 1, prepend, argPositions);
}
if (pos < ptypes.length) {
int count = ptypes.length - pos;
prepend = prepender(pos, constants, ptypes, count);
argPositions = filterPrependArgPositions(argPositions, pos, count);
mh = MethodHandles.filterArgumentsWithCombiner(mh, 1, prepend, argPositions);
}
return mh;
}
static int[] filterPrependArgPositions(int[] argPositions, int pos, int count) {
if (argPositions == null || argPositions.length != count + 2) {
argPositions = new int[count + 2];
argPositions[0] = 1; // indexCoder
argPositions[1] = 0; // storage
}
int limit = count + 2;
for (int i = 2; i < limit; i++) {
argPositions[i] = i + pos;
}
return argPositions;
}
// We need one mixer per argument.
private static MethodHandle filterAndFoldInMixers(MethodHandle mh, long initialLengthCoder, Class>[] ptypes) {
int pos;
int[] argPositions = null;
for (pos = 0; pos < ptypes.length - 4; pos += 4) {
// Compute new "index" in-place pairwise using old value plus the appropriate arguments.
MethodHandle mix = mixer(ptypes[pos], ptypes[pos + 1], ptypes[pos + 2], ptypes[pos + 3]);
argPositions = filterMixerArgPositions(argPositions, pos, 4);
mh = MethodHandles.filterArgumentsWithCombiner(mh, 0,
mix, argPositions);
}
if (pos < ptypes.length) {
// Mix in the last 1 to 4 parameters, insert the initialLengthCoder into the final mixer and
// fold the result into the main combinator
mh = foldInLastMixers(mh, initialLengthCoder, pos, ptypes, ptypes.length - pos);
} else if (ptypes.length == 0) {
// No mixer (constants only concat), insert initialLengthCoder directly
mh = MethodHandles.insertArguments(mh, 0, initialLengthCoder);
}
return mh;
}
static int[] filterMixerArgPositions(int[] argPositions, int pos, int count) {
if (argPositions == null || argPositions.length != count + 2) {
argPositions = new int[count + 1];
argPositions[0] = 0; // indexCoder
}
int limit = count + 1;
for (int i = 1; i < limit; i++) {
argPositions[i] = i + pos;
}
return argPositions;
}
private static MethodHandle foldInLastMixers(MethodHandle mh, long initialLengthCoder, int pos, Class>[] ptypes, int count) {
MethodHandle mix = switch (count) {
case 1 -> mixer(ptypes[pos]);
case 2 -> mixer(ptypes[pos], ptypes[pos + 1]);
case 3 -> mixer(ptypes[pos], ptypes[pos + 1], ptypes[pos + 2]);
case 4 -> mixer(ptypes[pos], ptypes[pos + 1], ptypes[pos + 2], ptypes[pos + 3]);
default -> throw new IllegalArgumentException("Unexpected count: " + count);
};
mix = MethodHandles.insertArguments(mix,0, initialLengthCoder);
// apply selected arguments on the 1-4 arg mixer and fold in the result
return switch (count) {
case 1 -> MethodHandles.foldArgumentsWithCombiner(mh, 0, mix,
1 + pos);
case 2 -> MethodHandles.foldArgumentsWithCombiner(mh, 0, mix,
1 + pos, 2 + pos);
case 3 -> MethodHandles.foldArgumentsWithCombiner(mh, 0, mix,
1 + pos, 2 + pos, 3 + pos);
case 4 -> MethodHandles.foldArgumentsWithCombiner(mh, 0, mix,
1 + pos, 2 + pos, 3 + pos, 4 + pos);
default -> throw new IllegalArgumentException();
};
}
// Simple prependers, single argument. May be used directly or as a
// building block for complex prepender combinators.
private static MethodHandle prepender(String prefix, Class> cl) {
MethodHandle prepend;
int idx = classIndex(cl);
if (prefix == null) {
prepend = NULL_PREPENDERS[idx];
if (prepend == null) {
NULL_PREPENDERS[idx] = prepend = MethodHandles.insertArguments(
prepender(cl), 3, (String)null);
}
} else {
prepend = MethodHandles.insertArguments(
prepender(cl), 3, prefix);
}
return prepend;
}
private static MethodHandle prepender(Class> cl) {
int idx = classIndex(cl);
MethodHandle prepend = PREPENDERS[idx];
if (prepend == null) {
PREPENDERS[idx] = prepend = JLA.stringConcatHelper("prepend",
methodType(long.class, long.class, byte[].class,
Wrapper.asPrimitiveType(cl), String.class)).rebind();
}
return prepend;
}
private static final int INT_IDX = 0,
CHAR_IDX = 1,
LONG_IDX = 2,
BOOLEAN_IDX = 3,
STRING_IDX = 4,
TYPE_COUNT = 5;
private static int classIndex(Class> cl) {
if (cl == String.class) return STRING_IDX;
if (cl == int.class) return INT_IDX;
if (cl == boolean.class) return BOOLEAN_IDX;
if (cl == char.class) return CHAR_IDX;
if (cl == long.class) return LONG_IDX;
throw new IllegalArgumentException("Unexpected class: " + cl);
}
// Constant argument lists used by the prepender MH builders
private static final int[] PREPEND_FILTER_FIRST_ARGS = new int[] { 0, 1, 2 };
private static final int[] PREPEND_FILTER_SECOND_ARGS = new int[] { 0, 1, 3 };
private static final int[] PREPEND_FILTER_THIRD_ARGS = new int[] { 0, 1, 4 };
private static final int[] PREPEND_FILTER_FIRST_PAIR_ARGS = new int[] { 0, 1, 2, 3 };
private static final int[] PREPEND_FILTER_SECOND_PAIR_ARGS = new int[] { 0, 1, 4, 5 };
// Base MH for complex prepender combinators.
private static final MethodHandle PREPEND_BASE = MethodHandles.dropArguments(
MethodHandles.identity(long.class), 1, byte[].class);
private static final @Stable MethodHandle[][] DOUBLE_PREPENDERS = new MethodHandle[TYPE_COUNT][TYPE_COUNT];
private static MethodHandle prepender(String prefix, Class> cl, String prefix2, Class> cl2) {
int idx1 = classIndex(cl);
int idx2 = classIndex(cl2);
MethodHandle prepend = DOUBLE_PREPENDERS[idx1][idx2];
if (prepend == null) {
prepend = DOUBLE_PREPENDERS[idx1][idx2] =
MethodHandles.dropArguments(PREPEND_BASE, 2, cl, cl2);
}
prepend = MethodHandles.filterArgumentsWithCombiner(prepend, 0, prepender(prefix, cl),
PREPEND_FILTER_FIRST_ARGS);
return MethodHandles.filterArgumentsWithCombiner(prepend, 0, prepender(prefix2, cl2),
PREPEND_FILTER_SECOND_ARGS);
}
private static MethodHandle prepender(int pos, String[] constants, Class>[] ptypes, int count) {
// build the simple cases directly
if (count == 1) {
return prepender(constants[pos], ptypes[pos]);
}
if (count == 2) {
return prepender(constants[pos], ptypes[pos], constants[pos + 1], ptypes[pos + 1]);
}
// build a tree from an unbound prepender, allowing us to bind the constants in a batch as a final step
MethodHandle prepend = PREPEND_BASE;
if (count == 3) {
prepend = MethodHandles.dropArguments(prepend, 2,
ptypes[pos], ptypes[pos + 1], ptypes[pos + 2]);
prepend = MethodHandles.filterArgumentsWithCombiner(prepend, 0,
prepender(constants[pos], ptypes[pos], constants[pos + 1], ptypes[pos + 1]),
PREPEND_FILTER_FIRST_PAIR_ARGS);
return MethodHandles.filterArgumentsWithCombiner(prepend, 0,
prepender(constants[pos + 2], ptypes[pos + 2]),
PREPEND_FILTER_THIRD_ARGS);
} else if (count == 4) {
prepend = MethodHandles.dropArguments(prepend, 2,
ptypes[pos], ptypes[pos + 1], ptypes[pos + 2], ptypes[pos + 3]);
prepend = MethodHandles.filterArgumentsWithCombiner(prepend, 0,
prepender(constants[pos], ptypes[pos], constants[pos + 1], ptypes[pos + 1]),
PREPEND_FILTER_FIRST_PAIR_ARGS);
return MethodHandles.filterArgumentsWithCombiner(prepend, 0,
prepender(constants[pos + 2], ptypes[pos + 2], constants[pos + 3], ptypes[pos + 3]),
PREPEND_FILTER_SECOND_PAIR_ARGS);
} else {
throw new IllegalArgumentException("Unexpected count: " + count);
}
}
// Constant argument lists used by the mixer MH builders
private static final int[] MIX_FILTER_SECOND_ARGS = new int[] { 0, 2 };
private static final int[] MIX_FILTER_THIRD_ARGS = new int[] { 0, 3 };
private static final int[] MIX_FILTER_SECOND_PAIR_ARGS = new int[] { 0, 3, 4 };
private static MethodHandle mixer(Class> cl) {
int index = classIndex(cl);
MethodHandle mix = MIXERS[index];
if (mix == null) {
MIXERS[index] = mix = JLA.stringConcatHelper("mix",
methodType(long.class, long.class, Wrapper.asPrimitiveType(cl))).rebind();
}
return mix;
}
private static final @Stable MethodHandle[][] DOUBLE_MIXERS = new MethodHandle[TYPE_COUNT][TYPE_COUNT];
private static MethodHandle mixer(Class> cl, Class> cl2) {
int idx1 = classIndex(cl);
int idx2 = classIndex(cl2);
MethodHandle mix = DOUBLE_MIXERS[idx1][idx2];
if (mix == null) {
mix = mixer(cl);
mix = MethodHandles.dropArguments(mix, 2, cl2);
DOUBLE_MIXERS[idx1][idx2] = mix = MethodHandles.filterArgumentsWithCombiner(mix, 0,
mixer(cl2), MIX_FILTER_SECOND_ARGS);
}
return mix;
}
private static MethodHandle mixer(Class> cl, Class> cl2, Class> cl3) {
MethodHandle mix = mixer(cl, cl2);
mix = MethodHandles.dropArguments(mix, 3, cl3);
return MethodHandles.filterArgumentsWithCombiner(mix, 0,
mixer(cl3), MIX_FILTER_THIRD_ARGS);
}
private static MethodHandle mixer(Class> cl, Class> cl2, Class> cl3, Class> cl4) {
MethodHandle mix = mixer(cl, cl2);
mix = MethodHandles.dropArguments(mix, 3, cl3, cl4);
return MethodHandles.filterArgumentsWithCombiner(mix, 0,
mixer(cl3, cl4), MIX_FILTER_SECOND_PAIR_ARGS);
}
private @Stable static MethodHandle SIMPLE_CONCAT;
private static MethodHandle simpleConcat() {
MethodHandle mh = SIMPLE_CONCAT;
if (mh == null) {
MethodHandle simpleConcat = JLA.stringConcatHelper("simpleConcat",
methodType(String.class, Object.class, Object.class));
SIMPLE_CONCAT = mh = simpleConcat.rebind();
}
return mh;
}
private @Stable static MethodHandle NEW_STRING;
private static MethodHandle newString() {
MethodHandle mh = NEW_STRING;
if (mh == null) {
MethodHandle newString = JLA.stringConcatHelper("newString",
methodType(String.class, byte[].class, long.class));
NEW_STRING = mh = newString.rebind();
}
return mh;
}
private @Stable static MethodHandle NEW_ARRAY_SUFFIX;
private static MethodHandle newArrayWithSuffix(String suffix) {
MethodHandle mh = NEW_ARRAY_SUFFIX;
if (mh == null) {
MethodHandle newArrayWithSuffix = JLA.stringConcatHelper("newArrayWithSuffix",
methodType(byte[].class, String.class, long.class));
NEW_ARRAY_SUFFIX = mh = newArrayWithSuffix.rebind();
}
return MethodHandles.insertArguments(mh, 0, suffix);
}
private @Stable static MethodHandle NEW_ARRAY;
private static MethodHandle newArray() {
MethodHandle mh = NEW_ARRAY;
if (mh == null) {
NEW_ARRAY = mh =
JLA.stringConcatHelper("newArray", methodType(byte[].class, long.class));
}
return mh;
}
/**
* Public gateways to public "stringify" methods. These methods have the
* form String apply(T obj), and normally delegate to {@code String.valueOf},
* depending on argument's type.
*/
private @Stable static MethodHandle OBJECT_STRINGIFIER;
private static MethodHandle objectStringifier() {
MethodHandle mh = OBJECT_STRINGIFIER;
if (mh == null) {
OBJECT_STRINGIFIER = mh = JLA.stringConcatHelper("stringOf",
methodType(String.class, Object.class));
}
return mh;
}
private @Stable static MethodHandle FLOAT_STRINGIFIER;
private static MethodHandle floatStringifier() {
MethodHandle mh = FLOAT_STRINGIFIER;
if (mh == null) {
FLOAT_STRINGIFIER = mh = stringValueOf(float.class);
}
return mh;
}
private @Stable static MethodHandle DOUBLE_STRINGIFIER;
private static MethodHandle doubleStringifier() {
MethodHandle mh = DOUBLE_STRINGIFIER;
if (mh == null) {
DOUBLE_STRINGIFIER = mh = stringValueOf(double.class);
}
return mh;
}
private @Stable static MethodHandle INT_STRINGIFIER;
private static MethodHandle intStringifier() {
MethodHandle mh = INT_STRINGIFIER;
if (mh == null) {
INT_STRINGIFIER = mh = stringValueOf(int.class);
}
return mh;
}
private @Stable static MethodHandle LONG_STRINGIFIER;
private static MethodHandle longStringifier() {
MethodHandle mh = LONG_STRINGIFIER;
if (mh == null) {
LONG_STRINGIFIER = mh = stringValueOf(long.class);
}
return mh;
}
private @Stable static MethodHandle CHAR_STRINGIFIER;
private static MethodHandle charStringifier() {
MethodHandle mh = CHAR_STRINGIFIER;
if (mh == null) {
CHAR_STRINGIFIER = mh = stringValueOf(char.class);
}
return mh;
}
private @Stable static MethodHandle BOOLEAN_STRINGIFIER;
private static MethodHandle booleanStringifier() {
MethodHandle mh = BOOLEAN_STRINGIFIER;
if (mh == null) {
BOOLEAN_STRINGIFIER = mh = stringValueOf(boolean.class);
}
return mh;
}
private @Stable static MethodHandle NEW_STRINGIFIER;
private static MethodHandle newStringifier() {
MethodHandle mh = NEW_STRINGIFIER;
if (mh == null) {
NEW_STRINGIFIER = mh = JLA.stringConcatHelper("newStringOf",
methodType(String.class, Object.class));
}
return mh;
}
private static MethodHandle unaryConcat(Class> cl) {
if (!cl.isPrimitive()) {
return newStringifier();
} else if (cl == int.class || cl == short.class || cl == byte.class) {
return intStringifier();
} else if (cl == long.class) {
return longStringifier();
} else if (cl == char.class) {
return charStringifier();
} else if (cl == boolean.class) {
return booleanStringifier();
} else if (cl == float.class) {
return floatStringifier();
} else if (cl == double.class) {
return doubleStringifier();
} else {
throw new InternalError("Unhandled type for unary concatenation: " + cl);
}
}
private static final @Stable MethodHandle[] NULL_PREPENDERS = new MethodHandle[TYPE_COUNT];
private static final @Stable MethodHandle[] PREPENDERS = new MethodHandle[TYPE_COUNT];
private static final @Stable MethodHandle[] MIXERS = new MethodHandle[TYPE_COUNT];
private static final long INITIAL_CODER = JLA.stringConcatInitialCoder();
private static MethodHandle stringValueOf(Class> ptype) {
try {
return MethodHandles.publicLookup()
.findStatic(String.class, "valueOf", MethodType.methodType(String.class, ptype));
} catch (NoSuchMethodException | IllegalAccessException e) {
throw new AssertionError(e);
}
}
private StringConcatFactory() {
// no instantiation
}
}