mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-17 01:24:33 +02:00
5117 lines
161 KiB
C++
5117 lines
161 KiB
C++
/*
|
|
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright 2012, 2014 SAP AG. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
// According to the AIX OS doc #pragma alloca must be used
|
|
// with C++ compiler before referencing the function alloca()
|
|
#pragma alloca
|
|
|
|
// no precompiled headers
|
|
#include "classfile/classLoader.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "compiler/compileBroker.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "jvm_aix.h"
|
|
#include "libperfstat_aix.hpp"
|
|
#include "loadlib_aix.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/filemap.hpp"
|
|
#include "mutex_aix.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "os_share_aix.hpp"
|
|
#include "porting_aix.hpp"
|
|
#include "prims/jniFastGetField.hpp"
|
|
#include "prims/jvm.h"
|
|
#include "prims/jvm_misc.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/extendedPC.hpp"
|
|
#include "runtime/globals.hpp"
|
|
#include "runtime/interfaceSupport.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/objectMonitor.hpp"
|
|
#include "runtime/osThread.hpp"
|
|
#include "runtime/perfMemory.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/statSampler.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/threadCritical.hpp"
|
|
#include "runtime/timer.hpp"
|
|
#include "services/attachListener.hpp"
|
|
#include "services/runtimeService.hpp"
|
|
#include "utilities/decoder.hpp"
|
|
#include "utilities/defaultStream.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/growableArray.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
|
|
// put OS-includes here (sorted alphabetically)
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <poll.h>
|
|
#include <procinfo.h>
|
|
#include <pthread.h>
|
|
#include <pwd.h>
|
|
#include <semaphore.h>
|
|
#include <signal.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/ipc.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/select.h>
|
|
#include <sys/shm.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/sysinfo.h>
|
|
#include <sys/systemcfg.h>
|
|
#include <sys/time.h>
|
|
#include <sys/times.h>
|
|
#include <sys/types.h>
|
|
#include <sys/utsname.h>
|
|
#include <sys/vminfo.h>
|
|
#include <sys/wait.h>
|
|
|
|
// Add missing declarations (should be in procinfo.h but isn't until AIX 6.1).
|
|
#if !defined(_AIXVERSION_610)
|
|
extern "C" {
|
|
int getthrds64(pid_t ProcessIdentifier,
|
|
struct thrdentry64* ThreadBuffer,
|
|
int ThreadSize,
|
|
tid64_t* IndexPointer,
|
|
int Count);
|
|
}
|
|
#endif
|
|
|
|
// Excerpts from systemcfg.h definitions newer than AIX 5.3
|
|
#ifndef PV_7
|
|
# define PV_7 0x200000 // Power PC 7
|
|
# define PV_7_Compat 0x208000 // Power PC 7
|
|
#endif
|
|
|
|
#define MAX_PATH (2 * K)
|
|
|
|
// for timer info max values which include all bits
|
|
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
|
|
// for multipage initialization error analysis (in 'g_multipage_error')
|
|
#define ERROR_MP_OS_TOO_OLD 100
|
|
#define ERROR_MP_EXTSHM_ACTIVE 101
|
|
#define ERROR_MP_VMGETINFO_FAILED 102
|
|
#define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
|
|
|
|
// the semantics in this file are thus that codeptr_t is a *real code ptr*
|
|
// This means that any function taking codeptr_t as arguments will assume
|
|
// a real codeptr and won't handle function descriptors (eg getFuncName),
|
|
// whereas functions taking address as args will deal with function
|
|
// descriptors (eg os::dll_address_to_library_name)
|
|
typedef unsigned int* codeptr_t;
|
|
|
|
// typedefs for stackslots, stack pointers, pointers to op codes
|
|
typedef unsigned long stackslot_t;
|
|
typedef stackslot_t* stackptr_t;
|
|
|
|
// query dimensions of the stack of the calling thread
|
|
static void query_stack_dimensions(address* p_stack_base, size_t* p_stack_size);
|
|
|
|
// function to check a given stack pointer against given stack limits
|
|
inline bool is_valid_stackpointer(stackptr_t sp, stackptr_t stack_base, size_t stack_size) {
|
|
if (((uintptr_t)sp) & 0x7) {
|
|
return false;
|
|
}
|
|
if (sp > stack_base) {
|
|
return false;
|
|
}
|
|
if (sp < (stackptr_t) ((address)stack_base - stack_size)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// returns true if function is a valid codepointer
|
|
inline bool is_valid_codepointer(codeptr_t p) {
|
|
if (!p) {
|
|
return false;
|
|
}
|
|
if (((uintptr_t)p) & 0x3) {
|
|
return false;
|
|
}
|
|
if (LoadedLibraries::find_for_text_address((address)p) == NULL) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// macro to check a given stack pointer against given stack limits and to die if test fails
|
|
#define CHECK_STACK_PTR(sp, stack_base, stack_size) { \
|
|
guarantee(is_valid_stackpointer((stackptr_t)(sp), (stackptr_t)(stack_base), stack_size), "Stack Pointer Invalid"); \
|
|
}
|
|
|
|
// macro to check the current stack pointer against given stacklimits
|
|
#define CHECK_CURRENT_STACK_PTR(stack_base, stack_size) { \
|
|
address sp; \
|
|
sp = os::current_stack_pointer(); \
|
|
CHECK_STACK_PTR(sp, stack_base, stack_size); \
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// global variables (for a description see os_aix.hpp)
|
|
|
|
julong os::Aix::_physical_memory = 0;
|
|
pthread_t os::Aix::_main_thread = ((pthread_t)0);
|
|
int os::Aix::_page_size = -1;
|
|
int os::Aix::_on_pase = -1;
|
|
int os::Aix::_os_version = -1;
|
|
int os::Aix::_stack_page_size = -1;
|
|
size_t os::Aix::_shm_default_page_size = -1;
|
|
int os::Aix::_can_use_64K_pages = -1;
|
|
int os::Aix::_can_use_16M_pages = -1;
|
|
int os::Aix::_xpg_sus_mode = -1;
|
|
int os::Aix::_extshm = -1;
|
|
int os::Aix::_logical_cpus = -1;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// local variables
|
|
|
|
static int g_multipage_error = -1; // error analysis for multipage initialization
|
|
static jlong initial_time_count = 0;
|
|
static int clock_tics_per_sec = 100;
|
|
static sigset_t check_signal_done; // For diagnostics to print a message once (see run_periodic_checks)
|
|
static bool check_signals = true;
|
|
static pid_t _initial_pid = 0;
|
|
static int SR_signum = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
|
|
static sigset_t SR_sigset;
|
|
static pthread_mutex_t dl_mutex; // Used to protect dlsym() calls */
|
|
|
|
julong os::available_memory() {
|
|
return Aix::available_memory();
|
|
}
|
|
|
|
julong os::Aix::available_memory() {
|
|
os::Aix::meminfo_t mi;
|
|
if (os::Aix::get_meminfo(&mi)) {
|
|
return mi.real_free;
|
|
} else {
|
|
return 0xFFFFFFFFFFFFFFFFLL;
|
|
}
|
|
}
|
|
|
|
julong os::physical_memory() {
|
|
return Aix::physical_memory();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// environment support
|
|
|
|
bool os::getenv(const char* name, char* buf, int len) {
|
|
const char* val = ::getenv(name);
|
|
if (val != NULL && strlen(val) < (size_t)len) {
|
|
strcpy(buf, val);
|
|
return true;
|
|
}
|
|
if (len > 0) buf[0] = 0; // return a null string
|
|
return false;
|
|
}
|
|
|
|
|
|
// Return true if user is running as root.
|
|
|
|
bool os::have_special_privileges() {
|
|
static bool init = false;
|
|
static bool privileges = false;
|
|
if (!init) {
|
|
privileges = (getuid() != geteuid()) || (getgid() != getegid());
|
|
init = true;
|
|
}
|
|
return privileges;
|
|
}
|
|
|
|
// Helper function, emulates disclaim64 using multiple 32bit disclaims
|
|
// because we cannot use disclaim64() on AS/400 and old AIX releases.
|
|
static bool my_disclaim64(char* addr, size_t size) {
|
|
|
|
if (size == 0) {
|
|
return true;
|
|
}
|
|
|
|
// Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
|
|
const unsigned int maxDisclaimSize = 0x80000000;
|
|
|
|
const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
|
|
const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
|
|
|
|
char* p = addr;
|
|
|
|
for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
|
|
if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
|
|
//if (Verbose)
|
|
fprintf(stderr, "Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
|
|
return false;
|
|
}
|
|
p += maxDisclaimSize;
|
|
}
|
|
|
|
if (lastDisclaimSize > 0) {
|
|
if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
|
|
//if (Verbose)
|
|
fprintf(stderr, "Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Cpu architecture string
|
|
#if defined(PPC32)
|
|
static char cpu_arch[] = "ppc";
|
|
#elif defined(PPC64)
|
|
static char cpu_arch[] = "ppc64";
|
|
#else
|
|
#error Add appropriate cpu_arch setting
|
|
#endif
|
|
|
|
|
|
// Given an address, returns the size of the page backing that address.
|
|
size_t os::Aix::query_pagesize(void* addr) {
|
|
|
|
vm_page_info pi;
|
|
pi.addr = (uint64_t)addr;
|
|
if (::vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
|
|
return pi.pagesize;
|
|
} else {
|
|
fprintf(stderr, "vmgetinfo failed to retrieve page size for address %p (errno %d).\n", addr, errno);
|
|
assert(false, "vmgetinfo failed to retrieve page size");
|
|
return SIZE_4K;
|
|
}
|
|
|
|
}
|
|
|
|
// Returns the kernel thread id of the currently running thread.
|
|
pid_t os::Aix::gettid() {
|
|
return (pid_t) thread_self();
|
|
}
|
|
|
|
void os::Aix::initialize_system_info() {
|
|
|
|
// get the number of online(logical) cpus instead of configured
|
|
os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
|
|
assert(_processor_count > 0, "_processor_count must be > 0");
|
|
|
|
// retrieve total physical storage
|
|
os::Aix::meminfo_t mi;
|
|
if (!os::Aix::get_meminfo(&mi)) {
|
|
fprintf(stderr, "os::Aix::get_meminfo failed.\n"); fflush(stderr);
|
|
assert(false, "os::Aix::get_meminfo failed.");
|
|
}
|
|
_physical_memory = (julong) mi.real_total;
|
|
}
|
|
|
|
// Helper function for tracing page sizes.
|
|
static const char* describe_pagesize(size_t pagesize) {
|
|
switch (pagesize) {
|
|
case SIZE_4K : return "4K";
|
|
case SIZE_64K: return "64K";
|
|
case SIZE_16M: return "16M";
|
|
case SIZE_16G: return "16G";
|
|
default:
|
|
assert(false, "surprise");
|
|
return "??";
|
|
}
|
|
}
|
|
|
|
// Retrieve information about multipage size support. Will initialize
|
|
// Aix::_page_size, Aix::_stack_page_size, Aix::_can_use_64K_pages,
|
|
// Aix::_can_use_16M_pages.
|
|
// Must be called before calling os::large_page_init().
|
|
void os::Aix::query_multipage_support() {
|
|
|
|
guarantee(_page_size == -1 &&
|
|
_stack_page_size == -1 &&
|
|
_can_use_64K_pages == -1 &&
|
|
_can_use_16M_pages == -1 &&
|
|
g_multipage_error == -1,
|
|
"do not call twice");
|
|
|
|
_page_size = ::sysconf(_SC_PAGESIZE);
|
|
|
|
// This really would surprise me.
|
|
assert(_page_size == SIZE_4K, "surprise!");
|
|
|
|
|
|
// Query default data page size (default page size for C-Heap, pthread stacks and .bss).
|
|
// Default data page size is influenced either by linker options (-bdatapsize)
|
|
// or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
|
|
// default should be 4K.
|
|
size_t data_page_size = SIZE_4K;
|
|
{
|
|
void* p = ::malloc(SIZE_16M);
|
|
guarantee(p != NULL, "malloc failed");
|
|
data_page_size = os::Aix::query_pagesize(p);
|
|
::free(p);
|
|
}
|
|
|
|
// query default shm page size (LDR_CNTRL SHMPSIZE)
|
|
{
|
|
const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
|
|
guarantee(shmid != -1, "shmget failed");
|
|
void* p = ::shmat(shmid, NULL, 0);
|
|
::shmctl(shmid, IPC_RMID, NULL);
|
|
guarantee(p != (void*) -1, "shmat failed");
|
|
_shm_default_page_size = os::Aix::query_pagesize(p);
|
|
::shmdt(p);
|
|
}
|
|
|
|
// before querying the stack page size, make sure we are not running as primordial
|
|
// thread (because primordial thread's stack may have different page size than
|
|
// pthread thread stacks). Running a VM on the primordial thread won't work for a
|
|
// number of reasons so we may just as well guarantee it here
|
|
guarantee(!os::Aix::is_primordial_thread(), "Must not be called for primordial thread");
|
|
|
|
// query stack page size
|
|
{
|
|
int dummy = 0;
|
|
_stack_page_size = os::Aix::query_pagesize(&dummy);
|
|
// everything else would surprise me and should be looked into
|
|
guarantee(_stack_page_size == SIZE_4K || _stack_page_size == SIZE_64K, "Wrong page size");
|
|
// also, just for completeness: pthread stacks are allocated from C heap, so
|
|
// stack page size should be the same as data page size
|
|
guarantee(_stack_page_size == data_page_size, "stack page size should be the same as data page size");
|
|
}
|
|
|
|
// EXTSHM is bad: among other things, it prevents setting pagesize dynamically
|
|
// for system V shm.
|
|
if (Aix::extshm()) {
|
|
if (Verbose) {
|
|
fprintf(stderr, "EXTSHM is active - will disable large page support.\n"
|
|
"Please make sure EXTSHM is OFF for large page support.\n");
|
|
}
|
|
g_multipage_error = ERROR_MP_EXTSHM_ACTIVE;
|
|
_can_use_64K_pages = _can_use_16M_pages = 0;
|
|
goto query_multipage_support_end;
|
|
}
|
|
|
|
// now check which page sizes the OS claims it supports, and of those, which actually can be used.
|
|
{
|
|
const int MAX_PAGE_SIZES = 4;
|
|
psize_t sizes[MAX_PAGE_SIZES];
|
|
const int num_psizes = ::vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
|
|
if (num_psizes == -1) {
|
|
if (Verbose) {
|
|
fprintf(stderr, "vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)\n", errno);
|
|
fprintf(stderr, "disabling multipage support.\n");
|
|
}
|
|
g_multipage_error = ERROR_MP_VMGETINFO_FAILED;
|
|
_can_use_64K_pages = _can_use_16M_pages = 0;
|
|
goto query_multipage_support_end;
|
|
}
|
|
guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
|
|
assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
|
|
if (Verbose) {
|
|
fprintf(stderr, "vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
|
|
for (int i = 0; i < num_psizes; i ++) {
|
|
fprintf(stderr, " %s ", describe_pagesize(sizes[i]));
|
|
}
|
|
fprintf(stderr, " .\n");
|
|
}
|
|
|
|
// Can we use 64K, 16M pages?
|
|
_can_use_64K_pages = 0;
|
|
_can_use_16M_pages = 0;
|
|
for (int i = 0; i < num_psizes; i ++) {
|
|
if (sizes[i] == SIZE_64K) {
|
|
_can_use_64K_pages = 1;
|
|
} else if (sizes[i] == SIZE_16M) {
|
|
_can_use_16M_pages = 1;
|
|
}
|
|
}
|
|
|
|
if (!_can_use_64K_pages) {
|
|
g_multipage_error = ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K;
|
|
}
|
|
|
|
// Double-check for 16M pages: Even if AIX claims to be able to use 16M pages,
|
|
// there must be an actual 16M page pool, and we must run with enough rights.
|
|
if (_can_use_16M_pages) {
|
|
const int shmid = ::shmget(IPC_PRIVATE, SIZE_16M, IPC_CREAT | S_IRUSR | S_IWUSR);
|
|
guarantee(shmid != -1, "shmget failed");
|
|
struct shmid_ds shm_buf = { 0 };
|
|
shm_buf.shm_pagesize = SIZE_16M;
|
|
const bool can_set_pagesize = ::shmctl(shmid, SHM_PAGESIZE, &shm_buf) == 0 ? true : false;
|
|
const int en = errno;
|
|
::shmctl(shmid, IPC_RMID, NULL);
|
|
if (!can_set_pagesize) {
|
|
if (Verbose) {
|
|
fprintf(stderr, "Failed to allocate even one misely 16M page. shmctl failed with %d (%s).\n"
|
|
"Will deactivate 16M support.\n", en, strerror(en));
|
|
}
|
|
_can_use_16M_pages = 0;
|
|
}
|
|
}
|
|
|
|
} // end: check which pages can be used for shared memory
|
|
|
|
query_multipage_support_end:
|
|
|
|
guarantee(_page_size != -1 &&
|
|
_stack_page_size != -1 &&
|
|
_can_use_64K_pages != -1 &&
|
|
_can_use_16M_pages != -1, "Page sizes not properly initialized");
|
|
|
|
if (_can_use_64K_pages) {
|
|
g_multipage_error = 0;
|
|
}
|
|
|
|
if (Verbose) {
|
|
fprintf(stderr, "Data page size (C-Heap, bss, etc): %s\n", describe_pagesize(data_page_size));
|
|
fprintf(stderr, "Thread stack page size (pthread): %s\n", describe_pagesize(_stack_page_size));
|
|
fprintf(stderr, "Default shared memory page size: %s\n", describe_pagesize(_shm_default_page_size));
|
|
fprintf(stderr, "Can use 64K pages dynamically with shared meory: %s\n", (_can_use_64K_pages ? "yes" :"no"));
|
|
fprintf(stderr, "Can use 16M pages dynamically with shared memory: %s\n", (_can_use_16M_pages ? "yes" :"no"));
|
|
fprintf(stderr, "Multipage error details: %d\n", g_multipage_error);
|
|
}
|
|
|
|
} // end os::Aix::query_multipage_support()
|
|
|
|
// The code for this method was initially derived from the version in os_linux.cpp.
|
|
void os::init_system_properties_values() {
|
|
|
|
#define DEFAULT_LIBPATH "/usr/lib:/lib"
|
|
#define EXTENSIONS_DIR "/lib/ext"
|
|
#define ENDORSED_DIR "/lib/endorsed"
|
|
|
|
// Buffer that fits several sprintfs.
|
|
// Note that the space for the trailing null is provided
|
|
// by the nulls included by the sizeof operator.
|
|
const size_t bufsize =
|
|
MAX3((size_t)MAXPATHLEN, // For dll_dir & friends.
|
|
(size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR), // extensions dir
|
|
(size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
|
|
char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
|
|
|
|
// sysclasspath, java_home, dll_dir
|
|
{
|
|
char *pslash;
|
|
os::jvm_path(buf, bufsize);
|
|
|
|
// Found the full path to libjvm.so.
|
|
// Now cut the path to <java_home>/jre if we can.
|
|
*(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /{client|server|hotspot}.
|
|
}
|
|
Arguments::set_dll_dir(buf);
|
|
|
|
if (pslash != NULL) {
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /<arch>.
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /lib.
|
|
}
|
|
}
|
|
}
|
|
Arguments::set_java_home(buf);
|
|
set_boot_path('/', ':');
|
|
}
|
|
|
|
// Where to look for native libraries.
|
|
|
|
// On Aix we get the user setting of LIBPATH.
|
|
// Eventually, all the library path setting will be done here.
|
|
// Get the user setting of LIBPATH.
|
|
const char *v = ::getenv("LIBPATH");
|
|
const char *v_colon = ":";
|
|
if (v == NULL) { v = ""; v_colon = ""; }
|
|
|
|
// Concatenate user and invariant part of ld_library_path.
|
|
// That's +1 for the colon and +1 for the trailing '\0'.
|
|
char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
|
|
sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
|
|
Arguments::set_library_path(ld_library_path);
|
|
FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
|
|
|
|
// Extensions directories.
|
|
sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
|
|
Arguments::set_ext_dirs(buf);
|
|
|
|
// Endorsed standards default directory.
|
|
sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
|
|
Arguments::set_endorsed_dirs(buf);
|
|
|
|
FREE_C_HEAP_ARRAY(char, buf, mtInternal);
|
|
|
|
#undef DEFAULT_LIBPATH
|
|
#undef EXTENSIONS_DIR
|
|
#undef ENDORSED_DIR
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// breakpoint support
|
|
|
|
void os::breakpoint() {
|
|
BREAKPOINT;
|
|
}
|
|
|
|
extern "C" void breakpoint() {
|
|
// use debugger to set breakpoint here
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// signal support
|
|
|
|
debug_only(static bool signal_sets_initialized = false);
|
|
static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
|
|
|
|
bool os::Aix::is_sig_ignored(int sig) {
|
|
struct sigaction oact;
|
|
sigaction(sig, (struct sigaction*)NULL, &oact);
|
|
void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(void*, oact.sa_handler);
|
|
if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
void os::Aix::signal_sets_init() {
|
|
// Should also have an assertion stating we are still single-threaded.
|
|
assert(!signal_sets_initialized, "Already initialized");
|
|
// Fill in signals that are necessarily unblocked for all threads in
|
|
// the VM. Currently, we unblock the following signals:
|
|
// SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
|
|
// by -Xrs (=ReduceSignalUsage));
|
|
// BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
|
|
// other threads. The "ReduceSignalUsage" boolean tells us not to alter
|
|
// the dispositions or masks wrt these signals.
|
|
// Programs embedding the VM that want to use the above signals for their
|
|
// own purposes must, at this time, use the "-Xrs" option to prevent
|
|
// interference with shutdown hooks and BREAK_SIGNAL thread dumping.
|
|
// (See bug 4345157, and other related bugs).
|
|
// In reality, though, unblocking these signals is really a nop, since
|
|
// these signals are not blocked by default.
|
|
sigemptyset(&unblocked_sigs);
|
|
sigemptyset(&allowdebug_blocked_sigs);
|
|
sigaddset(&unblocked_sigs, SIGILL);
|
|
sigaddset(&unblocked_sigs, SIGSEGV);
|
|
sigaddset(&unblocked_sigs, SIGBUS);
|
|
sigaddset(&unblocked_sigs, SIGFPE);
|
|
sigaddset(&unblocked_sigs, SIGTRAP);
|
|
sigaddset(&unblocked_sigs, SIGDANGER);
|
|
sigaddset(&unblocked_sigs, SR_signum);
|
|
|
|
if (!ReduceSignalUsage) {
|
|
if (!os::Aix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
|
|
sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
|
|
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
|
|
}
|
|
if (!os::Aix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
|
|
sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
|
|
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
|
|
}
|
|
if (!os::Aix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
|
|
sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
|
|
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
|
|
}
|
|
}
|
|
// Fill in signals that are blocked by all but the VM thread.
|
|
sigemptyset(&vm_sigs);
|
|
if (!ReduceSignalUsage)
|
|
sigaddset(&vm_sigs, BREAK_SIGNAL);
|
|
debug_only(signal_sets_initialized = true);
|
|
}
|
|
|
|
// These are signals that are unblocked while a thread is running Java.
|
|
// (For some reason, they get blocked by default.)
|
|
sigset_t* os::Aix::unblocked_signals() {
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
return &unblocked_sigs;
|
|
}
|
|
|
|
// These are the signals that are blocked while a (non-VM) thread is
|
|
// running Java. Only the VM thread handles these signals.
|
|
sigset_t* os::Aix::vm_signals() {
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
return &vm_sigs;
|
|
}
|
|
|
|
// These are signals that are blocked during cond_wait to allow debugger in
|
|
sigset_t* os::Aix::allowdebug_blocked_signals() {
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
return &allowdebug_blocked_sigs;
|
|
}
|
|
|
|
void os::Aix::hotspot_sigmask(Thread* thread) {
|
|
|
|
//Save caller's signal mask before setting VM signal mask
|
|
sigset_t caller_sigmask;
|
|
pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
osthread->set_caller_sigmask(caller_sigmask);
|
|
|
|
pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
|
|
|
|
if (!ReduceSignalUsage) {
|
|
if (thread->is_VM_thread()) {
|
|
// Only the VM thread handles BREAK_SIGNAL ...
|
|
pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
|
|
} else {
|
|
// ... all other threads block BREAK_SIGNAL
|
|
pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
// retrieve memory information.
|
|
// Returns false if something went wrong;
|
|
// content of pmi undefined in this case.
|
|
bool os::Aix::get_meminfo(meminfo_t* pmi) {
|
|
|
|
assert(pmi, "get_meminfo: invalid parameter");
|
|
|
|
memset(pmi, 0, sizeof(meminfo_t));
|
|
|
|
if (os::Aix::on_pase()) {
|
|
|
|
Unimplemented();
|
|
return false;
|
|
|
|
} else {
|
|
|
|
// On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
|
|
// See:
|
|
// http://publib.boulder.ibm.com/infocenter/systems/index.jsp
|
|
// ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
|
|
// http://publib.boulder.ibm.com/infocenter/systems/index.jsp
|
|
// ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
|
|
|
|
perfstat_memory_total_t psmt;
|
|
memset (&psmt, '\0', sizeof(psmt));
|
|
const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
|
|
if (rc == -1) {
|
|
fprintf(stderr, "perfstat_memory_total() failed (errno=%d)\n", errno);
|
|
assert(0, "perfstat_memory_total() failed");
|
|
return false;
|
|
}
|
|
|
|
assert(rc == 1, "perfstat_memory_total() - weird return code");
|
|
|
|
// excerpt from
|
|
// http://publib.boulder.ibm.com/infocenter/systems/index.jsp
|
|
// ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
|
|
// The fields of perfstat_memory_total_t:
|
|
// u_longlong_t virt_total Total virtual memory (in 4 KB pages).
|
|
// u_longlong_t real_total Total real memory (in 4 KB pages).
|
|
// u_longlong_t real_free Free real memory (in 4 KB pages).
|
|
// u_longlong_t pgsp_total Total paging space (in 4 KB pages).
|
|
// u_longlong_t pgsp_free Free paging space (in 4 KB pages).
|
|
|
|
pmi->virt_total = psmt.virt_total * 4096;
|
|
pmi->real_total = psmt.real_total * 4096;
|
|
pmi->real_free = psmt.real_free * 4096;
|
|
pmi->pgsp_total = psmt.pgsp_total * 4096;
|
|
pmi->pgsp_free = psmt.pgsp_free * 4096;
|
|
|
|
return true;
|
|
|
|
}
|
|
} // end os::Aix::get_meminfo
|
|
|
|
// Retrieve global cpu information.
|
|
// Returns false if something went wrong;
|
|
// the content of pci is undefined in this case.
|
|
bool os::Aix::get_cpuinfo(cpuinfo_t* pci) {
|
|
assert(pci, "get_cpuinfo: invalid parameter");
|
|
memset(pci, 0, sizeof(cpuinfo_t));
|
|
|
|
perfstat_cpu_total_t psct;
|
|
memset (&psct, '\0', sizeof(psct));
|
|
|
|
if (-1 == libperfstat::perfstat_cpu_total(NULL, &psct, sizeof(perfstat_cpu_total_t), 1)) {
|
|
fprintf(stderr, "perfstat_cpu_total() failed (errno=%d)\n", errno);
|
|
assert(0, "perfstat_cpu_total() failed");
|
|
return false;
|
|
}
|
|
|
|
// global cpu information
|
|
strcpy (pci->description, psct.description);
|
|
pci->processorHZ = psct.processorHZ;
|
|
pci->ncpus = psct.ncpus;
|
|
os::Aix::_logical_cpus = psct.ncpus;
|
|
for (int i = 0; i < 3; i++) {
|
|
pci->loadavg[i] = (double) psct.loadavg[i] / (1 << SBITS);
|
|
}
|
|
|
|
// get the processor version from _system_configuration
|
|
switch (_system_configuration.version) {
|
|
case PV_7:
|
|
strcpy(pci->version, "Power PC 7");
|
|
break;
|
|
case PV_6_1:
|
|
strcpy(pci->version, "Power PC 6 DD1.x");
|
|
break;
|
|
case PV_6:
|
|
strcpy(pci->version, "Power PC 6");
|
|
break;
|
|
case PV_5:
|
|
strcpy(pci->version, "Power PC 5");
|
|
break;
|
|
case PV_5_2:
|
|
strcpy(pci->version, "Power PC 5_2");
|
|
break;
|
|
case PV_5_3:
|
|
strcpy(pci->version, "Power PC 5_3");
|
|
break;
|
|
case PV_5_Compat:
|
|
strcpy(pci->version, "PV_5_Compat");
|
|
break;
|
|
case PV_6_Compat:
|
|
strcpy(pci->version, "PV_6_Compat");
|
|
break;
|
|
case PV_7_Compat:
|
|
strcpy(pci->version, "PV_7_Compat");
|
|
break;
|
|
default:
|
|
strcpy(pci->version, "unknown");
|
|
}
|
|
|
|
return true;
|
|
|
|
} //end os::Aix::get_cpuinfo
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// detecting pthread library
|
|
|
|
void os::Aix::libpthread_init() {
|
|
return;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// create new thread
|
|
|
|
// Thread start routine for all newly created threads
|
|
static void *java_start(Thread *thread) {
|
|
|
|
// find out my own stack dimensions
|
|
{
|
|
// actually, this should do exactly the same as thread->record_stack_base_and_size...
|
|
address base = 0;
|
|
size_t size = 0;
|
|
query_stack_dimensions(&base, &size);
|
|
thread->set_stack_base(base);
|
|
thread->set_stack_size(size);
|
|
}
|
|
|
|
// Do some sanity checks.
|
|
CHECK_CURRENT_STACK_PTR(thread->stack_base(), thread->stack_size());
|
|
|
|
// Try to randomize the cache line index of hot stack frames.
|
|
// This helps when threads of the same stack traces evict each other's
|
|
// cache lines. The threads can be either from the same JVM instance, or
|
|
// from different JVM instances. The benefit is especially true for
|
|
// processors with hyperthreading technology.
|
|
|
|
static int counter = 0;
|
|
int pid = os::current_process_id();
|
|
alloca(((pid ^ counter++) & 7) * 128);
|
|
|
|
ThreadLocalStorage::set_thread(thread);
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
|
|
// thread_id is kernel thread id (similar to Solaris LWP id)
|
|
osthread->set_thread_id(os::Aix::gettid());
|
|
|
|
// initialize signal mask for this thread
|
|
os::Aix::hotspot_sigmask(thread);
|
|
|
|
// initialize floating point control register
|
|
os::Aix::init_thread_fpu_state();
|
|
|
|
assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
|
|
|
|
// call one more level start routine
|
|
thread->run();
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
|
|
|
|
// We want the whole function to be synchronized.
|
|
ThreadCritical cs;
|
|
|
|
assert(thread->osthread() == NULL, "caller responsible");
|
|
|
|
// Allocate the OSThread object
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
if (osthread == NULL) {
|
|
return false;
|
|
}
|
|
|
|
// set the correct thread state
|
|
osthread->set_thread_type(thr_type);
|
|
|
|
// Initial state is ALLOCATED but not INITIALIZED
|
|
osthread->set_state(ALLOCATED);
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
// init thread attributes
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
|
|
|
|
// Make sure we run in 1:1 kernel-user-thread mode.
|
|
if (os::Aix::on_aix()) {
|
|
guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
|
|
guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
|
|
} // end: aix
|
|
|
|
// Start in suspended state, and in os::thread_start, wake the thread up.
|
|
guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
|
|
|
|
// calculate stack size if it's not specified by caller
|
|
if (os::Aix::supports_variable_stack_size()) {
|
|
if (stack_size == 0) {
|
|
stack_size = os::Aix::default_stack_size(thr_type);
|
|
|
|
switch (thr_type) {
|
|
case os::java_thread:
|
|
// Java threads use ThreadStackSize whose default value can be changed with the flag -Xss.
|
|
assert(JavaThread::stack_size_at_create() > 0, "this should be set");
|
|
stack_size = JavaThread::stack_size_at_create();
|
|
break;
|
|
case os::compiler_thread:
|
|
if (CompilerThreadStackSize > 0) {
|
|
stack_size = (size_t)(CompilerThreadStackSize * K);
|
|
break;
|
|
} // else fall through:
|
|
// use VMThreadStackSize if CompilerThreadStackSize is not defined
|
|
case os::vm_thread:
|
|
case os::pgc_thread:
|
|
case os::cgc_thread:
|
|
case os::watcher_thread:
|
|
if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
|
|
break;
|
|
}
|
|
}
|
|
|
|
stack_size = MAX2(stack_size, os::Aix::min_stack_allowed);
|
|
pthread_attr_setstacksize(&attr, stack_size);
|
|
} //else let thread_create() pick the default value (96 K on AIX)
|
|
|
|
pthread_t tid;
|
|
int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
|
|
|
|
pthread_attr_destroy(&attr);
|
|
|
|
if (ret != 0) {
|
|
if (PrintMiscellaneous && (Verbose || WizardMode)) {
|
|
perror("pthread_create()");
|
|
}
|
|
// Need to clean up stuff we've allocated so far
|
|
thread->set_osthread(NULL);
|
|
delete osthread;
|
|
return false;
|
|
}
|
|
|
|
// Store pthread info into the OSThread
|
|
osthread->set_pthread_id(tid);
|
|
|
|
return true;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// attach existing thread
|
|
|
|
// bootstrap the main thread
|
|
bool os::create_main_thread(JavaThread* thread) {
|
|
assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
|
|
return create_attached_thread(thread);
|
|
}
|
|
|
|
bool os::create_attached_thread(JavaThread* thread) {
|
|
#ifdef ASSERT
|
|
thread->verify_not_published();
|
|
#endif
|
|
|
|
// Allocate the OSThread object
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
|
|
if (osthread == NULL) {
|
|
return false;
|
|
}
|
|
|
|
// Store pthread info into the OSThread
|
|
osthread->set_thread_id(os::Aix::gettid());
|
|
osthread->set_pthread_id(::pthread_self());
|
|
|
|
// initialize floating point control register
|
|
os::Aix::init_thread_fpu_state();
|
|
|
|
// some sanity checks
|
|
CHECK_CURRENT_STACK_PTR(thread->stack_base(), thread->stack_size());
|
|
|
|
// Initial thread state is RUNNABLE
|
|
osthread->set_state(RUNNABLE);
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
if (UseNUMA) {
|
|
int lgrp_id = os::numa_get_group_id();
|
|
if (lgrp_id != -1) {
|
|
thread->set_lgrp_id(lgrp_id);
|
|
}
|
|
}
|
|
|
|
// initialize signal mask for this thread
|
|
// and save the caller's signal mask
|
|
os::Aix::hotspot_sigmask(thread);
|
|
|
|
return true;
|
|
}
|
|
|
|
void os::pd_start_thread(Thread* thread) {
|
|
int status = pthread_continue_np(thread->osthread()->pthread_id());
|
|
assert(status == 0, "thr_continue failed");
|
|
}
|
|
|
|
// Free OS resources related to the OSThread
|
|
void os::free_thread(OSThread* osthread) {
|
|
assert(osthread != NULL, "osthread not set");
|
|
|
|
if (Thread::current()->osthread() == osthread) {
|
|
// Restore caller's signal mask
|
|
sigset_t sigmask = osthread->caller_sigmask();
|
|
pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
|
|
}
|
|
|
|
delete osthread;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// thread local storage
|
|
|
|
int os::allocate_thread_local_storage() {
|
|
pthread_key_t key;
|
|
int rslt = pthread_key_create(&key, NULL);
|
|
assert(rslt == 0, "cannot allocate thread local storage");
|
|
return (int)key;
|
|
}
|
|
|
|
// Note: This is currently not used by VM, as we don't destroy TLS key
|
|
// on VM exit.
|
|
void os::free_thread_local_storage(int index) {
|
|
int rslt = pthread_key_delete((pthread_key_t)index);
|
|
assert(rslt == 0, "invalid index");
|
|
}
|
|
|
|
void os::thread_local_storage_at_put(int index, void* value) {
|
|
int rslt = pthread_setspecific((pthread_key_t)index, value);
|
|
assert(rslt == 0, "pthread_setspecific failed");
|
|
}
|
|
|
|
extern "C" Thread* get_thread() {
|
|
return ThreadLocalStorage::thread();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// time support
|
|
|
|
// Time since start-up in seconds to a fine granularity.
|
|
// Used by VMSelfDestructTimer and the MemProfiler.
|
|
double os::elapsedTime() {
|
|
return (double)(os::elapsed_counter()) * 0.000001;
|
|
}
|
|
|
|
jlong os::elapsed_counter() {
|
|
timeval time;
|
|
int status = gettimeofday(&time, NULL);
|
|
return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
|
|
}
|
|
|
|
jlong os::elapsed_frequency() {
|
|
return (1000 * 1000);
|
|
}
|
|
|
|
// For now, we say that linux does not support vtime. I have no idea
|
|
// whether it can actually be made to (DLD, 9/13/05).
|
|
|
|
bool os::supports_vtime() { return false; }
|
|
bool os::enable_vtime() { return false; }
|
|
bool os::vtime_enabled() { return false; }
|
|
double os::elapsedVTime() {
|
|
// better than nothing, but not much
|
|
return elapsedTime();
|
|
}
|
|
|
|
jlong os::javaTimeMillis() {
|
|
timeval time;
|
|
int status = gettimeofday(&time, NULL);
|
|
assert(status != -1, "aix error at gettimeofday()");
|
|
return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
|
|
}
|
|
|
|
// We need to manually declare mread_real_time,
|
|
// because IBM didn't provide a prototype in time.h.
|
|
// (they probably only ever tested in C, not C++)
|
|
extern "C"
|
|
int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
|
|
|
|
jlong os::javaTimeNanos() {
|
|
if (os::Aix::on_pase()) {
|
|
Unimplemented();
|
|
return 0;
|
|
}
|
|
else {
|
|
// On AIX use the precision of processors real time clock
|
|
// or time base registers.
|
|
timebasestruct_t time;
|
|
int rc;
|
|
|
|
// If the CPU has a time register, it will be used and
|
|
// we have to convert to real time first. After convertion we have following data:
|
|
// time.tb_high [seconds since 00:00:00 UTC on 1.1.1970]
|
|
// time.tb_low [nanoseconds after the last full second above]
|
|
// We better use mread_real_time here instead of read_real_time
|
|
// to ensure that we will get a monotonic increasing time.
|
|
if (mread_real_time(&time, TIMEBASE_SZ) != RTC_POWER) {
|
|
rc = time_base_to_time(&time, TIMEBASE_SZ);
|
|
assert(rc != -1, "aix error at time_base_to_time()");
|
|
}
|
|
return jlong(time.tb_high) * (1000 * 1000 * 1000) + jlong(time.tb_low);
|
|
}
|
|
}
|
|
|
|
void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS;
|
|
// mread_real_time() is monotonic (see 'os::javaTimeNanos()')
|
|
info_ptr->may_skip_backward = false;
|
|
info_ptr->may_skip_forward = false;
|
|
info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
|
|
}
|
|
|
|
// Return the real, user, and system times in seconds from an
|
|
// arbitrary fixed point in the past.
|
|
bool os::getTimesSecs(double* process_real_time,
|
|
double* process_user_time,
|
|
double* process_system_time) {
|
|
struct tms ticks;
|
|
clock_t real_ticks = times(&ticks);
|
|
|
|
if (real_ticks == (clock_t) (-1)) {
|
|
return false;
|
|
} else {
|
|
double ticks_per_second = (double) clock_tics_per_sec;
|
|
*process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
|
|
*process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
|
|
*process_real_time = ((double) real_ticks) / ticks_per_second;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
char * os::local_time_string(char *buf, size_t buflen) {
|
|
struct tm t;
|
|
time_t long_time;
|
|
time(&long_time);
|
|
localtime_r(&long_time, &t);
|
|
jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
|
|
t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
|
|
t.tm_hour, t.tm_min, t.tm_sec);
|
|
return buf;
|
|
}
|
|
|
|
struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
|
|
return localtime_r(clock, res);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// runtime exit support
|
|
|
|
// Note: os::shutdown() might be called very early during initialization, or
|
|
// called from signal handler. Before adding something to os::shutdown(), make
|
|
// sure it is async-safe and can handle partially initialized VM.
|
|
void os::shutdown() {
|
|
|
|
// allow PerfMemory to attempt cleanup of any persistent resources
|
|
perfMemory_exit();
|
|
|
|
// needs to remove object in file system
|
|
AttachListener::abort();
|
|
|
|
// flush buffered output, finish log files
|
|
ostream_abort();
|
|
|
|
// Check for abort hook
|
|
abort_hook_t abort_hook = Arguments::abort_hook();
|
|
if (abort_hook != NULL) {
|
|
abort_hook();
|
|
}
|
|
|
|
}
|
|
|
|
// Note: os::abort() might be called very early during initialization, or
|
|
// called from signal handler. Before adding something to os::abort(), make
|
|
// sure it is async-safe and can handle partially initialized VM.
|
|
void os::abort(bool dump_core) {
|
|
os::shutdown();
|
|
if (dump_core) {
|
|
#ifndef PRODUCT
|
|
fdStream out(defaultStream::output_fd());
|
|
out.print_raw("Current thread is ");
|
|
char buf[16];
|
|
jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
|
|
out.print_raw_cr(buf);
|
|
out.print_raw_cr("Dumping core ...");
|
|
#endif
|
|
::abort(); // dump core
|
|
}
|
|
|
|
::exit(1);
|
|
}
|
|
|
|
// Die immediately, no exit hook, no abort hook, no cleanup.
|
|
void os::die() {
|
|
::abort();
|
|
}
|
|
|
|
// Unused on Aix for now.
|
|
void os::set_error_file(const char *logfile) {}
|
|
|
|
|
|
// This method is a copy of JDK's sysGetLastErrorString
|
|
// from src/solaris/hpi/src/system_md.c
|
|
|
|
size_t os::lasterror(char *buf, size_t len) {
|
|
|
|
if (errno == 0) return 0;
|
|
|
|
const char *s = ::strerror(errno);
|
|
size_t n = ::strlen(s);
|
|
if (n >= len) {
|
|
n = len - 1;
|
|
}
|
|
::strncpy(buf, s, n);
|
|
buf[n] = '\0';
|
|
return n;
|
|
}
|
|
|
|
intx os::current_thread_id() { return (intx)pthread_self(); }
|
|
int os::current_process_id() {
|
|
|
|
// This implementation returns a unique pid, the pid of the
|
|
// launcher thread that starts the vm 'process'.
|
|
|
|
// Under POSIX, getpid() returns the same pid as the
|
|
// launcher thread rather than a unique pid per thread.
|
|
// Use gettid() if you want the old pre NPTL behaviour.
|
|
|
|
// if you are looking for the result of a call to getpid() that
|
|
// returns a unique pid for the calling thread, then look at the
|
|
// OSThread::thread_id() method in osThread_linux.hpp file
|
|
|
|
return (int)(_initial_pid ? _initial_pid : getpid());
|
|
}
|
|
|
|
// DLL functions
|
|
|
|
const char* os::dll_file_extension() { return ".so"; }
|
|
|
|
// This must be hard coded because it's the system's temporary
|
|
// directory not the java application's temp directory, ala java.io.tmpdir.
|
|
const char* os::get_temp_directory() { return "/tmp"; }
|
|
|
|
static bool file_exists(const char* filename) {
|
|
struct stat statbuf;
|
|
if (filename == NULL || strlen(filename) == 0) {
|
|
return false;
|
|
}
|
|
return os::stat(filename, &statbuf) == 0;
|
|
}
|
|
|
|
bool os::dll_build_name(char* buffer, size_t buflen,
|
|
const char* pname, const char* fname) {
|
|
bool retval = false;
|
|
// Copied from libhpi
|
|
const size_t pnamelen = pname ? strlen(pname) : 0;
|
|
|
|
// Return error on buffer overflow.
|
|
if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
|
|
*buffer = '\0';
|
|
return retval;
|
|
}
|
|
|
|
if (pnamelen == 0) {
|
|
snprintf(buffer, buflen, "lib%s.so", fname);
|
|
retval = true;
|
|
} else if (strchr(pname, *os::path_separator()) != NULL) {
|
|
int n;
|
|
char** pelements = split_path(pname, &n);
|
|
for (int i = 0; i < n; i++) {
|
|
// Really shouldn't be NULL, but check can't hurt
|
|
if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
|
|
continue; // skip the empty path values
|
|
}
|
|
snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
|
|
if (file_exists(buffer)) {
|
|
retval = true;
|
|
break;
|
|
}
|
|
}
|
|
// release the storage
|
|
for (int i = 0; i < n; i++) {
|
|
if (pelements[i] != NULL) {
|
|
FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
|
|
}
|
|
}
|
|
if (pelements != NULL) {
|
|
FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
|
|
}
|
|
} else {
|
|
snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
|
|
retval = true;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
// Check if addr is inside libjvm.so.
|
|
bool os::address_is_in_vm(address addr) {
|
|
|
|
// Input could be a real pc or a function pointer literal. The latter
|
|
// would be a function descriptor residing in the data segment of a module.
|
|
|
|
const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(addr);
|
|
if (lib) {
|
|
if (strcmp(lib->get_shortname(), "libjvm.so") == 0) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
lib = LoadedLibraries::find_for_data_address(addr);
|
|
if (lib) {
|
|
if (strcmp(lib->get_shortname(), "libjvm.so") == 0) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve an AIX function descriptor literal to a code pointer.
|
|
// If the input is a valid code pointer to a text segment of a loaded module,
|
|
// it is returned unchanged.
|
|
// If the input is a valid AIX function descriptor, it is resolved to the
|
|
// code entry point.
|
|
// If the input is neither a valid function descriptor nor a valid code pointer,
|
|
// NULL is returned.
|
|
static address resolve_function_descriptor_to_code_pointer(address p) {
|
|
|
|
const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(p);
|
|
if (lib) {
|
|
// its a real code pointer
|
|
return p;
|
|
} else {
|
|
lib = LoadedLibraries::find_for_data_address(p);
|
|
if (lib) {
|
|
// pointer to data segment, potential function descriptor
|
|
address code_entry = (address)(((FunctionDescriptor*)p)->entry());
|
|
if (LoadedLibraries::find_for_text_address(code_entry)) {
|
|
// Its a function descriptor
|
|
return code_entry;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
bool os::dll_address_to_function_name(address addr, char *buf,
|
|
int buflen, int *offset) {
|
|
if (offset) {
|
|
*offset = -1;
|
|
}
|
|
if (buf) {
|
|
buf[0] = '\0';
|
|
}
|
|
|
|
// Resolve function ptr literals first.
|
|
addr = resolve_function_descriptor_to_code_pointer(addr);
|
|
if (!addr) {
|
|
return false;
|
|
}
|
|
|
|
// Go through Decoder::decode to call getFuncName which reads the name from the traceback table.
|
|
return Decoder::decode(addr, buf, buflen, offset);
|
|
}
|
|
|
|
static int getModuleName(codeptr_t pc, // [in] program counter
|
|
char* p_name, size_t namelen, // [out] optional: function name
|
|
char* p_errmsg, size_t errmsglen // [out] optional: user provided buffer for error messages
|
|
) {
|
|
|
|
// initialize output parameters
|
|
if (p_name && namelen > 0) {
|
|
*p_name = '\0';
|
|
}
|
|
if (p_errmsg && errmsglen > 0) {
|
|
*p_errmsg = '\0';
|
|
}
|
|
|
|
const LoadedLibraryModule* const lib = LoadedLibraries::find_for_text_address((address)pc);
|
|
if (lib) {
|
|
if (p_name && namelen > 0) {
|
|
sprintf(p_name, "%.*s", namelen, lib->get_shortname());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (Verbose) {
|
|
fprintf(stderr, "pc outside any module");
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
bool os::dll_address_to_library_name(address addr, char* buf,
|
|
int buflen, int* offset) {
|
|
if (offset) {
|
|
*offset = -1;
|
|
}
|
|
if (buf) {
|
|
buf[0] = '\0';
|
|
}
|
|
|
|
// Resolve function ptr literals first.
|
|
addr = resolve_function_descriptor_to_code_pointer(addr);
|
|
if (!addr) {
|
|
return false;
|
|
}
|
|
|
|
if (::getModuleName((codeptr_t) addr, buf, buflen, 0, 0) == 0) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Loads .dll/.so and in case of error it checks if .dll/.so was built
|
|
// for the same architecture as Hotspot is running on
|
|
void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
|
|
|
|
if (ebuf && ebuflen > 0) {
|
|
ebuf[0] = '\0';
|
|
ebuf[ebuflen - 1] = '\0';
|
|
}
|
|
|
|
if (!filename || strlen(filename) == 0) {
|
|
::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
|
|
return NULL;
|
|
}
|
|
|
|
// RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
|
|
void * result= ::dlopen(filename, RTLD_LAZY);
|
|
if (result != NULL) {
|
|
// Reload dll cache. Don't do this in signal handling.
|
|
LoadedLibraries::reload();
|
|
return result;
|
|
} else {
|
|
// error analysis when dlopen fails
|
|
const char* const error_report = ::dlerror();
|
|
if (error_report && ebuf && ebuflen > 0) {
|
|
snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
|
|
filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Glibc-2.0 libdl is not MT safe. If you are building with any glibc,
|
|
// chances are you might want to run the generated bits against glibc-2.0
|
|
// libdl.so, so always use locking for any version of glibc.
|
|
void* os::dll_lookup(void* handle, const char* name) {
|
|
pthread_mutex_lock(&dl_mutex);
|
|
void* res = dlsym(handle, name);
|
|
pthread_mutex_unlock(&dl_mutex);
|
|
return res;
|
|
}
|
|
|
|
void* os::get_default_process_handle() {
|
|
return (void*)::dlopen(NULL, RTLD_LAZY);
|
|
}
|
|
|
|
void os::print_dll_info(outputStream *st) {
|
|
st->print_cr("Dynamic libraries:");
|
|
LoadedLibraries::print(st);
|
|
}
|
|
|
|
void os::print_os_info(outputStream* st) {
|
|
st->print("OS:");
|
|
|
|
st->print("uname:");
|
|
struct utsname name;
|
|
uname(&name);
|
|
st->print(name.sysname); st->print(" ");
|
|
st->print(name.nodename); st->print(" ");
|
|
st->print(name.release); st->print(" ");
|
|
st->print(name.version); st->print(" ");
|
|
st->print(name.machine);
|
|
st->cr();
|
|
|
|
// rlimit
|
|
st->print("rlimit:");
|
|
struct rlimit rlim;
|
|
|
|
st->print(" STACK ");
|
|
getrlimit(RLIMIT_STACK, &rlim);
|
|
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
|
|
else st->print("%uk", rlim.rlim_cur >> 10);
|
|
|
|
st->print(", CORE ");
|
|
getrlimit(RLIMIT_CORE, &rlim);
|
|
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
|
|
else st->print("%uk", rlim.rlim_cur >> 10);
|
|
|
|
st->print(", NPROC ");
|
|
st->print("%d", sysconf(_SC_CHILD_MAX));
|
|
|
|
st->print(", NOFILE ");
|
|
getrlimit(RLIMIT_NOFILE, &rlim);
|
|
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
|
|
else st->print("%d", rlim.rlim_cur);
|
|
|
|
st->print(", AS ");
|
|
getrlimit(RLIMIT_AS, &rlim);
|
|
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
|
|
else st->print("%uk", rlim.rlim_cur >> 10);
|
|
|
|
// Print limits on DATA, because it limits the C-heap.
|
|
st->print(", DATA ");
|
|
getrlimit(RLIMIT_DATA, &rlim);
|
|
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
|
|
else st->print("%uk", rlim.rlim_cur >> 10);
|
|
st->cr();
|
|
|
|
// load average
|
|
st->print("load average:");
|
|
double loadavg[3] = {-1.L, -1.L, -1.L};
|
|
os::loadavg(loadavg, 3);
|
|
st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
|
|
st->cr();
|
|
}
|
|
|
|
void os::print_memory_info(outputStream* st) {
|
|
|
|
st->print_cr("Memory:");
|
|
|
|
st->print_cr(" default page size: %s", describe_pagesize(os::vm_page_size()));
|
|
st->print_cr(" default stack page size: %s", describe_pagesize(os::vm_page_size()));
|
|
st->print_cr(" default shm page size: %s", describe_pagesize(os::Aix::shm_default_page_size()));
|
|
st->print_cr(" can use 64K pages dynamically: %s", (os::Aix::can_use_64K_pages() ? "yes" :"no"));
|
|
st->print_cr(" can use 16M pages dynamically: %s", (os::Aix::can_use_16M_pages() ? "yes" :"no"));
|
|
if (g_multipage_error != 0) {
|
|
st->print_cr(" multipage error: %d", g_multipage_error);
|
|
}
|
|
|
|
// print out LDR_CNTRL because it affects the default page sizes
|
|
const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
|
|
st->print_cr(" LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
|
|
|
|
const char* const extshm = ::getenv("EXTSHM");
|
|
st->print_cr(" EXTSHM=%s.", extshm ? extshm : "<unset>");
|
|
|
|
// Call os::Aix::get_meminfo() to retrieve memory statistics.
|
|
os::Aix::meminfo_t mi;
|
|
if (os::Aix::get_meminfo(&mi)) {
|
|
char buffer[256];
|
|
if (os::Aix::on_aix()) {
|
|
jio_snprintf(buffer, sizeof(buffer),
|
|
" physical total : %llu\n"
|
|
" physical free : %llu\n"
|
|
" swap total : %llu\n"
|
|
" swap free : %llu\n",
|
|
mi.real_total,
|
|
mi.real_free,
|
|
mi.pgsp_total,
|
|
mi.pgsp_free);
|
|
} else {
|
|
Unimplemented();
|
|
}
|
|
st->print_raw(buffer);
|
|
} else {
|
|
st->print_cr(" (no more information available)");
|
|
}
|
|
}
|
|
|
|
void os::pd_print_cpu_info(outputStream* st) {
|
|
// cpu
|
|
st->print("CPU:");
|
|
st->print("total %d", os::processor_count());
|
|
// It's not safe to query number of active processors after crash
|
|
// st->print("(active %d)", os::active_processor_count());
|
|
st->print(" %s", VM_Version::cpu_features());
|
|
st->cr();
|
|
}
|
|
|
|
void os::print_siginfo(outputStream* st, void* siginfo) {
|
|
// Use common posix version.
|
|
os::Posix::print_siginfo_brief(st, (const siginfo_t*) siginfo);
|
|
st->cr();
|
|
}
|
|
|
|
|
|
static void print_signal_handler(outputStream* st, int sig,
|
|
char* buf, size_t buflen);
|
|
|
|
void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
|
|
st->print_cr("Signal Handlers:");
|
|
print_signal_handler(st, SIGSEGV, buf, buflen);
|
|
print_signal_handler(st, SIGBUS , buf, buflen);
|
|
print_signal_handler(st, SIGFPE , buf, buflen);
|
|
print_signal_handler(st, SIGPIPE, buf, buflen);
|
|
print_signal_handler(st, SIGXFSZ, buf, buflen);
|
|
print_signal_handler(st, SIGILL , buf, buflen);
|
|
print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
|
|
print_signal_handler(st, SR_signum, buf, buflen);
|
|
print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
|
|
print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
|
|
print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
|
|
print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
|
|
print_signal_handler(st, SIGTRAP, buf, buflen);
|
|
print_signal_handler(st, SIGDANGER, buf, buflen);
|
|
}
|
|
|
|
static char saved_jvm_path[MAXPATHLEN] = {0};
|
|
|
|
// Find the full path to the current module, libjvm.so or libjvm_g.so
|
|
void os::jvm_path(char *buf, jint buflen) {
|
|
// Error checking.
|
|
if (buflen < MAXPATHLEN) {
|
|
assert(false, "must use a large-enough buffer");
|
|
buf[0] = '\0';
|
|
return;
|
|
}
|
|
// Lazy resolve the path to current module.
|
|
if (saved_jvm_path[0] != 0) {
|
|
strcpy(buf, saved_jvm_path);
|
|
return;
|
|
}
|
|
|
|
Dl_info dlinfo;
|
|
int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
|
|
assert(ret != 0, "cannot locate libjvm");
|
|
char* rp = realpath((char *)dlinfo.dli_fname, buf);
|
|
assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
|
|
|
|
strcpy(saved_jvm_path, buf);
|
|
}
|
|
|
|
void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
|
|
// no prefix required, not even "_"
|
|
}
|
|
|
|
void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
|
|
// no suffix required
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// sun.misc.Signal support
|
|
|
|
static volatile jint sigint_count = 0;
|
|
|
|
static void
|
|
UserHandler(int sig, void *siginfo, void *context) {
|
|
// 4511530 - sem_post is serialized and handled by the manager thread. When
|
|
// the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
|
|
// don't want to flood the manager thread with sem_post requests.
|
|
if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
|
|
return;
|
|
|
|
// Ctrl-C is pressed during error reporting, likely because the error
|
|
// handler fails to abort. Let VM die immediately.
|
|
if (sig == SIGINT && is_error_reported()) {
|
|
os::die();
|
|
}
|
|
|
|
os::signal_notify(sig);
|
|
}
|
|
|
|
void* os::user_handler() {
|
|
return CAST_FROM_FN_PTR(void*, UserHandler);
|
|
}
|
|
|
|
extern "C" {
|
|
typedef void (*sa_handler_t)(int);
|
|
typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
|
|
}
|
|
|
|
void* os::signal(int signal_number, void* handler) {
|
|
struct sigaction sigAct, oldSigAct;
|
|
|
|
sigfillset(&(sigAct.sa_mask));
|
|
|
|
// Do not block out synchronous signals in the signal handler.
|
|
// Blocking synchronous signals only makes sense if you can really
|
|
// be sure that those signals won't happen during signal handling,
|
|
// when the blocking applies. Normal signal handlers are lean and
|
|
// do not cause signals. But our signal handlers tend to be "risky"
|
|
// - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
|
|
// On AIX, PASE there was a case where a SIGSEGV happened, followed
|
|
// by a SIGILL, which was blocked due to the signal mask. The process
|
|
// just hung forever. Better to crash from a secondary signal than to hang.
|
|
sigdelset(&(sigAct.sa_mask), SIGSEGV);
|
|
sigdelset(&(sigAct.sa_mask), SIGBUS);
|
|
sigdelset(&(sigAct.sa_mask), SIGILL);
|
|
sigdelset(&(sigAct.sa_mask), SIGFPE);
|
|
sigdelset(&(sigAct.sa_mask), SIGTRAP);
|
|
|
|
sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
|
|
|
|
sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
|
|
|
|
if (sigaction(signal_number, &sigAct, &oldSigAct)) {
|
|
// -1 means registration failed
|
|
return (void *)-1;
|
|
}
|
|
|
|
return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
|
|
}
|
|
|
|
void os::signal_raise(int signal_number) {
|
|
::raise(signal_number);
|
|
}
|
|
|
|
//
|
|
// The following code is moved from os.cpp for making this
|
|
// code platform specific, which it is by its very nature.
|
|
//
|
|
|
|
// Will be modified when max signal is changed to be dynamic
|
|
int os::sigexitnum_pd() {
|
|
return NSIG;
|
|
}
|
|
|
|
// a counter for each possible signal value
|
|
static volatile jint pending_signals[NSIG+1] = { 0 };
|
|
|
|
// Linux(POSIX) specific hand shaking semaphore.
|
|
static sem_t sig_sem;
|
|
|
|
void os::signal_init_pd() {
|
|
// Initialize signal structures
|
|
::memset((void*)pending_signals, 0, sizeof(pending_signals));
|
|
|
|
// Initialize signal semaphore
|
|
int rc = ::sem_init(&sig_sem, 0, 0);
|
|
guarantee(rc != -1, "sem_init failed");
|
|
}
|
|
|
|
void os::signal_notify(int sig) {
|
|
Atomic::inc(&pending_signals[sig]);
|
|
::sem_post(&sig_sem);
|
|
}
|
|
|
|
static int check_pending_signals(bool wait) {
|
|
Atomic::store(0, &sigint_count);
|
|
for (;;) {
|
|
for (int i = 0; i < NSIG + 1; i++) {
|
|
jint n = pending_signals[i];
|
|
if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
|
|
return i;
|
|
}
|
|
}
|
|
if (!wait) {
|
|
return -1;
|
|
}
|
|
JavaThread *thread = JavaThread::current();
|
|
ThreadBlockInVM tbivm(thread);
|
|
|
|
bool threadIsSuspended;
|
|
do {
|
|
thread->set_suspend_equivalent();
|
|
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
|
|
|
|
::sem_wait(&sig_sem);
|
|
|
|
// were we externally suspended while we were waiting?
|
|
threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
|
|
if (threadIsSuspended) {
|
|
//
|
|
// The semaphore has been incremented, but while we were waiting
|
|
// another thread suspended us. We don't want to continue running
|
|
// while suspended because that would surprise the thread that
|
|
// suspended us.
|
|
//
|
|
::sem_post(&sig_sem);
|
|
|
|
thread->java_suspend_self();
|
|
}
|
|
} while (threadIsSuspended);
|
|
}
|
|
}
|
|
|
|
int os::signal_lookup() {
|
|
return check_pending_signals(false);
|
|
}
|
|
|
|
int os::signal_wait() {
|
|
return check_pending_signals(true);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Virtual Memory
|
|
|
|
// AddrRange describes an immutable address range
|
|
//
|
|
// This is a helper class for the 'shared memory bookkeeping' below.
|
|
class AddrRange {
|
|
friend class ShmBkBlock;
|
|
|
|
char* _start;
|
|
size_t _size;
|
|
|
|
public:
|
|
|
|
AddrRange(char* start, size_t size)
|
|
: _start(start), _size(size)
|
|
{}
|
|
|
|
AddrRange(const AddrRange& r)
|
|
: _start(r.start()), _size(r.size())
|
|
{}
|
|
|
|
char* start() const { return _start; }
|
|
size_t size() const { return _size; }
|
|
char* end() const { return _start + _size; }
|
|
bool is_empty() const { return _size == 0 ? true : false; }
|
|
|
|
static AddrRange empty_range() { return AddrRange(NULL, 0); }
|
|
|
|
bool contains(const char* p) const {
|
|
return start() <= p && end() > p;
|
|
}
|
|
|
|
bool contains(const AddrRange& range) const {
|
|
return start() <= range.start() && end() >= range.end();
|
|
}
|
|
|
|
bool intersects(const AddrRange& range) const {
|
|
return (range.start() <= start() && range.end() > start()) ||
|
|
(range.start() < end() && range.end() >= end()) ||
|
|
contains(range);
|
|
}
|
|
|
|
bool is_same_range(const AddrRange& range) const {
|
|
return start() == range.start() && size() == range.size();
|
|
}
|
|
|
|
// return the closest inside range consisting of whole pages
|
|
AddrRange find_closest_aligned_range(size_t pagesize) const {
|
|
if (pagesize == 0 || is_empty()) {
|
|
return empty_range();
|
|
}
|
|
char* const from = (char*)align_size_up((intptr_t)_start, pagesize);
|
|
char* const to = (char*)align_size_down((intptr_t)end(), pagesize);
|
|
if (from > to) {
|
|
return empty_range();
|
|
}
|
|
return AddrRange(from, to - from);
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// shared memory bookkeeping
|
|
//
|
|
// the os::reserve_memory() API and friends hand out different kind of memory, depending
|
|
// on need and circumstances. Memory may be allocated with mmap() or with shmget/shmat.
|
|
//
|
|
// But these memory types have to be treated differently. For example, to uncommit
|
|
// mmap-based memory, msync(MS_INVALIDATE) is needed, to uncommit shmat-based memory,
|
|
// disclaim64() is needed.
|
|
//
|
|
// Therefore we need to keep track of the allocated memory segments and their
|
|
// properties.
|
|
|
|
// ShmBkBlock: base class for all blocks in the shared memory bookkeeping
|
|
class ShmBkBlock {
|
|
|
|
ShmBkBlock* _next;
|
|
|
|
protected:
|
|
|
|
AddrRange _range;
|
|
const size_t _pagesize;
|
|
const bool _pinned;
|
|
|
|
public:
|
|
|
|
ShmBkBlock(AddrRange range, size_t pagesize, bool pinned)
|
|
: _range(range), _pagesize(pagesize), _pinned(pinned) , _next(NULL) {
|
|
|
|
assert(_pagesize == SIZE_4K || _pagesize == SIZE_64K || _pagesize == SIZE_16M, "invalid page size");
|
|
assert(!_range.is_empty(), "invalid range");
|
|
}
|
|
|
|
virtual void print(outputStream* st) const {
|
|
st->print("0x%p ... 0x%p (%llu) - %d %s pages - %s",
|
|
_range.start(), _range.end(), _range.size(),
|
|
_range.size() / _pagesize, describe_pagesize(_pagesize),
|
|
_pinned ? "pinned" : "");
|
|
}
|
|
|
|
enum Type { MMAP, SHMAT };
|
|
virtual Type getType() = 0;
|
|
|
|
char* base() const { return _range.start(); }
|
|
size_t size() const { return _range.size(); }
|
|
|
|
void setAddrRange(AddrRange range) {
|
|
_range = range;
|
|
}
|
|
|
|
bool containsAddress(const char* p) const {
|
|
return _range.contains(p);
|
|
}
|
|
|
|
bool containsRange(const char* p, size_t size) const {
|
|
return _range.contains(AddrRange((char*)p, size));
|
|
}
|
|
|
|
bool isSameRange(const char* p, size_t size) const {
|
|
return _range.is_same_range(AddrRange((char*)p, size));
|
|
}
|
|
|
|
virtual bool disclaim(char* p, size_t size) = 0;
|
|
virtual bool release() = 0;
|
|
|
|
// blocks live in a list.
|
|
ShmBkBlock* next() const { return _next; }
|
|
void set_next(ShmBkBlock* blk) { _next = blk; }
|
|
|
|
}; // end: ShmBkBlock
|
|
|
|
|
|
// ShmBkMappedBlock: describes an block allocated with mmap()
|
|
class ShmBkMappedBlock : public ShmBkBlock {
|
|
public:
|
|
|
|
ShmBkMappedBlock(AddrRange range)
|
|
: ShmBkBlock(range, SIZE_4K, false) {} // mmap: always 4K, never pinned
|
|
|
|
void print(outputStream* st) const {
|
|
ShmBkBlock::print(st);
|
|
st->print_cr(" - mmap'ed");
|
|
}
|
|
|
|
Type getType() {
|
|
return MMAP;
|
|
}
|
|
|
|
bool disclaim(char* p, size_t size) {
|
|
|
|
AddrRange r(p, size);
|
|
|
|
guarantee(_range.contains(r), "invalid disclaim");
|
|
|
|
// only disclaim whole ranges.
|
|
const AddrRange r2 = r.find_closest_aligned_range(_pagesize);
|
|
if (r2.is_empty()) {
|
|
return true;
|
|
}
|
|
|
|
const int rc = ::msync(r2.start(), r2.size(), MS_INVALIDATE);
|
|
|
|
if (rc != 0) {
|
|
warning("msync(0x%p, %llu, MS_INVALIDATE) failed (%d)\n", r2.start(), r2.size(), errno);
|
|
}
|
|
|
|
return rc == 0 ? true : false;
|
|
}
|
|
|
|
bool release() {
|
|
// mmap'ed blocks are released using munmap
|
|
if (::munmap(_range.start(), _range.size()) != 0) {
|
|
warning("munmap(0x%p, %llu) failed (%d)\n", _range.start(), _range.size(), errno);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
}; // end: ShmBkMappedBlock
|
|
|
|
// ShmBkShmatedBlock: describes an block allocated with shmget/shmat()
|
|
class ShmBkShmatedBlock : public ShmBkBlock {
|
|
public:
|
|
|
|
ShmBkShmatedBlock(AddrRange range, size_t pagesize, bool pinned)
|
|
: ShmBkBlock(range, pagesize, pinned) {}
|
|
|
|
void print(outputStream* st) const {
|
|
ShmBkBlock::print(st);
|
|
st->print_cr(" - shmat'ed");
|
|
}
|
|
|
|
Type getType() {
|
|
return SHMAT;
|
|
}
|
|
|
|
bool disclaim(char* p, size_t size) {
|
|
|
|
AddrRange r(p, size);
|
|
|
|
if (_pinned) {
|
|
return true;
|
|
}
|
|
|
|
// shmat'ed blocks are disclaimed using disclaim64
|
|
guarantee(_range.contains(r), "invalid disclaim");
|
|
|
|
// only disclaim whole ranges.
|
|
const AddrRange r2 = r.find_closest_aligned_range(_pagesize);
|
|
if (r2.is_empty()) {
|
|
return true;
|
|
}
|
|
|
|
const bool rc = my_disclaim64(r2.start(), r2.size());
|
|
|
|
if (Verbose && !rc) {
|
|
warning("failed to disclaim shm %p-%p\n", r2.start(), r2.end());
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
bool release() {
|
|
bool rc = false;
|
|
if (::shmdt(_range.start()) != 0) {
|
|
warning("shmdt(0x%p) failed (%d)\n", _range.start(), errno);
|
|
} else {
|
|
rc = true;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
}; // end: ShmBkShmatedBlock
|
|
|
|
static ShmBkBlock* g_shmbk_list = NULL;
|
|
static volatile jint g_shmbk_table_lock = 0;
|
|
|
|
// keep some usage statistics
|
|
static struct {
|
|
int nodes; // number of nodes in list
|
|
size_t bytes; // reserved - not committed - bytes.
|
|
int reserves; // how often reserve was called
|
|
int lookups; // how often a lookup was made
|
|
} g_shmbk_stats = { 0, 0, 0, 0 };
|
|
|
|
// add information about a shared memory segment to the bookkeeping
|
|
static void shmbk_register(ShmBkBlock* p_block) {
|
|
guarantee(p_block, "logic error");
|
|
p_block->set_next(g_shmbk_list);
|
|
g_shmbk_list = p_block;
|
|
g_shmbk_stats.reserves ++;
|
|
g_shmbk_stats.bytes += p_block->size();
|
|
g_shmbk_stats.nodes ++;
|
|
}
|
|
|
|
// remove information about a shared memory segment by its starting address
|
|
static void shmbk_unregister(ShmBkBlock* p_block) {
|
|
ShmBkBlock* p = g_shmbk_list;
|
|
ShmBkBlock* prev = NULL;
|
|
while (p) {
|
|
if (p == p_block) {
|
|
if (prev) {
|
|
prev->set_next(p->next());
|
|
} else {
|
|
g_shmbk_list = p->next();
|
|
}
|
|
g_shmbk_stats.nodes --;
|
|
g_shmbk_stats.bytes -= p->size();
|
|
return;
|
|
}
|
|
prev = p;
|
|
p = p->next();
|
|
}
|
|
assert(false, "should not happen");
|
|
}
|
|
|
|
// given a pointer, return shared memory bookkeeping record for the segment it points into
|
|
// using the returned block info must happen under lock protection
|
|
static ShmBkBlock* shmbk_find_by_containing_address(const char* addr) {
|
|
g_shmbk_stats.lookups ++;
|
|
ShmBkBlock* p = g_shmbk_list;
|
|
while (p) {
|
|
if (p->containsAddress(addr)) {
|
|
return p;
|
|
}
|
|
p = p->next();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// dump all information about all memory segments allocated with os::reserve_memory()
|
|
void shmbk_dump_info() {
|
|
tty->print_cr("-- shared mem bookkeeping (alive: %d segments, %llu bytes, "
|
|
"total reserves: %d total lookups: %d)",
|
|
g_shmbk_stats.nodes, g_shmbk_stats.bytes, g_shmbk_stats.reserves, g_shmbk_stats.lookups);
|
|
const ShmBkBlock* p = g_shmbk_list;
|
|
int i = 0;
|
|
while (p) {
|
|
p->print(tty);
|
|
p = p->next();
|
|
i ++;
|
|
}
|
|
}
|
|
|
|
#define LOCK_SHMBK { ThreadCritical _LOCK_SHMBK;
|
|
#define UNLOCK_SHMBK }
|
|
|
|
// End: shared memory bookkeeping
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int os::vm_page_size() {
|
|
// Seems redundant as all get out
|
|
assert(os::Aix::page_size() != -1, "must call os::init");
|
|
return os::Aix::page_size();
|
|
}
|
|
|
|
// Aix allocates memory by pages.
|
|
int os::vm_allocation_granularity() {
|
|
assert(os::Aix::page_size() != -1, "must call os::init");
|
|
return os::Aix::page_size();
|
|
}
|
|
|
|
int os::Aix::commit_memory_impl(char* addr, size_t size, bool exec) {
|
|
|
|
// Commit is a noop. There is no explicit commit
|
|
// needed on AIX. Memory is committed when touched.
|
|
//
|
|
// Debug : check address range for validity
|
|
#ifdef ASSERT
|
|
LOCK_SHMBK
|
|
ShmBkBlock* const block = shmbk_find_by_containing_address(addr);
|
|
if (!block) {
|
|
fprintf(stderr, "invalid pointer: " INTPTR_FORMAT "\n", addr);
|
|
shmbk_dump_info();
|
|
assert(false, "invalid pointer");
|
|
return false;
|
|
} else if (!block->containsRange(addr, size)) {
|
|
fprintf(stderr, "invalid range: " INTPTR_FORMAT " .. " INTPTR_FORMAT "\n", addr, addr + size);
|
|
shmbk_dump_info();
|
|
assert(false, "invalid range");
|
|
return false;
|
|
}
|
|
UNLOCK_SHMBK
|
|
#endif // ASSERT
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
|
|
return os::Aix::commit_memory_impl(addr, size, exec) == 0;
|
|
}
|
|
|
|
void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
|
|
const char* mesg) {
|
|
assert(mesg != NULL, "mesg must be specified");
|
|
os::Aix::commit_memory_impl(addr, size, exec);
|
|
}
|
|
|
|
int os::Aix::commit_memory_impl(char* addr, size_t size,
|
|
size_t alignment_hint, bool exec) {
|
|
return os::Aix::commit_memory_impl(addr, size, exec);
|
|
}
|
|
|
|
bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
|
|
bool exec) {
|
|
return os::Aix::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
|
|
}
|
|
|
|
void os::pd_commit_memory_or_exit(char* addr, size_t size,
|
|
size_t alignment_hint, bool exec,
|
|
const char* mesg) {
|
|
os::Aix::commit_memory_impl(addr, size, alignment_hint, exec);
|
|
}
|
|
|
|
bool os::pd_uncommit_memory(char* addr, size_t size) {
|
|
|
|
// Delegate to ShmBkBlock class which knows how to uncommit its memory.
|
|
|
|
bool rc = false;
|
|
LOCK_SHMBK
|
|
ShmBkBlock* const block = shmbk_find_by_containing_address(addr);
|
|
if (!block) {
|
|
fprintf(stderr, "invalid pointer: 0x%p.\n", addr);
|
|
shmbk_dump_info();
|
|
assert(false, "invalid pointer");
|
|
return false;
|
|
} else if (!block->containsRange(addr, size)) {
|
|
fprintf(stderr, "invalid range: 0x%p .. 0x%p.\n", addr, addr + size);
|
|
shmbk_dump_info();
|
|
assert(false, "invalid range");
|
|
return false;
|
|
}
|
|
rc = block->disclaim(addr, size);
|
|
UNLOCK_SHMBK
|
|
|
|
if (Verbose && !rc) {
|
|
warning("failed to disclaim 0x%p .. 0x%p (0x%llX bytes).", addr, addr + size, size);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
|
|
return os::guard_memory(addr, size);
|
|
}
|
|
|
|
bool os::remove_stack_guard_pages(char* addr, size_t size) {
|
|
return os::unguard_memory(addr, size);
|
|
}
|
|
|
|
void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
|
|
}
|
|
|
|
void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
|
|
}
|
|
|
|
void os::numa_make_global(char *addr, size_t bytes) {
|
|
}
|
|
|
|
void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
|
|
}
|
|
|
|
bool os::numa_topology_changed() {
|
|
return false;
|
|
}
|
|
|
|
size_t os::numa_get_groups_num() {
|
|
return 1;
|
|
}
|
|
|
|
int os::numa_get_group_id() {
|
|
return 0;
|
|
}
|
|
|
|
size_t os::numa_get_leaf_groups(int *ids, size_t size) {
|
|
if (size > 0) {
|
|
ids[0] = 0;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool os::get_page_info(char *start, page_info* info) {
|
|
return false;
|
|
}
|
|
|
|
char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
|
|
return end;
|
|
}
|
|
|
|
// Flags for reserve_shmatted_memory:
|
|
#define RESSHM_WISHADDR_OR_FAIL 1
|
|
#define RESSHM_TRY_16M_PAGES 2
|
|
#define RESSHM_16M_PAGES_OR_FAIL 4
|
|
|
|
// Result of reserve_shmatted_memory:
|
|
struct shmatted_memory_info_t {
|
|
char* addr;
|
|
size_t pagesize;
|
|
bool pinned;
|
|
};
|
|
|
|
// Reserve a section of shmatted memory.
|
|
// params:
|
|
// bytes [in]: size of memory, in bytes
|
|
// requested_addr [in]: wish address.
|
|
// NULL = no wish.
|
|
// If RESSHM_WISHADDR_OR_FAIL is set in flags and wish address cannot
|
|
// be obtained, function will fail. Otherwise wish address is treated as hint and
|
|
// another pointer is returned.
|
|
// flags [in]: some flags. Valid flags are:
|
|
// RESSHM_WISHADDR_OR_FAIL - fail if wish address is given and cannot be obtained.
|
|
// RESSHM_TRY_16M_PAGES - try to allocate from 16M page pool
|
|
// (requires UseLargePages and Use16MPages)
|
|
// RESSHM_16M_PAGES_OR_FAIL - if you cannot allocate from 16M page pool, fail.
|
|
// Otherwise any other page size will do.
|
|
// p_info [out] : holds information about the created shared memory segment.
|
|
static bool reserve_shmatted_memory(size_t bytes, char* requested_addr, int flags, shmatted_memory_info_t* p_info) {
|
|
|
|
assert(p_info, "parameter error");
|
|
|
|
// init output struct.
|
|
p_info->addr = NULL;
|
|
|
|
// neither should we be here for EXTSHM=ON.
|
|
if (os::Aix::extshm()) {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
// extract flags. sanity checks.
|
|
const bool wishaddr_or_fail =
|
|
flags & RESSHM_WISHADDR_OR_FAIL;
|
|
const bool try_16M_pages =
|
|
flags & RESSHM_TRY_16M_PAGES;
|
|
const bool f16M_pages_or_fail =
|
|
flags & RESSHM_16M_PAGES_OR_FAIL;
|
|
|
|
// first check: if a wish address is given and it is mandatory, but not aligned to segment boundary,
|
|
// shmat will fail anyway, so save some cycles by failing right away
|
|
if (requested_addr && ((uintptr_t)requested_addr % SIZE_256M == 0)) {
|
|
if (wishaddr_or_fail) {
|
|
return false;
|
|
} else {
|
|
requested_addr = NULL;
|
|
}
|
|
}
|
|
|
|
char* addr = NULL;
|
|
|
|
// Align size of shm up to the largest possible page size, to avoid errors later on when we try to change
|
|
// pagesize dynamically.
|
|
const size_t size = align_size_up(bytes, SIZE_16M);
|
|
|
|
// reserve the shared segment
|
|
int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
|
|
if (shmid == -1) {
|
|
warning("shmget(.., %lld, ..) failed (errno: %d).", size, errno);
|
|
return false;
|
|
}
|
|
|
|
// Important note:
|
|
// It is very important that we, upon leaving this function, do not leave a shm segment alive.
|
|
// We must right after attaching it remove it from the system. System V shm segments are global and
|
|
// survive the process.
|
|
// So, from here on: Do not assert. Do not return. Always do a "goto cleanup_shm".
|
|
|
|
// try forcing the page size
|
|
size_t pagesize = -1; // unknown so far
|
|
|
|
if (UseLargePages) {
|
|
|
|
struct shmid_ds shmbuf;
|
|
memset(&shmbuf, 0, sizeof(shmbuf));
|
|
|
|
// First, try to take from 16M page pool if...
|
|
if (os::Aix::can_use_16M_pages() // we can ...
|
|
&& Use16MPages // we are not explicitly forbidden to do so (-XX:-Use16MPages)..
|
|
&& try_16M_pages) { // caller wants us to.
|
|
shmbuf.shm_pagesize = SIZE_16M;
|
|
if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) == 0) {
|
|
pagesize = SIZE_16M;
|
|
} else {
|
|
warning("Failed to allocate %d 16M pages. 16M page pool might be exhausted. (shmctl failed with %d)",
|
|
size / SIZE_16M, errno);
|
|
if (f16M_pages_or_fail) {
|
|
goto cleanup_shm;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Nothing yet? Try setting 64K pages. Note that I never saw this fail, but in theory it might,
|
|
// because the 64K page pool may also be exhausted.
|
|
if (pagesize == -1) {
|
|
shmbuf.shm_pagesize = SIZE_64K;
|
|
if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) == 0) {
|
|
pagesize = SIZE_64K;
|
|
} else {
|
|
warning("Failed to allocate %d 64K pages. (shmctl failed with %d)",
|
|
size / SIZE_64K, errno);
|
|
// here I give up. leave page_size -1 - later, after attaching, we will query the
|
|
// real page size of the attached memory. (in theory, it may be something different
|
|
// from 4K if LDR_CNTRL SHM_PSIZE is set)
|
|
}
|
|
}
|
|
}
|
|
|
|
// sanity point
|
|
assert(pagesize == -1 || pagesize == SIZE_16M || pagesize == SIZE_64K, "wrong page size");
|
|
|
|
// Now attach the shared segment.
|
|
addr = (char*) shmat(shmid, requested_addr, 0);
|
|
if (addr == (char*)-1) {
|
|
// How to handle attach failure:
|
|
// If it failed for a specific wish address, tolerate this: in that case, if wish address was
|
|
// mandatory, fail, if not, retry anywhere.
|
|
// If it failed for any other reason, treat that as fatal error.
|
|
addr = NULL;
|
|
if (requested_addr) {
|
|
if (wishaddr_or_fail) {
|
|
goto cleanup_shm;
|
|
} else {
|
|
addr = (char*) shmat(shmid, NULL, 0);
|
|
if (addr == (char*)-1) { // fatal
|
|
addr = NULL;
|
|
warning("shmat failed (errno: %d)", errno);
|
|
goto cleanup_shm;
|
|
}
|
|
}
|
|
} else { // fatal
|
|
addr = NULL;
|
|
warning("shmat failed (errno: %d)", errno);
|
|
goto cleanup_shm;
|
|
}
|
|
}
|
|
|
|
// sanity point
|
|
assert(addr && addr != (char*) -1, "wrong address");
|
|
|
|
// after successful Attach remove the segment - right away.
|
|
if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
|
|
warning("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
|
|
guarantee(false, "failed to remove shared memory segment!");
|
|
}
|
|
shmid = -1;
|
|
|
|
// query the real page size. In case setting the page size did not work (see above), the system
|
|
// may have given us something other then 4K (LDR_CNTRL)
|
|
{
|
|
const size_t real_pagesize = os::Aix::query_pagesize(addr);
|
|
if (pagesize != -1) {
|
|
assert(pagesize == real_pagesize, "unexpected pagesize after shmat");
|
|
} else {
|
|
pagesize = real_pagesize;
|
|
}
|
|
}
|
|
|
|
// Now register the reserved block with internal book keeping.
|
|
LOCK_SHMBK
|
|
const bool pinned = pagesize >= SIZE_16M ? true : false;
|
|
ShmBkShmatedBlock* const p_block = new ShmBkShmatedBlock(AddrRange(addr, size), pagesize, pinned);
|
|
assert(p_block, "");
|
|
shmbk_register(p_block);
|
|
UNLOCK_SHMBK
|
|
|
|
cleanup_shm:
|
|
|
|
// if we have not done so yet, remove the shared memory segment. This is very important.
|
|
if (shmid != -1) {
|
|
if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
|
|
warning("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
|
|
guarantee(false, "failed to remove shared memory segment!");
|
|
}
|
|
shmid = -1;
|
|
}
|
|
|
|
// trace
|
|
if (Verbose && !addr) {
|
|
if (requested_addr != NULL) {
|
|
warning("failed to shm-allocate 0x%llX bytes at wish address 0x%p.", size, requested_addr);
|
|
} else {
|
|
warning("failed to shm-allocate 0x%llX bytes at any address.", size);
|
|
}
|
|
}
|
|
|
|
// hand info to caller
|
|
if (addr) {
|
|
p_info->addr = addr;
|
|
p_info->pagesize = pagesize;
|
|
p_info->pinned = pagesize == SIZE_16M ? true : false;
|
|
}
|
|
|
|
// sanity test:
|
|
if (requested_addr && addr && wishaddr_or_fail) {
|
|
guarantee(addr == requested_addr, "shmat error");
|
|
}
|
|
|
|
// just one more test to really make sure we have no dangling shm segments.
|
|
guarantee(shmid == -1, "dangling shm segments");
|
|
|
|
return addr ? true : false;
|
|
|
|
} // end: reserve_shmatted_memory
|
|
|
|
// Reserve memory using mmap. Behaves the same as reserve_shmatted_memory():
|
|
// will return NULL in case of an error.
|
|
static char* reserve_mmaped_memory(size_t bytes, char* requested_addr) {
|
|
|
|
// if a wish address is given, but not aligned to 4K page boundary, mmap will fail.
|
|
if (requested_addr && ((uintptr_t)requested_addr % os::vm_page_size() != 0)) {
|
|
warning("Wish address 0x%p not aligned to page boundary.", requested_addr);
|
|
return NULL;
|
|
}
|
|
|
|
const size_t size = align_size_up(bytes, SIZE_4K);
|
|
|
|
// Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
|
|
// msync(MS_INVALIDATE) (see os::uncommit_memory)
|
|
int flags = MAP_ANONYMOUS | MAP_SHARED;
|
|
|
|
// MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
|
|
// it means if wishaddress is given but MAP_FIXED is not set.
|
|
//
|
|
// Note however that this changes semantics in SPEC1170 mode insofar as MAP_FIXED
|
|
// clobbers the address range, which is probably not what the caller wants. That's
|
|
// why I assert here (again) that the SPEC1170 compat mode is off.
|
|
// If we want to be able to run under SPEC1170, we have to do some porting and
|
|
// testing.
|
|
if (requested_addr != NULL) {
|
|
assert(!os::Aix::xpg_sus_mode(), "SPEC1170 mode not allowed.");
|
|
flags |= MAP_FIXED;
|
|
}
|
|
|
|
char* addr = (char*)::mmap(requested_addr, size, PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
|
|
|
|
if (addr == MAP_FAILED) {
|
|
// attach failed: tolerate for specific wish addresses. Not being able to attach
|
|
// anywhere is a fatal error.
|
|
if (requested_addr == NULL) {
|
|
// It's ok to fail here if the machine has not enough memory.
|
|
warning("mmap(NULL, 0x%llX, ..) failed (%d)", size, errno);
|
|
}
|
|
addr = NULL;
|
|
goto cleanup_mmap;
|
|
}
|
|
|
|
// If we did request a specific address and that address was not available, fail.
|
|
if (addr && requested_addr) {
|
|
guarantee(addr == requested_addr, "unexpected");
|
|
}
|
|
|
|
// register this mmap'ed segment with book keeping
|
|
LOCK_SHMBK
|
|
ShmBkMappedBlock* const p_block = new ShmBkMappedBlock(AddrRange(addr, size));
|
|
assert(p_block, "");
|
|
shmbk_register(p_block);
|
|
UNLOCK_SHMBK
|
|
|
|
cleanup_mmap:
|
|
|
|
// trace
|
|
if (Verbose) {
|
|
if (addr) {
|
|
fprintf(stderr, "mmap-allocated 0x%p .. 0x%p (0x%llX bytes)\n", addr, addr + bytes, bytes);
|
|
}
|
|
else {
|
|
if (requested_addr != NULL) {
|
|
warning("failed to mmap-allocate 0x%llX bytes at wish address 0x%p.", bytes, requested_addr);
|
|
} else {
|
|
warning("failed to mmap-allocate 0x%llX bytes at any address.", bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
return addr;
|
|
|
|
} // end: reserve_mmaped_memory
|
|
|
|
// Reserves and attaches a shared memory segment.
|
|
// Will assert if a wish address is given and could not be obtained.
|
|
char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
|
|
return os::attempt_reserve_memory_at(bytes, requested_addr);
|
|
}
|
|
|
|
bool os::pd_release_memory(char* addr, size_t size) {
|
|
|
|
// delegate to ShmBkBlock class which knows how to uncommit its memory.
|
|
|
|
bool rc = false;
|
|
LOCK_SHMBK
|
|
ShmBkBlock* const block = shmbk_find_by_containing_address(addr);
|
|
if (!block) {
|
|
fprintf(stderr, "invalid pointer: 0x%p.\n", addr);
|
|
shmbk_dump_info();
|
|
assert(false, "invalid pointer");
|
|
return false;
|
|
}
|
|
else if (!block->isSameRange(addr, size)) {
|
|
if (block->getType() == ShmBkBlock::MMAP) {
|
|
// Release only the same range or a the beginning or the end of a range.
|
|
if (block->base() == addr && size < block->size()) {
|
|
ShmBkMappedBlock* const b = new ShmBkMappedBlock(AddrRange(block->base() + size, block->size() - size));
|
|
assert(b, "");
|
|
shmbk_register(b);
|
|
block->setAddrRange(AddrRange(addr, size));
|
|
}
|
|
else if (addr > block->base() && addr + size == block->base() + block->size()) {
|
|
ShmBkMappedBlock* const b = new ShmBkMappedBlock(AddrRange(block->base(), block->size() - size));
|
|
assert(b, "");
|
|
shmbk_register(b);
|
|
block->setAddrRange(AddrRange(addr, size));
|
|
}
|
|
else {
|
|
fprintf(stderr, "invalid mmap range: 0x%p .. 0x%p.\n", addr, addr + size);
|
|
shmbk_dump_info();
|
|
assert(false, "invalid mmap range");
|
|
return false;
|
|
}
|
|
}
|
|
else {
|
|
// Release only the same range. No partial release allowed.
|
|
// Soften the requirement a bit, because the user may think he owns a smaller size
|
|
// than the block is due to alignment etc.
|
|
if (block->base() != addr || block->size() < size) {
|
|
fprintf(stderr, "invalid shmget range: 0x%p .. 0x%p.\n", addr, addr + size);
|
|
shmbk_dump_info();
|
|
assert(false, "invalid shmget range");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
rc = block->release();
|
|
assert(rc, "release failed");
|
|
// remove block from bookkeeping
|
|
shmbk_unregister(block);
|
|
delete block;
|
|
UNLOCK_SHMBK
|
|
|
|
if (!rc) {
|
|
warning("failed to released %lu bytes at 0x%p", size, addr);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static bool checked_mprotect(char* addr, size_t size, int prot) {
|
|
|
|
// Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
|
|
// not tell me if protection failed when trying to protect an un-protectable range.
|
|
//
|
|
// This means if the memory was allocated using shmget/shmat, protection wont work
|
|
// but mprotect will still return 0:
|
|
//
|
|
// See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
|
|
|
|
bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
|
|
|
|
if (!rc) {
|
|
const char* const s_errno = strerror(errno);
|
|
warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
|
|
return false;
|
|
}
|
|
|
|
// mprotect success check
|
|
//
|
|
// Mprotect said it changed the protection but can I believe it?
|
|
//
|
|
// To be sure I need to check the protection afterwards. Try to
|
|
// read from protected memory and check whether that causes a segfault.
|
|
//
|
|
if (!os::Aix::xpg_sus_mode()) {
|
|
|
|
if (StubRoutines::SafeFetch32_stub()) {
|
|
|
|
const bool read_protected =
|
|
(SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
|
|
SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
|
|
|
|
if (prot & PROT_READ) {
|
|
rc = !read_protected;
|
|
} else {
|
|
rc = read_protected;
|
|
}
|
|
}
|
|
}
|
|
if (!rc) {
|
|
assert(false, "mprotect failed.");
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
// Set protections specified
|
|
bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
|
|
unsigned int p = 0;
|
|
switch (prot) {
|
|
case MEM_PROT_NONE: p = PROT_NONE; break;
|
|
case MEM_PROT_READ: p = PROT_READ; break;
|
|
case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
|
|
case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
// is_committed is unused.
|
|
return checked_mprotect(addr, size, p);
|
|
}
|
|
|
|
bool os::guard_memory(char* addr, size_t size) {
|
|
return checked_mprotect(addr, size, PROT_NONE);
|
|
}
|
|
|
|
bool os::unguard_memory(char* addr, size_t size) {
|
|
return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
|
|
}
|
|
|
|
// Large page support
|
|
|
|
static size_t _large_page_size = 0;
|
|
|
|
// Enable large page support if OS allows that.
|
|
void os::large_page_init() {
|
|
|
|
// Note: os::Aix::query_multipage_support must run first.
|
|
|
|
if (!UseLargePages) {
|
|
return;
|
|
}
|
|
|
|
if (!Aix::can_use_64K_pages()) {
|
|
assert(!Aix::can_use_16M_pages(), "64K is a precondition for 16M.");
|
|
UseLargePages = false;
|
|
return;
|
|
}
|
|
|
|
if (!Aix::can_use_16M_pages() && Use16MPages) {
|
|
fprintf(stderr, "Cannot use 16M pages. Please ensure that there is a 16M page pool "
|
|
" and that the VM runs with CAP_BYPASS_RAC_VMM and CAP_PROPAGATE capabilities.\n");
|
|
}
|
|
|
|
// Do not report 16M page alignment as part of os::_page_sizes if we are
|
|
// explicitly forbidden from using 16M pages. Doing so would increase the
|
|
// alignment the garbage collector calculates with, slightly increasing
|
|
// heap usage. We should only pay for 16M alignment if we really want to
|
|
// use 16M pages.
|
|
if (Use16MPages && Aix::can_use_16M_pages()) {
|
|
_large_page_size = SIZE_16M;
|
|
_page_sizes[0] = SIZE_16M;
|
|
_page_sizes[1] = SIZE_64K;
|
|
_page_sizes[2] = SIZE_4K;
|
|
_page_sizes[3] = 0;
|
|
} else if (Aix::can_use_64K_pages()) {
|
|
_large_page_size = SIZE_64K;
|
|
_page_sizes[0] = SIZE_64K;
|
|
_page_sizes[1] = SIZE_4K;
|
|
_page_sizes[2] = 0;
|
|
}
|
|
|
|
if (Verbose) {
|
|
("Default large page size is 0x%llX.", _large_page_size);
|
|
}
|
|
} // end: os::large_page_init()
|
|
|
|
char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
|
|
// "exec" is passed in but not used. Creating the shared image for
|
|
// the code cache doesn't have an SHM_X executable permission to check.
|
|
Unimplemented();
|
|
return 0;
|
|
}
|
|
|
|
bool os::release_memory_special(char* base, size_t bytes) {
|
|
// detaching the SHM segment will also delete it, see reserve_memory_special()
|
|
Unimplemented();
|
|
return false;
|
|
}
|
|
|
|
size_t os::large_page_size() {
|
|
return _large_page_size;
|
|
}
|
|
|
|
bool os::can_commit_large_page_memory() {
|
|
// Well, sadly we cannot commit anything at all (see comment in
|
|
// os::commit_memory) but we claim to so we can make use of large pages
|
|
return true;
|
|
}
|
|
|
|
bool os::can_execute_large_page_memory() {
|
|
// We can do that
|
|
return true;
|
|
}
|
|
|
|
// Reserve memory at an arbitrary address, only if that area is
|
|
// available (and not reserved for something else).
|
|
char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
|
|
|
|
bool use_mmap = false;
|
|
|
|
// mmap: smaller graining, no large page support
|
|
// shm: large graining (256M), large page support, limited number of shm segments
|
|
//
|
|
// Prefer mmap wherever we either do not need large page support or have OS limits
|
|
|
|
if (!UseLargePages || bytes < SIZE_16M) {
|
|
use_mmap = true;
|
|
}
|
|
|
|
char* addr = NULL;
|
|
if (use_mmap) {
|
|
addr = reserve_mmaped_memory(bytes, requested_addr);
|
|
} else {
|
|
// shmat: wish address is mandatory, and do not try 16M pages here.
|
|
shmatted_memory_info_t info;
|
|
const int flags = RESSHM_WISHADDR_OR_FAIL;
|
|
if (reserve_shmatted_memory(bytes, requested_addr, flags, &info)) {
|
|
addr = info.addr;
|
|
}
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
size_t os::read(int fd, void *buf, unsigned int nBytes) {
|
|
return ::read(fd, buf, nBytes);
|
|
}
|
|
|
|
void os::naked_short_sleep(jlong ms) {
|
|
struct timespec req;
|
|
|
|
assert(ms < 1000, "Un-interruptable sleep, short time use only");
|
|
req.tv_sec = 0;
|
|
if (ms > 0) {
|
|
req.tv_nsec = (ms % 1000) * 1000000;
|
|
}
|
|
else {
|
|
req.tv_nsec = 1;
|
|
}
|
|
|
|
nanosleep(&req, NULL);
|
|
|
|
return;
|
|
}
|
|
|
|
// Sleep forever; naked call to OS-specific sleep; use with CAUTION
|
|
void os::infinite_sleep() {
|
|
while (true) { // sleep forever ...
|
|
::sleep(100); // ... 100 seconds at a time
|
|
}
|
|
}
|
|
|
|
// Used to convert frequent JVM_Yield() to nops
|
|
bool os::dont_yield() {
|
|
return DontYieldALot;
|
|
}
|
|
|
|
void os::yield() {
|
|
sched_yield();
|
|
}
|
|
|
|
os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN; }
|
|
|
|
void os::yield_all(int attempts) {
|
|
// Yields to all threads, including threads with lower priorities
|
|
// Threads on Linux are all with same priority. The Solaris style
|
|
// os::yield_all() with nanosleep(1ms) is not necessary.
|
|
sched_yield();
|
|
}
|
|
|
|
// Called from the tight loops to possibly influence time-sharing heuristics
|
|
void os::loop_breaker(int attempts) {
|
|
os::yield_all(attempts);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// thread priority support
|
|
|
|
// From AIX manpage to pthread_setschedparam
|
|
// (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
|
|
// topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
|
|
//
|
|
// "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
|
|
// range from 40 to 80, where 40 is the least favored priority and 80
|
|
// is the most favored."
|
|
//
|
|
// (Actually, I doubt this even has an impact on AIX, as we do kernel
|
|
// scheduling there; however, this still leaves iSeries.)
|
|
//
|
|
// We use the same values for AIX and PASE.
|
|
int os::java_to_os_priority[CriticalPriority + 1] = {
|
|
54, // 0 Entry should never be used
|
|
|
|
55, // 1 MinPriority
|
|
55, // 2
|
|
56, // 3
|
|
|
|
56, // 4
|
|
57, // 5 NormPriority
|
|
57, // 6
|
|
|
|
58, // 7
|
|
58, // 8
|
|
59, // 9 NearMaxPriority
|
|
|
|
60, // 10 MaxPriority
|
|
|
|
60 // 11 CriticalPriority
|
|
};
|
|
|
|
OSReturn os::set_native_priority(Thread* thread, int newpri) {
|
|
if (!UseThreadPriorities) return OS_OK;
|
|
pthread_t thr = thread->osthread()->pthread_id();
|
|
int policy = SCHED_OTHER;
|
|
struct sched_param param;
|
|
param.sched_priority = newpri;
|
|
int ret = pthread_setschedparam(thr, policy, ¶m);
|
|
|
|
if (Verbose) {
|
|
if (ret == 0) {
|
|
fprintf(stderr, "changed priority of thread %d to %d\n", (int)thr, newpri);
|
|
} else {
|
|
fprintf(stderr, "Could not changed priority for thread %d to %d (error %d, %s)\n",
|
|
(int)thr, newpri, ret, strerror(ret));
|
|
}
|
|
}
|
|
return (ret == 0) ? OS_OK : OS_ERR;
|
|
}
|
|
|
|
OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
|
|
if (!UseThreadPriorities) {
|
|
*priority_ptr = java_to_os_priority[NormPriority];
|
|
return OS_OK;
|
|
}
|
|
pthread_t thr = thread->osthread()->pthread_id();
|
|
int policy = SCHED_OTHER;
|
|
struct sched_param param;
|
|
int ret = pthread_getschedparam(thr, &policy, ¶m);
|
|
*priority_ptr = param.sched_priority;
|
|
|
|
return (ret == 0) ? OS_OK : OS_ERR;
|
|
}
|
|
|
|
// Hint to the underlying OS that a task switch would not be good.
|
|
// Void return because it's a hint and can fail.
|
|
void os::hint_no_preempt() {}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// suspend/resume support
|
|
|
|
// the low-level signal-based suspend/resume support is a remnant from the
|
|
// old VM-suspension that used to be for java-suspension, safepoints etc,
|
|
// within hotspot. Now there is a single use-case for this:
|
|
// - calling get_thread_pc() on the VMThread by the flat-profiler task
|
|
// that runs in the watcher thread.
|
|
// The remaining code is greatly simplified from the more general suspension
|
|
// code that used to be used.
|
|
//
|
|
// The protocol is quite simple:
|
|
// - suspend:
|
|
// - sends a signal to the target thread
|
|
// - polls the suspend state of the osthread using a yield loop
|
|
// - target thread signal handler (SR_handler) sets suspend state
|
|
// and blocks in sigsuspend until continued
|
|
// - resume:
|
|
// - sets target osthread state to continue
|
|
// - sends signal to end the sigsuspend loop in the SR_handler
|
|
//
|
|
// Note that the SR_lock plays no role in this suspend/resume protocol.
|
|
//
|
|
|
|
static void resume_clear_context(OSThread *osthread) {
|
|
osthread->set_ucontext(NULL);
|
|
osthread->set_siginfo(NULL);
|
|
}
|
|
|
|
static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
|
|
osthread->set_ucontext(context);
|
|
osthread->set_siginfo(siginfo);
|
|
}
|
|
|
|
//
|
|
// Handler function invoked when a thread's execution is suspended or
|
|
// resumed. We have to be careful that only async-safe functions are
|
|
// called here (Note: most pthread functions are not async safe and
|
|
// should be avoided.)
|
|
//
|
|
// Note: sigwait() is a more natural fit than sigsuspend() from an
|
|
// interface point of view, but sigwait() prevents the signal hander
|
|
// from being run. libpthread would get very confused by not having
|
|
// its signal handlers run and prevents sigwait()'s use with the
|
|
// mutex granting granting signal.
|
|
//
|
|
// Currently only ever called on the VMThread and JavaThreads (PC sampling).
|
|
//
|
|
static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
|
|
// Save and restore errno to avoid confusing native code with EINTR
|
|
// after sigsuspend.
|
|
int old_errno = errno;
|
|
|
|
Thread* thread = Thread::current();
|
|
OSThread* osthread = thread->osthread();
|
|
assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
|
|
|
|
os::SuspendResume::State current = osthread->sr.state();
|
|
if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
|
|
suspend_save_context(osthread, siginfo, context);
|
|
|
|
// attempt to switch the state, we assume we had a SUSPEND_REQUEST
|
|
os::SuspendResume::State state = osthread->sr.suspended();
|
|
if (state == os::SuspendResume::SR_SUSPENDED) {
|
|
sigset_t suspend_set; // signals for sigsuspend()
|
|
|
|
// get current set of blocked signals and unblock resume signal
|
|
pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
|
|
sigdelset(&suspend_set, SR_signum);
|
|
|
|
// wait here until we are resumed
|
|
while (1) {
|
|
sigsuspend(&suspend_set);
|
|
|
|
os::SuspendResume::State result = osthread->sr.running();
|
|
if (result == os::SuspendResume::SR_RUNNING) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
} else if (state == os::SuspendResume::SR_RUNNING) {
|
|
// request was cancelled, continue
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
resume_clear_context(osthread);
|
|
} else if (current == os::SuspendResume::SR_RUNNING) {
|
|
// request was cancelled, continue
|
|
} else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
|
|
// ignore
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
errno = old_errno;
|
|
}
|
|
|
|
|
|
static int SR_initialize() {
|
|
struct sigaction act;
|
|
char *s;
|
|
// Get signal number to use for suspend/resume
|
|
if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
|
|
int sig = ::strtol(s, 0, 10);
|
|
if (sig > 0 || sig < NSIG) {
|
|
SR_signum = sig;
|
|
}
|
|
}
|
|
|
|
assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
|
|
"SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
|
|
|
|
sigemptyset(&SR_sigset);
|
|
sigaddset(&SR_sigset, SR_signum);
|
|
|
|
// Set up signal handler for suspend/resume.
|
|
act.sa_flags = SA_RESTART|SA_SIGINFO;
|
|
act.sa_handler = (void (*)(int)) SR_handler;
|
|
|
|
// SR_signum is blocked by default.
|
|
// 4528190 - We also need to block pthread restart signal (32 on all
|
|
// supported Linux platforms). Note that LinuxThreads need to block
|
|
// this signal for all threads to work properly. So we don't have
|
|
// to use hard-coded signal number when setting up the mask.
|
|
pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
|
|
|
|
if (sigaction(SR_signum, &act, 0) == -1) {
|
|
return -1;
|
|
}
|
|
|
|
// Save signal flag
|
|
os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
|
|
return 0;
|
|
}
|
|
|
|
static int SR_finalize() {
|
|
return 0;
|
|
}
|
|
|
|
static int sr_notify(OSThread* osthread) {
|
|
int status = pthread_kill(osthread->pthread_id(), SR_signum);
|
|
assert_status(status == 0, status, "pthread_kill");
|
|
return status;
|
|
}
|
|
|
|
// "Randomly" selected value for how long we want to spin
|
|
// before bailing out on suspending a thread, also how often
|
|
// we send a signal to a thread we want to resume
|
|
static const int RANDOMLY_LARGE_INTEGER = 1000000;
|
|
static const int RANDOMLY_LARGE_INTEGER2 = 100;
|
|
|
|
// returns true on success and false on error - really an error is fatal
|
|
// but this seems the normal response to library errors
|
|
static bool do_suspend(OSThread* osthread) {
|
|
assert(osthread->sr.is_running(), "thread should be running");
|
|
// mark as suspended and send signal
|
|
|
|
if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
|
|
// failed to switch, state wasn't running?
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
|
|
if (sr_notify(osthread) != 0) {
|
|
// try to cancel, switch to running
|
|
|
|
os::SuspendResume::State result = osthread->sr.cancel_suspend();
|
|
if (result == os::SuspendResume::SR_RUNNING) {
|
|
// cancelled
|
|
return false;
|
|
} else if (result == os::SuspendResume::SR_SUSPENDED) {
|
|
// somehow managed to suspend
|
|
return true;
|
|
} else {
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
|
|
|
|
for (int n = 0; !osthread->sr.is_suspended(); n++) {
|
|
for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
|
|
os::yield_all(i);
|
|
}
|
|
|
|
// timeout, try to cancel the request
|
|
if (n >= RANDOMLY_LARGE_INTEGER) {
|
|
os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
|
|
if (cancelled == os::SuspendResume::SR_RUNNING) {
|
|
return false;
|
|
} else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
|
|
return true;
|
|
} else {
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
guarantee(osthread->sr.is_suspended(), "Must be suspended");
|
|
return true;
|
|
}
|
|
|
|
static void do_resume(OSThread* osthread) {
|
|
//assert(osthread->sr.is_suspended(), "thread should be suspended");
|
|
|
|
if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
|
|
// failed to switch to WAKEUP_REQUEST
|
|
ShouldNotReachHere();
|
|
return;
|
|
}
|
|
|
|
while (!osthread->sr.is_running()) {
|
|
if (sr_notify(osthread) == 0) {
|
|
for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
|
|
for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
|
|
os::yield_all(i);
|
|
}
|
|
}
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
guarantee(osthread->sr.is_running(), "Must be running!");
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
// signal handling (except suspend/resume)
|
|
|
|
// This routine may be used by user applications as a "hook" to catch signals.
|
|
// The user-defined signal handler must pass unrecognized signals to this
|
|
// routine, and if it returns true (non-zero), then the signal handler must
|
|
// return immediately. If the flag "abort_if_unrecognized" is true, then this
|
|
// routine will never retun false (zero), but instead will execute a VM panic
|
|
// routine kill the process.
|
|
//
|
|
// If this routine returns false, it is OK to call it again. This allows
|
|
// the user-defined signal handler to perform checks either before or after
|
|
// the VM performs its own checks. Naturally, the user code would be making
|
|
// a serious error if it tried to handle an exception (such as a null check
|
|
// or breakpoint) that the VM was generating for its own correct operation.
|
|
//
|
|
// This routine may recognize any of the following kinds of signals:
|
|
// SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
|
|
// It should be consulted by handlers for any of those signals.
|
|
//
|
|
// The caller of this routine must pass in the three arguments supplied
|
|
// to the function referred to in the "sa_sigaction" (not the "sa_handler")
|
|
// field of the structure passed to sigaction(). This routine assumes that
|
|
// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
|
|
//
|
|
// Note that the VM will print warnings if it detects conflicting signal
|
|
// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
|
|
//
|
|
extern "C" JNIEXPORT int
|
|
JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
|
|
|
|
// Set thread signal mask (for some reason on AIX sigthreadmask() seems
|
|
// to be the thing to call; documentation is not terribly clear about whether
|
|
// pthread_sigmask also works, and if it does, whether it does the same.
|
|
bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
|
|
const int rc = ::pthread_sigmask(how, set, oset);
|
|
// return value semantics differ slightly for error case:
|
|
// pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
|
|
// (so, pthread_sigmask is more theadsafe for error handling)
|
|
// But success is always 0.
|
|
return rc == 0 ? true : false;
|
|
}
|
|
|
|
// Function to unblock all signals which are, according
|
|
// to POSIX, typical program error signals. If they happen while being blocked,
|
|
// they typically will bring down the process immediately.
|
|
bool unblock_program_error_signals() {
|
|
sigset_t set;
|
|
::sigemptyset(&set);
|
|
::sigaddset(&set, SIGILL);
|
|
::sigaddset(&set, SIGBUS);
|
|
::sigaddset(&set, SIGFPE);
|
|
::sigaddset(&set, SIGSEGV);
|
|
return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
|
|
}
|
|
|
|
// Renamed from 'signalHandler' to avoid collision with other shared libs.
|
|
void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
|
|
assert(info != NULL && uc != NULL, "it must be old kernel");
|
|
|
|
// Never leave program error signals blocked;
|
|
// on all our platforms they would bring down the process immediately when
|
|
// getting raised while being blocked.
|
|
unblock_program_error_signals();
|
|
|
|
JVM_handle_aix_signal(sig, info, uc, true);
|
|
}
|
|
|
|
|
|
// This boolean allows users to forward their own non-matching signals
|
|
// to JVM_handle_aix_signal, harmlessly.
|
|
bool os::Aix::signal_handlers_are_installed = false;
|
|
|
|
// For signal-chaining
|
|
struct sigaction os::Aix::sigact[MAXSIGNUM];
|
|
unsigned int os::Aix::sigs = 0;
|
|
bool os::Aix::libjsig_is_loaded = false;
|
|
typedef struct sigaction *(*get_signal_t)(int);
|
|
get_signal_t os::Aix::get_signal_action = NULL;
|
|
|
|
struct sigaction* os::Aix::get_chained_signal_action(int sig) {
|
|
struct sigaction *actp = NULL;
|
|
|
|
if (libjsig_is_loaded) {
|
|
// Retrieve the old signal handler from libjsig
|
|
actp = (*get_signal_action)(sig);
|
|
}
|
|
if (actp == NULL) {
|
|
// Retrieve the preinstalled signal handler from jvm
|
|
actp = get_preinstalled_handler(sig);
|
|
}
|
|
|
|
return actp;
|
|
}
|
|
|
|
static bool call_chained_handler(struct sigaction *actp, int sig,
|
|
siginfo_t *siginfo, void *context) {
|
|
// Call the old signal handler
|
|
if (actp->sa_handler == SIG_DFL) {
|
|
// It's more reasonable to let jvm treat it as an unexpected exception
|
|
// instead of taking the default action.
|
|
return false;
|
|
} else if (actp->sa_handler != SIG_IGN) {
|
|
if ((actp->sa_flags & SA_NODEFER) == 0) {
|
|
// automaticlly block the signal
|
|
sigaddset(&(actp->sa_mask), sig);
|
|
}
|
|
|
|
sa_handler_t hand = NULL;
|
|
sa_sigaction_t sa = NULL;
|
|
bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
|
|
// retrieve the chained handler
|
|
if (siginfo_flag_set) {
|
|
sa = actp->sa_sigaction;
|
|
} else {
|
|
hand = actp->sa_handler;
|
|
}
|
|
|
|
if ((actp->sa_flags & SA_RESETHAND) != 0) {
|
|
actp->sa_handler = SIG_DFL;
|
|
}
|
|
|
|
// try to honor the signal mask
|
|
sigset_t oset;
|
|
pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
|
|
|
|
// call into the chained handler
|
|
if (siginfo_flag_set) {
|
|
(*sa)(sig, siginfo, context);
|
|
} else {
|
|
(*hand)(sig);
|
|
}
|
|
|
|
// restore the signal mask
|
|
pthread_sigmask(SIG_SETMASK, &oset, 0);
|
|
}
|
|
// Tell jvm's signal handler the signal is taken care of.
|
|
return true;
|
|
}
|
|
|
|
bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
|
|
bool chained = false;
|
|
// signal-chaining
|
|
if (UseSignalChaining) {
|
|
struct sigaction *actp = get_chained_signal_action(sig);
|
|
if (actp != NULL) {
|
|
chained = call_chained_handler(actp, sig, siginfo, context);
|
|
}
|
|
}
|
|
return chained;
|
|
}
|
|
|
|
struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
|
|
if ((((unsigned int)1 << sig) & sigs) != 0) {
|
|
return &sigact[sig];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
sigact[sig] = oldAct;
|
|
sigs |= (unsigned int)1 << sig;
|
|
}
|
|
|
|
// for diagnostic
|
|
int os::Aix::sigflags[MAXSIGNUM];
|
|
|
|
int os::Aix::get_our_sigflags(int sig) {
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
return sigflags[sig];
|
|
}
|
|
|
|
void os::Aix::set_our_sigflags(int sig, int flags) {
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
sigflags[sig] = flags;
|
|
}
|
|
|
|
void os::Aix::set_signal_handler(int sig, bool set_installed) {
|
|
// Check for overwrite.
|
|
struct sigaction oldAct;
|
|
sigaction(sig, (struct sigaction*)NULL, &oldAct);
|
|
|
|
void* oldhand = oldAct.sa_sigaction
|
|
? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
|
|
// Renamed 'signalHandler' to avoid collision with other shared libs.
|
|
if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
|
|
oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
|
|
oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
|
|
if (AllowUserSignalHandlers || !set_installed) {
|
|
// Do not overwrite; user takes responsibility to forward to us.
|
|
return;
|
|
} else if (UseSignalChaining) {
|
|
// save the old handler in jvm
|
|
save_preinstalled_handler(sig, oldAct);
|
|
// libjsig also interposes the sigaction() call below and saves the
|
|
// old sigaction on it own.
|
|
} else {
|
|
fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
|
|
"%#lx for signal %d.", (long)oldhand, sig));
|
|
}
|
|
}
|
|
|
|
struct sigaction sigAct;
|
|
sigfillset(&(sigAct.sa_mask));
|
|
if (!set_installed) {
|
|
sigAct.sa_handler = SIG_DFL;
|
|
sigAct.sa_flags = SA_RESTART;
|
|
} else {
|
|
// Renamed 'signalHandler' to avoid collision with other shared libs.
|
|
sigAct.sa_sigaction = javaSignalHandler;
|
|
sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
|
|
}
|
|
// Save flags, which are set by ours
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
sigflags[sig] = sigAct.sa_flags;
|
|
|
|
int ret = sigaction(sig, &sigAct, &oldAct);
|
|
assert(ret == 0, "check");
|
|
|
|
void* oldhand2 = oldAct.sa_sigaction
|
|
? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
|
|
assert(oldhand2 == oldhand, "no concurrent signal handler installation");
|
|
}
|
|
|
|
// install signal handlers for signals that HotSpot needs to
|
|
// handle in order to support Java-level exception handling.
|
|
void os::Aix::install_signal_handlers() {
|
|
if (!signal_handlers_are_installed) {
|
|
signal_handlers_are_installed = true;
|
|
|
|
// signal-chaining
|
|
typedef void (*signal_setting_t)();
|
|
signal_setting_t begin_signal_setting = NULL;
|
|
signal_setting_t end_signal_setting = NULL;
|
|
begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
|
|
dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
|
|
if (begin_signal_setting != NULL) {
|
|
end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
|
|
dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
|
|
get_signal_action = CAST_TO_FN_PTR(get_signal_t,
|
|
dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
|
|
libjsig_is_loaded = true;
|
|
assert(UseSignalChaining, "should enable signal-chaining");
|
|
}
|
|
if (libjsig_is_loaded) {
|
|
// Tell libjsig jvm is setting signal handlers
|
|
(*begin_signal_setting)();
|
|
}
|
|
|
|
set_signal_handler(SIGSEGV, true);
|
|
set_signal_handler(SIGPIPE, true);
|
|
set_signal_handler(SIGBUS, true);
|
|
set_signal_handler(SIGILL, true);
|
|
set_signal_handler(SIGFPE, true);
|
|
set_signal_handler(SIGTRAP, true);
|
|
set_signal_handler(SIGXFSZ, true);
|
|
set_signal_handler(SIGDANGER, true);
|
|
|
|
if (libjsig_is_loaded) {
|
|
// Tell libjsig jvm finishes setting signal handlers
|
|
(*end_signal_setting)();
|
|
}
|
|
|
|
// We don't activate signal checker if libjsig is in place, we trust ourselves
|
|
// and if UserSignalHandler is installed all bets are off.
|
|
// Log that signal checking is off only if -verbose:jni is specified.
|
|
if (CheckJNICalls) {
|
|
if (libjsig_is_loaded) {
|
|
tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
|
|
check_signals = false;
|
|
}
|
|
if (AllowUserSignalHandlers) {
|
|
tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
|
|
check_signals = false;
|
|
}
|
|
// need to initialize check_signal_done
|
|
::sigemptyset(&check_signal_done);
|
|
}
|
|
}
|
|
}
|
|
|
|
static const char* get_signal_handler_name(address handler,
|
|
char* buf, int buflen) {
|
|
int offset;
|
|
bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
|
|
if (found) {
|
|
// skip directory names
|
|
const char *p1, *p2;
|
|
p1 = buf;
|
|
size_t len = strlen(os::file_separator());
|
|
while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
|
|
// The way os::dll_address_to_library_name is implemented on Aix
|
|
// right now, it always returns -1 for the offset which is not
|
|
// terribly informative.
|
|
// Will fix that. For now, omit the offset.
|
|
jio_snprintf(buf, buflen, "%s", p1);
|
|
} else {
|
|
jio_snprintf(buf, buflen, PTR_FORMAT, handler);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
static void print_signal_handler(outputStream* st, int sig,
|
|
char* buf, size_t buflen) {
|
|
struct sigaction sa;
|
|
sigaction(sig, NULL, &sa);
|
|
|
|
st->print("%s: ", os::exception_name(sig, buf, buflen));
|
|
|
|
address handler = (sa.sa_flags & SA_SIGINFO)
|
|
? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(address, sa.sa_handler);
|
|
|
|
if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
|
|
st->print("SIG_DFL");
|
|
} else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
|
|
st->print("SIG_IGN");
|
|
} else {
|
|
st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
|
|
}
|
|
|
|
// Print readable mask.
|
|
st->print(", sa_mask[0]=");
|
|
os::Posix::print_signal_set_short(st, &sa.sa_mask);
|
|
|
|
address rh = VMError::get_resetted_sighandler(sig);
|
|
// May be, handler was resetted by VMError?
|
|
if (rh != NULL) {
|
|
handler = rh;
|
|
sa.sa_flags = VMError::get_resetted_sigflags(sig);
|
|
}
|
|
|
|
// Print textual representation of sa_flags.
|
|
st->print(", sa_flags=");
|
|
os::Posix::print_sa_flags(st, sa.sa_flags);
|
|
|
|
// Check: is it our handler?
|
|
if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
|
|
handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
|
|
// It is our signal handler.
|
|
// Check for flags, reset system-used one!
|
|
if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
|
|
st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
|
|
os::Aix::get_our_sigflags(sig));
|
|
}
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
|
|
#define DO_SIGNAL_CHECK(sig) \
|
|
if (!sigismember(&check_signal_done, sig)) \
|
|
os::Aix::check_signal_handler(sig)
|
|
|
|
// This method is a periodic task to check for misbehaving JNI applications
|
|
// under CheckJNI, we can add any periodic checks here
|
|
|
|
void os::run_periodic_checks() {
|
|
|
|
if (check_signals == false) return;
|
|
|
|
// SEGV and BUS if overridden could potentially prevent
|
|
// generation of hs*.log in the event of a crash, debugging
|
|
// such a case can be very challenging, so we absolutely
|
|
// check the following for a good measure:
|
|
DO_SIGNAL_CHECK(SIGSEGV);
|
|
DO_SIGNAL_CHECK(SIGILL);
|
|
DO_SIGNAL_CHECK(SIGFPE);
|
|
DO_SIGNAL_CHECK(SIGBUS);
|
|
DO_SIGNAL_CHECK(SIGPIPE);
|
|
DO_SIGNAL_CHECK(SIGXFSZ);
|
|
if (UseSIGTRAP) {
|
|
DO_SIGNAL_CHECK(SIGTRAP);
|
|
}
|
|
DO_SIGNAL_CHECK(SIGDANGER);
|
|
|
|
// ReduceSignalUsage allows the user to override these handlers
|
|
// see comments at the very top and jvm_solaris.h
|
|
if (!ReduceSignalUsage) {
|
|
DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
|
|
DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
|
|
DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
|
|
DO_SIGNAL_CHECK(BREAK_SIGNAL);
|
|
}
|
|
|
|
DO_SIGNAL_CHECK(SR_signum);
|
|
DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
|
|
}
|
|
|
|
typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
|
|
|
|
static os_sigaction_t os_sigaction = NULL;
|
|
|
|
void os::Aix::check_signal_handler(int sig) {
|
|
char buf[O_BUFLEN];
|
|
address jvmHandler = NULL;
|
|
|
|
struct sigaction act;
|
|
if (os_sigaction == NULL) {
|
|
// only trust the default sigaction, in case it has been interposed
|
|
os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
|
|
if (os_sigaction == NULL) return;
|
|
}
|
|
|
|
os_sigaction(sig, (struct sigaction*)NULL, &act);
|
|
|
|
address thisHandler = (act.sa_flags & SA_SIGINFO)
|
|
? CAST_FROM_FN_PTR(address, act.sa_sigaction)
|
|
: CAST_FROM_FN_PTR(address, act.sa_handler);
|
|
|
|
|
|
switch(sig) {
|
|
case SIGSEGV:
|
|
case SIGBUS:
|
|
case SIGFPE:
|
|
case SIGPIPE:
|
|
case SIGILL:
|
|
case SIGXFSZ:
|
|
// Renamed 'signalHandler' to avoid collision with other shared libs.
|
|
jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
|
|
break;
|
|
|
|
case SHUTDOWN1_SIGNAL:
|
|
case SHUTDOWN2_SIGNAL:
|
|
case SHUTDOWN3_SIGNAL:
|
|
case BREAK_SIGNAL:
|
|
jvmHandler = (address)user_handler();
|
|
break;
|
|
|
|
case INTERRUPT_SIGNAL:
|
|
jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
|
|
break;
|
|
|
|
default:
|
|
if (sig == SR_signum) {
|
|
jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
|
|
} else {
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (thisHandler != jvmHandler) {
|
|
tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
|
|
tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
|
|
tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
|
|
// No need to check this sig any longer
|
|
sigaddset(&check_signal_done, sig);
|
|
// Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
|
|
if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
|
|
tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
|
|
exception_name(sig, buf, O_BUFLEN));
|
|
}
|
|
} else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
|
|
tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
|
|
tty->print("expected:" PTR32_FORMAT, os::Aix::get_our_sigflags(sig));
|
|
tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
|
|
// No need to check this sig any longer
|
|
sigaddset(&check_signal_done, sig);
|
|
}
|
|
|
|
// Dump all the signal
|
|
if (sigismember(&check_signal_done, sig)) {
|
|
print_signal_handlers(tty, buf, O_BUFLEN);
|
|
}
|
|
}
|
|
|
|
extern bool signal_name(int signo, char* buf, size_t len);
|
|
|
|
const char* os::exception_name(int exception_code, char* buf, size_t size) {
|
|
if (0 < exception_code && exception_code <= SIGRTMAX) {
|
|
// signal
|
|
if (!signal_name(exception_code, buf, size)) {
|
|
jio_snprintf(buf, size, "SIG%d", exception_code);
|
|
}
|
|
return buf;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// To install functions for atexit system call
|
|
extern "C" {
|
|
static void perfMemory_exit_helper() {
|
|
perfMemory_exit();
|
|
}
|
|
}
|
|
|
|
// This is called _before_ the most of global arguments have been parsed.
|
|
void os::init(void) {
|
|
// This is basic, we want to know if that ever changes.
|
|
// (shared memory boundary is supposed to be a 256M aligned)
|
|
assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
|
|
|
|
// First off, we need to know whether we run on AIX or PASE, and
|
|
// the OS level we run on.
|
|
os::Aix::initialize_os_info();
|
|
|
|
// Scan environment (SPEC1170 behaviour, etc)
|
|
os::Aix::scan_environment();
|
|
|
|
// Check which pages are supported by AIX.
|
|
os::Aix::query_multipage_support();
|
|
|
|
// Next, we need to initialize libo4 and libperfstat libraries.
|
|
if (os::Aix::on_pase()) {
|
|
os::Aix::initialize_libo4();
|
|
} else {
|
|
os::Aix::initialize_libperfstat();
|
|
}
|
|
|
|
// Reset the perfstat information provided by ODM.
|
|
if (os::Aix::on_aix()) {
|
|
libperfstat::perfstat_reset();
|
|
}
|
|
|
|
// Now initialze basic system properties. Note that for some of the values we
|
|
// need libperfstat etc.
|
|
os::Aix::initialize_system_info();
|
|
|
|
// Initialize large page support.
|
|
if (UseLargePages) {
|
|
os::large_page_init();
|
|
if (!UseLargePages) {
|
|
// initialize os::_page_sizes
|
|
_page_sizes[0] = Aix::page_size();
|
|
_page_sizes[1] = 0;
|
|
if (Verbose) {
|
|
fprintf(stderr, "Large Page initialization failed: setting UseLargePages=0.\n");
|
|
}
|
|
}
|
|
} else {
|
|
// initialize os::_page_sizes
|
|
_page_sizes[0] = Aix::page_size();
|
|
_page_sizes[1] = 0;
|
|
}
|
|
|
|
// debug trace
|
|
if (Verbose) {
|
|
fprintf(stderr, "os::vm_page_size 0x%llX\n", os::vm_page_size());
|
|
fprintf(stderr, "os::large_page_size 0x%llX\n", os::large_page_size());
|
|
fprintf(stderr, "os::_page_sizes = ( ");
|
|
for (int i = 0; _page_sizes[i]; i ++) {
|
|
fprintf(stderr, " %s ", describe_pagesize(_page_sizes[i]));
|
|
}
|
|
fprintf(stderr, ")\n");
|
|
}
|
|
|
|
_initial_pid = getpid();
|
|
|
|
clock_tics_per_sec = sysconf(_SC_CLK_TCK);
|
|
|
|
init_random(1234567);
|
|
|
|
ThreadCritical::initialize();
|
|
|
|
// Main_thread points to the aboriginal thread.
|
|
Aix::_main_thread = pthread_self();
|
|
|
|
initial_time_count = os::elapsed_counter();
|
|
pthread_mutex_init(&dl_mutex, NULL);
|
|
}
|
|
|
|
// this is called _after_ the global arguments have been parsed
|
|
jint os::init_2(void) {
|
|
|
|
if (Verbose) {
|
|
fprintf(stderr, "processor count: %d\n", os::_processor_count);
|
|
fprintf(stderr, "physical memory: %lu\n", Aix::_physical_memory);
|
|
}
|
|
|
|
// initially build up the loaded dll map
|
|
LoadedLibraries::reload();
|
|
|
|
const int page_size = Aix::page_size();
|
|
const int map_size = page_size;
|
|
|
|
address map_address = (address) MAP_FAILED;
|
|
const int prot = PROT_READ;
|
|
const int flags = MAP_PRIVATE|MAP_ANONYMOUS;
|
|
|
|
// use optimized addresses for the polling page,
|
|
// e.g. map it to a special 32-bit address.
|
|
if (OptimizePollingPageLocation) {
|
|
// architecture-specific list of address wishes:
|
|
address address_wishes[] = {
|
|
// AIX: addresses lower than 0x30000000 don't seem to work on AIX.
|
|
// PPC64: all address wishes are non-negative 32 bit values where
|
|
// the lower 16 bits are all zero. we can load these addresses
|
|
// with a single ppc_lis instruction.
|
|
(address) 0x30000000, (address) 0x31000000,
|
|
(address) 0x32000000, (address) 0x33000000,
|
|
(address) 0x40000000, (address) 0x41000000,
|
|
(address) 0x42000000, (address) 0x43000000,
|
|
(address) 0x50000000, (address) 0x51000000,
|
|
(address) 0x52000000, (address) 0x53000000,
|
|
(address) 0x60000000, (address) 0x61000000,
|
|
(address) 0x62000000, (address) 0x63000000
|
|
};
|
|
int address_wishes_length = sizeof(address_wishes)/sizeof(address);
|
|
|
|
// iterate over the list of address wishes:
|
|
for (int i=0; i<address_wishes_length; i++) {
|
|
// try to map with current address wish.
|
|
// AIX: AIX needs MAP_FIXED if we provide an address and mmap will
|
|
// fail if the address is already mapped.
|
|
map_address = (address) ::mmap(address_wishes[i] - (ssize_t)page_size,
|
|
map_size, prot,
|
|
flags | MAP_FIXED,
|
|
-1, 0);
|
|
if (Verbose) {
|
|
fprintf(stderr, "SafePoint Polling Page address: %p (wish) => %p\n",
|
|
address_wishes[i], map_address + (ssize_t)page_size);
|
|
}
|
|
|
|
if (map_address + (ssize_t)page_size == address_wishes[i]) {
|
|
// map succeeded and map_address is at wished address, exit loop.
|
|
break;
|
|
}
|
|
|
|
if (map_address != (address) MAP_FAILED) {
|
|
// map succeeded, but polling_page is not at wished address, unmap and continue.
|
|
::munmap(map_address, map_size);
|
|
map_address = (address) MAP_FAILED;
|
|
}
|
|
// map failed, continue loop.
|
|
}
|
|
} // end OptimizePollingPageLocation
|
|
|
|
if (map_address == (address) MAP_FAILED) {
|
|
map_address = (address) ::mmap(NULL, map_size, prot, flags, -1, 0);
|
|
}
|
|
guarantee(map_address != MAP_FAILED, "os::init_2: failed to allocate polling page");
|
|
os::set_polling_page(map_address);
|
|
|
|
if (!UseMembar) {
|
|
address mem_serialize_page = (address) ::mmap(NULL, Aix::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
|
|
os::set_memory_serialize_page(mem_serialize_page);
|
|
|
|
#ifndef PRODUCT
|
|
if (Verbose && PrintMiscellaneous)
|
|
tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
|
|
#endif
|
|
}
|
|
|
|
// initialize suspend/resume support - must do this before signal_sets_init()
|
|
if (SR_initialize() != 0) {
|
|
perror("SR_initialize failed");
|
|
return JNI_ERR;
|
|
}
|
|
|
|
Aix::signal_sets_init();
|
|
Aix::install_signal_handlers();
|
|
|
|
// Check minimum allowable stack size for thread creation and to initialize
|
|
// the java system classes, including StackOverflowError - depends on page
|
|
// size. Add a page for compiler2 recursion in main thread.
|
|
// Add in 2*BytesPerWord times page size to account for VM stack during
|
|
// class initialization depending on 32 or 64 bit VM.
|
|
os::Aix::min_stack_allowed = MAX2(os::Aix::min_stack_allowed,
|
|
(size_t)(StackYellowPages+StackRedPages+StackShadowPages +
|
|
2*BytesPerWord COMPILER2_PRESENT(+1)) * Aix::page_size());
|
|
|
|
size_t threadStackSizeInBytes = ThreadStackSize * K;
|
|
if (threadStackSizeInBytes != 0 &&
|
|
threadStackSizeInBytes < os::Aix::min_stack_allowed) {
|
|
tty->print_cr("\nThe stack size specified is too small, "
|
|
"Specify at least %dk",
|
|
os::Aix::min_stack_allowed / K);
|
|
return JNI_ERR;
|
|
}
|
|
|
|
// Make the stack size a multiple of the page size so that
|
|
// the yellow/red zones can be guarded.
|
|
// note that this can be 0, if no default stacksize was set
|
|
JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes, vm_page_size()));
|
|
|
|
Aix::libpthread_init();
|
|
|
|
if (MaxFDLimit) {
|
|
// set the number of file descriptors to max. print out error
|
|
// if getrlimit/setrlimit fails but continue regardless.
|
|
struct rlimit nbr_files;
|
|
int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
|
|
if (status != 0) {
|
|
if (PrintMiscellaneous && (Verbose || WizardMode))
|
|
perror("os::init_2 getrlimit failed");
|
|
} else {
|
|
nbr_files.rlim_cur = nbr_files.rlim_max;
|
|
status = setrlimit(RLIMIT_NOFILE, &nbr_files);
|
|
if (status != 0) {
|
|
if (PrintMiscellaneous && (Verbose || WizardMode))
|
|
perror("os::init_2 setrlimit failed");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (PerfAllowAtExitRegistration) {
|
|
// only register atexit functions if PerfAllowAtExitRegistration is set.
|
|
// atexit functions can be delayed until process exit time, which
|
|
// can be problematic for embedded VM situations. Embedded VMs should
|
|
// call DestroyJavaVM() to assure that VM resources are released.
|
|
|
|
// note: perfMemory_exit_helper atexit function may be removed in
|
|
// the future if the appropriate cleanup code can be added to the
|
|
// VM_Exit VMOperation's doit method.
|
|
if (atexit(perfMemory_exit_helper) != 0) {
|
|
warning("os::init_2 atexit(perfMemory_exit_helper) failed");
|
|
}
|
|
}
|
|
|
|
return JNI_OK;
|
|
}
|
|
|
|
// this is called at the end of vm_initialization
|
|
void os::init_3(void) {
|
|
return;
|
|
}
|
|
|
|
// Mark the polling page as unreadable
|
|
void os::make_polling_page_unreadable(void) {
|
|
if (!guard_memory((char*)_polling_page, Aix::page_size())) {
|
|
fatal("Could not disable polling page");
|
|
}
|
|
};
|
|
|
|
// Mark the polling page as readable
|
|
void os::make_polling_page_readable(void) {
|
|
// Changed according to os_linux.cpp.
|
|
if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
|
|
fatal(err_msg("Could not enable polling page at " PTR_FORMAT, _polling_page));
|
|
}
|
|
};
|
|
|
|
int os::active_processor_count() {
|
|
int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
|
|
assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
|
|
return online_cpus;
|
|
}
|
|
|
|
void os::set_native_thread_name(const char *name) {
|
|
// Not yet implemented.
|
|
return;
|
|
}
|
|
|
|
bool os::distribute_processes(uint length, uint* distribution) {
|
|
// Not yet implemented.
|
|
return false;
|
|
}
|
|
|
|
bool os::bind_to_processor(uint processor_id) {
|
|
// Not yet implemented.
|
|
return false;
|
|
}
|
|
|
|
void os::SuspendedThreadTask::internal_do_task() {
|
|
if (do_suspend(_thread->osthread())) {
|
|
SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
|
|
do_task(context);
|
|
do_resume(_thread->osthread());
|
|
}
|
|
}
|
|
|
|
class PcFetcher : public os::SuspendedThreadTask {
|
|
public:
|
|
PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
|
|
ExtendedPC result();
|
|
protected:
|
|
void do_task(const os::SuspendedThreadTaskContext& context);
|
|
private:
|
|
ExtendedPC _epc;
|
|
};
|
|
|
|
ExtendedPC PcFetcher::result() {
|
|
guarantee(is_done(), "task is not done yet.");
|
|
return _epc;
|
|
}
|
|
|
|
void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
|
|
Thread* thread = context.thread();
|
|
OSThread* osthread = thread->osthread();
|
|
if (osthread->ucontext() != NULL) {
|
|
_epc = os::Aix::ucontext_get_pc((ucontext_t *) context.ucontext());
|
|
} else {
|
|
// NULL context is unexpected, double-check this is the VMThread.
|
|
guarantee(thread->is_VM_thread(), "can only be called for VMThread");
|
|
}
|
|
}
|
|
|
|
// Suspends the target using the signal mechanism and then grabs the PC before
|
|
// resuming the target. Used by the flat-profiler only
|
|
ExtendedPC os::get_thread_pc(Thread* thread) {
|
|
// Make sure that it is called by the watcher for the VMThread.
|
|
assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
|
|
assert(thread->is_VM_thread(), "Can only be called for VMThread");
|
|
|
|
PcFetcher fetcher(thread);
|
|
fetcher.run();
|
|
return fetcher.result();
|
|
}
|
|
|
|
// Not neede on Aix.
|
|
// int os::Aix::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime) {
|
|
// }
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// debug support
|
|
|
|
static address same_page(address x, address y) {
|
|
intptr_t page_bits = -os::vm_page_size();
|
|
if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
|
|
return x;
|
|
else if (x > y)
|
|
return (address)(intptr_t(y) | ~page_bits) + 1;
|
|
else
|
|
return (address)(intptr_t(y) & page_bits);
|
|
}
|
|
|
|
bool os::find(address addr, outputStream* st) {
|
|
|
|
st->print(PTR_FORMAT ": ", addr);
|
|
|
|
const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(addr);
|
|
if (lib) {
|
|
lib->print(st);
|
|
return true;
|
|
} else {
|
|
lib = LoadedLibraries::find_for_data_address(addr);
|
|
if (lib) {
|
|
lib->print(st);
|
|
return true;
|
|
} else {
|
|
st->print_cr("(outside any module)");
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// misc
|
|
|
|
// This does not do anything on Aix. This is basically a hook for being
|
|
// able to use structured exception handling (thread-local exception filters)
|
|
// on, e.g., Win32.
|
|
void
|
|
os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
|
|
JavaCallArguments* args, Thread* thread) {
|
|
f(value, method, args, thread);
|
|
}
|
|
|
|
void os::print_statistics() {
|
|
}
|
|
|
|
int os::message_box(const char* title, const char* message) {
|
|
int i;
|
|
fdStream err(defaultStream::error_fd());
|
|
for (i = 0; i < 78; i++) err.print_raw("=");
|
|
err.cr();
|
|
err.print_raw_cr(title);
|
|
for (i = 0; i < 78; i++) err.print_raw("-");
|
|
err.cr();
|
|
err.print_raw_cr(message);
|
|
for (i = 0; i < 78; i++) err.print_raw("=");
|
|
err.cr();
|
|
|
|
char buf[16];
|
|
// Prevent process from exiting upon "read error" without consuming all CPU
|
|
while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
|
|
|
|
return buf[0] == 'y' || buf[0] == 'Y';
|
|
}
|
|
|
|
int os::stat(const char *path, struct stat *sbuf) {
|
|
char pathbuf[MAX_PATH];
|
|
if (strlen(path) > MAX_PATH - 1) {
|
|
errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
os::native_path(strcpy(pathbuf, path));
|
|
return ::stat(pathbuf, sbuf);
|
|
}
|
|
|
|
bool os::check_heap(bool force) {
|
|
return true;
|
|
}
|
|
|
|
// int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
|
|
// return ::vsnprintf(buf, count, format, args);
|
|
// }
|
|
|
|
// Is a (classpath) directory empty?
|
|
bool os::dir_is_empty(const char* path) {
|
|
DIR *dir = NULL;
|
|
struct dirent *ptr;
|
|
|
|
dir = opendir(path);
|
|
if (dir == NULL) return true;
|
|
|
|
/* Scan the directory */
|
|
bool result = true;
|
|
char buf[sizeof(struct dirent) + MAX_PATH];
|
|
while (result && (ptr = ::readdir(dir)) != NULL) {
|
|
if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
|
|
result = false;
|
|
}
|
|
}
|
|
closedir(dir);
|
|
return result;
|
|
}
|
|
|
|
// This code originates from JDK's sysOpen and open64_w
|
|
// from src/solaris/hpi/src/system_md.c
|
|
|
|
#ifndef O_DELETE
|
|
#define O_DELETE 0x10000
|
|
#endif
|
|
|
|
// Open a file. Unlink the file immediately after open returns
|
|
// if the specified oflag has the O_DELETE flag set.
|
|
// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
|
|
|
|
int os::open(const char *path, int oflag, int mode) {
|
|
|
|
if (strlen(path) > MAX_PATH - 1) {
|
|
errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
int fd;
|
|
int o_delete = (oflag & O_DELETE);
|
|
oflag = oflag & ~O_DELETE;
|
|
|
|
fd = ::open64(path, oflag, mode);
|
|
if (fd == -1) return -1;
|
|
|
|
// If the open succeeded, the file might still be a directory.
|
|
{
|
|
struct stat64 buf64;
|
|
int ret = ::fstat64(fd, &buf64);
|
|
int st_mode = buf64.st_mode;
|
|
|
|
if (ret != -1) {
|
|
if ((st_mode & S_IFMT) == S_IFDIR) {
|
|
errno = EISDIR;
|
|
::close(fd);
|
|
return -1;
|
|
}
|
|
} else {
|
|
::close(fd);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// All file descriptors that are opened in the JVM and not
|
|
// specifically destined for a subprocess should have the
|
|
// close-on-exec flag set. If we don't set it, then careless 3rd
|
|
// party native code might fork and exec without closing all
|
|
// appropriate file descriptors (e.g. as we do in closeDescriptors in
|
|
// UNIXProcess.c), and this in turn might:
|
|
//
|
|
// - cause end-of-file to fail to be detected on some file
|
|
// descriptors, resulting in mysterious hangs, or
|
|
//
|
|
// - might cause an fopen in the subprocess to fail on a system
|
|
// suffering from bug 1085341.
|
|
//
|
|
// (Yes, the default setting of the close-on-exec flag is a Unix
|
|
// design flaw.)
|
|
//
|
|
// See:
|
|
// 1085341: 32-bit stdio routines should support file descriptors >255
|
|
// 4843136: (process) pipe file descriptor from Runtime.exec not being closed
|
|
// 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
|
|
#ifdef FD_CLOEXEC
|
|
{
|
|
int flags = ::fcntl(fd, F_GETFD);
|
|
if (flags != -1)
|
|
::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
|
|
}
|
|
#endif
|
|
|
|
if (o_delete != 0) {
|
|
::unlink(path);
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
|
|
// create binary file, rewriting existing file if required
|
|
int os::create_binary_file(const char* path, bool rewrite_existing) {
|
|
int oflags = O_WRONLY | O_CREAT;
|
|
if (!rewrite_existing) {
|
|
oflags |= O_EXCL;
|
|
}
|
|
return ::open64(path, oflags, S_IREAD | S_IWRITE);
|
|
}
|
|
|
|
// return current position of file pointer
|
|
jlong os::current_file_offset(int fd) {
|
|
return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
|
|
}
|
|
|
|
// move file pointer to the specified offset
|
|
jlong os::seek_to_file_offset(int fd, jlong offset) {
|
|
return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
|
|
}
|
|
|
|
// This code originates from JDK's sysAvailable
|
|
// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
|
|
|
|
int os::available(int fd, jlong *bytes) {
|
|
jlong cur, end;
|
|
int mode;
|
|
struct stat64 buf64;
|
|
|
|
if (::fstat64(fd, &buf64) >= 0) {
|
|
mode = buf64.st_mode;
|
|
if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
|
|
// XXX: is the following call interruptible? If so, this might
|
|
// need to go through the INTERRUPT_IO() wrapper as for other
|
|
// blocking, interruptible calls in this file.
|
|
int n;
|
|
if (::ioctl(fd, FIONREAD, &n) >= 0) {
|
|
*bytes = n;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
|
|
return 0;
|
|
} else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
|
|
return 0;
|
|
} else if (::lseek64(fd, cur, SEEK_SET) == -1) {
|
|
return 0;
|
|
}
|
|
*bytes = end - cur;
|
|
return 1;
|
|
}
|
|
|
|
int os::socket_available(int fd, jint *pbytes) {
|
|
// Linux doc says EINTR not returned, unlike Solaris
|
|
int ret = ::ioctl(fd, FIONREAD, pbytes);
|
|
|
|
//%% note ioctl can return 0 when successful, JVM_SocketAvailable
|
|
// is expected to return 0 on failure and 1 on success to the jdk.
|
|
return (ret < 0) ? 0 : 1;
|
|
}
|
|
|
|
// Map a block of memory.
|
|
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
Unimplemented();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// Remap a block of memory.
|
|
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
// same as map_memory() on this OS
|
|
return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
|
|
allow_exec);
|
|
}
|
|
|
|
// Unmap a block of memory.
|
|
bool os::pd_unmap_memory(char* addr, size_t bytes) {
|
|
return munmap(addr, bytes) == 0;
|
|
}
|
|
|
|
// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
|
|
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
|
|
// of a thread.
|
|
//
|
|
// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
|
|
// the fast estimate available on the platform.
|
|
|
|
jlong os::current_thread_cpu_time() {
|
|
// return user + sys since the cost is the same
|
|
const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
|
|
assert(n >= 0, "negative CPU time");
|
|
return n;
|
|
}
|
|
|
|
jlong os::thread_cpu_time(Thread* thread) {
|
|
// consistent with what current_thread_cpu_time() returns
|
|
const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
|
|
assert(n >= 0, "negative CPU time");
|
|
return n;
|
|
}
|
|
|
|
jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
|
|
const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
|
|
assert(n >= 0, "negative CPU time");
|
|
return n;
|
|
}
|
|
|
|
static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
|
|
bool error = false;
|
|
|
|
jlong sys_time = 0;
|
|
jlong user_time = 0;
|
|
|
|
// reimplemented using getthrds64().
|
|
//
|
|
// goes like this:
|
|
// For the thread in question, get the kernel thread id. Then get the
|
|
// kernel thread statistics using that id.
|
|
//
|
|
// This only works of course when no pthread scheduling is used,
|
|
// ie there is a 1:1 relationship to kernel threads.
|
|
// On AIX, see AIXTHREAD_SCOPE variable.
|
|
|
|
pthread_t pthtid = thread->osthread()->pthread_id();
|
|
|
|
// retrieve kernel thread id for the pthread:
|
|
tid64_t tid = 0;
|
|
struct __pthrdsinfo pinfo;
|
|
// I just love those otherworldly IBM APIs which force me to hand down
|
|
// dummy buffers for stuff I dont care for...
|
|
char dummy[1];
|
|
int dummy_size = sizeof(dummy);
|
|
if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
|
|
dummy, &dummy_size) == 0) {
|
|
tid = pinfo.__pi_tid;
|
|
} else {
|
|
tty->print_cr("pthread_getthrds_np failed.");
|
|
error = true;
|
|
}
|
|
|
|
// retrieve kernel timing info for that kernel thread
|
|
if (!error) {
|
|
struct thrdentry64 thrdentry;
|
|
if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
|
|
sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
|
|
user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
|
|
} else {
|
|
tty->print_cr("pthread_getthrds_np failed.");
|
|
error = true;
|
|
}
|
|
}
|
|
|
|
if (p_sys_time) {
|
|
*p_sys_time = sys_time;
|
|
}
|
|
|
|
if (p_user_time) {
|
|
*p_user_time = user_time;
|
|
}
|
|
|
|
if (error) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
|
|
jlong sys_time;
|
|
jlong user_time;
|
|
|
|
if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
|
|
return -1;
|
|
}
|
|
|
|
return user_sys_cpu_time ? sys_time + user_time : user_time;
|
|
}
|
|
|
|
void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
|
|
info_ptr->may_skip_backward = false; // elapsed time not wall time
|
|
info_ptr->may_skip_forward = false; // elapsed time not wall time
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
}
|
|
|
|
void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
|
|
info_ptr->may_skip_backward = false; // elapsed time not wall time
|
|
info_ptr->may_skip_forward = false; // elapsed time not wall time
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
}
|
|
|
|
bool os::is_thread_cpu_time_supported() {
|
|
return true;
|
|
}
|
|
|
|
// System loadavg support. Returns -1 if load average cannot be obtained.
|
|
// For now just return the system wide load average (no processor sets).
|
|
int os::loadavg(double values[], int nelem) {
|
|
|
|
// Implemented using libperfstat on AIX.
|
|
|
|
guarantee(nelem >= 0 && nelem <= 3, "argument error");
|
|
guarantee(values, "argument error");
|
|
|
|
if (os::Aix::on_pase()) {
|
|
Unimplemented();
|
|
return -1;
|
|
} else {
|
|
// AIX: use libperfstat
|
|
//
|
|
// See also:
|
|
// http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_cputot.htm
|
|
// /usr/include/libperfstat.h:
|
|
|
|
// Use the already AIX version independent get_cpuinfo.
|
|
os::Aix::cpuinfo_t ci;
|
|
if (os::Aix::get_cpuinfo(&ci)) {
|
|
for (int i = 0; i < nelem; i++) {
|
|
values[i] = ci.loadavg[i];
|
|
}
|
|
} else {
|
|
return -1;
|
|
}
|
|
return nelem;
|
|
}
|
|
}
|
|
|
|
void os::pause() {
|
|
char filename[MAX_PATH];
|
|
if (PauseAtStartupFile && PauseAtStartupFile[0]) {
|
|
jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
|
|
} else {
|
|
jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
|
|
}
|
|
|
|
int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
|
|
if (fd != -1) {
|
|
struct stat buf;
|
|
::close(fd);
|
|
while (::stat(filename, &buf) == 0) {
|
|
(void)::poll(NULL, 0, 100);
|
|
}
|
|
} else {
|
|
jio_fprintf(stderr,
|
|
"Could not open pause file '%s', continuing immediately.\n", filename);
|
|
}
|
|
}
|
|
|
|
bool os::Aix::is_primordial_thread() {
|
|
if (pthread_self() == (pthread_t)1) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// OS recognitions (PASE/AIX, OS level) call this before calling any
|
|
// one of Aix::on_pase(), Aix::os_version() static
|
|
void os::Aix::initialize_os_info() {
|
|
|
|
assert(_on_pase == -1 && _os_version == -1, "already called.");
|
|
|
|
struct utsname uts;
|
|
memset(&uts, 0, sizeof(uts));
|
|
strcpy(uts.sysname, "?");
|
|
if (::uname(&uts) == -1) {
|
|
fprintf(stderr, "uname failed (%d)\n", errno);
|
|
guarantee(0, "Could not determine whether we run on AIX or PASE");
|
|
} else {
|
|
if (Verbose) {
|
|
fprintf(stderr,"uname says: sysname \"%s\" version \"%s\" release \"%s\" "
|
|
"node \"%s\" machine \"%s\"\n",
|
|
uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
|
|
}
|
|
const int major = atoi(uts.version);
|
|
assert(major > 0, "invalid OS version");
|
|
const int minor = atoi(uts.release);
|
|
assert(minor > 0, "invalid OS release");
|
|
_os_version = (major << 8) | minor;
|
|
if (strcmp(uts.sysname, "OS400") == 0) {
|
|
Unimplemented();
|
|
} else if (strcmp(uts.sysname, "AIX") == 0) {
|
|
// We run on AIX. We do not support versions older than AIX 5.3.
|
|
_on_pase = 0;
|
|
if (_os_version < 0x0503) {
|
|
fprintf(stderr, "AIX release older than AIX 5.3 not supported.\n");
|
|
assert(false, "AIX release too old.");
|
|
} else {
|
|
if (Verbose) {
|
|
fprintf(stderr, "We run on AIX %d.%d\n", major, minor);
|
|
}
|
|
}
|
|
} else {
|
|
assert(false, "unknown OS");
|
|
}
|
|
}
|
|
|
|
guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
|
|
|
|
} // end: os::Aix::initialize_os_info()
|
|
|
|
// Scan environment for important settings which might effect the VM.
|
|
// Trace out settings. Warn about invalid settings and/or correct them.
|
|
//
|
|
// Must run after os::Aix::initialue_os_info().
|
|
void os::Aix::scan_environment() {
|
|
|
|
char* p;
|
|
int rc;
|
|
|
|
// Warn explicity if EXTSHM=ON is used. That switch changes how
|
|
// System V shared memory behaves. One effect is that page size of
|
|
// shared memory cannot be change dynamically, effectivly preventing
|
|
// large pages from working.
|
|
// This switch was needed on AIX 32bit, but on AIX 64bit the general
|
|
// recommendation is (in OSS notes) to switch it off.
|
|
p = ::getenv("EXTSHM");
|
|
if (Verbose) {
|
|
fprintf(stderr, "EXTSHM=%s.\n", p ? p : "<unset>");
|
|
}
|
|
if (p && strcmp(p, "ON") == 0) {
|
|
fprintf(stderr, "Unsupported setting: EXTSHM=ON. Large Page support will be disabled.\n");
|
|
_extshm = 1;
|
|
} else {
|
|
_extshm = 0;
|
|
}
|
|
|
|
// SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
|
|
// Not tested, not supported.
|
|
//
|
|
// Note that it might be worth the trouble to test and to require it, if only to
|
|
// get useful return codes for mprotect.
|
|
//
|
|
// Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
|
|
// exec() ? before loading the libjvm ? ....)
|
|
p = ::getenv("XPG_SUS_ENV");
|
|
if (Verbose) {
|
|
fprintf(stderr, "XPG_SUS_ENV=%s.\n", p ? p : "<unset>");
|
|
}
|
|
if (p && strcmp(p, "ON") == 0) {
|
|
_xpg_sus_mode = 1;
|
|
fprintf(stderr, "Unsupported setting: XPG_SUS_ENV=ON\n");
|
|
// This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
|
|
// clobber address ranges. If we ever want to support that, we have to do some
|
|
// testing first.
|
|
guarantee(false, "XPG_SUS_ENV=ON not supported");
|
|
} else {
|
|
_xpg_sus_mode = 0;
|
|
}
|
|
|
|
// Switch off AIX internal (pthread) guard pages. This has
|
|
// immediate effect for any pthread_create calls which follow.
|
|
p = ::getenv("AIXTHREAD_GUARDPAGES");
|
|
if (Verbose) {
|
|
fprintf(stderr, "AIXTHREAD_GUARDPAGES=%s.\n", p ? p : "<unset>");
|
|
fprintf(stderr, "setting AIXTHREAD_GUARDPAGES=0.\n");
|
|
}
|
|
rc = ::putenv("AIXTHREAD_GUARDPAGES=0");
|
|
guarantee(rc == 0, "");
|
|
|
|
} // end: os::Aix::scan_environment()
|
|
|
|
// PASE: initialize the libo4 library (AS400 PASE porting library).
|
|
void os::Aix::initialize_libo4() {
|
|
Unimplemented();
|
|
}
|
|
|
|
// AIX: initialize the libperfstat library (we load this dynamically
|
|
// because it is only available on AIX.
|
|
void os::Aix::initialize_libperfstat() {
|
|
|
|
assert(os::Aix::on_aix(), "AIX only");
|
|
|
|
if (!libperfstat::init()) {
|
|
fprintf(stderr, "libperfstat initialization failed.\n");
|
|
assert(false, "libperfstat initialization failed");
|
|
} else {
|
|
if (Verbose) {
|
|
fprintf(stderr, "libperfstat initialized.\n");
|
|
}
|
|
}
|
|
} // end: os::Aix::initialize_libperfstat
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// thread stack
|
|
|
|
// function to query the current stack size using pthread_getthrds_np
|
|
//
|
|
// ! do not change anything here unless you know what you are doing !
|
|
static void query_stack_dimensions(address* p_stack_base, size_t* p_stack_size) {
|
|
|
|
// This only works when invoked on a pthread. As we agreed not to use
|
|
// primordial threads anyway, I assert here
|
|
guarantee(!os::Aix::is_primordial_thread(), "not allowed on the primordial thread");
|
|
|
|
// information about this api can be found (a) in the pthread.h header and
|
|
// (b) in http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_getthrds_np.htm
|
|
//
|
|
// The use of this API to find out the current stack is kind of undefined.
|
|
// But after a lot of tries and asking IBM about it, I concluded that it is safe
|
|
// enough for cases where I let the pthread library create its stacks. For cases
|
|
// where I create an own stack and pass this to pthread_create, it seems not to
|
|
// work (the returned stack size in that case is 0).
|
|
|
|
pthread_t tid = pthread_self();
|
|
struct __pthrdsinfo pinfo;
|
|
char dummy[1]; // we only need this to satisfy the api and to not get E
|
|
int dummy_size = sizeof(dummy);
|
|
|
|
memset(&pinfo, 0, sizeof(pinfo));
|
|
|
|
const int rc = pthread_getthrds_np (&tid, PTHRDSINFO_QUERY_ALL, &pinfo,
|
|
sizeof(pinfo), dummy, &dummy_size);
|
|
|
|
if (rc != 0) {
|
|
fprintf(stderr, "pthread_getthrds_np failed (%d)\n", rc);
|
|
guarantee(0, "pthread_getthrds_np failed");
|
|
}
|
|
|
|
guarantee(pinfo.__pi_stackend, "returned stack base invalid");
|
|
|
|
// the following can happen when invoking pthread_getthrds_np on a pthread running on a user provided stack
|
|
// (when handing down a stack to pthread create, see pthread_attr_setstackaddr).
|
|
// Not sure what to do here - I feel inclined to forbid this use case completely.
|
|
guarantee(pinfo.__pi_stacksize, "returned stack size invalid");
|
|
|
|
// On AIX, stacks are not necessarily page aligned so round the base and size accordingly
|
|
if (p_stack_base) {
|
|
(*p_stack_base) = (address) align_size_up((intptr_t)pinfo.__pi_stackend, os::Aix::stack_page_size());
|
|
}
|
|
|
|
if (p_stack_size) {
|
|
(*p_stack_size) = pinfo.__pi_stacksize - os::Aix::stack_page_size();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (Verbose) {
|
|
fprintf(stderr,
|
|
"query_stack_dimensions() -> real stack_base=" INTPTR_FORMAT ", real stack_addr=" INTPTR_FORMAT
|
|
", real stack_size=" INTPTR_FORMAT
|
|
", stack_base=" INTPTR_FORMAT ", stack_size=" INTPTR_FORMAT "\n",
|
|
(intptr_t)pinfo.__pi_stackend, (intptr_t)pinfo.__pi_stackaddr, pinfo.__pi_stacksize,
|
|
(intptr_t)align_size_up((intptr_t)pinfo.__pi_stackend, os::Aix::stack_page_size()),
|
|
pinfo.__pi_stacksize - os::Aix::stack_page_size());
|
|
}
|
|
#endif
|
|
|
|
} // end query_stack_dimensions
|
|
|
|
// get the current stack base from the OS (actually, the pthread library)
|
|
address os::current_stack_base() {
|
|
address p;
|
|
query_stack_dimensions(&p, 0);
|
|
return p;
|
|
}
|
|
|
|
// get the current stack size from the OS (actually, the pthread library)
|
|
size_t os::current_stack_size() {
|
|
size_t s;
|
|
query_stack_dimensions(0, &s);
|
|
return s;
|
|
}
|
|
|
|
// Refer to the comments in os_solaris.cpp park-unpark.
|
|
//
|
|
// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
|
|
// hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
|
|
// For specifics regarding the bug see GLIBC BUGID 261237 :
|
|
// http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
|
|
// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
|
|
// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
|
|
// is used. (The simple C test-case provided in the GLIBC bug report manifests the
|
|
// hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
|
|
// and monitorenter when we're using 1-0 locking. All those operations may result in
|
|
// calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
|
|
// of libpthread avoids the problem, but isn't practical.
|
|
//
|
|
// Possible remedies:
|
|
//
|
|
// 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
|
|
// This is palliative and probabilistic, however. If the thread is preempted
|
|
// between the call to compute_abstime() and pthread_cond_timedwait(), more
|
|
// than the minimum period may have passed, and the abstime may be stale (in the
|
|
// past) resultin in a hang. Using this technique reduces the odds of a hang
|
|
// but the JVM is still vulnerable, particularly on heavily loaded systems.
|
|
//
|
|
// 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
|
|
// of the usual flag-condvar-mutex idiom. The write side of the pipe is set
|
|
// NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
|
|
// reduces to poll()+read(). This works well, but consumes 2 FDs per extant
|
|
// thread.
|
|
//
|
|
// 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
|
|
// that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
|
|
// a timeout request to the chron thread and then blocking via pthread_cond_wait().
|
|
// This also works well. In fact it avoids kernel-level scalability impediments
|
|
// on certain platforms that don't handle lots of active pthread_cond_timedwait()
|
|
// timers in a graceful fashion.
|
|
//
|
|
// 4. When the abstime value is in the past it appears that control returns
|
|
// correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
|
|
// Subsequent timedwait/wait calls may hang indefinitely. Given that, we
|
|
// can avoid the problem by reinitializing the condvar -- by cond_destroy()
|
|
// followed by cond_init() -- after all calls to pthread_cond_timedwait().
|
|
// It may be possible to avoid reinitialization by checking the return
|
|
// value from pthread_cond_timedwait(). In addition to reinitializing the
|
|
// condvar we must establish the invariant that cond_signal() is only called
|
|
// within critical sections protected by the adjunct mutex. This prevents
|
|
// cond_signal() from "seeing" a condvar that's in the midst of being
|
|
// reinitialized or that is corrupt. Sadly, this invariant obviates the
|
|
// desirable signal-after-unlock optimization that avoids futile context switching.
|
|
//
|
|
// I'm also concerned that some versions of NTPL might allocate an auxilliary
|
|
// structure when a condvar is used or initialized. cond_destroy() would
|
|
// release the helper structure. Our reinitialize-after-timedwait fix
|
|
// put excessive stress on malloc/free and locks protecting the c-heap.
|
|
//
|
|
// We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
|
|
// It may be possible to refine (4) by checking the kernel and NTPL verisons
|
|
// and only enabling the work-around for vulnerable environments.
|
|
|
|
// utility to compute the abstime argument to timedwait:
|
|
// millis is the relative timeout time
|
|
// abstime will be the absolute timeout time
|
|
// TODO: replace compute_abstime() with unpackTime()
|
|
|
|
static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
|
|
if (millis < 0) millis = 0;
|
|
struct timeval now;
|
|
int status = gettimeofday(&now, NULL);
|
|
assert(status == 0, "gettimeofday");
|
|
jlong seconds = millis / 1000;
|
|
millis %= 1000;
|
|
if (seconds > 50000000) { // see man cond_timedwait(3T)
|
|
seconds = 50000000;
|
|
}
|
|
abstime->tv_sec = now.tv_sec + seconds;
|
|
long usec = now.tv_usec + millis * 1000;
|
|
if (usec >= 1000000) {
|
|
abstime->tv_sec += 1;
|
|
usec -= 1000000;
|
|
}
|
|
abstime->tv_nsec = usec * 1000;
|
|
return abstime;
|
|
}
|
|
|
|
|
|
// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
|
|
// Conceptually TryPark() should be equivalent to park(0).
|
|
|
|
int os::PlatformEvent::TryPark() {
|
|
for (;;) {
|
|
const int v = _Event;
|
|
guarantee ((v == 0) || (v == 1), "invariant");
|
|
if (Atomic::cmpxchg (0, &_Event, v) == v) return v;
|
|
}
|
|
}
|
|
|
|
void os::PlatformEvent::park() { // AKA "down()"
|
|
// Invariant: Only the thread associated with the Event/PlatformEvent
|
|
// may call park().
|
|
// TODO: assert that _Assoc != NULL or _Assoc == Self
|
|
int v;
|
|
for (;;) {
|
|
v = _Event;
|
|
if (Atomic::cmpxchg (v-1, &_Event, v) == v) break;
|
|
}
|
|
guarantee (v >= 0, "invariant");
|
|
if (v == 0) {
|
|
// Do this the hard way by blocking ...
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
guarantee (_nParked == 0, "invariant");
|
|
++ _nParked;
|
|
while (_Event < 0) {
|
|
status = pthread_cond_wait(_cond, _mutex);
|
|
assert_status(status == 0 || status == ETIMEDOUT, status, "cond_timedwait");
|
|
}
|
|
-- _nParked;
|
|
|
|
// In theory we could move the ST of 0 into _Event past the unlock(),
|
|
// but then we'd need a MEMBAR after the ST.
|
|
_Event = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
}
|
|
guarantee (_Event >= 0, "invariant");
|
|
}
|
|
|
|
int os::PlatformEvent::park(jlong millis) {
|
|
guarantee (_nParked == 0, "invariant");
|
|
|
|
int v;
|
|
for (;;) {
|
|
v = _Event;
|
|
if (Atomic::cmpxchg (v-1, &_Event, v) == v) break;
|
|
}
|
|
guarantee (v >= 0, "invariant");
|
|
if (v != 0) return OS_OK;
|
|
|
|
// We do this the hard way, by blocking the thread.
|
|
// Consider enforcing a minimum timeout value.
|
|
struct timespec abst;
|
|
compute_abstime(&abst, millis);
|
|
|
|
int ret = OS_TIMEOUT;
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
guarantee (_nParked == 0, "invariant");
|
|
++_nParked;
|
|
|
|
// Object.wait(timo) will return because of
|
|
// (a) notification
|
|
// (b) timeout
|
|
// (c) thread.interrupt
|
|
//
|
|
// Thread.interrupt and object.notify{All} both call Event::set.
|
|
// That is, we treat thread.interrupt as a special case of notification.
|
|
// The underlying Solaris implementation, cond_timedwait, admits
|
|
// spurious/premature wakeups, but the JLS/JVM spec prevents the
|
|
// JVM from making those visible to Java code. As such, we must
|
|
// filter out spurious wakeups. We assume all ETIME returns are valid.
|
|
//
|
|
// TODO: properly differentiate simultaneous notify+interrupt.
|
|
// In that case, we should propagate the notify to another waiter.
|
|
|
|
while (_Event < 0) {
|
|
status = pthread_cond_timedwait(_cond, _mutex, &abst);
|
|
assert_status(status == 0 || status == ETIMEDOUT,
|
|
status, "cond_timedwait");
|
|
if (!FilterSpuriousWakeups) break; // previous semantics
|
|
if (status == ETIMEDOUT) break;
|
|
// We consume and ignore EINTR and spurious wakeups.
|
|
}
|
|
--_nParked;
|
|
if (_Event >= 0) {
|
|
ret = OS_OK;
|
|
}
|
|
_Event = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
assert (_nParked == 0, "invariant");
|
|
return ret;
|
|
}
|
|
|
|
void os::PlatformEvent::unpark() {
|
|
int v, AnyWaiters;
|
|
for (;;) {
|
|
v = _Event;
|
|
if (v > 0) {
|
|
// The LD of _Event could have reordered or be satisfied
|
|
// by a read-aside from this processor's write buffer.
|
|
// To avoid problems execute a barrier and then
|
|
// ratify the value.
|
|
OrderAccess::fence();
|
|
if (_Event == v) return;
|
|
continue;
|
|
}
|
|
if (Atomic::cmpxchg (v+1, &_Event, v) == v) break;
|
|
}
|
|
if (v < 0) {
|
|
// Wait for the thread associated with the event to vacate
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
AnyWaiters = _nParked;
|
|
|
|
if (AnyWaiters != 0) {
|
|
// We intentional signal *after* dropping the lock
|
|
// to avoid a common class of futile wakeups.
|
|
status = pthread_cond_signal(_cond);
|
|
assert_status(status == 0, status, "cond_signal");
|
|
}
|
|
// Mutex should be locked for pthread_cond_signal(_cond).
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
}
|
|
|
|
// Note that we signal() _after dropping the lock for "immortal" Events.
|
|
// This is safe and avoids a common class of futile wakeups. In rare
|
|
// circumstances this can cause a thread to return prematurely from
|
|
// cond_{timed}wait() but the spurious wakeup is benign and the victim will
|
|
// simply re-test the condition and re-park itself.
|
|
}
|
|
|
|
|
|
// JSR166
|
|
// -------------------------------------------------------
|
|
|
|
//
|
|
// The solaris and linux implementations of park/unpark are fairly
|
|
// conservative for now, but can be improved. They currently use a
|
|
// mutex/condvar pair, plus a a count.
|
|
// Park decrements count if > 0, else does a condvar wait. Unpark
|
|
// sets count to 1 and signals condvar. Only one thread ever waits
|
|
// on the condvar. Contention seen when trying to park implies that someone
|
|
// is unparking you, so don't wait. And spurious returns are fine, so there
|
|
// is no need to track notifications.
|
|
//
|
|
|
|
#define MAX_SECS 100000000
|
|
//
|
|
// This code is common to linux and solaris and will be moved to a
|
|
// common place in dolphin.
|
|
//
|
|
// The passed in time value is either a relative time in nanoseconds
|
|
// or an absolute time in milliseconds. Either way it has to be unpacked
|
|
// into suitable seconds and nanoseconds components and stored in the
|
|
// given timespec structure.
|
|
// Given time is a 64-bit value and the time_t used in the timespec is only
|
|
// a signed-32-bit value (except on 64-bit Linux) we have to watch for
|
|
// overflow if times way in the future are given. Further on Solaris versions
|
|
// prior to 10 there is a restriction (see cond_timedwait) that the specified
|
|
// number of seconds, in abstime, is less than current_time + 100,000,000.
|
|
// As it will be 28 years before "now + 100000000" will overflow we can
|
|
// ignore overflow and just impose a hard-limit on seconds using the value
|
|
// of "now + 100,000,000". This places a limit on the timeout of about 3.17
|
|
// years from "now".
|
|
//
|
|
|
|
static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
|
|
assert (time > 0, "convertTime");
|
|
|
|
struct timeval now;
|
|
int status = gettimeofday(&now, NULL);
|
|
assert(status == 0, "gettimeofday");
|
|
|
|
time_t max_secs = now.tv_sec + MAX_SECS;
|
|
|
|
if (isAbsolute) {
|
|
jlong secs = time / 1000;
|
|
if (secs > max_secs) {
|
|
absTime->tv_sec = max_secs;
|
|
}
|
|
else {
|
|
absTime->tv_sec = secs;
|
|
}
|
|
absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
|
|
}
|
|
else {
|
|
jlong secs = time / NANOSECS_PER_SEC;
|
|
if (secs >= MAX_SECS) {
|
|
absTime->tv_sec = max_secs;
|
|
absTime->tv_nsec = 0;
|
|
}
|
|
else {
|
|
absTime->tv_sec = now.tv_sec + secs;
|
|
absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
|
|
if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
|
|
absTime->tv_nsec -= NANOSECS_PER_SEC;
|
|
++absTime->tv_sec; // note: this must be <= max_secs
|
|
}
|
|
}
|
|
}
|
|
assert(absTime->tv_sec >= 0, "tv_sec < 0");
|
|
assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
|
|
assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
|
|
assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
|
|
}
|
|
|
|
void Parker::park(bool isAbsolute, jlong time) {
|
|
// Optional fast-path check:
|
|
// Return immediately if a permit is available.
|
|
if (_counter > 0) {
|
|
_counter = 0;
|
|
OrderAccess::fence();
|
|
return;
|
|
}
|
|
|
|
Thread* thread = Thread::current();
|
|
assert(thread->is_Java_thread(), "Must be JavaThread");
|
|
JavaThread *jt = (JavaThread *)thread;
|
|
|
|
// Optional optimization -- avoid state transitions if there's an interrupt pending.
|
|
// Check interrupt before trying to wait
|
|
if (Thread::is_interrupted(thread, false)) {
|
|
return;
|
|
}
|
|
|
|
// Next, demultiplex/decode time arguments
|
|
timespec absTime;
|
|
if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
|
|
return;
|
|
}
|
|
if (time > 0) {
|
|
unpackTime(&absTime, isAbsolute, time);
|
|
}
|
|
|
|
|
|
// Enter safepoint region
|
|
// Beware of deadlocks such as 6317397.
|
|
// The per-thread Parker:: mutex is a classic leaf-lock.
|
|
// In particular a thread must never block on the Threads_lock while
|
|
// holding the Parker:: mutex. If safepoints are pending both the
|
|
// the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
|
|
ThreadBlockInVM tbivm(jt);
|
|
|
|
// Don't wait if cannot get lock since interference arises from
|
|
// unblocking. Also. check interrupt before trying wait
|
|
if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
|
|
return;
|
|
}
|
|
|
|
int status;
|
|
if (_counter > 0) { // no wait needed
|
|
_counter = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert (status == 0, "invariant");
|
|
OrderAccess::fence();
|
|
return;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Don't catch signals while blocked; let the running threads have the signals.
|
|
// (This allows a debugger to break into the running thread.)
|
|
sigset_t oldsigs;
|
|
sigset_t* allowdebug_blocked = os::Aix::allowdebug_blocked_signals();
|
|
pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
|
|
#endif
|
|
|
|
OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
|
|
jt->set_suspend_equivalent();
|
|
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
|
|
|
|
if (time == 0) {
|
|
status = pthread_cond_wait (_cond, _mutex);
|
|
} else {
|
|
status = pthread_cond_timedwait (_cond, _mutex, &absTime);
|
|
if (status != 0 && WorkAroundNPTLTimedWaitHang) {
|
|
pthread_cond_destroy (_cond);
|
|
pthread_cond_init (_cond, NULL);
|
|
}
|
|
}
|
|
assert_status(status == 0 || status == EINTR ||
|
|
status == ETIME || status == ETIMEDOUT,
|
|
status, "cond_timedwait");
|
|
|
|
#ifdef ASSERT
|
|
pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
|
|
#endif
|
|
|
|
_counter = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "invariant");
|
|
// If externally suspended while waiting, re-suspend
|
|
if (jt->handle_special_suspend_equivalent_condition()) {
|
|
jt->java_suspend_self();
|
|
}
|
|
|
|
OrderAccess::fence();
|
|
}
|
|
|
|
void Parker::unpark() {
|
|
int s, status;
|
|
status = pthread_mutex_lock(_mutex);
|
|
assert (status == 0, "invariant");
|
|
s = _counter;
|
|
_counter = 1;
|
|
if (s < 1) {
|
|
if (WorkAroundNPTLTimedWaitHang) {
|
|
status = pthread_cond_signal (_cond);
|
|
assert (status == 0, "invariant");
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert (status == 0, "invariant");
|
|
} else {
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert (status == 0, "invariant");
|
|
status = pthread_cond_signal (_cond);
|
|
assert (status == 0, "invariant");
|
|
}
|
|
} else {
|
|
pthread_mutex_unlock(_mutex);
|
|
assert (status == 0, "invariant");
|
|
}
|
|
}
|
|
|
|
|
|
extern char** environ;
|
|
|
|
// Run the specified command in a separate process. Return its exit value,
|
|
// or -1 on failure (e.g. can't fork a new process).
|
|
// Unlike system(), this function can be called from signal handler. It
|
|
// doesn't block SIGINT et al.
|
|
int os::fork_and_exec(char* cmd) {
|
|
char * argv[4] = {"sh", "-c", cmd, NULL};
|
|
|
|
pid_t pid = fork();
|
|
|
|
if (pid < 0) {
|
|
// fork failed
|
|
return -1;
|
|
|
|
} else if (pid == 0) {
|
|
// child process
|
|
|
|
// try to be consistent with system(), which uses "/usr/bin/sh" on AIX
|
|
execve("/usr/bin/sh", argv, environ);
|
|
|
|
// execve failed
|
|
_exit(-1);
|
|
|
|
} else {
|
|
// copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
|
|
// care about the actual exit code, for now.
|
|
|
|
int status;
|
|
|
|
// Wait for the child process to exit. This returns immediately if
|
|
// the child has already exited. */
|
|
while (waitpid(pid, &status, 0) < 0) {
|
|
switch (errno) {
|
|
case ECHILD: return 0;
|
|
case EINTR: break;
|
|
default: return -1;
|
|
}
|
|
}
|
|
|
|
if (WIFEXITED(status)) {
|
|
// The child exited normally; get its exit code.
|
|
return WEXITSTATUS(status);
|
|
} else if (WIFSIGNALED(status)) {
|
|
// The child exited because of a signal
|
|
// The best value to return is 0x80 + signal number,
|
|
// because that is what all Unix shells do, and because
|
|
// it allows callers to distinguish between process exit and
|
|
// process death by signal.
|
|
return 0x80 + WTERMSIG(status);
|
|
} else {
|
|
// Unknown exit code; pass it through
|
|
return status;
|
|
}
|
|
}
|
|
// Remove warning.
|
|
return -1;
|
|
}
|
|
|
|
// is_headless_jre()
|
|
//
|
|
// Test for the existence of xawt/libmawt.so or libawt_xawt.so
|
|
// in order to report if we are running in a headless jre.
|
|
//
|
|
// Since JDK8 xawt/libmawt.so is moved into the same directory
|
|
// as libawt.so, and renamed libawt_xawt.so
|
|
bool os::is_headless_jre() {
|
|
struct stat statbuf;
|
|
char buf[MAXPATHLEN];
|
|
char libmawtpath[MAXPATHLEN];
|
|
const char *xawtstr = "/xawt/libmawt.so";
|
|
const char *new_xawtstr = "/libawt_xawt.so";
|
|
|
|
char *p;
|
|
|
|
// Get path to libjvm.so
|
|
os::jvm_path(buf, sizeof(buf));
|
|
|
|
// Get rid of libjvm.so
|
|
p = strrchr(buf, '/');
|
|
if (p == NULL) return false;
|
|
else *p = '\0';
|
|
|
|
// Get rid of client or server
|
|
p = strrchr(buf, '/');
|
|
if (p == NULL) return false;
|
|
else *p = '\0';
|
|
|
|
// check xawt/libmawt.so
|
|
strcpy(libmawtpath, buf);
|
|
strcat(libmawtpath, xawtstr);
|
|
if (::stat(libmawtpath, &statbuf) == 0) return false;
|
|
|
|
// check libawt_xawt.so
|
|
strcpy(libmawtpath, buf);
|
|
strcat(libmawtpath, new_xawtstr);
|
|
if (::stat(libmawtpath, &statbuf) == 0) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Get the default path to the core file
|
|
// Returns the length of the string
|
|
int os::get_core_path(char* buffer, size_t bufferSize) {
|
|
const char* p = get_current_directory(buffer, bufferSize);
|
|
|
|
if (p == NULL) {
|
|
assert(p != NULL, "failed to get current directory");
|
|
return 0;
|
|
}
|
|
|
|
return strlen(buffer);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void TestReserveMemorySpecial_test() {
|
|
// No tests available for this platform
|
|
}
|
|
#endif
|