/* * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; /** * Port of the "Freely Distributable Math Library", version 5.3, from * C to Java. * *
The C version of fdlibm relied on the idiom of pointer aliasing * a 64-bit double floating-point value as a two-element array of * 32-bit integers and reading and writing the two halves of the * double independently. This coding pattern was problematic to C * optimizers and not directly expressible in Java. Therefore, rather * than a memory level overlay, if portions of a double need to be * operated on as integer values, the standard library methods for * bitwise floating-point to integer conversion, * Double.longBitsToDouble and Double.doubleToRawLongBits, are directly * or indirectly used. * *
The C version of fdlibm also took some pains to signal the * correct IEEE 754 exceptional conditions divide by zero, invalid, * overflow and underflow. For example, overflow would be signaled by * {@code huge * huge} where {@code huge} was a large constant that * would overflow when squared. Since IEEE floating-point exceptional * handling is not supported natively in the JVM, such coding patterns * have been omitted from this port. For example, rather than {@code * return huge * huge}, this port will use {@code return INFINITY}. * *
Various comparison and arithmetic operations in fdlibm could be
* done either based on the integer view of a value or directly on the
* floating-point representation. Which idiom is faster may depend on
* platform specific factors. However, for code clarity if no other
* reason, this port will favor expressing the semantics of those
* operations in terms of floating-point operations when convenient to
* do so.
*/
class FdLibm {
// Constants used by multiple algorithms
private static final double INFINITY = Double.POSITIVE_INFINITY;
private static final double TWO54 = 0x1.0p54; // 1.80143985094819840000e+16
private static final double HUGE = 1.0e+300;
private FdLibm() {
throw new UnsupportedOperationException("No FdLibm instances for you.");
}
/**
* Return the low-order 32 bits of the double argument as an int.
*/
private static int __LO(double x) {
long transducer = Double.doubleToRawLongBits(x);
return (int)transducer;
}
/**
* Return a double with its low-order bits of the second argument
* and the high-order bits of the first argument..
*/
private static double __LO(double x, int low) {
long transX = Double.doubleToRawLongBits(x);
return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |
(low & 0x0000_0000_FFFF_FFFFL));
}
/**
* Return the high-order 32 bits of the double argument as an int.
*/
private static int __HI(double x) {
long transducer = Double.doubleToRawLongBits(x);
return (int)(transducer >> 32);
}
/**
* Return a double with its high-order bits of the second argument
* and the low-order bits of the first argument..
*/
private static double __HI(double x, int high) {
long transX = Double.doubleToRawLongBits(x);
return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
( ((long)high)) << 32 );
}
/** Returns the arcsine of x.
*
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
* where
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
* and its remez error is bounded by
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
*
* For x in [0.5,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
static class Asin {
private Asin() {throw new UnsupportedOperationException();}
private static final double
pio2_hi = 0x1.921fb54442d18p0, // 1.57079632679489655800e+00
pio2_lo = 0x1.1a62633145c07p-54, // 6.12323399573676603587e-17
pio4_hi = 0x1.921fb54442d18p-1, // 7.85398163397448278999e-01
// coefficient for R(x^2)
pS0 = 0x1.5555555555555p-3, // 1.66666666666666657415e-01
pS1 = -0x1.4d61203eb6f7dp-2, // -3.25565818622400915405e-01
pS2 = 0x1.9c1550e884455p-3, // 2.01212532134862925881e-01
pS3 = -0x1.48228b5688f3bp-5, // -4.00555345006794114027e-02
pS4 = 0x1.9efe07501b288p-11, // 7.91534994289814532176e-04
pS5 = 0x1.23de10dfdf709p-15, // 3.47933107596021167570e-05
qS1 = -0x1.33a271c8a2d4bp1, // -2.40339491173441421878e+00
qS2 = 0x1.02ae59c598ac8p1, // 2.02094576023350569471e+00
qS3 = -0x1.6066c1b8d0159p-1, // -6.88283971605453293030e-01
qS4 = 0x1.3b8c5b12e9282p-4; // 7.70381505559019352791e-02
static double compute(double x) {
double t = 0, w, p, q, c, r, s;
int hx, ix;
hx = __HI(x);
ix = hx & 0x7fff_ffff;
if (ix >= 0x3ff0_0000) { // |x| >= 1
if(((ix - 0x3ff0_0000) | __LO(x)) == 0) {
// asin(1) = +-pi/2 with inexact
return x*pio2_hi + x*pio2_lo;
}
return (x - x)/(x - x); // asin(|x| > 1) is NaN
} else if (ix < 0x3fe0_0000) { // |x| < 0.5
if (ix < 0x3e40_0000) { // if |x| < 2**-27
if (HUGE + x > 1.0) {// return x with inexact if x != 0
return x;
}
} else {
t = x*x;
}
p = t*(pS0 + t*(pS1 + t*(pS2 + t*(pS3 + t*(pS4 + t*pS5)))));
q = 1.0 + t*(qS1 + t*(qS2 + t*(qS3 + t*qS4)));
w = p/q;
return x + x*w;
}
// 1 > |x| >= 0.5
w = 1.0 - Math.abs(x);
t = w*0.5;
p = t*(pS0 + t*(pS1 + t*(pS2 + t*(pS3 + t*(pS4 + t*pS5)))));
q = 1.0 + t*(qS1 + t*(qS2 + t*(qS3 + t*qS4)));
s = Math.sqrt(t);
if (ix >= 0x3FEF_3333) { // if |x| > 0.975
w = p/q;
t = pio2_hi - (2.0*(s + s*w) - pio2_lo);
} else {
w = s;
w = __LO(w, 0);
c = (t - w*w)/(s + w);
r = p/q;
p = 2.0*s*r - (pio2_lo - 2.0*c);
q = pio4_hi - 2.0*w;
t = pio4_hi - (p - q);
}
return (hx > 0) ? t : -t;
}
}
/** Returns the arccosine of x.
* Method :
* acos(x) = pi/2 - asin(x)
* acos(-x) = pi/2 + asin(x)
* For |x| <= 0.5
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
* For x > 0.5
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
* = 2asin(sqrt((1-x)/2))
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
* = 2f + (2c + 2s*z*R(z))
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
* for f so that f+c ~ sqrt(z).
* For x <- 0.5
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
* Function needed: sqrt
*/
static class Acos {
private Acos() {throw new UnsupportedOperationException();}
private static final double
pio2_hi = 0x1.921fb54442d18p0, // 1.57079632679489655800e+00
pio2_lo = 0x1.1a62633145c07p-54, // 6.12323399573676603587e-17
pS0 = 0x1.5555555555555p-3, // 1.66666666666666657415e-01
pS1 = -0x1.4d61203eb6f7dp-2, // -3.25565818622400915405e-01
pS2 = 0x1.9c1550e884455p-3, // 2.01212532134862925881e-01
pS3 = -0x1.48228b5688f3bp-5, // -4.00555345006794114027e-02
pS4 = 0x1.9efe07501b288p-11, // 7.91534994289814532176e-04
pS5 = 0x1.23de10dfdf709p-15, // 3.47933107596021167570e-05
qS1 = -0x1.33a271c8a2d4bp1, // -2.40339491173441421878e+00
qS2 = 0x1.02ae59c598ac8p1, // 2.02094576023350569471e+00
qS3 = -0x1.6066c1b8d0159p-1, // -6.88283971605453293030e-01
qS4 = 0x1.3b8c5b12e9282p-4; // 7.70381505559019352791e-02
static double compute(double x) {
double z, p, q, r, w, s, c, df;
int hx, ix;
hx = __HI(x);
ix = hx & 0x7fff_ffff;
if (ix >= 0x3ff0_0000) { // |x| >= 1
if (((ix - 0x3ff0_0000) | __LO(x)) == 0) { // |x| == 1
if (hx > 0) {// acos(1) = 0
return 0.0;
}else { // acos(-1)= pi
return Math.PI + 2.0*pio2_lo;
}
}
return (x-x)/(x-x); // acos(|x| > 1) is NaN
}
if (ix < 0x3fe0_0000) { // |x| < 0.5
if (ix <= 0x3c60_0000) { // if |x| < 2**-57
return pio2_hi + pio2_lo;
}
z = x*x;
p = z*(pS0 + z*(pS1 + z*(pS2 + z*(pS3 + z*(pS4 + z*pS5)))));
q = 1.0 + z*(qS1 + z*(qS2 + z*(qS3 + z*qS4)));
r = p/q;
return pio2_hi - (x - (pio2_lo - x*r));
} else if (hx < 0) { // x < -0.5
z = (1.0 + x)*0.5;
p = z*(pS0 + z*(pS1 + z*(pS2 + z*(pS3 + z*(pS4 + z*pS5)))));
q = 1.0 + z*(qS1 + z*(qS2 + z*(qS3 + z*qS4)));
s = Math.sqrt(z);
r = p/q;
w = r*s - pio2_lo;
return Math.PI - 2.0*(s+w);
} else { // x > 0.5
z = (1.0 - x)*0.5;
s = Math.sqrt(z);
df = s;
df = __LO(df, 0);
c = (z - df*df)/(s + df);
p = z*(pS0 + z*(pS1 + z*(pS2 + z*(pS3 + z*(pS4 + z*pS5)))));
q = 1.0 + z*(qS1 + z*(qS2 + z*(qS3 + z*qS4)));
r = p/q;
w = r*s + c;
return 2.0*(df + w);
}
}
}
/* Returns the arctangent of x.
* Method
* 1. Reduce x to positive by atan(x) = -atan(-x).
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
* is further reduced to one of the following intervals and the
* arctangent of t is evaluated by the corresponding formula:
*
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
static class Atan {
private Atan() {throw new UnsupportedOperationException();}
private static final double atanhi[] = {
0x1.dac670561bb4fp-2, // atan(0.5)hi 4.63647609000806093515e-01
0x1.921fb54442d18p-1, // atan(1.0)hi 7.85398163397448278999e-01
0x1.f730bd281f69bp-1, // atan(1.5)hi 9.82793723247329054082e-01
0x1.921fb54442d18p0, // atan(inf)hi 1.57079632679489655800e+00
};
private static final double atanlo[] = {
0x1.a2b7f222f65e2p-56, // atan(0.5)lo 2.26987774529616870924e-17
0x1.1a62633145c07p-55, // atan(1.0)lo 3.06161699786838301793e-17
0x1.007887af0cbbdp-56, // atan(1.5)lo 1.39033110312309984516e-17
0x1.1a62633145c07p-54, // atan(inf)lo 6.12323399573676603587e-17
};
private static final double aT[] = {
0x1.555555555550dp-2, // 3.33333333333329318027e-01
-0x1.999999998ebc4p-3, // -1.99999999998764832476e-01
0x1.24924920083ffp-3, // 1.42857142725034663711e-01
-0x1.c71c6fe231671p-4, // -1.11111104054623557880e-01
0x1.745cdc54c206ep-4, // 9.09088713343650656196e-02
-0x1.3b0f2af749a6dp-4, // -7.69187620504482999495e-02
0x1.10d66a0d03d51p-4, // 6.66107313738753120669e-02
-0x1.dde2d52defd9ap-5, // -5.83357013379057348645e-02
0x1.97b4b24760debp-5, // 4.97687799461593236017e-02
-0x1.2b4442c6a6c2fp-5, // -3.65315727442169155270e-02
0x1.0ad3ae322da11p-6, // 1.62858201153657823623e-02
};
static double compute(double x) {
double w, s1, s2, z;
int ix, hx, id;
hx = __HI(x);
ix = hx & 0x7fff_ffff;
if (ix >= 0x4410_0000) { // if |x| >= 2^66
if (ix > 0x7ff0_0000 ||
(ix == 0x7ff0_0000 && (__LO(x) != 0))) {
return x+x; // NaN
}
if (hx > 0) {
return atanhi[3] + atanlo[3];
} else {
return -atanhi[3] - atanlo[3];
}
} if (ix < 0x3fdc_0000) { // |x| < 0.4375
if (ix < 0x3e20_0000) { // |x| < 2^-29
if (HUGE + x > 1.0) { // raise inexact
return x;
}
}
id = -1;
} else {
x = Math.abs(x);
if (ix < 0x3ff3_0000) { // |x| < 1.1875
if (ix < 0x3fe60000) { // 7/16 <= |x| < 11/16
id = 0;
x = (2.0*x - 1.0)/(2.0 + x);
} else { // 11/16 <= |x| < 19/16
id = 1;
x = (x - 1.0)/(x + 1.0);
}
} else {
if (ix < 0x4003_8000) { // |x| < 2.4375
id = 2;
x = (x - 1.5)/(1.0 + 1.5*x);
} else { // 2.4375 <= |x| < 2^66
id = 3;
x = -1.0/x;
}
}
}
// end of argument reduction
z = x*x;
w = z*z;
// break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly
s1 = z*(aT[0] + w*(aT[2] + w*(aT[4] + w*(aT[6] + w*(aT[8] + w*aT[10])))));
s2 = w*(aT[1] + w*(aT[3] + w*(aT[5] + w*(aT[7] + w*aT[9]))));
if (id < 0) {
return x - x*(s1 + s2);
} else {
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
return (hx < 0) ? -z: z;
}
}
}
/**
* Returns the angle theta from the conversion of rectangular
* coordinates (x, y) to polar coordinates (r, theta).
*
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
* 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
*
* Special cases:
*
* ATAN2((anything), NaN ) is NaN;
* ATAN2(NAN , (anything) ) is NaN;
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
* ATAN2(+-INF,+INF ) is +-pi/4 ;
* ATAN2(+-INF,-INF ) is +-3pi/4;
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
static class Atan2 {
private Atan2() {throw new UnsupportedOperationException();}
private static final double
tiny = 1.0e-300,
pi_o_4 = 0x1.921fb54442d18p-1, // 7.8539816339744827900E-01
pi_o_2 = 0x1.921fb54442d18p0, // 1.5707963267948965580E+00
pi_lo = 0x1.1a62633145c07p-53; // 1.2246467991473531772E-16
static double compute(double y, double x) {
double z;
int k, m, hx, hy, ix, iy;
/*unsigned*/ int lx, ly;
hx = __HI(x);
ix = hx & 0x7fff_ffff;
lx = __LO(x);
hy = __HI(y);
iy = hy&0x7fff_ffff;
ly = __LO(y);
if (Double.isNaN(x) || Double.isNaN(y))
return x + y;
if (((hx - 0x3ff0_0000) | lx) == 0) // x = 1.0
return StrictMath.atan(y);
m = ((hy >> 31) & 1)|((hx >> 30) & 2); // 2*sign(x) + sign(y)
// when y = 0
if ((iy | ly) == 0) {
switch(m) {
case 0:
case 1: return y; // atan(+/-0, +anything) = +/-0
case 2: return Math.PI + tiny; // atan(+0, -anything) = pi
case 3: return -Math.PI - tiny; // atan(-0, -anything) = -pi
}
}
// when x = 0
if ((ix | lx) == 0) {
return (hy < 0)? -pi_o_2 - tiny : pi_o_2 + tiny;
}
// when x is INF
if (ix == 0x7ff0_0000) {
if (iy == 0x7ff0_0000) {
switch(m) {
case 0: return pi_o_4 + tiny; // atan(+INF, +INF)
case 1: return -pi_o_4 - tiny; // atan(-INF, +INF)
case 2: return 3.0*pi_o_4 + tiny; // atan(+INF, -INF)
case 3: return -3.0*pi_o_4 - tiny; // atan(-INF, -INF)
}
} else {
switch(m) {
case 0: return 0.0; // atan(+..., +INF)
case 1: return -0.0; // atan(-..., +INF)
case 2: return Math.PI + tiny; // atan(+..., -INF)
case 3: return -Math.PI - tiny; // atan(-..., -INF)
}
}
}
// when y is INF
if (iy == 0x7ff0_0000) {
return (hy < 0)? -pi_o_2 - tiny : pi_o_2 + tiny;
}
// compute y/x
k = (iy - ix) >> 20;
if (k > 60) { // |y/x| > 2**60
z = pi_o_2+0.5*pi_lo;
} else if (hx < 0 && k < -60) { // |y|/x < -2**60
z = 0.0;
} else { // safe to do y/x
z = StrictMath.atan(Math.abs(y/x));
}
switch (m) {
case 0: return z; // atan(+, +)
case 1: return -z; // atan(-, +)
case 2: return Math.PI - (z - pi_lo); // atan(+, -)
default: return (z - pi_lo) - Math.PI; // atan(-, -), case 3
}
}
}
/**
* cbrt(x)
* Return cube root of x
*/
public static class Cbrt {
// unsigned
private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
private static final double C = 0x1.15f15f15f15f1p-1; // 19/35 ~= 5.42857142857142815906e-01
private static final double D = -0x1.691de2532c834p-1; // -864/1225 ~= 7.05306122448979611050e-01
private static final double E = 0x1.6a0ea0ea0ea0fp0; // 99/70 ~= 1.41428571428571436819e+00
private static final double F = 0x1.9b6db6db6db6ep0; // 45/28 ~= 1.60714285714285720630e+00
private static final double G = 0x1.6db6db6db6db7p-2; // 5/14 ~= 3.57142857142857150787e-01
private Cbrt() {
throw new UnsupportedOperationException();
}
public static double compute(double x) {
double t = 0.0;
double sign;
if (x == 0.0 || !Double.isFinite(x))
return x; // Handles signed zeros properly
sign = (x < 0.0) ? -1.0: 1.0;
x = Math.abs(x); // x <- |x|
// Rough cbrt to 5 bits
if (x < 0x1.0p-1022) { // subnormal number
t = 0x1.0p54; // set t= 2**54
t *= x;
t = __HI(t, __HI(t)/3 + B2);
} else {
int hx = __HI(x); // high word of x
t = __HI(t, hx/3 + B1);
}
// New cbrt to 23 bits, may be implemented in single precision
double r, s, w;
r = t * t/x;
s = C + r*t;
t *= G + F/(s + E + D/s);
// Chopped to 20 bits and make it larger than cbrt(x)
t = __LO(t, 0);
t = __HI(t, __HI(t) + 0x00000001);
// One step newton iteration to 53 bits with error less than 0.667 ulps
s = t * t; // t*t is exact
r = x / s;
w = t + t;
r = (r - t)/(w + r); // r-s is exact
t = t + t*r;
// Restore the original sign bit
return sign * t;
}
}
/**
* hypot(x,y)
*
* Method :
* If (assume round-to-nearest) z = x*x + y*y
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise).
*
* So, compute sqrt(x*x + y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x > y > 0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
* where x1 = x with lower 32 bits cleared, x2 = x - x1; else
* 2. if x <= 2y use
* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
* y1= y with lower 32 bits chopped, y2 = y - y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2 + y^2) with error less
* than 1 ulp (unit in the last place)
*/
public static class Hypot {
public static final double TWO_MINUS_600 = 0x1.0p-600;
public static final double TWO_PLUS_600 = 0x1.0p+600;
private Hypot() {
throw new UnsupportedOperationException();
}
public static double compute(double x, double y) {
double a = Math.abs(x);
double b = Math.abs(y);
if (!Double.isFinite(a) || !Double.isFinite(b)) {
if (a == INFINITY || b == INFINITY)
return INFINITY;
else
return a + b; // Propagate NaN significand bits
}
if (b > a) {
double tmp = a;
a = b;
b = tmp;
}
assert a >= b;
// Doing bitwise conversion after screening for NaN allows
// the code to not worry about the possibility of
// "negative" NaN values.
// Note: the ha and hb variables are the high-order
// 32-bits of a and b stored as integer values. The ha and
// hb values are used first for a rough magnitude
// comparison of a and b and second for simulating higher
// precision by allowing a and b, respectively, to be
// decomposed into non-overlapping portions. Both of these
// uses could be eliminated. The magnitude comparison
// could be eliminated by extracting and comparing the
// exponents of a and b or just be performing a
// floating-point divide. Splitting a floating-point
// number into non-overlapping portions can be
// accomplished by judicious use of multiplies and
// additions. For details see T. J. Dekker, A Floating-Point
// Technique for Extending the Available Precision,
// Numerische Mathematik, vol. 18, 1971, pp.224-242 and
// subsequent work.
int ha = __HI(a); // high word of a
int hb = __HI(b); // high word of b
if ((ha - hb) > 0x3c00000) {
return a + b; // x / y > 2**60
}
int k = 0;
if (a > 0x1.00000_ffff_ffffp500) { // a > ~2**500
// scale a and b by 2**-600
ha -= 0x25800000;
hb -= 0x25800000;
a = a * TWO_MINUS_600;
b = b * TWO_MINUS_600;
k += 600;
}
double t1, t2;
if (b < 0x1.0p-500) { // b < 2**-500
if (b < Double.MIN_NORMAL) { // subnormal b or 0 */
if (b == 0.0)
return a;
t1 = 0x1.0p1022; // t1 = 2^1022
b *= t1;
a *= t1;
k -= 1022;
} else { // scale a and b by 2^600
ha += 0x25800000; // a *= 2^600
hb += 0x25800000; // b *= 2^600
a = a * TWO_PLUS_600;
b = b * TWO_PLUS_600;
k -= 600;
}
}
// medium size a and b
double w = a - b;
if (w > b) {
t1 = 0;
t1 = __HI(t1, ha);
t2 = a - t1;
w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
} else {
double y1, y2;
a = a + a;
y1 = 0;
y1 = __HI(y1, hb);
y2 = b - y1;
t1 = 0;
t1 = __HI(t1, ha + 0x00100000);
t2 = a - t1;
w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
}
if (k != 0) {
return Math.powerOfTwoD(k) * w;
} else
return w;
}
}
/**
* Compute x**y
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53 - 24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
* arithmetic, where |y'| <= 0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*/
public static class Pow {
private Pow() {
throw new UnsupportedOperationException();
}
public static double compute(final double x, final double y) {
double z;
double r, s, t, u, v, w;
int i, j, k, n;
// y == zero: x**0 = 1
if (y == 0.0)
return 1.0;
// +/-NaN return x + y to propagate NaN significands
if (Double.isNaN(x) || Double.isNaN(y))
return x + y;
final double y_abs = Math.abs(y);
double x_abs = Math.abs(x);
// Special values of y
if (y == 2.0) {
return x * x;
} else if (y == 0.5) {
if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
} else if (y_abs == 1.0) { // y is +/-1
return (y == 1.0) ? x : 1.0 / x;
} else if (y_abs == INFINITY) { // y is +/-infinity
if (x_abs == 1.0)
return y - y; // inf**+/-1 is NaN
else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
return (y >= 0) ? y : 0.0;
else // (|x| < 1)**-/+inf = inf, 0
return (y < 0) ? -y : 0.0;
}
final int hx = __HI(x);
int ix = hx & 0x7fffffff;
/*
* When x < 0, determine if y is an odd integer:
* y_is_int = 0 ... y is not an integer
* y_is_int = 1 ... y is an odd int
* y_is_int = 2 ... y is an even int
*/
int y_is_int = 0;
if (hx < 0) {
if (y_abs >= 0x1.0p53) // |y| >= 2^53 = 9.007199254740992E15
y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0
else if (y_abs >= 1.0) { // |y| >= 1.0
long y_abs_as_long = (long) y_abs;
if ( ((double) y_abs_as_long) == y_abs) {
y_is_int = 2 - (int)(y_abs_as_long & 0x1L);
}
}
}
// Special value of x
if (x_abs == 0.0 ||
x_abs == INFINITY ||
x_abs == 1.0) {
z = x_abs; // x is +/-0, +/-inf, +/-1
if (y < 0.0)
z = 1.0/z; // z = (1/|x|)
if (hx < 0) {
if (((ix - 0x3ff00000) | y_is_int) == 0) {
z = (z-z)/(z-z); // (-1)**non-int is NaN
} else if (y_is_int == 1)
z = -1.0 * z; // (x < 0)**odd = -(|x|**odd)
}
return z;
}
n = (hx >> 31) + 1;
// (x < 0)**(non-int) is NaN
if ((n | y_is_int) == 0)
return (x-x)/(x-x);
s = 1.0; // s (sign of result -ve**odd) = -1 else = 1
if ( (n | (y_is_int - 1)) == 0)
s = -1.0; // (-ve)**(odd int)
double p_h, p_l, t1, t2;
// |y| is huge
if (y_abs > 0x1.00000_ffff_ffffp31) { // if |y| > ~2**31
final double INV_LN2 = 0x1.7154_7652_b82fep0; // 1.44269504088896338700e+00 = 1/ln2
final double INV_LN2_H = 0x1.715476p0; // 1.44269502162933349609e+00 = 24 bits of 1/ln2
final double INV_LN2_L = 0x1.4ae0_bf85_ddf44p-26; // 1.92596299112661746887e-08 = 1/ln2 tail
// Over/underflow if x is not close to one
if (x_abs < 0x1.fffff_0000_0000p-1) // |x| < ~0.9999995231628418
return (y < 0.0) ? s * INFINITY : s * 0.0;
if (x_abs > 0x1.00000_ffff_ffffp0) // |x| > ~1.0
return (y > 0.0) ? s * INFINITY : s * 0.0;
/*
* now |1-x| is tiny <= 2**-20, sufficient to compute
* log(x) by x - x^2/2 + x^3/3 - x^4/4
*/
t = x_abs - 1.0; // t has 20 trailing zeros
w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
u = INV_LN2_H * t; // INV_LN2_H has 21 sig. bits
v = t * INV_LN2_L - w * INV_LN2;
t1 = u + v;
t1 =__LO(t1, 0);
t2 = v - (t1 - u);
} else {
final double CP = 0x1.ec70_9dc3_a03fdp-1; // 9.61796693925975554329e-01 = 2/(3ln2)
final double CP_H = 0x1.ec709ep-1; // 9.61796700954437255859e-01 = (float)cp
final double CP_L = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H
double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
n = 0;
// Take care of subnormal numbers
if (ix < 0x00100000) {
x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0
n -= 53;
ix = __HI(x_abs);
}
n += ((ix) >> 20) - 0x3ff;
j = ix & 0x000fffff;
// Determine interval
ix = j | 0x3ff00000; // Normalize ix
if (j <= 0x3988E)
k = 0; // |x|