/* * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; /** * Port of the "Freely Distributable Math Library", version 5.3, from * C to Java. * *

The C version of fdlibm relied on the idiom of pointer aliasing * a 64-bit double floating-point value as a two-element array of * 32-bit integers and reading and writing the two halves of the * double independently. This coding pattern was problematic to C * optimizers and not directly expressible in Java. Therefore, rather * than a memory level overlay, if portions of a double need to be * operated on as integer values, the standard library methods for * bitwise floating-point to integer conversion, * Double.longBitsToDouble and Double.doubleToRawLongBits, are directly * or indirectly used. * *

The C version of fdlibm also took some pains to signal the * correct IEEE 754 exceptional conditions divide by zero, invalid, * overflow and underflow. For example, overflow would be signaled by * {@code huge * huge} where {@code huge} was a large constant that * would overflow when squared. Since IEEE floating-point exceptional * handling is not supported natively in the JVM, such coding patterns * have been omitted from this port. For example, rather than {@code * return huge * huge}, this port will use {@code return INFINITY}. * *

Various comparison and arithmetic operations in fdlibm could be * done either based on the integer view of a value or directly on the * floating-point representation. Which idiom is faster may depend on * platform specific factors. However, for code clarity if no other * reason, this port will favor expressing the semantics of those * operations in terms of floating-point operations when convenient to * do so. */ class FdLibm { // Constants used by multiple algorithms private static final double INFINITY = Double.POSITIVE_INFINITY; private static final double TWO54 = 0x1.0p54; // 1.80143985094819840000e+16 private static final double HUGE = 1.0e+300; private FdLibm() { throw new UnsupportedOperationException("No FdLibm instances for you."); } /** * Return the low-order 32 bits of the double argument as an int. */ private static int __LO(double x) { long transducer = Double.doubleToRawLongBits(x); return (int)transducer; } /** * Return a double with its low-order bits of the second argument * and the high-order bits of the first argument.. */ private static double __LO(double x, int low) { long transX = Double.doubleToRawLongBits(x); return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) | (low & 0x0000_0000_FFFF_FFFFL)); } /** * Return the high-order 32 bits of the double argument as an int. */ private static int __HI(double x) { long transducer = Double.doubleToRawLongBits(x); return (int)(transducer >> 32); } /** * Return a double with its high-order bits of the second argument * and the low-order bits of the first argument.. */ private static double __HI(double x, int high) { long transX = Double.doubleToRawLongBits(x); return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) | ( ((long)high)) << 32 ); } /** Returns the arcsine of x. * * Method : * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... * we approximate asin(x) on [0,0.5] by * asin(x) = x + x*x^2*R(x^2) * where * R(x^2) is a rational approximation of (asin(x)-x)/x^3 * and its remez error is bounded by * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * * For x in [0.5,1] * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; * then for x>0.98 * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) * For x<=0.98, let pio4_hi = pio2_hi/2, then * f = hi part of s; * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) * and * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * */ static class Asin { private Asin() {throw new UnsupportedOperationException();} private static final double pio2_hi = 0x1.921fb54442d18p0, // 1.57079632679489655800e+00 pio2_lo = 0x1.1a62633145c07p-54, // 6.12323399573676603587e-17 pio4_hi = 0x1.921fb54442d18p-1, // 7.85398163397448278999e-01 // coefficient for R(x^2) pS0 = 0x1.5555555555555p-3, // 1.66666666666666657415e-01 pS1 = -0x1.4d61203eb6f7dp-2, // -3.25565818622400915405e-01 pS2 = 0x1.9c1550e884455p-3, // 2.01212532134862925881e-01 pS3 = -0x1.48228b5688f3bp-5, // -4.00555345006794114027e-02 pS4 = 0x1.9efe07501b288p-11, // 7.91534994289814532176e-04 pS5 = 0x1.23de10dfdf709p-15, // 3.47933107596021167570e-05 qS1 = -0x1.33a271c8a2d4bp1, // -2.40339491173441421878e+00 qS2 = 0x1.02ae59c598ac8p1, // 2.02094576023350569471e+00 qS3 = -0x1.6066c1b8d0159p-1, // -6.88283971605453293030e-01 qS4 = 0x1.3b8c5b12e9282p-4; // 7.70381505559019352791e-02 static double compute(double x) { double t = 0, w, p, q, c, r, s; int hx, ix; hx = __HI(x); ix = hx & 0x7fff_ffff; if (ix >= 0x3ff0_0000) { // |x| >= 1 if(((ix - 0x3ff0_0000) | __LO(x)) == 0) { // asin(1) = +-pi/2 with inexact return x*pio2_hi + x*pio2_lo; } return (x - x)/(x - x); // asin(|x| > 1) is NaN } else if (ix < 0x3fe0_0000) { // |x| < 0.5 if (ix < 0x3e40_0000) { // if |x| < 2**-27 if (HUGE + x > 1.0) {// return x with inexact if x != 0 return x; } } else { t = x*x; } p = t*(pS0 + t*(pS1 + t*(pS2 + t*(pS3 + t*(pS4 + t*pS5))))); q = 1.0 + t*(qS1 + t*(qS2 + t*(qS3 + t*qS4))); w = p/q; return x + x*w; } // 1 > |x| >= 0.5 w = 1.0 - Math.abs(x); t = w*0.5; p = t*(pS0 + t*(pS1 + t*(pS2 + t*(pS3 + t*(pS4 + t*pS5))))); q = 1.0 + t*(qS1 + t*(qS2 + t*(qS3 + t*qS4))); s = Math.sqrt(t); if (ix >= 0x3FEF_3333) { // if |x| > 0.975 w = p/q; t = pio2_hi - (2.0*(s + s*w) - pio2_lo); } else { w = s; w = __LO(w, 0); c = (t - w*w)/(s + w); r = p/q; p = 2.0*s*r - (pio2_lo - 2.0*c); q = pio4_hi - 2.0*w; t = pio4_hi - (p - q); } return (hx > 0) ? t : -t; } } /** Returns the arccosine of x. * Method : * acos(x) = pi/2 - asin(x) * acos(-x) = pi/2 + asin(x) * For |x| <= 0.5 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) * For x > 0.5 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) * = 2asin(sqrt((1-x)/2)) * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) * = 2f + (2c + 2s*z*R(z)) * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term * for f so that f+c ~ sqrt(z). * For x <- 0.5 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * * Function needed: sqrt */ static class Acos { private Acos() {throw new UnsupportedOperationException();} private static final double pio2_hi = 0x1.921fb54442d18p0, // 1.57079632679489655800e+00 pio2_lo = 0x1.1a62633145c07p-54, // 6.12323399573676603587e-17 pS0 = 0x1.5555555555555p-3, // 1.66666666666666657415e-01 pS1 = -0x1.4d61203eb6f7dp-2, // -3.25565818622400915405e-01 pS2 = 0x1.9c1550e884455p-3, // 2.01212532134862925881e-01 pS3 = -0x1.48228b5688f3bp-5, // -4.00555345006794114027e-02 pS4 = 0x1.9efe07501b288p-11, // 7.91534994289814532176e-04 pS5 = 0x1.23de10dfdf709p-15, // 3.47933107596021167570e-05 qS1 = -0x1.33a271c8a2d4bp1, // -2.40339491173441421878e+00 qS2 = 0x1.02ae59c598ac8p1, // 2.02094576023350569471e+00 qS3 = -0x1.6066c1b8d0159p-1, // -6.88283971605453293030e-01 qS4 = 0x1.3b8c5b12e9282p-4; // 7.70381505559019352791e-02 static double compute(double x) { double z, p, q, r, w, s, c, df; int hx, ix; hx = __HI(x); ix = hx & 0x7fff_ffff; if (ix >= 0x3ff0_0000) { // |x| >= 1 if (((ix - 0x3ff0_0000) | __LO(x)) == 0) { // |x| == 1 if (hx > 0) {// acos(1) = 0 return 0.0; }else { // acos(-1)= pi return Math.PI + 2.0*pio2_lo; } } return (x-x)/(x-x); // acos(|x| > 1) is NaN } if (ix < 0x3fe0_0000) { // |x| < 0.5 if (ix <= 0x3c60_0000) { // if |x| < 2**-57 return pio2_hi + pio2_lo; } z = x*x; p = z*(pS0 + z*(pS1 + z*(pS2 + z*(pS3 + z*(pS4 + z*pS5))))); q = 1.0 + z*(qS1 + z*(qS2 + z*(qS3 + z*qS4))); r = p/q; return pio2_hi - (x - (pio2_lo - x*r)); } else if (hx < 0) { // x < -0.5 z = (1.0 + x)*0.5; p = z*(pS0 + z*(pS1 + z*(pS2 + z*(pS3 + z*(pS4 + z*pS5))))); q = 1.0 + z*(qS1 + z*(qS2 + z*(qS3 + z*qS4))); s = Math.sqrt(z); r = p/q; w = r*s - pio2_lo; return Math.PI - 2.0*(s+w); } else { // x > 0.5 z = (1.0 - x)*0.5; s = Math.sqrt(z); df = s; df = __LO(df, 0); c = (z - df*df)/(s + df); p = z*(pS0 + z*(pS1 + z*(pS2 + z*(pS3 + z*(pS4 + z*pS5))))); q = 1.0 + z*(qS1 + z*(qS2 + z*(qS3 + z*qS4))); r = p/q; w = r*s + c; return 2.0*(df + w); } } } /* Returns the arctangent of x. * Method * 1. Reduce x to positive by atan(x) = -atan(-x). * 2. According to the integer k=4t+0.25 chopped, t=x, the argument * is further reduced to one of the following intervals and the * arctangent of t is evaluated by the corresponding formula: * * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static class Atan { private Atan() {throw new UnsupportedOperationException();} private static final double atanhi[] = { 0x1.dac670561bb4fp-2, // atan(0.5)hi 4.63647609000806093515e-01 0x1.921fb54442d18p-1, // atan(1.0)hi 7.85398163397448278999e-01 0x1.f730bd281f69bp-1, // atan(1.5)hi 9.82793723247329054082e-01 0x1.921fb54442d18p0, // atan(inf)hi 1.57079632679489655800e+00 }; private static final double atanlo[] = { 0x1.a2b7f222f65e2p-56, // atan(0.5)lo 2.26987774529616870924e-17 0x1.1a62633145c07p-55, // atan(1.0)lo 3.06161699786838301793e-17 0x1.007887af0cbbdp-56, // atan(1.5)lo 1.39033110312309984516e-17 0x1.1a62633145c07p-54, // atan(inf)lo 6.12323399573676603587e-17 }; private static final double aT[] = { 0x1.555555555550dp-2, // 3.33333333333329318027e-01 -0x1.999999998ebc4p-3, // -1.99999999998764832476e-01 0x1.24924920083ffp-3, // 1.42857142725034663711e-01 -0x1.c71c6fe231671p-4, // -1.11111104054623557880e-01 0x1.745cdc54c206ep-4, // 9.09088713343650656196e-02 -0x1.3b0f2af749a6dp-4, // -7.69187620504482999495e-02 0x1.10d66a0d03d51p-4, // 6.66107313738753120669e-02 -0x1.dde2d52defd9ap-5, // -5.83357013379057348645e-02 0x1.97b4b24760debp-5, // 4.97687799461593236017e-02 -0x1.2b4442c6a6c2fp-5, // -3.65315727442169155270e-02 0x1.0ad3ae322da11p-6, // 1.62858201153657823623e-02 }; static double compute(double x) { double w, s1, s2, z; int ix, hx, id; hx = __HI(x); ix = hx & 0x7fff_ffff; if (ix >= 0x4410_0000) { // if |x| >= 2^66 if (ix > 0x7ff0_0000 || (ix == 0x7ff0_0000 && (__LO(x) != 0))) { return x+x; // NaN } if (hx > 0) { return atanhi[3] + atanlo[3]; } else { return -atanhi[3] - atanlo[3]; } } if (ix < 0x3fdc_0000) { // |x| < 0.4375 if (ix < 0x3e20_0000) { // |x| < 2^-29 if (HUGE + x > 1.0) { // raise inexact return x; } } id = -1; } else { x = Math.abs(x); if (ix < 0x3ff3_0000) { // |x| < 1.1875 if (ix < 0x3fe60000) { // 7/16 <= |x| < 11/16 id = 0; x = (2.0*x - 1.0)/(2.0 + x); } else { // 11/16 <= |x| < 19/16 id = 1; x = (x - 1.0)/(x + 1.0); } } else { if (ix < 0x4003_8000) { // |x| < 2.4375 id = 2; x = (x - 1.5)/(1.0 + 1.5*x); } else { // 2.4375 <= |x| < 2^66 id = 3; x = -1.0/x; } } } // end of argument reduction z = x*x; w = z*z; // break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly s1 = z*(aT[0] + w*(aT[2] + w*(aT[4] + w*(aT[6] + w*(aT[8] + w*aT[10]))))); s2 = w*(aT[1] + w*(aT[3] + w*(aT[5] + w*(aT[7] + w*aT[9])))); if (id < 0) { return x - x*(s1 + s2); } else { z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); return (hx < 0) ? -z: z; } } } /** * Returns the angle theta from the conversion of rectangular * coordinates (x, y) to polar coordinates (r, theta). * * Method : * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). * 2. Reduce x to positive by (if x and y are unexceptional): * ARG (x+iy) = arctan(y/x) ... if x > 0, * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, * * Special cases: * * ATAN2((anything), NaN ) is NaN; * ATAN2(NAN , (anything) ) is NaN; * ATAN2(+-0, +(anything but NaN)) is +-0 ; * ATAN2(+-0, -(anything but NaN)) is +-pi ; * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; * ATAN2(+-INF,+INF ) is +-pi/4 ; * ATAN2(+-INF,-INF ) is +-3pi/4; * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static class Atan2 { private Atan2() {throw new UnsupportedOperationException();} private static final double tiny = 1.0e-300, pi_o_4 = 0x1.921fb54442d18p-1, // 7.8539816339744827900E-01 pi_o_2 = 0x1.921fb54442d18p0, // 1.5707963267948965580E+00 pi_lo = 0x1.1a62633145c07p-53; // 1.2246467991473531772E-16 static double compute(double y, double x) { double z; int k, m, hx, hy, ix, iy; /*unsigned*/ int lx, ly; hx = __HI(x); ix = hx & 0x7fff_ffff; lx = __LO(x); hy = __HI(y); iy = hy&0x7fff_ffff; ly = __LO(y); if (Double.isNaN(x) || Double.isNaN(y)) return x + y; if (((hx - 0x3ff0_0000) | lx) == 0) // x = 1.0 return StrictMath.atan(y); m = ((hy >> 31) & 1)|((hx >> 30) & 2); // 2*sign(x) + sign(y) // when y = 0 if ((iy | ly) == 0) { switch(m) { case 0: case 1: return y; // atan(+/-0, +anything) = +/-0 case 2: return Math.PI + tiny; // atan(+0, -anything) = pi case 3: return -Math.PI - tiny; // atan(-0, -anything) = -pi } } // when x = 0 if ((ix | lx) == 0) { return (hy < 0)? -pi_o_2 - tiny : pi_o_2 + tiny; } // when x is INF if (ix == 0x7ff0_0000) { if (iy == 0x7ff0_0000) { switch(m) { case 0: return pi_o_4 + tiny; // atan(+INF, +INF) case 1: return -pi_o_4 - tiny; // atan(-INF, +INF) case 2: return 3.0*pi_o_4 + tiny; // atan(+INF, -INF) case 3: return -3.0*pi_o_4 - tiny; // atan(-INF, -INF) } } else { switch(m) { case 0: return 0.0; // atan(+..., +INF) case 1: return -0.0; // atan(-..., +INF) case 2: return Math.PI + tiny; // atan(+..., -INF) case 3: return -Math.PI - tiny; // atan(-..., -INF) } } } // when y is INF if (iy == 0x7ff0_0000) { return (hy < 0)? -pi_o_2 - tiny : pi_o_2 + tiny; } // compute y/x k = (iy - ix) >> 20; if (k > 60) { // |y/x| > 2**60 z = pi_o_2+0.5*pi_lo; } else if (hx < 0 && k < -60) { // |y|/x < -2**60 z = 0.0; } else { // safe to do y/x z = StrictMath.atan(Math.abs(y/x)); } switch (m) { case 0: return z; // atan(+, +) case 1: return -z; // atan(-, +) case 2: return Math.PI - (z - pi_lo); // atan(+, -) default: return (z - pi_lo) - Math.PI; // atan(-, -), case 3 } } } /** * cbrt(x) * Return cube root of x */ public static class Cbrt { // unsigned private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */ private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */ private static final double C = 0x1.15f15f15f15f1p-1; // 19/35 ~= 5.42857142857142815906e-01 private static final double D = -0x1.691de2532c834p-1; // -864/1225 ~= 7.05306122448979611050e-01 private static final double E = 0x1.6a0ea0ea0ea0fp0; // 99/70 ~= 1.41428571428571436819e+00 private static final double F = 0x1.9b6db6db6db6ep0; // 45/28 ~= 1.60714285714285720630e+00 private static final double G = 0x1.6db6db6db6db7p-2; // 5/14 ~= 3.57142857142857150787e-01 private Cbrt() { throw new UnsupportedOperationException(); } public static double compute(double x) { double t = 0.0; double sign; if (x == 0.0 || !Double.isFinite(x)) return x; // Handles signed zeros properly sign = (x < 0.0) ? -1.0: 1.0; x = Math.abs(x); // x <- |x| // Rough cbrt to 5 bits if (x < 0x1.0p-1022) { // subnormal number t = 0x1.0p54; // set t= 2**54 t *= x; t = __HI(t, __HI(t)/3 + B2); } else { int hx = __HI(x); // high word of x t = __HI(t, hx/3 + B1); } // New cbrt to 23 bits, may be implemented in single precision double r, s, w; r = t * t/x; s = C + r*t; t *= G + F/(s + E + D/s); // Chopped to 20 bits and make it larger than cbrt(x) t = __LO(t, 0); t = __HI(t, __HI(t) + 0x00000001); // One step newton iteration to 53 bits with error less than 0.667 ulps s = t * t; // t*t is exact r = x / s; w = t + t; r = (r - t)/(w + r); // r-s is exact t = t + t*r; // Restore the original sign bit return sign * t; } } /** * hypot(x,y) * * Method : * If (assume round-to-nearest) z = x*x + y*y * has error less than sqrt(2)/2 ulp, than * sqrt(z) has error less than 1 ulp (exercise). * * So, compute sqrt(x*x + y*y) with some care as * follows to get the error below 1 ulp: * * Assume x > y > 0; * (if possible, set rounding to round-to-nearest) * 1. if x > 2y use * x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y * where x1 = x with lower 32 bits cleared, x2 = x - x1; else * 2. if x <= 2y use * t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y)) * where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1, * y1= y with lower 32 bits chopped, y2 = y - y1. * * NOTE: scaling may be necessary if some argument is too * large or too tiny * * Special cases: * hypot(x,y) is INF if x or y is +INF or -INF; else * hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * hypot(x,y) returns sqrt(x^2 + y^2) with error less * than 1 ulp (unit in the last place) */ public static class Hypot { public static final double TWO_MINUS_600 = 0x1.0p-600; public static final double TWO_PLUS_600 = 0x1.0p+600; private Hypot() { throw new UnsupportedOperationException(); } public static double compute(double x, double y) { double a = Math.abs(x); double b = Math.abs(y); if (!Double.isFinite(a) || !Double.isFinite(b)) { if (a == INFINITY || b == INFINITY) return INFINITY; else return a + b; // Propagate NaN significand bits } if (b > a) { double tmp = a; a = b; b = tmp; } assert a >= b; // Doing bitwise conversion after screening for NaN allows // the code to not worry about the possibility of // "negative" NaN values. // Note: the ha and hb variables are the high-order // 32-bits of a and b stored as integer values. The ha and // hb values are used first for a rough magnitude // comparison of a and b and second for simulating higher // precision by allowing a and b, respectively, to be // decomposed into non-overlapping portions. Both of these // uses could be eliminated. The magnitude comparison // could be eliminated by extracting and comparing the // exponents of a and b or just be performing a // floating-point divide. Splitting a floating-point // number into non-overlapping portions can be // accomplished by judicious use of multiplies and // additions. For details see T. J. Dekker, A Floating-Point // Technique for Extending the Available Precision, // Numerische Mathematik, vol. 18, 1971, pp.224-242 and // subsequent work. int ha = __HI(a); // high word of a int hb = __HI(b); // high word of b if ((ha - hb) > 0x3c00000) { return a + b; // x / y > 2**60 } int k = 0; if (a > 0x1.00000_ffff_ffffp500) { // a > ~2**500 // scale a and b by 2**-600 ha -= 0x25800000; hb -= 0x25800000; a = a * TWO_MINUS_600; b = b * TWO_MINUS_600; k += 600; } double t1, t2; if (b < 0x1.0p-500) { // b < 2**-500 if (b < Double.MIN_NORMAL) { // subnormal b or 0 */ if (b == 0.0) return a; t1 = 0x1.0p1022; // t1 = 2^1022 b *= t1; a *= t1; k -= 1022; } else { // scale a and b by 2^600 ha += 0x25800000; // a *= 2^600 hb += 0x25800000; // b *= 2^600 a = a * TWO_PLUS_600; b = b * TWO_PLUS_600; k -= 600; } } // medium size a and b double w = a - b; if (w > b) { t1 = 0; t1 = __HI(t1, ha); t2 = a - t1; w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1))); } else { double y1, y2; a = a + a; y1 = 0; y1 = __HI(y1, hb); y2 = b - y1; t1 = 0; t1 = __HI(t1, ha + 0x00100000); t2 = a - t1; w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b))); } if (k != 0) { return Math.powerOfTwoD(k) * w; } else return w; } } /** * Compute x**y * n * Method: Let x = 2 * (1+f) * 1. Compute and return log2(x) in two pieces: * log2(x) = w1 + w2, * where w1 has 53 - 24 = 29 bit trailing zeros. * 2. Perform y*log2(x) = n+y' by simulating multi-precision * arithmetic, where |y'| <= 0.5. * 3. Return x**y = 2**n*exp(y'*log2) * * Special cases: * 1. (anything) ** 0 is 1 * 2. (anything) ** 1 is itself * 3. (anything) ** NAN is NAN * 4. NAN ** (anything except 0) is NAN * 5. +-(|x| > 1) ** +INF is +INF * 6. +-(|x| > 1) ** -INF is +0 * 7. +-(|x| < 1) ** +INF is +0 * 8. +-(|x| < 1) ** -INF is +INF * 9. +-1 ** +-INF is NAN * 10. +0 ** (+anything except 0, NAN) is +0 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 * 12. +0 ** (-anything except 0, NAN) is +INF * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) * 15. +INF ** (+anything except 0,NAN) is +INF * 16. +INF ** (-anything except 0,NAN) is +0 * 17. -INF ** (anything) = -0 ** (-anything) * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) * 19. (-anything except 0 and inf) ** (non-integer) is NAN * * Accuracy: * pow(x,y) returns x**y nearly rounded. In particular * pow(integer,integer) * always returns the correct integer provided it is * representable. */ public static class Pow { private Pow() { throw new UnsupportedOperationException(); } public static double compute(final double x, final double y) { double z; double r, s, t, u, v, w; int i, j, k, n; // y == zero: x**0 = 1 if (y == 0.0) return 1.0; // +/-NaN return x + y to propagate NaN significands if (Double.isNaN(x) || Double.isNaN(y)) return x + y; final double y_abs = Math.abs(y); double x_abs = Math.abs(x); // Special values of y if (y == 2.0) { return x * x; } else if (y == 0.5) { if (x >= -Double.MAX_VALUE) // Handle x == -infinity later return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0 } else if (y_abs == 1.0) { // y is +/-1 return (y == 1.0) ? x : 1.0 / x; } else if (y_abs == INFINITY) { // y is +/-infinity if (x_abs == 1.0) return y - y; // inf**+/-1 is NaN else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0 return (y >= 0) ? y : 0.0; else // (|x| < 1)**-/+inf = inf, 0 return (y < 0) ? -y : 0.0; } final int hx = __HI(x); int ix = hx & 0x7fffffff; /* * When x < 0, determine if y is an odd integer: * y_is_int = 0 ... y is not an integer * y_is_int = 1 ... y is an odd int * y_is_int = 2 ... y is an even int */ int y_is_int = 0; if (hx < 0) { if (y_abs >= 0x1.0p53) // |y| >= 2^53 = 9.007199254740992E15 y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0 else if (y_abs >= 1.0) { // |y| >= 1.0 long y_abs_as_long = (long) y_abs; if ( ((double) y_abs_as_long) == y_abs) { y_is_int = 2 - (int)(y_abs_as_long & 0x1L); } } } // Special value of x if (x_abs == 0.0 || x_abs == INFINITY || x_abs == 1.0) { z = x_abs; // x is +/-0, +/-inf, +/-1 if (y < 0.0) z = 1.0/z; // z = (1/|x|) if (hx < 0) { if (((ix - 0x3ff00000) | y_is_int) == 0) { z = (z-z)/(z-z); // (-1)**non-int is NaN } else if (y_is_int == 1) z = -1.0 * z; // (x < 0)**odd = -(|x|**odd) } return z; } n = (hx >> 31) + 1; // (x < 0)**(non-int) is NaN if ((n | y_is_int) == 0) return (x-x)/(x-x); s = 1.0; // s (sign of result -ve**odd) = -1 else = 1 if ( (n | (y_is_int - 1)) == 0) s = -1.0; // (-ve)**(odd int) double p_h, p_l, t1, t2; // |y| is huge if (y_abs > 0x1.00000_ffff_ffffp31) { // if |y| > ~2**31 final double INV_LN2 = 0x1.7154_7652_b82fep0; // 1.44269504088896338700e+00 = 1/ln2 final double INV_LN2_H = 0x1.715476p0; // 1.44269502162933349609e+00 = 24 bits of 1/ln2 final double INV_LN2_L = 0x1.4ae0_bf85_ddf44p-26; // 1.92596299112661746887e-08 = 1/ln2 tail // Over/underflow if x is not close to one if (x_abs < 0x1.fffff_0000_0000p-1) // |x| < ~0.9999995231628418 return (y < 0.0) ? s * INFINITY : s * 0.0; if (x_abs > 0x1.00000_ffff_ffffp0) // |x| > ~1.0 return (y > 0.0) ? s * INFINITY : s * 0.0; /* * now |1-x| is tiny <= 2**-20, sufficient to compute * log(x) by x - x^2/2 + x^3/3 - x^4/4 */ t = x_abs - 1.0; // t has 20 trailing zeros w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); u = INV_LN2_H * t; // INV_LN2_H has 21 sig. bits v = t * INV_LN2_L - w * INV_LN2; t1 = u + v; t1 =__LO(t1, 0); t2 = v - (t1 - u); } else { final double CP = 0x1.ec70_9dc3_a03fdp-1; // 9.61796693925975554329e-01 = 2/(3ln2) final double CP_H = 0x1.ec709ep-1; // 9.61796700954437255859e-01 = (float)cp final double CP_L = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l; n = 0; // Take care of subnormal numbers if (ix < 0x00100000) { x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0 n -= 53; ix = __HI(x_abs); } n += ((ix) >> 20) - 0x3ff; j = ix & 0x000fffff; // Determine interval ix = j | 0x3ff00000; // Normalize ix if (j <= 0x3988E) k = 0; // |x| > 1) | 0x20000000) + 0x00080000 + (k << 18) ); t_l = x_abs - (t_h - BP[k]); s_l = v * ((u - s_h * t_h) - s_h * t_l); // Compute log(x_abs) s2 = ss * ss; r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h + ss); s2 = s_h * s_h; t_h = 3.0 + s2 + r; t_h = __LO(t_h, 0); t_l = r - ((t_h - 3.0) - s2); // u+v = ss*(1+...) u = s_h * t_h; v = s_l * t_h + t_l * ss; // 2/(3log2)*(ss + ...) p_h = u + v; p_h = __LO(p_h, 0); p_l = v - (p_h - u); z_h = CP_H * p_h; // CP_H + CP_L = 2/(3*log2) z_l = CP_L * p_h + p_l * CP + DP_L[k]; // log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l t = (double)n; t1 = (((z_h + z_l) + DP_H[k]) + t); t1 = __LO(t1, 0); t2 = z_l - (((t1 - t) - DP_H[k]) - z_h); } // Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2) double y1 = y; y1 = __LO(y1, 0); p_l = (y - y1) * t1 + y * t2; p_h = y1 * t1; z = p_l + p_h; j = __HI(z); i = __LO(z); if (j >= 0x40900000) { // z >= 1024 if (((j - 0x40900000) | i)!=0) // if z > 1024 return s * INFINITY; // Overflow else { final double OVT = 8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp)) if (p_l + OVT > z - p_h) return s * INFINITY; // Overflow } } else if ((j & 0x7fffffff) >= 0x4090cc00 ) { // z <= -1075 if (((j - 0xc090cc00) | i)!=0) // z < -1075 return s * 0.0; // Underflow else { if (p_l <= z - p_h) return s * 0.0; // Underflow } } /* * Compute 2**(p_h+p_l) */ // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3 final double P1 = 0x1.5555_5555_5553ep-3; // 1.66666666666666019037e-01 final double P2 = -0x1.6c16_c16b_ebd93p-9; // -2.77777777770155933842e-03 final double P3 = 0x1.1566_aaf2_5de2cp-14; // 6.61375632143793436117e-05 final double P4 = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06 final double P5 = 0x1.6376_972b_ea4d0p-25; // 4.13813679705723846039e-08 final double LG2 = 0x1.62e4_2fef_a39efp-1; // 6.93147180559945286227e-01 final double LG2_H = 0x1.62e43p-1; // 6.93147182464599609375e-01 final double LG2_L = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09 i = j & 0x7fffffff; k = (i >> 20) - 0x3ff; n = 0; if (i > 0x3fe00000) { // if |z| > 0.5, set n = [z + 0.5] n = j + (0x00100000 >> (k + 1)); k = ((n & 0x7fffffff) >> 20) - 0x3ff; // new k for n t = 0.0; t = __HI(t, (n & ~(0x000fffff >> k)) ); n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); if (j < 0) n = -n; p_h -= t; } t = p_l + p_h; t = __LO(t, 0); u = t * LG2_H; v = (p_l - (t - p_h)) * LG2 + t * LG2_L; z = u + v; w = v - (z - u); t = z * z; t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); r = (z * t1)/(t1 - 2.0) - (w + z * w); z = 1.0 - (r - z); j = __HI(z); j += (n << 20); if ((j >> 20) <= 0) z = Math.scalb(z, n); // subnormal output else { int z_hi = __HI(z); z_hi += (n << 20); z = __HI(z, z_hi); } return s * z; } } /** * Returns the exponential of x. * * Method * 1. Argument reduction: * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... * We use a special Reme algorithm on [0,0.34658] to generate * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ------- * R - r * r*R1(r) * = 1 + r + ----------- (for better accuracy) * 2 - R1(r) * where * 2 4 10 * R1(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF) is 0, and * for finite argument, only exp(0)=1 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then exp(x) overflow * if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static final class Exp { private Exp() {throw new UnsupportedOperationException();} private static final double[] half = {0.5, -0.5,}; private static final double huge = 1.0e+300; private static final double twom1000= 0x1.0p-1000; // 9.33263618503218878990e-302 = 2^-1000 private static final double o_threshold= 0x1.62e42fefa39efp9; // 7.09782712893383973096e+02 private static final double u_threshold= -0x1.74910d52d3051p9; // -7.45133219101941108420e+02; private static final double[] ln2HI ={ 0x1.62e42feep-1, // 6.93147180369123816490e-01 -0x1.62e42feep-1}; // -6.93147180369123816490e-01 private static final double[] ln2LO ={ 0x1.a39ef35793c76p-33, // 1.90821492927058770002e-10 -0x1.a39ef35793c76p-33}; // -1.90821492927058770002e-10 private static final double invln2 = 0x1.71547652b82fep0; // 1.44269504088896338700e+00 private static final double P1 = 0x1.555555555553ep-3; // 1.66666666666666019037e-01 private static final double P2 = -0x1.6c16c16bebd93p-9; // -2.77777777770155933842e-03 private static final double P3 = 0x1.1566aaf25de2cp-14; // 6.61375632143793436117e-05 private static final double P4 = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06 private static final double P5 = 0x1.6376972bea4d0p-25; // 4.13813679705723846039e-08 public static double compute(double x) { double y; double hi = 0.0; double lo = 0.0; double c; double t; int k = 0; int xsb; /*unsigned*/ int hx; hx = __HI(x); /* high word of x */ xsb = (hx >> 31) & 1; /* sign bit of x */ hx &= 0x7fffffff; /* high word of |x| */ /* filter out non-finite argument */ if (hx >= 0x40862E42) { /* if |x| >= 709.78... */ if (hx >= 0x7ff00000) { if (((hx & 0xfffff) | __LO(x)) != 0) return x + x; /* NaN */ else return (xsb == 0) ? x : 0.0; /* exp(+-inf) = {inf, 0} */ } if (x > o_threshold) return huge * huge; /* overflow */ if (x < u_threshold) // unsigned compare needed here? return twom1000 * twom1000; /* underflow */ } /* argument reduction */ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ hi = x - ln2HI[xsb]; lo=ln2LO[xsb]; k = 1 - xsb - xsb; } else { k = (int)(invln2 * x + half[xsb]); t = k; hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ lo = t*ln2LO[0]; } x = hi - lo; } else if (hx < 0x3e300000) { /* when |x|<2**-28 */ if (huge + x > 1.0) return 1.0 + x; /* trigger inexact */ } else { k = 0; } /* x is now in primary range */ t = x * x; c = x - t*(P1 + t*(P2 + t*(P3 + t*(P4 + t*P5)))); if (k == 0) return 1.0 - ((x*c)/(c - 2.0) - x); else y = 1.0 - ((lo - (x*c)/(2.0 - c)) - hi); if(k >= -1021) { y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */ return y; } else { y = __HI(y, __HI(y) + ((k + 1000) << 20)); /* add k to y's exponent */ return y * twom1000; } } } /** * Return the (natural) logarithm of x * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static final class Log { private Log() {throw new UnsupportedOperationException();} private static final double ln2_hi = 0x1.62e42feep-1, // 6.93147180369123816490e-01 ln2_lo = 0x1.a39ef35793c76p-33, // 1.90821492927058770002e-10 Lg1 = 0x1.5555555555593p-1, // 6.666666666666735130e-01 Lg2 = 0x1.999999997fa04p-2, // 3.999999999940941908e-01 Lg3 = 0x1.2492494229359p-2, // 2.857142874366239149e-01 Lg4 = 0x1.c71c51d8e78afp-3, // 2.222219843214978396e-01 Lg5 = 0x1.7466496cb03dep-3, // 1.818357216161805012e-01 Lg6 = 0x1.39a09d078c69fp-3, // 1.531383769920937332e-01 Lg7 = 0x1.2f112df3e5244p-3; // 1.479819860511658591e-01 private static final double zero = 0.0; static double compute(double x) { double hfsq, f, s, z, R, w, t1, t2, dk; int k, hx, i, j; /*unsigned*/ int lx; hx = __HI(x); // high word of x lx = __LO(x); // low word of x k=0; if (hx < 0x0010_0000) { // x < 2**-1022 if (((hx & 0x7fff_ffff) | lx) == 0) { // log(+-0) = -inf return -TWO54/zero; } if (hx < 0) { // log(-#) = NaN return (x - x)/zero; } k -= 54; x *= TWO54; // subnormal number, scale up x hx = __HI(x); // high word of x } if (hx >= 0x7ff0_0000) { return x + x; } k += (hx >> 20) - 1023; hx &= 0x000f_ffff; i = (hx + 0x9_5f64) & 0x10_0000; x =__HI(x, hx | (i ^ 0x3ff0_0000)); // normalize x or x/2 k += (i >> 20); f = x - 1.0; if ((0x000f_ffff & (2 + hx)) < 3) {// |f| < 2**-20 if (f == zero) { if (k == 0) { return zero; } else { dk = (double)k; return dk*ln2_hi + dk*ln2_lo; } } R = f*f*(0.5 - 0.33333333333333333*f); if (k == 0) { return f - R; } else { dk = (double)k; return dk*ln2_hi - ((R - dk*ln2_lo) - f); } } s = f/(2.0 + f); dk = (double)k; z = s*s; i = hx - 0x6_147a; w = z*z; j = 0x6b851 - hx; t1= w*(Lg2 + w*(Lg4 + w*Lg6)); t2= z*(Lg1 + w*(Lg3 + w*(Lg5 + w*Lg7))); i |= j; R = t2 + t1; if (i > 0) { hfsq = 0.5*f*f; if (k == 0) { return f-(hfsq - s*(hfsq + R)); } else { return dk*ln2_hi - ((hfsq - (s*(hfsq + R) + dk*ln2_lo)) - f); } } else { if (k == 0) { return f - s*(f - R); } else { return dk*ln2_hi - ((s*(f - R) - dk*ln2_lo) - f); } } } } /** * Return the base 10 logarithm of x * * Method : * Let log10_2hi = leading 40 bits of log10(2) and * log10_2lo = log10(2) - log10_2hi, * ivln10 = 1/log(10) rounded. * Then * n = ilogb(x), * if(n<0) n = n+1; * x = scalbn(x,-n); * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) * * Note 1: * To guarantee log10(10**n)=n, where 10**n is normal, the rounding * mode must set to Round-to-Nearest. * Note 2: * [1/log(10)] rounded to 53 bits has error .198 ulps; * log10 is monotonic at all binary break points. * * Special cases: * log10(x) is NaN with signal if x < 0; * log10(+INF) is +INF with no signal; log10(0) is -INF with signal; * log10(NaN) is that NaN with no signal; * log10(10**N) = N for N=0,1,...,22. * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ static class Log10 { private static final double ivln10 = 0x1.bcb7b1526e50ep-2; // 4.34294481903251816668e-01 private static final double log10_2hi = 0x1.34413509f6p-2; // 3.01029995663611771306e-01; private static final double log10_2lo = 0x1.9fef311f12b36p-42; // 3.69423907715893078616e-13; private Log10() { throw new UnsupportedOperationException(); } public static double compute(double x) { double y, z; int i, k; int hx = __HI(x); // high word of x int lx = __LO(x); // low word of x k=0; if (hx < 0x0010_0000) { /* x < 2**-1022 */ if (((hx & 0x7fff_ffff) | lx) == 0) { return -TWO54/0.0; /* log(+-0)=-inf */ } if (hx < 0) { return (x - x)/0.0; /* log(-#) = NaN */ } k -= 54; x *= TWO54; /* subnormal number, scale up x */ hx = __HI(x); } if (hx >= 0x7ff0_0000) { return x + x; } k += (hx >> 20) - 1023; i = (k & 0x8000_0000) >>> 31; // unsigned shift hx = (hx & 0x000f_ffff) | ((0x3ff - i) << 20); y = (double)(k + i); x = __HI(x, hx); // replace high word of x with hx z = y * log10_2lo + ivln10 * StrictMath.log(x); return z + y * log10_2hi; } } /** * Returns the natural logarithm of the sum of the argument and 1. * * Method : * 1. Argument Reduction: find k and f such that * 1+x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * Note. If k=0, then f=x is exact. However, if k!=0, then f * may not be representable exactly. In that case, a correction * term is need. Let u=1+x rounded. Let c = (1+x)-u, then * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), * and add back the correction term c/u. * (Note: when x > 2**53, one can simply return log(x)) * * 2. Approximation of log1p(f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s * (the values of Lp1 to Lp7 are listed in the program) * and * | 2 14 | -58.45 * | Lp1*s +...+Lp7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log1p(f) = f - (hfsq - s*(hfsq+R)). * * 3. Finally, log1p(x) = k*ln2 + log1p(f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log1p(x) is NaN with signal if x < -1 (including -INF) ; * log1p(+INF) is +INF; log1p(-1) is -INF with signal; * log1p(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. * * Note: Assuming log() return accurate answer, the following * algorithm can be used to compute log1p(x) to within a few ULP: * * u = 1+x; * if(u==1.0) return x ; else * return log(u)*(x/(u-1.0)); * * See HP-15C Advanced Functions Handbook, p.193. */ static class Log1p { private static final double ln2_hi = 0x1.62e42feep-1; // 6.93147180369123816490e-01 private static final double ln2_lo = 0x1.a39ef35793c76p-33; // 1.90821492927058770002e-10 private static final double Lp1 = 0x1.5555555555593p-1; // 6.666666666666735130e-01 private static final double Lp2 = 0x1.999999997fa04p-2; // 3.999999999940941908e-01 private static final double Lp3 = 0x1.2492494229359p-2; // 2.857142874366239149e-01 private static final double Lp4 = 0x1.c71c51d8e78afp-3; // 2.222219843214978396e-01 private static final double Lp5 = 0x1.7466496cb03dep-3; // 1.818357216161805012e-01 private static final double Lp6 = 0x1.39a09d078c69fp-3; // 1.531383769920937332e-01 private static final double Lp7 = 0x1.2f112df3e5244p-3; // 1.479819860511658591e-01 public static double compute(double x) { double hfsq, f=0, c=0, s, z, R, u; int k, hx, hu=0, ax; hx = __HI(x); /* high word of x */ ax = hx & 0x7fff_ffff; k = 1; if (hx < 0x3FDA_827A) { /* x < 0.41422 */ if (ax >= 0x3ff0_0000) { /* x <= -1.0 */ if (x == -1.0) /* log1p(-1)=-inf */ return -INFINITY; else return Double.NaN; /* log1p(x < -1) = NaN */ } if (ax < 0x3e20_0000) { /* |x| < 2**-29 */ if (TWO54 + x > 0.0 /* raise inexact */ && ax < 0x3c90_0000) /* |x| < 2**-54 */ return x; else return x - x*x*0.5; } if (hx > 0 || hx <= 0xbfd2_bec3) { /* -0.2929 < x < 0.41422 */ k=0; f=x; hu=1; } } if (hx >= 0x7ff0_0000) { return x + x; } if (k != 0) { if (hx < 0x4340_0000) { u = 1.0 + x; hu = __HI(u); /* high word of u */ k = (hu >> 20) - 1023; c = (k > 0)? 1.0 - (u-x) : x-(u-1.0); /* correction term */ c /= u; } else { u = x; hu = __HI(u); /* high word of u */ k = (hu >> 20) - 1023; c = 0; } hu &= 0x000f_ffff; if (hu < 0x6_a09e) { u = __HI(u, hu | 0x3ff0_0000); /* normalize u */ } else { k += 1; u = __HI(u, hu | 0x3fe0_0000); /* normalize u/2 */ hu = (0x0010_0000 - hu) >> 2; } f = u - 1.0; } hfsq = 0.5*f*f; if (hu == 0) { /* |f| < 2**-20 */ if (f == 0.0) { if (k == 0) { return 0.0; } else { c += k * ln2_lo; return k * ln2_hi + c; } } R = hfsq * (1.0 - 0.66666666666666666*f); if (k == 0) { return f - R; } else { return k * ln2_hi - ((R-(k * ln2_lo+c)) - f); } } s = f/(2.0 + f); z = s * s; R = z * (Lp1 + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z*Lp7)))))); if (k == 0) { return f - (hfsq - s*(hfsq + R)); } else { return k * ln2_hi - ((hfsq - (s*(hfsq + R) + (k * ln2_lo+c))) - f); } } } /* expm1(x) * Returns exp(x)-1, the exponential of x minus 1. * * Method * 1. Argument reduction: * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 * * Here a correction term c will be computed to compensate * the error in r when rounded to a floating-point number. * * 2. Approximating expm1(r) by a special rational function on * the interval [0,0.34658]: * Since * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... * we define R1(r*r) by * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) * That is, * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... * We use a special Reme algorithm on [0,0.347] to generate * a polynomial of degree 5 in r*r to approximate R1. The * maximum error of this polynomial approximation is bounded * by 2**-61. In other words, * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 * where Q1 = -1.6666666666666567384E-2, * Q2 = 3.9682539681370365873E-4, * Q3 = -9.9206344733435987357E-6, * Q4 = 2.5051361420808517002E-7, * Q5 = -6.2843505682382617102E-9; * (where z=r*r, and the values of Q1 to Q5 are listed below) * with error bounded by * | 5 | -61 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 * | | * * expm1(r) = exp(r)-1 is then computed by the following * specific way which minimize the accumulation rounding error: * 2 3 * r r [ 3 - (R1 + R1*r/2) ] * expm1(r) = r + --- + --- * [--------------------] * 2 2 [ 6 - r*(3 - R1*r/2) ] * * To compensate the error in the argument reduction, we use * expm1(r+c) = expm1(r) + c + expm1(r)*c * ~ expm1(r) + c + r*c * Thus c+r*c will be added in as the correction terms for * expm1(r+c). Now rearrange the term to avoid optimization * screw up: * ( 2 2 ) * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) * ( ) * * = r - E * 3. Scale back to obtain expm1(x): * From step 1, we have * expm1(x) = either 2^k*[expm1(r)+1] - 1 * = or 2^k*[expm1(r) + (1-2^-k)] * 4. Implementation notes: * (A). To save one multiplication, we scale the coefficient Qi * to Qi*2^i, and replace z by (x^2)/2. * (B). To achieve maximum accuracy, we compute expm1(x) by * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) * (ii) if k=0, return r-E * (iii) if k=-1, return 0.5*(r-E)-0.5 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) * else return 1.0+2.0*(r-E); * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else * (vii) return 2^k(1-((E+2^-k)-r)) * * Special cases: * expm1(INF) is INF, expm1(NaN) is NaN; * expm1(-INF) is -1, and * for finite argument, only expm1(0)=0 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then expm1(x) overflow * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static class Expm1 { private static final double one = 1.0; private static final double huge = 1.0e+300; private static final double tiny = 1.0e-300; private static final double o_threshold = 0x1.62e42fefa39efp9; // 7.09782712893383973096e+02 private static final double ln2_hi = 0x1.62e42feep-1; // 6.93147180369123816490e-01 private static final double ln2_lo = 0x1.a39ef35793c76p-33; // 1.90821492927058770002e-10 private static final double invln2 = 0x1.71547652b82fep0; // 1.44269504088896338700e+00 // scaled coefficients related to expm1 private static final double Q1 = -0x1.11111111110f4p-5; // -3.33333333333331316428e-02 private static final double Q2 = 0x1.a01a019fe5585p-10; // 1.58730158725481460165e-03 private static final double Q3 = -0x1.4ce199eaadbb7p-14; // -7.93650757867487942473e-05 private static final double Q4 = 0x1.0cfca86e65239p-18; // 4.00821782732936239552e-06 private static final double Q5 = -0x1.afdb76e09c32dp-23; // -2.01099218183624371326e-07 static double compute(double x) { double y, hi, lo, c=0, t, e, hxs, hfx, r1; int k, xsb; /*unsigned*/ int hx; hx = __HI(x); // high word of x xsb = hx & 0x8000_0000; // sign bit of x y = Math.abs(x); hx &= 0x7fff_ffff; // high word of |x| // filter out huge and non-finite argument if (hx >= 0x4043_687A) { // if |x| >= 56*ln2 if (hx >= 0x4086_2E42) { // if |x| >= 709.78... if (hx >= 0x7ff_00000) { if (((hx & 0xf_ffff) | __LO(x)) != 0) { return x + x; // NaN } else { return (xsb == 0)? x : -1.0; // exp(+-inf)={inf,-1} } } if (x > o_threshold) { return huge*huge; // overflow } } if (xsb != 0) { // x < -56*ln2, return -1.0 with inexact if (x + tiny < 0.0) { // raise inexact return tiny - one; // return -1 } } } // argument reduction if (hx > 0x3fd6_2e42) { // if |x| > 0.5 ln2 if (hx < 0x3FF0_A2B2) { // and |x| < 1.5 ln2 if (xsb == 0) { hi = x - ln2_hi; lo = ln2_lo; k = 1; } else { hi = x + ln2_hi; lo = -ln2_lo; k = -1; } } else { k = (int)(invln2*x + ((xsb == 0) ? 0.5 : -0.5)); t = k; hi = x - t*ln2_hi; // t*ln2_hi is exact here lo = t*ln2_lo; } x = hi - lo; c = (hi - x) - lo; } else if (hx < 0x3c90_0000) { // when |x| < 2**-54, return x t = huge + x; // return x with inexact flags when x != 0 return x - (t - (huge + x)); } else { k = 0; } // x is now in primary range hfx = 0.5*x; hxs = x*hfx; r1 = one + hxs*(Q1 + hxs*(Q2 + hxs*(Q3 + hxs*(Q4 + hxs*Q5)))); t = 3.0 - r1*hfx; e = hxs *((r1 - t)/(6.0 - x*t)); if (k == 0) { return x - (x*e - hxs); // c is 0 } else { e = (x*(e - c) - c); e -= hxs; if (k == -1) { return 0.5*(x - e) - 0.5; } if (k == 1) { if (x < -0.25) { return -2.0*(e - (x + 0.5)); } else { return one + 2.0*(x - e); } } if (k <= -2 || k > 56) { // suffice to return exp(x) - 1 y = one - (e - x); y = __HI(y, __HI(y) + (k << 20)); // add k to y's exponent return y - one; } t = one; if (k < 20) { t = __HI(t, 0x3ff0_0000 - (0x2_00000 >> k)); // t = 1-2^-k y = t - ( e - x); y = __HI(y, __HI(y) + (k << 20)); // add k to y's exponent } else { t = __HI(t, ((0x3ff - k) << 20)); // 2^-k y = x - (e + t); y += one; y = __HI(y, __HI(y) + (k << 20)); // add k to y's exponent } } return y; } } /** * Method : * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 * 1. Replace x by |x| (sinh(-x) = -sinh(x)). * 2. * E + E/(E+1) * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) * 2 * * 22 <= x <= lnovft : sinh(x) := exp(x)/2 * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2) * ln2ovft < x : sinh(x) := x*shuge (overflow) * * Special cases: * sinh(x) is |x| if x is +INF, -INF, or NaN. * only sinh(0)=0 is exact for finite x. */ static final class Sinh { private Sinh() {throw new UnsupportedOperationException();} private static final double shuge = 1.0e307; static double compute(double x) { double t, w, h; int ix, jx; /* unsigned */ int lx; // High word of |x| jx = __HI(x); ix = jx & 0x7fff_ffff; // x is INF or NaN if (ix >= 0x7ff0_0000) { return x + x; } h = 0.5; if (jx < 0) { h = -h; } // |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) if (ix < 0x4036_0000) { // |x| < 22 if (ix < 0x3e30_0000) // |x| < 2**-28 if (shuge + x > 1.0) { // sinh(tiny) = tiny with inexact return x; } t = StrictMath.expm1(Math.abs(x)); if (ix < 0x3ff0_0000) { return h*(2.0 * t - t*t/(t + 1.0)); } return h*(t + t/(t + 1.0)); } // |x| in [22, log(maxdouble)] return 0.5*exp(|x|) if (ix < 0x4086_2E42) { return h*StrictMath.exp(Math.abs(x)); } // |x| in [log(maxdouble), overflowthresold] lx = __LO(x); if (ix < 0x4086_33CE || ((ix == 0x4086_33ce) && (Long.compareUnsigned(lx, 0x8fb9_f87d) <= 0 ))) { w = StrictMath.exp(0.5 * Math.abs(x)); t = h * w; return t * w; } // |x| > overflowthresold, sinh(x) overflow return x * shuge; } } /** * Method : * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 * 1. Replace x by |x| (cosh(x) = cosh(-x)). * 2. * [ exp(x) - 1 ]^2 * 0 <= x <= ln2/2 : cosh(x) := 1 + ------------------- * 2*exp(x) * * exp(x) + 1/exp(x) * ln2/2 <= x <= 22 : cosh(x) := ------------------- * 2 * 22 <= x <= lnovft : cosh(x) := exp(x)/2 * lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2) * ln2ovft < x : cosh(x) := huge*huge (overflow) * * Special cases: * cosh(x) is |x| if x is +INF, -INF, or NaN. * only cosh(0)=1 is exact for finite x. */ static final class Cosh { private Cosh() {throw new UnsupportedOperationException();} private static final double huge = 1.0e300; static double compute(double x) { double t, w; int ix; /*unsigned*/ int lx; // High word of |x| ix = __HI(x); ix &= 0x7fff_ffff; // x is INF or NaN if (ix >= 0x7ff0_0000) { return x*x; } // |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) if (ix < 0x3fd6_2e43) { t = StrictMath.expm1(Math.abs(x)); w = 1.0 + t; if (ix < 0x3c80_0000) { // cosh(tiny) = 1 return w; } return 1.0 + (t * t)/(w + w); } // |x| in [0.5*ln2, 22], return (exp(|x|) + 1/exp(|x|)/2 if (ix < 0x4036_0000) { t = StrictMath.exp(Math.abs(x)); return 0.5*t + 0.5/t; } // |x| in [22, log(maxdouble)] return 0.5*exp(|x|) if (ix < 0x4086_2E42) { return 0.5*StrictMath.exp(Math.abs(x)); } // |x| in [log(maxdouble), overflowthresold] lx = __LO(x); if (ix<0x4086_33CE || ((ix == 0x4086_33ce) && (Integer.compareUnsigned(lx, 0x8fb9_f87d) <= 0))) { w = StrictMath.exp(0.5*Math.abs(x)); t = 0.5*w; return t*w; } // |x| > overflowthresold, cosh(x) overflow return huge*huge; } } /** * Return the Hyperbolic Tangent of x * * Method : * x -x * e - e * 0. tanh(x) is defined to be ----------- * x -x * e + e * 1. reduce x to non-negative by tanh(-x) = -tanh(x). * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x) * -t * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) * t + 2 * 2 * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) * t + 2 * 22.0 < x <= INF : tanh(x) := 1. * * Special cases: * tanh(NaN) is NaN; * only tanh(0)=0 is exact for finite argument. */ static final class Tanh { private Tanh() {throw new UnsupportedOperationException();} private static final double tiny = 1.0e-300; static double compute(double x) { double t, z; int jx, ix; // High word of |x|. jx = __HI(x); ix = jx & 0x7fff_ffff; // x is INF or NaN if (ix >= 0x7ff0_0000) { if (jx >= 0) { // tanh(+-inf)=+-1 return 1.0/x + 1.0; } else { // tanh(NaN) = NaN return 1.0/x - 1.0; } } // |x| < 22 if (ix < 0x4036_0000) { // |x| < 22 if (ix<0x3c80_0000) // |x| < 2**-55 return x*(1.0 + x); // tanh(small) = small if (ix>=0x3ff0_0000) { // |x| >= 1 t = StrictMath.expm1(2.0*Math.abs(x)); z = 1.0 - 2.0/(t + 2.0); } else { t = StrictMath.expm1(-2.0*Math.abs(x)); z= -t/(t + 2.0); } } else { // |x| > 22, return +-1 z = 1.0 - tiny; // raised inexact flag } return (jx >= 0)? z: -z; } } }