mirror of
https://github.com/openjdk/jdk.git
synced 2025-08-28 07:14:30 +02:00
3464 lines
136 KiB
C++
3464 lines
136 KiB
C++
/*
|
|
* Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "jvm.h"
|
|
#include "classfile/javaClasses.inline.hpp"
|
|
#include "classfile/stringTable.hpp"
|
|
#include "classfile/vmClasses.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "code/compiledIC.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/compiledMethod.inline.hpp"
|
|
#include "code/scopeDesc.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "compiler/abstractCompiler.hpp"
|
|
#include "compiler/compileBroker.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "gc/shared/gcLocker.inline.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "interpreter/interpreterRuntime.hpp"
|
|
#include "jfr/jfrEvents.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "oops/compiledICHolder.inline.hpp"
|
|
#include "oops/klass.hpp"
|
|
#include "oops/method.inline.hpp"
|
|
#include "oops/objArrayKlass.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "prims/forte.hpp"
|
|
#include "prims/jvmtiExport.hpp"
|
|
#include "prims/methodHandles.hpp"
|
|
#include "prims/nativeLookup.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/init.hpp"
|
|
#include "runtime/interfaceSupport.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stackWatermarkSet.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/synchronizer.hpp"
|
|
#include "runtime/vframe.inline.hpp"
|
|
#include "runtime/vframeArray.hpp"
|
|
#include "runtime/vm_version.hpp"
|
|
#include "utilities/copy.hpp"
|
|
#include "utilities/dtrace.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/resourceHash.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/xmlstream.hpp"
|
|
#ifdef COMPILER1
|
|
#include "c1/c1_Runtime1.hpp"
|
|
#endif
|
|
|
|
// Shared stub locations
|
|
RuntimeStub* SharedRuntime::_wrong_method_blob;
|
|
RuntimeStub* SharedRuntime::_wrong_method_abstract_blob;
|
|
RuntimeStub* SharedRuntime::_ic_miss_blob;
|
|
RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
|
|
RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
|
|
RuntimeStub* SharedRuntime::_resolve_static_call_blob;
|
|
address SharedRuntime::_resolve_static_call_entry;
|
|
|
|
DeoptimizationBlob* SharedRuntime::_deopt_blob;
|
|
SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
|
|
SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
|
|
SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
|
|
|
|
#ifdef COMPILER2
|
|
UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
|
|
#endif // COMPILER2
|
|
|
|
nmethod* SharedRuntime::_cont_doYield_stub;
|
|
|
|
//----------------------------generate_stubs-----------------------------------
|
|
void SharedRuntime::generate_stubs() {
|
|
_wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
|
|
_wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
|
|
_ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
|
|
_resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
|
|
_resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
|
|
_resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
|
|
_resolve_static_call_entry = _resolve_static_call_blob->entry_point();
|
|
|
|
AdapterHandlerLibrary::initialize();
|
|
|
|
#if COMPILER2_OR_JVMCI
|
|
// Vectors are generated only by C2 and JVMCI.
|
|
bool support_wide = is_wide_vector(MaxVectorSize);
|
|
if (support_wide) {
|
|
_polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
|
|
}
|
|
#endif // COMPILER2_OR_JVMCI
|
|
_polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
|
|
_polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
|
|
|
|
generate_deopt_blob();
|
|
|
|
#ifdef COMPILER2
|
|
generate_uncommon_trap_blob();
|
|
#endif // COMPILER2
|
|
}
|
|
|
|
#include <math.h>
|
|
|
|
// Implementation of SharedRuntime
|
|
|
|
#ifndef PRODUCT
|
|
// For statistics
|
|
int SharedRuntime::_ic_miss_ctr = 0;
|
|
int SharedRuntime::_wrong_method_ctr = 0;
|
|
int SharedRuntime::_resolve_static_ctr = 0;
|
|
int SharedRuntime::_resolve_virtual_ctr = 0;
|
|
int SharedRuntime::_resolve_opt_virtual_ctr = 0;
|
|
int SharedRuntime::_implicit_null_throws = 0;
|
|
int SharedRuntime::_implicit_div0_throws = 0;
|
|
|
|
int64_t SharedRuntime::_nof_normal_calls = 0;
|
|
int64_t SharedRuntime::_nof_optimized_calls = 0;
|
|
int64_t SharedRuntime::_nof_inlined_calls = 0;
|
|
int64_t SharedRuntime::_nof_megamorphic_calls = 0;
|
|
int64_t SharedRuntime::_nof_static_calls = 0;
|
|
int64_t SharedRuntime::_nof_inlined_static_calls = 0;
|
|
int64_t SharedRuntime::_nof_interface_calls = 0;
|
|
int64_t SharedRuntime::_nof_optimized_interface_calls = 0;
|
|
int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
|
|
int64_t SharedRuntime::_nof_megamorphic_interface_calls = 0;
|
|
|
|
int SharedRuntime::_new_instance_ctr=0;
|
|
int SharedRuntime::_new_array_ctr=0;
|
|
int SharedRuntime::_multi2_ctr=0;
|
|
int SharedRuntime::_multi3_ctr=0;
|
|
int SharedRuntime::_multi4_ctr=0;
|
|
int SharedRuntime::_multi5_ctr=0;
|
|
int SharedRuntime::_mon_enter_stub_ctr=0;
|
|
int SharedRuntime::_mon_exit_stub_ctr=0;
|
|
int SharedRuntime::_mon_enter_ctr=0;
|
|
int SharedRuntime::_mon_exit_ctr=0;
|
|
int SharedRuntime::_partial_subtype_ctr=0;
|
|
int SharedRuntime::_jbyte_array_copy_ctr=0;
|
|
int SharedRuntime::_jshort_array_copy_ctr=0;
|
|
int SharedRuntime::_jint_array_copy_ctr=0;
|
|
int SharedRuntime::_jlong_array_copy_ctr=0;
|
|
int SharedRuntime::_oop_array_copy_ctr=0;
|
|
int SharedRuntime::_checkcast_array_copy_ctr=0;
|
|
int SharedRuntime::_unsafe_array_copy_ctr=0;
|
|
int SharedRuntime::_generic_array_copy_ctr=0;
|
|
int SharedRuntime::_slow_array_copy_ctr=0;
|
|
int SharedRuntime::_find_handler_ctr=0;
|
|
int SharedRuntime::_rethrow_ctr=0;
|
|
|
|
int SharedRuntime::_ICmiss_index = 0;
|
|
int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
|
|
address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
|
|
|
|
|
|
void SharedRuntime::trace_ic_miss(address at) {
|
|
for (int i = 0; i < _ICmiss_index; i++) {
|
|
if (_ICmiss_at[i] == at) {
|
|
_ICmiss_count[i]++;
|
|
return;
|
|
}
|
|
}
|
|
int index = _ICmiss_index++;
|
|
if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
|
|
_ICmiss_at[index] = at;
|
|
_ICmiss_count[index] = 1;
|
|
}
|
|
|
|
void SharedRuntime::print_ic_miss_histogram() {
|
|
if (ICMissHistogram) {
|
|
tty->print_cr("IC Miss Histogram:");
|
|
int tot_misses = 0;
|
|
for (int i = 0; i < _ICmiss_index; i++) {
|
|
tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
|
|
tot_misses += _ICmiss_count[i];
|
|
}
|
|
tty->print_cr("Total IC misses: %7d", tot_misses);
|
|
}
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
|
|
JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
|
|
return x * y;
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
|
|
if (x == min_jlong && y == CONST64(-1)) {
|
|
return x;
|
|
} else {
|
|
return x / y;
|
|
}
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
|
|
if (x == min_jlong && y == CONST64(-1)) {
|
|
return 0;
|
|
} else {
|
|
return x % y;
|
|
}
|
|
JRT_END
|
|
|
|
|
|
const juint float_sign_mask = 0x7FFFFFFF;
|
|
const juint float_infinity = 0x7F800000;
|
|
const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
|
|
const julong double_infinity = CONST64(0x7FF0000000000000);
|
|
|
|
JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
|
|
#ifdef _WIN64
|
|
// 64-bit Windows on amd64 returns the wrong values for
|
|
// infinity operands.
|
|
union { jfloat f; juint i; } xbits, ybits;
|
|
xbits.f = x;
|
|
ybits.f = y;
|
|
// x Mod Infinity == x unless x is infinity
|
|
if (((xbits.i & float_sign_mask) != float_infinity) &&
|
|
((ybits.i & float_sign_mask) == float_infinity) ) {
|
|
return x;
|
|
}
|
|
return ((jfloat)fmod_winx64((double)x, (double)y));
|
|
#else
|
|
return ((jfloat)fmod((double)x,(double)y));
|
|
#endif
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
|
|
#ifdef _WIN64
|
|
union { jdouble d; julong l; } xbits, ybits;
|
|
xbits.d = x;
|
|
ybits.d = y;
|
|
// x Mod Infinity == x unless x is infinity
|
|
if (((xbits.l & double_sign_mask) != double_infinity) &&
|
|
((ybits.l & double_sign_mask) == double_infinity) ) {
|
|
return x;
|
|
}
|
|
return ((jdouble)fmod_winx64((double)x, (double)y));
|
|
#else
|
|
return ((jdouble)fmod((double)x,(double)y));
|
|
#endif
|
|
JRT_END
|
|
|
|
JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
|
|
return (jfloat)x;
|
|
JRT_END
|
|
|
|
#ifdef __SOFTFP__
|
|
JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
|
|
return x + y;
|
|
JRT_END
|
|
|
|
JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
|
|
return x - y;
|
|
JRT_END
|
|
|
|
JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
|
|
return x * y;
|
|
JRT_END
|
|
|
|
JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
|
|
return x / y;
|
|
JRT_END
|
|
|
|
JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
|
|
return x + y;
|
|
JRT_END
|
|
|
|
JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
|
|
return x - y;
|
|
JRT_END
|
|
|
|
JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
|
|
return x * y;
|
|
JRT_END
|
|
|
|
JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
|
|
return x / y;
|
|
JRT_END
|
|
|
|
JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
|
|
return (jdouble)x;
|
|
JRT_END
|
|
|
|
JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
|
|
return (jdouble)x;
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
|
|
return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
|
|
return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
|
|
return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
|
|
return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
|
|
JRT_END
|
|
|
|
// Functions to return the opposite of the aeabi functions for nan.
|
|
JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
|
|
return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
|
|
return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
|
|
return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
|
|
return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
|
|
return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
|
|
return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
|
|
return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
|
|
return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
|
|
JRT_END
|
|
|
|
// Intrinsics make gcc generate code for these.
|
|
float SharedRuntime::fneg(float f) {
|
|
return -f;
|
|
}
|
|
|
|
double SharedRuntime::dneg(double f) {
|
|
return -f;
|
|
}
|
|
|
|
#endif // __SOFTFP__
|
|
|
|
#if defined(__SOFTFP__) || defined(E500V2)
|
|
// Intrinsics make gcc generate code for these.
|
|
double SharedRuntime::dabs(double f) {
|
|
return (f <= (double)0.0) ? (double)0.0 - f : f;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(__SOFTFP__) || defined(PPC)
|
|
double SharedRuntime::dsqrt(double f) {
|
|
return sqrt(f);
|
|
}
|
|
#endif
|
|
|
|
JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
|
|
if (g_isnan(x))
|
|
return 0;
|
|
if (x >= (jfloat) max_jint)
|
|
return max_jint;
|
|
if (x <= (jfloat) min_jint)
|
|
return min_jint;
|
|
return (jint) x;
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
|
|
if (g_isnan(x))
|
|
return 0;
|
|
if (x >= (jfloat) max_jlong)
|
|
return max_jlong;
|
|
if (x <= (jfloat) min_jlong)
|
|
return min_jlong;
|
|
return (jlong) x;
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
|
|
if (g_isnan(x))
|
|
return 0;
|
|
if (x >= (jdouble) max_jint)
|
|
return max_jint;
|
|
if (x <= (jdouble) min_jint)
|
|
return min_jint;
|
|
return (jint) x;
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
|
|
if (g_isnan(x))
|
|
return 0;
|
|
if (x >= (jdouble) max_jlong)
|
|
return max_jlong;
|
|
if (x <= (jdouble) min_jlong)
|
|
return min_jlong;
|
|
return (jlong) x;
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
|
|
return (jfloat)x;
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
|
|
return (jfloat)x;
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
|
|
return (jdouble)x;
|
|
JRT_END
|
|
|
|
// Reference implementation at src/java.base/share/classes/java/lang/Float.java:floatToFloat16
|
|
JRT_LEAF(jshort, SharedRuntime::f2hf(jfloat x))
|
|
jint doppel = SharedRuntime::f2i(x);
|
|
jshort sign_bit = (jshort) ((doppel & 0x80000000) >> 16);
|
|
if (g_isnan(x))
|
|
return (jshort)(sign_bit | 0x7c00 | (doppel & 0x007fe000) >> 13 | (doppel & 0x00001ff0) >> 4 | (doppel & 0x0000000f));
|
|
|
|
jfloat abs_f = (x >= 0.0f) ? x : (x * -1.0f);
|
|
|
|
// Overflow threshold is halffloat max value + 1/2 ulp
|
|
if (abs_f >= (65504.0f + 16.0f)) {
|
|
return (jshort)(sign_bit | 0x7c00); // Positive or negative infinity
|
|
}
|
|
|
|
// Smallest magnitude of Halffloat is 0x1.0p-24, half-way or smaller rounds to zero
|
|
if (abs_f <= (pow(2, -24) * 0.5f)) { // Covers float zeros and subnormals.
|
|
return sign_bit; // Positive or negative zero
|
|
}
|
|
|
|
jint exp = 0x7f800000 & doppel;
|
|
|
|
// For binary16 subnormals, beside forcing exp to -15, retain
|
|
// the difference exp_delta = E_min - exp. This is the excess
|
|
// shift value, in addition to 13, to be used in the
|
|
// computations below. Further the (hidden) msb with value 1
|
|
// in f must be involved as well
|
|
jint exp_delta = 0;
|
|
jint msb = 0x00000000;
|
|
if (exp < -14) {
|
|
exp_delta = -14 - exp;
|
|
exp = -15;
|
|
msb = 0x00800000;
|
|
}
|
|
jint f_signif_bits = ((doppel & 0x007fffff) | msb);
|
|
|
|
// Significand bits as if using rounding to zero
|
|
jshort signif_bits = (jshort)(f_signif_bits >> (13 + exp_delta));
|
|
|
|
jint lsb = f_signif_bits & (1 << (13 + exp_delta));
|
|
jint round = f_signif_bits & (1 << (12 + exp_delta));
|
|
jint sticky = f_signif_bits & ((1 << (12 + exp_delta)) - 1);
|
|
|
|
if (round != 0 && ((lsb | sticky) != 0 )) {
|
|
signif_bits++;
|
|
}
|
|
|
|
return (jshort)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) );
|
|
JRT_END
|
|
|
|
// Reference implementation at src/java.base/share/classes/java/lang/Float.java:float16ToFloat
|
|
JRT_LEAF(jfloat, SharedRuntime::hf2f(jshort x))
|
|
// Halffloat format has 1 signbit, 5 exponent bits and
|
|
// 10 significand bits
|
|
jint hf_arg = (jint)x;
|
|
jint hf_sign_bit = 0x8000 & hf_arg;
|
|
jint hf_exp_bits = 0x7c00 & hf_arg;
|
|
jint hf_significand_bits = 0x03ff & hf_arg;
|
|
|
|
jint significand_shift = 13; //difference between float and halffloat precision
|
|
|
|
jfloat sign = (hf_sign_bit != 0) ? -1.0f : 1.0f;
|
|
|
|
// Extract halffloat exponent, remove its bias
|
|
jint hf_exp = (hf_exp_bits >> 10) - 15;
|
|
|
|
if (hf_exp == -15) {
|
|
// For subnormal values, return 2^-24 * significand bits
|
|
return (sign * (pow(2,-24)) * hf_significand_bits);
|
|
}else if (hf_exp == 16) {
|
|
return (hf_significand_bits == 0) ? sign * float_infinity : (SharedRuntime::i2f((hf_sign_bit << 16) | 0x7f800000 |
|
|
(hf_significand_bits << significand_shift)));
|
|
}
|
|
|
|
// Add the bias of float exponent and shift
|
|
int float_exp_bits = (hf_exp + 127) << (24 - 1);
|
|
|
|
// Combine sign, exponent and significand bits
|
|
return SharedRuntime::i2f((hf_sign_bit << 16) | float_exp_bits | (hf_significand_bits << significand_shift));
|
|
JRT_END
|
|
|
|
// Exception handling across interpreter/compiler boundaries
|
|
//
|
|
// exception_handler_for_return_address(...) returns the continuation address.
|
|
// The continuation address is the entry point of the exception handler of the
|
|
// previous frame depending on the return address.
|
|
|
|
address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
|
|
// Note: This is called when we have unwound the frame of the callee that did
|
|
// throw an exception. So far, no check has been performed by the StackWatermarkSet.
|
|
// Notably, the stack is not walkable at this point, and hence the check must
|
|
// be deferred until later. Specifically, any of the handlers returned here in
|
|
// this function, will get dispatched to, and call deferred checks to
|
|
// StackWatermarkSet::after_unwind at a point where the stack is walkable.
|
|
assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
|
|
assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
|
|
|
|
// Reset method handle flag.
|
|
current->set_is_method_handle_return(false);
|
|
|
|
#if INCLUDE_JVMCI
|
|
// JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
|
|
// and other exception handler continuations do not read it
|
|
current->set_exception_pc(NULL);
|
|
#endif // INCLUDE_JVMCI
|
|
|
|
if (Continuation::is_return_barrier_entry(return_address)) {
|
|
return StubRoutines::cont_returnBarrierExc();
|
|
}
|
|
|
|
// The fastest case first
|
|
CodeBlob* blob = CodeCache::find_blob(return_address);
|
|
CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
|
|
if (nm != NULL) {
|
|
// Set flag if return address is a method handle call site.
|
|
current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
|
|
// native nmethods don't have exception handlers
|
|
assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler");
|
|
assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
|
|
if (nm->is_deopt_pc(return_address)) {
|
|
// If we come here because of a stack overflow, the stack may be
|
|
// unguarded. Reguard the stack otherwise if we return to the
|
|
// deopt blob and the stack bang causes a stack overflow we
|
|
// crash.
|
|
StackOverflow* overflow_state = current->stack_overflow_state();
|
|
bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
|
|
if (overflow_state->reserved_stack_activation() != current->stack_base()) {
|
|
overflow_state->set_reserved_stack_activation(current->stack_base());
|
|
}
|
|
assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
|
|
// The deferred StackWatermarkSet::after_unwind check will be performed in
|
|
// Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
|
|
return SharedRuntime::deopt_blob()->unpack_with_exception();
|
|
} else {
|
|
// The deferred StackWatermarkSet::after_unwind check will be performed in
|
|
// * OptoRuntime::handle_exception_C_helper for C2 code
|
|
// * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
|
|
return nm->exception_begin();
|
|
}
|
|
}
|
|
|
|
// Entry code
|
|
if (StubRoutines::returns_to_call_stub(return_address)) {
|
|
// The deferred StackWatermarkSet::after_unwind check will be performed in
|
|
// JavaCallWrapper::~JavaCallWrapper
|
|
return StubRoutines::catch_exception_entry();
|
|
}
|
|
if (blob != NULL && blob->is_upcall_stub()) {
|
|
return ((UpcallStub*)blob)->exception_handler();
|
|
}
|
|
// Interpreted code
|
|
if (Interpreter::contains(return_address)) {
|
|
// The deferred StackWatermarkSet::after_unwind check will be performed in
|
|
// InterpreterRuntime::exception_handler_for_exception
|
|
return Interpreter::rethrow_exception_entry();
|
|
}
|
|
|
|
guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
|
|
guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
|
|
|
|
#ifndef PRODUCT
|
|
{ ResourceMark rm;
|
|
tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
|
|
os::print_location(tty, (intptr_t)return_address);
|
|
tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
|
|
tty->print_cr("b) other problem");
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
|
|
return raw_exception_handler_for_return_address(current, return_address);
|
|
JRT_END
|
|
|
|
|
|
address SharedRuntime::get_poll_stub(address pc) {
|
|
address stub;
|
|
// Look up the code blob
|
|
CodeBlob *cb = CodeCache::find_blob(pc);
|
|
|
|
// Should be an nmethod
|
|
guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
|
|
|
|
// Look up the relocation information
|
|
assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
|
|
"safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc));
|
|
|
|
#ifdef ASSERT
|
|
if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
|
|
tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
|
|
Disassembler::decode(cb);
|
|
fatal("Only polling locations are used for safepoint");
|
|
}
|
|
#endif
|
|
|
|
bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
|
|
bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
|
|
if (at_poll_return) {
|
|
assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
|
|
"polling page return stub not created yet");
|
|
stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
|
|
} else if (has_wide_vectors) {
|
|
assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
|
|
"polling page vectors safepoint stub not created yet");
|
|
stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
|
|
} else {
|
|
assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
|
|
"polling page safepoint stub not created yet");
|
|
stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
|
|
}
|
|
log_debug(safepoint)("... found polling page %s exception at pc = "
|
|
INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
|
|
at_poll_return ? "return" : "loop",
|
|
(intptr_t)pc, (intptr_t)stub);
|
|
return stub;
|
|
}
|
|
|
|
|
|
oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
|
|
assert(caller.is_interpreted_frame(), "");
|
|
int args_size = ArgumentSizeComputer(sig).size() + 1;
|
|
assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
|
|
oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
|
|
assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
|
|
return result;
|
|
}
|
|
|
|
|
|
void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
|
|
if (JvmtiExport::can_post_on_exceptions()) {
|
|
vframeStream vfst(current, true);
|
|
methodHandle method = methodHandle(current, vfst.method());
|
|
address bcp = method()->bcp_from(vfst.bci());
|
|
JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
|
|
}
|
|
|
|
#if INCLUDE_JVMCI
|
|
if (EnableJVMCI && UseJVMCICompiler) {
|
|
vframeStream vfst(current, true);
|
|
methodHandle method = methodHandle(current, vfst.method());
|
|
int bci = vfst.bci();
|
|
MethodData* trap_mdo = method->method_data();
|
|
if (trap_mdo != NULL) {
|
|
// Set exception_seen if the exceptional bytecode is an invoke
|
|
Bytecode_invoke call = Bytecode_invoke_check(method, bci);
|
|
if (call.is_valid()) {
|
|
ResourceMark rm(current);
|
|
ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, NULL);
|
|
if (pdata != NULL && pdata->is_BitData()) {
|
|
BitData* bit_data = (BitData*) pdata;
|
|
bit_data->set_exception_seen();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
|
|
}
|
|
|
|
void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
|
|
Handle h_exception = Exceptions::new_exception(current, name, message);
|
|
throw_and_post_jvmti_exception(current, h_exception);
|
|
}
|
|
|
|
// The interpreter code to call this tracing function is only
|
|
// called/generated when UL is on for redefine, class and has the right level
|
|
// and tags. Since obsolete methods are never compiled, we don't have
|
|
// to modify the compilers to generate calls to this function.
|
|
//
|
|
JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
|
|
JavaThread* thread, Method* method))
|
|
if (method->is_obsolete()) {
|
|
// We are calling an obsolete method, but this is not necessarily
|
|
// an error. Our method could have been redefined just after we
|
|
// fetched the Method* from the constant pool.
|
|
ResourceMark rm;
|
|
log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
|
|
}
|
|
return 0;
|
|
JRT_END
|
|
|
|
// ret_pc points into caller; we are returning caller's exception handler
|
|
// for given exception
|
|
address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
|
|
bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
|
|
assert(cm != NULL, "must exist");
|
|
ResourceMark rm;
|
|
|
|
#if INCLUDE_JVMCI
|
|
if (cm->is_compiled_by_jvmci()) {
|
|
// lookup exception handler for this pc
|
|
int catch_pco = ret_pc - cm->code_begin();
|
|
ExceptionHandlerTable table(cm);
|
|
HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
|
|
if (t != NULL) {
|
|
return cm->code_begin() + t->pco();
|
|
} else {
|
|
return Deoptimization::deoptimize_for_missing_exception_handler(cm);
|
|
}
|
|
}
|
|
#endif // INCLUDE_JVMCI
|
|
|
|
nmethod* nm = cm->as_nmethod();
|
|
ScopeDesc* sd = nm->scope_desc_at(ret_pc);
|
|
// determine handler bci, if any
|
|
EXCEPTION_MARK;
|
|
|
|
int handler_bci = -1;
|
|
int scope_depth = 0;
|
|
if (!force_unwind) {
|
|
int bci = sd->bci();
|
|
bool recursive_exception = false;
|
|
do {
|
|
bool skip_scope_increment = false;
|
|
// exception handler lookup
|
|
Klass* ek = exception->klass();
|
|
methodHandle mh(THREAD, sd->method());
|
|
handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
|
|
if (HAS_PENDING_EXCEPTION) {
|
|
recursive_exception = true;
|
|
// We threw an exception while trying to find the exception handler.
|
|
// Transfer the new exception to the exception handle which will
|
|
// be set into thread local storage, and do another lookup for an
|
|
// exception handler for this exception, this time starting at the
|
|
// BCI of the exception handler which caused the exception to be
|
|
// thrown (bugs 4307310 and 4546590). Set "exception" reference
|
|
// argument to ensure that the correct exception is thrown (4870175).
|
|
recursive_exception_occurred = true;
|
|
exception = Handle(THREAD, PENDING_EXCEPTION);
|
|
CLEAR_PENDING_EXCEPTION;
|
|
if (handler_bci >= 0) {
|
|
bci = handler_bci;
|
|
handler_bci = -1;
|
|
skip_scope_increment = true;
|
|
}
|
|
}
|
|
else {
|
|
recursive_exception = false;
|
|
}
|
|
if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
|
|
sd = sd->sender();
|
|
if (sd != NULL) {
|
|
bci = sd->bci();
|
|
}
|
|
++scope_depth;
|
|
}
|
|
} while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
|
|
}
|
|
|
|
// found handling method => lookup exception handler
|
|
int catch_pco = ret_pc - nm->code_begin();
|
|
|
|
ExceptionHandlerTable table(nm);
|
|
HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
|
|
if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
|
|
// Allow abbreviated catch tables. The idea is to allow a method
|
|
// to materialize its exceptions without committing to the exact
|
|
// routing of exceptions. In particular this is needed for adding
|
|
// a synthetic handler to unlock monitors when inlining
|
|
// synchronized methods since the unlock path isn't represented in
|
|
// the bytecodes.
|
|
t = table.entry_for(catch_pco, -1, 0);
|
|
}
|
|
|
|
#ifdef COMPILER1
|
|
if (t == NULL && nm->is_compiled_by_c1()) {
|
|
assert(nm->unwind_handler_begin() != NULL, "");
|
|
return nm->unwind_handler_begin();
|
|
}
|
|
#endif
|
|
|
|
if (t == NULL) {
|
|
ttyLocker ttyl;
|
|
tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco);
|
|
tty->print_cr(" Exception:");
|
|
exception->print();
|
|
tty->cr();
|
|
tty->print_cr(" Compiled exception table :");
|
|
table.print();
|
|
nm->print();
|
|
nm->print_code();
|
|
guarantee(false, "missing exception handler");
|
|
return NULL;
|
|
}
|
|
|
|
return nm->code_begin() + t->pco();
|
|
}
|
|
|
|
JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
|
|
// These errors occur only at call sites
|
|
throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
|
|
JRT_END
|
|
|
|
JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
|
|
// These errors occur only at call sites
|
|
throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
|
|
JRT_END
|
|
|
|
JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
|
|
throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
|
|
JRT_END
|
|
|
|
JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
|
|
throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), NULL);
|
|
JRT_END
|
|
|
|
JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
|
|
// This entry point is effectively only used for NullPointerExceptions which occur at inline
|
|
// cache sites (when the callee activation is not yet set up) so we are at a call site
|
|
throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), NULL);
|
|
JRT_END
|
|
|
|
JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
|
|
throw_StackOverflowError_common(current, false);
|
|
JRT_END
|
|
|
|
JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
|
|
throw_StackOverflowError_common(current, true);
|
|
JRT_END
|
|
|
|
void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
|
|
// We avoid using the normal exception construction in this case because
|
|
// it performs an upcall to Java, and we're already out of stack space.
|
|
JavaThread* THREAD = current; // For exception macros.
|
|
Klass* k = vmClasses::StackOverflowError_klass();
|
|
oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
|
|
if (delayed) {
|
|
java_lang_Throwable::set_message(exception_oop,
|
|
Universe::delayed_stack_overflow_error_message());
|
|
}
|
|
Handle exception (current, exception_oop);
|
|
if (StackTraceInThrowable) {
|
|
java_lang_Throwable::fill_in_stack_trace(exception);
|
|
}
|
|
// Remove the ExtentLocal cache in case we got a StackOverflowError
|
|
// while we were trying to remove ExtentLocal bindings.
|
|
current->set_extentLocalCache(NULL);
|
|
// Increment counter for hs_err file reporting
|
|
Atomic::inc(&Exceptions::_stack_overflow_errors);
|
|
throw_and_post_jvmti_exception(current, exception);
|
|
}
|
|
|
|
address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
|
|
address pc,
|
|
ImplicitExceptionKind exception_kind)
|
|
{
|
|
address target_pc = NULL;
|
|
|
|
if (Interpreter::contains(pc)) {
|
|
switch (exception_kind) {
|
|
case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
|
|
case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
|
|
case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
|
|
default: ShouldNotReachHere();
|
|
}
|
|
} else {
|
|
switch (exception_kind) {
|
|
case STACK_OVERFLOW: {
|
|
// Stack overflow only occurs upon frame setup; the callee is
|
|
// going to be unwound. Dispatch to a shared runtime stub
|
|
// which will cause the StackOverflowError to be fabricated
|
|
// and processed.
|
|
// Stack overflow should never occur during deoptimization:
|
|
// the compiled method bangs the stack by as much as the
|
|
// interpreter would need in case of a deoptimization. The
|
|
// deoptimization blob and uncommon trap blob bang the stack
|
|
// in a debug VM to verify the correctness of the compiled
|
|
// method stack banging.
|
|
assert(current->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
|
|
Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
|
|
return StubRoutines::throw_StackOverflowError_entry();
|
|
}
|
|
|
|
case IMPLICIT_NULL: {
|
|
if (VtableStubs::contains(pc)) {
|
|
// We haven't yet entered the callee frame. Fabricate an
|
|
// exception and begin dispatching it in the caller. Since
|
|
// the caller was at a call site, it's safe to destroy all
|
|
// caller-saved registers, as these entry points do.
|
|
VtableStub* vt_stub = VtableStubs::stub_containing(pc);
|
|
|
|
// If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
|
|
if (vt_stub == NULL) return NULL;
|
|
|
|
if (vt_stub->is_abstract_method_error(pc)) {
|
|
assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
|
|
Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
|
|
// Instead of throwing the abstract method error here directly, we re-resolve
|
|
// and will throw the AbstractMethodError during resolve. As a result, we'll
|
|
// get a more detailed error message.
|
|
return SharedRuntime::get_handle_wrong_method_stub();
|
|
} else {
|
|
Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
|
|
// Assert that the signal comes from the expected location in stub code.
|
|
assert(vt_stub->is_null_pointer_exception(pc),
|
|
"obtained signal from unexpected location in stub code");
|
|
return StubRoutines::throw_NullPointerException_at_call_entry();
|
|
}
|
|
} else {
|
|
CodeBlob* cb = CodeCache::find_blob(pc);
|
|
|
|
// If code blob is NULL, then return NULL to signal handler to report the SEGV error.
|
|
if (cb == NULL) return NULL;
|
|
|
|
// Exception happened in CodeCache. Must be either:
|
|
// 1. Inline-cache check in C2I handler blob,
|
|
// 2. Inline-cache check in nmethod, or
|
|
// 3. Implicit null exception in nmethod
|
|
|
|
if (!cb->is_compiled()) {
|
|
bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
|
|
if (!is_in_blob) {
|
|
// Allow normal crash reporting to handle this
|
|
return NULL;
|
|
}
|
|
Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
|
|
// There is no handler here, so we will simply unwind.
|
|
return StubRoutines::throw_NullPointerException_at_call_entry();
|
|
}
|
|
|
|
// Otherwise, it's a compiled method. Consult its exception handlers.
|
|
CompiledMethod* cm = (CompiledMethod*)cb;
|
|
if (cm->inlinecache_check_contains(pc)) {
|
|
// exception happened inside inline-cache check code
|
|
// => the nmethod is not yet active (i.e., the frame
|
|
// is not set up yet) => use return address pushed by
|
|
// caller => don't push another return address
|
|
Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
|
|
return StubRoutines::throw_NullPointerException_at_call_entry();
|
|
}
|
|
|
|
if (cm->method()->is_method_handle_intrinsic()) {
|
|
// exception happened inside MH dispatch code, similar to a vtable stub
|
|
Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
|
|
return StubRoutines::throw_NullPointerException_at_call_entry();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
_implicit_null_throws++;
|
|
#endif
|
|
target_pc = cm->continuation_for_implicit_null_exception(pc);
|
|
// If there's an unexpected fault, target_pc might be NULL,
|
|
// in which case we want to fall through into the normal
|
|
// error handling code.
|
|
}
|
|
|
|
break; // fall through
|
|
}
|
|
|
|
|
|
case IMPLICIT_DIVIDE_BY_ZERO: {
|
|
CompiledMethod* cm = CodeCache::find_compiled(pc);
|
|
guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
|
|
#ifndef PRODUCT
|
|
_implicit_div0_throws++;
|
|
#endif
|
|
target_pc = cm->continuation_for_implicit_div0_exception(pc);
|
|
// If there's an unexpected fault, target_pc might be NULL,
|
|
// in which case we want to fall through into the normal
|
|
// error handling code.
|
|
break; // fall through
|
|
}
|
|
|
|
default: ShouldNotReachHere();
|
|
}
|
|
|
|
assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
|
|
|
|
if (exception_kind == IMPLICIT_NULL) {
|
|
#ifndef PRODUCT
|
|
// for AbortVMOnException flag
|
|
Exceptions::debug_check_abort("java.lang.NullPointerException");
|
|
#endif //PRODUCT
|
|
Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
|
|
} else {
|
|
#ifndef PRODUCT
|
|
// for AbortVMOnException flag
|
|
Exceptions::debug_check_abort("java.lang.ArithmeticException");
|
|
#endif //PRODUCT
|
|
Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
|
|
}
|
|
return target_pc;
|
|
}
|
|
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* Throws an java/lang/UnsatisfiedLinkError. The address of this method is
|
|
* installed in the native function entry of all native Java methods before
|
|
* they get linked to their actual native methods.
|
|
*
|
|
* \note
|
|
* This method actually never gets called! The reason is because
|
|
* the interpreter's native entries call NativeLookup::lookup() which
|
|
* throws the exception when the lookup fails. The exception is then
|
|
* caught and forwarded on the return from NativeLookup::lookup() call
|
|
* before the call to the native function. This might change in the future.
|
|
*/
|
|
JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
|
|
{
|
|
// We return a bad value here to make sure that the exception is
|
|
// forwarded before we look at the return value.
|
|
THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
|
|
}
|
|
JNI_END
|
|
|
|
address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
|
|
return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
|
|
}
|
|
|
|
JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
|
|
#if INCLUDE_JVMCI
|
|
if (!obj->klass()->has_finalizer()) {
|
|
return;
|
|
}
|
|
#endif // INCLUDE_JVMCI
|
|
assert(oopDesc::is_oop(obj), "must be a valid oop");
|
|
assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
|
|
InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
|
|
JRT_END
|
|
|
|
jlong SharedRuntime::get_java_tid(JavaThread* thread) {
|
|
assert(thread != NULL, "No thread");
|
|
if (thread == NULL) {
|
|
return 0;
|
|
}
|
|
guarantee(Thread::current() != thread || thread->is_oop_safe(),
|
|
"current cannot touch oops after its GC barrier is detached.");
|
|
oop obj = thread->threadObj();
|
|
return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
|
|
}
|
|
|
|
/**
|
|
* This function ought to be a void function, but cannot be because
|
|
* it gets turned into a tail-call on sparc, which runs into dtrace bug
|
|
* 6254741. Once that is fixed we can remove the dummy return value.
|
|
*/
|
|
int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
|
|
return dtrace_object_alloc(JavaThread::current(), o, o->size());
|
|
}
|
|
|
|
int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) {
|
|
return dtrace_object_alloc(thread, o, o->size());
|
|
}
|
|
|
|
int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) {
|
|
assert(DTraceAllocProbes, "wrong call");
|
|
Klass* klass = o->klass();
|
|
Symbol* name = klass->name();
|
|
HOTSPOT_OBJECT_ALLOC(
|
|
get_java_tid(thread),
|
|
(char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
|
|
return 0;
|
|
}
|
|
|
|
JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
|
|
JavaThread* current, Method* method))
|
|
assert(DTraceMethodProbes, "wrong call");
|
|
Symbol* kname = method->klass_name();
|
|
Symbol* name = method->name();
|
|
Symbol* sig = method->signature();
|
|
HOTSPOT_METHOD_ENTRY(
|
|
get_java_tid(current),
|
|
(char *) kname->bytes(), kname->utf8_length(),
|
|
(char *) name->bytes(), name->utf8_length(),
|
|
(char *) sig->bytes(), sig->utf8_length());
|
|
return 0;
|
|
JRT_END
|
|
|
|
JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
|
|
JavaThread* current, Method* method))
|
|
assert(DTraceMethodProbes, "wrong call");
|
|
Symbol* kname = method->klass_name();
|
|
Symbol* name = method->name();
|
|
Symbol* sig = method->signature();
|
|
HOTSPOT_METHOD_RETURN(
|
|
get_java_tid(current),
|
|
(char *) kname->bytes(), kname->utf8_length(),
|
|
(char *) name->bytes(), name->utf8_length(),
|
|
(char *) sig->bytes(), sig->utf8_length());
|
|
return 0;
|
|
JRT_END
|
|
|
|
|
|
// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
|
|
// for a call current in progress, i.e., arguments has been pushed on stack
|
|
// put callee has not been invoked yet. Used by: resolve virtual/static,
|
|
// vtable updates, etc. Caller frame must be compiled.
|
|
Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
|
|
JavaThread* current = THREAD;
|
|
ResourceMark rm(current);
|
|
|
|
// last java frame on stack (which includes native call frames)
|
|
vframeStream vfst(current, true); // Do not skip and javaCalls
|
|
|
|
return find_callee_info_helper(vfst, bc, callinfo, THREAD);
|
|
}
|
|
|
|
Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
|
|
CompiledMethod* caller = vfst.nm();
|
|
|
|
address pc = vfst.frame_pc();
|
|
{ // Get call instruction under lock because another thread may be busy patching it.
|
|
CompiledICLocker ic_locker(caller);
|
|
return caller->attached_method_before_pc(pc);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
|
|
// for a call current in progress, i.e., arguments has been pushed on stack
|
|
// but callee has not been invoked yet. Caller frame must be compiled.
|
|
Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
|
|
CallInfo& callinfo, TRAPS) {
|
|
Handle receiver;
|
|
Handle nullHandle; // create a handy null handle for exception returns
|
|
JavaThread* current = THREAD;
|
|
|
|
assert(!vfst.at_end(), "Java frame must exist");
|
|
|
|
// Find caller and bci from vframe
|
|
methodHandle caller(current, vfst.method());
|
|
int bci = vfst.bci();
|
|
|
|
if (caller->is_continuation_enter_intrinsic()) {
|
|
bc = Bytecodes::_invokestatic;
|
|
LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH);
|
|
return receiver;
|
|
}
|
|
|
|
Bytecode_invoke bytecode(caller, bci);
|
|
int bytecode_index = bytecode.index();
|
|
bc = bytecode.invoke_code();
|
|
|
|
methodHandle attached_method(current, extract_attached_method(vfst));
|
|
if (attached_method.not_null()) {
|
|
Method* callee = bytecode.static_target(CHECK_NH);
|
|
vmIntrinsics::ID id = callee->intrinsic_id();
|
|
// When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
|
|
// it attaches statically resolved method to the call site.
|
|
if (MethodHandles::is_signature_polymorphic(id) &&
|
|
MethodHandles::is_signature_polymorphic_intrinsic(id)) {
|
|
bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
|
|
|
|
// Adjust invocation mode according to the attached method.
|
|
switch (bc) {
|
|
case Bytecodes::_invokevirtual:
|
|
if (attached_method->method_holder()->is_interface()) {
|
|
bc = Bytecodes::_invokeinterface;
|
|
}
|
|
break;
|
|
case Bytecodes::_invokeinterface:
|
|
if (!attached_method->method_holder()->is_interface()) {
|
|
bc = Bytecodes::_invokevirtual;
|
|
}
|
|
break;
|
|
case Bytecodes::_invokehandle:
|
|
if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
|
|
bc = attached_method->is_static() ? Bytecodes::_invokestatic
|
|
: Bytecodes::_invokevirtual;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(bc != Bytecodes::_illegal, "not initialized");
|
|
|
|
bool has_receiver = bc != Bytecodes::_invokestatic &&
|
|
bc != Bytecodes::_invokedynamic &&
|
|
bc != Bytecodes::_invokehandle;
|
|
|
|
// Find receiver for non-static call
|
|
if (has_receiver) {
|
|
// This register map must be update since we need to find the receiver for
|
|
// compiled frames. The receiver might be in a register.
|
|
RegisterMap reg_map2(current,
|
|
RegisterMap::UpdateMap::include,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame stubFrame = current->last_frame();
|
|
// Caller-frame is a compiled frame
|
|
frame callerFrame = stubFrame.sender(®_map2);
|
|
|
|
if (attached_method.is_null()) {
|
|
Method* callee = bytecode.static_target(CHECK_NH);
|
|
if (callee == NULL) {
|
|
THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
|
|
}
|
|
}
|
|
|
|
// Retrieve from a compiled argument list
|
|
receiver = Handle(current, callerFrame.retrieve_receiver(®_map2));
|
|
assert(oopDesc::is_oop_or_null(receiver()), "");
|
|
|
|
if (receiver.is_null()) {
|
|
THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
|
|
}
|
|
}
|
|
|
|
// Resolve method
|
|
if (attached_method.not_null()) {
|
|
// Parameterized by attached method.
|
|
LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
|
|
} else {
|
|
// Parameterized by bytecode.
|
|
constantPoolHandle constants(current, caller->constants());
|
|
LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
|
|
if (has_receiver) {
|
|
assert(receiver.not_null(), "should have thrown exception");
|
|
Klass* receiver_klass = receiver->klass();
|
|
Klass* rk = NULL;
|
|
if (attached_method.not_null()) {
|
|
// In case there's resolved method attached, use its holder during the check.
|
|
rk = attached_method->method_holder();
|
|
} else {
|
|
// Klass is already loaded.
|
|
constantPoolHandle constants(current, caller->constants());
|
|
rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
|
|
}
|
|
Klass* static_receiver_klass = rk;
|
|
assert(receiver_klass->is_subtype_of(static_receiver_klass),
|
|
"actual receiver must be subclass of static receiver klass");
|
|
if (receiver_klass->is_instance_klass()) {
|
|
if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
|
|
tty->print_cr("ERROR: Klass not yet initialized!!");
|
|
receiver_klass->print();
|
|
}
|
|
assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return receiver;
|
|
}
|
|
|
|
methodHandle SharedRuntime::find_callee_method(TRAPS) {
|
|
JavaThread* current = THREAD;
|
|
ResourceMark rm(current);
|
|
// We need first to check if any Java activations (compiled, interpreted)
|
|
// exist on the stack since last JavaCall. If not, we need
|
|
// to get the target method from the JavaCall wrapper.
|
|
vframeStream vfst(current, true); // Do not skip any javaCalls
|
|
methodHandle callee_method;
|
|
if (vfst.at_end()) {
|
|
// No Java frames were found on stack since we did the JavaCall.
|
|
// Hence the stack can only contain an entry_frame. We need to
|
|
// find the target method from the stub frame.
|
|
RegisterMap reg_map(current,
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame fr = current->last_frame();
|
|
assert(fr.is_runtime_frame(), "must be a runtimeStub");
|
|
fr = fr.sender(®_map);
|
|
assert(fr.is_entry_frame(), "must be");
|
|
// fr is now pointing to the entry frame.
|
|
callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
|
|
} else {
|
|
Bytecodes::Code bc;
|
|
CallInfo callinfo;
|
|
find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
|
|
callee_method = methodHandle(current, callinfo.selected_method());
|
|
}
|
|
assert(callee_method()->is_method(), "must be");
|
|
return callee_method;
|
|
}
|
|
|
|
// Resolves a call.
|
|
methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
|
|
methodHandle callee_method;
|
|
callee_method = resolve_sub_helper(is_virtual, is_optimized, THREAD);
|
|
if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
|
|
int retry_count = 0;
|
|
while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
|
|
callee_method->method_holder() != vmClasses::Object_klass()) {
|
|
// If has a pending exception then there is no need to re-try to
|
|
// resolve this method.
|
|
// If the method has been redefined, we need to try again.
|
|
// Hack: we have no way to update the vtables of arrays, so don't
|
|
// require that java.lang.Object has been updated.
|
|
|
|
// It is very unlikely that method is redefined more than 100 times
|
|
// in the middle of resolve. If it is looping here more than 100 times
|
|
// means then there could be a bug here.
|
|
guarantee((retry_count++ < 100),
|
|
"Could not resolve to latest version of redefined method");
|
|
// method is redefined in the middle of resolve so re-try.
|
|
callee_method = resolve_sub_helper(is_virtual, is_optimized, THREAD);
|
|
}
|
|
}
|
|
return callee_method;
|
|
}
|
|
|
|
// This fails if resolution required refilling of IC stubs
|
|
bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
|
|
CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
|
|
Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
|
|
StaticCallInfo static_call_info;
|
|
CompiledICInfo virtual_call_info;
|
|
|
|
// Make sure the callee nmethod does not get deoptimized and removed before
|
|
// we are done patching the code.
|
|
CompiledMethod* callee = callee_method->code();
|
|
|
|
if (callee != NULL) {
|
|
assert(callee->is_compiled(), "must be nmethod for patching");
|
|
}
|
|
|
|
if (callee != NULL && !callee->is_in_use()) {
|
|
// Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
|
|
callee = NULL;
|
|
}
|
|
#ifdef ASSERT
|
|
address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
|
|
#endif
|
|
|
|
bool is_nmethod = caller_nm->is_nmethod();
|
|
|
|
if (is_virtual) {
|
|
assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
|
|
bool static_bound = call_info.resolved_method()->can_be_statically_bound();
|
|
Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
|
|
CompiledIC::compute_monomorphic_entry(callee_method, klass,
|
|
is_optimized, static_bound, is_nmethod, virtual_call_info,
|
|
CHECK_false);
|
|
} else {
|
|
// static call
|
|
CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
|
|
}
|
|
|
|
// grab lock, check for deoptimization and potentially patch caller
|
|
{
|
|
CompiledICLocker ml(caller_nm);
|
|
|
|
// Lock blocks for safepoint during which both nmethods can change state.
|
|
|
|
// Now that we are ready to patch if the Method* was redefined then
|
|
// don't update call site and let the caller retry.
|
|
// Don't update call site if callee nmethod was unloaded or deoptimized.
|
|
// Don't update call site if callee nmethod was replaced by an other nmethod
|
|
// which may happen when multiply alive nmethod (tiered compilation)
|
|
// will be supported.
|
|
if (!callee_method->is_old() &&
|
|
(callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
|
|
NoSafepointVerifier nsv;
|
|
#ifdef ASSERT
|
|
// We must not try to patch to jump to an already unloaded method.
|
|
if (dest_entry_point != 0) {
|
|
CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
|
|
assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
|
|
"should not call unloaded nmethod");
|
|
}
|
|
#endif
|
|
if (is_virtual) {
|
|
CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
|
|
if (inline_cache->is_clean()) {
|
|
if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
if (VM_Version::supports_fast_class_init_checks() &&
|
|
invoke_code == Bytecodes::_invokestatic &&
|
|
callee_method->needs_clinit_barrier() &&
|
|
callee != NULL && callee->is_compiled_by_jvmci()) {
|
|
return true; // skip patching for JVMCI
|
|
}
|
|
CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
|
|
if (is_nmethod && caller_nm->method()->is_continuation_enter_intrinsic()) {
|
|
ssc->compute_entry_for_continuation_entry(callee_method, static_call_info);
|
|
}
|
|
if (ssc->is_clean()) ssc->set(static_call_info);
|
|
}
|
|
}
|
|
} // unlock CompiledICLocker
|
|
return true;
|
|
}
|
|
|
|
// Resolves a call. The compilers generate code for calls that go here
|
|
// and are patched with the real destination of the call.
|
|
methodHandle SharedRuntime::resolve_sub_helper(bool is_virtual, bool is_optimized, TRAPS) {
|
|
JavaThread* current = THREAD;
|
|
ResourceMark rm(current);
|
|
RegisterMap cbl_map(current,
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame caller_frame = current->last_frame().sender(&cbl_map);
|
|
|
|
CodeBlob* caller_cb = caller_frame.cb();
|
|
guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
|
|
CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
|
|
|
|
// determine call info & receiver
|
|
// note: a) receiver is NULL for static calls
|
|
// b) an exception is thrown if receiver is NULL for non-static calls
|
|
CallInfo call_info;
|
|
Bytecodes::Code invoke_code = Bytecodes::_illegal;
|
|
Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
|
|
methodHandle callee_method(current, call_info.selected_method());
|
|
|
|
assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
|
|
(!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
|
|
(!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
|
|
(!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
|
|
( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
|
|
|
|
assert(!caller_nm->is_unloading(), "It should not be unloading");
|
|
|
|
#ifndef PRODUCT
|
|
// tracing/debugging/statistics
|
|
int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
|
|
(is_virtual) ? (&_resolve_virtual_ctr) :
|
|
(&_resolve_static_ctr);
|
|
Atomic::inc(addr);
|
|
|
|
if (TraceCallFixup) {
|
|
ResourceMark rm(current);
|
|
tty->print("resolving %s%s (%s) call to",
|
|
(is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
|
|
Bytecodes::name(invoke_code));
|
|
callee_method->print_short_name(tty);
|
|
tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
|
|
p2i(caller_frame.pc()), p2i(callee_method->code()));
|
|
}
|
|
#endif
|
|
|
|
if (invoke_code == Bytecodes::_invokestatic) {
|
|
assert(callee_method->method_holder()->is_initialized() ||
|
|
callee_method->method_holder()->is_init_thread(current),
|
|
"invalid class initialization state for invoke_static");
|
|
if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
|
|
// In order to keep class initialization check, do not patch call
|
|
// site for static call when the class is not fully initialized.
|
|
// Proper check is enforced by call site re-resolution on every invocation.
|
|
//
|
|
// When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
|
|
// explicit class initialization check is put in nmethod entry (VEP).
|
|
assert(callee_method->method_holder()->is_linked(), "must be");
|
|
return callee_method;
|
|
}
|
|
}
|
|
|
|
// JSR 292 key invariant:
|
|
// If the resolved method is a MethodHandle invoke target, the call
|
|
// site must be a MethodHandle call site, because the lambda form might tail-call
|
|
// leaving the stack in a state unknown to either caller or callee
|
|
// TODO detune for now but we might need it again
|
|
// assert(!callee_method->is_compiled_lambda_form() ||
|
|
// caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
|
|
|
|
// Compute entry points. This might require generation of C2I converter
|
|
// frames, so we cannot be holding any locks here. Furthermore, the
|
|
// computation of the entry points is independent of patching the call. We
|
|
// always return the entry-point, but we only patch the stub if the call has
|
|
// not been deoptimized. Return values: For a virtual call this is an
|
|
// (cached_oop, destination address) pair. For a static call/optimized
|
|
// virtual this is just a destination address.
|
|
|
|
// Patching IC caches may fail if we run out if transition stubs.
|
|
// We refill the ic stubs then and try again.
|
|
for (;;) {
|
|
ICRefillVerifier ic_refill_verifier;
|
|
bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
|
|
is_virtual, is_optimized, receiver,
|
|
call_info, invoke_code, CHECK_(methodHandle()));
|
|
if (successful) {
|
|
return callee_method;
|
|
} else {
|
|
InlineCacheBuffer::refill_ic_stubs();
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// Inline caches exist only in compiled code
|
|
JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
|
|
#ifdef ASSERT
|
|
RegisterMap reg_map(current,
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame stub_frame = current->last_frame();
|
|
assert(stub_frame.is_runtime_frame(), "sanity check");
|
|
frame caller_frame = stub_frame.sender(®_map);
|
|
assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame");
|
|
#endif /* ASSERT */
|
|
|
|
methodHandle callee_method;
|
|
JRT_BLOCK
|
|
callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
|
|
// Return Method* through TLS
|
|
current->set_vm_result_2(callee_method());
|
|
JRT_BLOCK_END
|
|
// return compiled code entry point after potential safepoints
|
|
assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
|
|
return callee_method->verified_code_entry();
|
|
JRT_END
|
|
|
|
|
|
// Handle call site that has been made non-entrant
|
|
JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
|
|
// 6243940 We might end up in here if the callee is deoptimized
|
|
// as we race to call it. We don't want to take a safepoint if
|
|
// the caller was interpreted because the caller frame will look
|
|
// interpreted to the stack walkers and arguments are now
|
|
// "compiled" so it is much better to make this transition
|
|
// invisible to the stack walking code. The i2c path will
|
|
// place the callee method in the callee_target. It is stashed
|
|
// there because if we try and find the callee by normal means a
|
|
// safepoint is possible and have trouble gc'ing the compiled args.
|
|
RegisterMap reg_map(current,
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame stub_frame = current->last_frame();
|
|
assert(stub_frame.is_runtime_frame(), "sanity check");
|
|
frame caller_frame = stub_frame.sender(®_map);
|
|
|
|
if (caller_frame.is_interpreted_frame() ||
|
|
caller_frame.is_entry_frame() ||
|
|
caller_frame.is_upcall_stub_frame()) {
|
|
Method* callee = current->callee_target();
|
|
guarantee(callee != NULL && callee->is_method(), "bad handshake");
|
|
current->set_vm_result_2(callee);
|
|
current->set_callee_target(NULL);
|
|
if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
|
|
// Bypass class initialization checks in c2i when caller is in native.
|
|
// JNI calls to static methods don't have class initialization checks.
|
|
// Fast class initialization checks are present in c2i adapters and call into
|
|
// SharedRuntime::handle_wrong_method() on the slow path.
|
|
//
|
|
// JVM upcalls may land here as well, but there's a proper check present in
|
|
// LinkResolver::resolve_static_call (called from JavaCalls::call_static),
|
|
// so bypassing it in c2i adapter is benign.
|
|
return callee->get_c2i_no_clinit_check_entry();
|
|
} else {
|
|
return callee->get_c2i_entry();
|
|
}
|
|
}
|
|
|
|
// Must be compiled to compiled path which is safe to stackwalk
|
|
methodHandle callee_method;
|
|
JRT_BLOCK
|
|
// Force resolving of caller (if we called from compiled frame)
|
|
callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
|
|
current->set_vm_result_2(callee_method());
|
|
JRT_BLOCK_END
|
|
// return compiled code entry point after potential safepoints
|
|
assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
|
|
return callee_method->verified_code_entry();
|
|
JRT_END
|
|
|
|
// Handle abstract method call
|
|
JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
|
|
// Verbose error message for AbstractMethodError.
|
|
// Get the called method from the invoke bytecode.
|
|
vframeStream vfst(current, true);
|
|
assert(!vfst.at_end(), "Java frame must exist");
|
|
methodHandle caller(current, vfst.method());
|
|
Bytecode_invoke invoke(caller, vfst.bci());
|
|
DEBUG_ONLY( invoke.verify(); )
|
|
|
|
// Find the compiled caller frame.
|
|
RegisterMap reg_map(current,
|
|
RegisterMap::UpdateMap::include,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame stubFrame = current->last_frame();
|
|
assert(stubFrame.is_runtime_frame(), "must be");
|
|
frame callerFrame = stubFrame.sender(®_map);
|
|
assert(callerFrame.is_compiled_frame(), "must be");
|
|
|
|
// Install exception and return forward entry.
|
|
address res = StubRoutines::throw_AbstractMethodError_entry();
|
|
JRT_BLOCK
|
|
methodHandle callee(current, invoke.static_target(current));
|
|
if (!callee.is_null()) {
|
|
oop recv = callerFrame.retrieve_receiver(®_map);
|
|
Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
|
|
res = StubRoutines::forward_exception_entry();
|
|
LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
|
|
}
|
|
JRT_BLOCK_END
|
|
return res;
|
|
JRT_END
|
|
|
|
|
|
// resolve a static call and patch code
|
|
JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
|
|
methodHandle callee_method;
|
|
bool enter_special = false;
|
|
JRT_BLOCK
|
|
callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
|
|
current->set_vm_result_2(callee_method());
|
|
|
|
if (current->is_interp_only_mode()) {
|
|
RegisterMap reg_map(current,
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame stub_frame = current->last_frame();
|
|
assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
|
|
frame caller = stub_frame.sender(®_map);
|
|
enter_special = caller.cb() != NULL && caller.cb()->is_compiled()
|
|
&& caller.cb()->as_compiled_method()->method()->is_continuation_enter_intrinsic();
|
|
}
|
|
JRT_BLOCK_END
|
|
|
|
if (current->is_interp_only_mode() && enter_special) {
|
|
// enterSpecial is compiled and calls this method to resolve the call to Continuation::enter
|
|
// but in interp_only_mode we need to go to the interpreted entry
|
|
// The c2i won't patch in this mode -- see fixup_callers_callsite
|
|
//
|
|
// This should probably be done in all cases, not just enterSpecial (see JDK-8218403),
|
|
// but that's part of a larger fix, and the situation is worse for enterSpecial, as it has no
|
|
// interpreted version.
|
|
return callee_method->get_c2i_entry();
|
|
}
|
|
|
|
// return compiled code entry point after potential safepoints
|
|
assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
|
|
return callee_method->verified_code_entry();
|
|
JRT_END
|
|
|
|
|
|
// resolve virtual call and update inline cache to monomorphic
|
|
JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
|
|
methodHandle callee_method;
|
|
JRT_BLOCK
|
|
callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
|
|
current->set_vm_result_2(callee_method());
|
|
JRT_BLOCK_END
|
|
// return compiled code entry point after potential safepoints
|
|
assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
|
|
return callee_method->verified_code_entry();
|
|
JRT_END
|
|
|
|
|
|
// Resolve a virtual call that can be statically bound (e.g., always
|
|
// monomorphic, so it has no inline cache). Patch code to resolved target.
|
|
JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
|
|
methodHandle callee_method;
|
|
JRT_BLOCK
|
|
callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
|
|
current->set_vm_result_2(callee_method());
|
|
JRT_BLOCK_END
|
|
// return compiled code entry point after potential safepoints
|
|
assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
|
|
return callee_method->verified_code_entry();
|
|
JRT_END
|
|
|
|
// The handle_ic_miss_helper_internal function returns false if it failed due
|
|
// to either running out of vtable stubs or ic stubs due to IC transitions
|
|
// to transitional states. The needs_ic_stub_refill value will be set if
|
|
// the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
|
|
// refills the IC stubs and tries again.
|
|
bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
|
|
const frame& caller_frame, methodHandle callee_method,
|
|
Bytecodes::Code bc, CallInfo& call_info,
|
|
bool& needs_ic_stub_refill, TRAPS) {
|
|
CompiledICLocker ml(caller_nm);
|
|
CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
|
|
bool should_be_mono = false;
|
|
if (inline_cache->is_optimized()) {
|
|
if (TraceCallFixup) {
|
|
ResourceMark rm(THREAD);
|
|
tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
|
|
callee_method->print_short_name(tty);
|
|
tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
|
|
}
|
|
should_be_mono = true;
|
|
} else if (inline_cache->is_icholder_call()) {
|
|
CompiledICHolder* ic_oop = inline_cache->cached_icholder();
|
|
if (ic_oop != NULL) {
|
|
if (!ic_oop->is_loader_alive()) {
|
|
// Deferred IC cleaning due to concurrent class unloading
|
|
if (!inline_cache->set_to_clean()) {
|
|
needs_ic_stub_refill = true;
|
|
return false;
|
|
}
|
|
} else if (receiver()->klass() == ic_oop->holder_klass()) {
|
|
// This isn't a real miss. We must have seen that compiled code
|
|
// is now available and we want the call site converted to a
|
|
// monomorphic compiled call site.
|
|
// We can't assert for callee_method->code() != NULL because it
|
|
// could have been deoptimized in the meantime
|
|
if (TraceCallFixup) {
|
|
ResourceMark rm(THREAD);
|
|
tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
|
|
callee_method->print_short_name(tty);
|
|
tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
|
|
}
|
|
should_be_mono = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (should_be_mono) {
|
|
// We have a path that was monomorphic but was going interpreted
|
|
// and now we have (or had) a compiled entry. We correct the IC
|
|
// by using a new icBuffer.
|
|
CompiledICInfo info;
|
|
Klass* receiver_klass = receiver()->klass();
|
|
inline_cache->compute_monomorphic_entry(callee_method,
|
|
receiver_klass,
|
|
inline_cache->is_optimized(),
|
|
false, caller_nm->is_nmethod(),
|
|
info, CHECK_false);
|
|
if (!inline_cache->set_to_monomorphic(info)) {
|
|
needs_ic_stub_refill = true;
|
|
return false;
|
|
}
|
|
} else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
|
|
// Potential change to megamorphic
|
|
|
|
bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
|
|
if (needs_ic_stub_refill) {
|
|
return false;
|
|
}
|
|
if (!successful) {
|
|
if (!inline_cache->set_to_clean()) {
|
|
needs_ic_stub_refill = true;
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
// Either clean or megamorphic
|
|
}
|
|
return true;
|
|
}
|
|
|
|
methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
|
|
JavaThread* current = THREAD;
|
|
ResourceMark rm(current);
|
|
CallInfo call_info;
|
|
Bytecodes::Code bc;
|
|
|
|
// receiver is NULL for static calls. An exception is thrown for NULL
|
|
// receivers for non-static calls
|
|
Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
|
|
// Compiler1 can produce virtual call sites that can actually be statically bound
|
|
// If we fell thru to below we would think that the site was going megamorphic
|
|
// when in fact the site can never miss. Worse because we'd think it was megamorphic
|
|
// we'd try and do a vtable dispatch however methods that can be statically bound
|
|
// don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
|
|
// reresolution of the call site (as if we did a handle_wrong_method and not an
|
|
// plain ic_miss) and the site will be converted to an optimized virtual call site
|
|
// never to miss again. I don't believe C2 will produce code like this but if it
|
|
// did this would still be the correct thing to do for it too, hence no ifdef.
|
|
//
|
|
if (call_info.resolved_method()->can_be_statically_bound()) {
|
|
methodHandle callee_method = SharedRuntime::reresolve_call_site(CHECK_(methodHandle()));
|
|
if (TraceCallFixup) {
|
|
RegisterMap reg_map(current,
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame caller_frame = current->last_frame().sender(®_map);
|
|
ResourceMark rm(current);
|
|
tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
|
|
callee_method->print_short_name(tty);
|
|
tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
|
|
tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
|
|
}
|
|
return callee_method;
|
|
}
|
|
|
|
methodHandle callee_method(current, call_info.selected_method());
|
|
|
|
#ifndef PRODUCT
|
|
Atomic::inc(&_ic_miss_ctr);
|
|
|
|
// Statistics & Tracing
|
|
if (TraceCallFixup) {
|
|
ResourceMark rm(current);
|
|
tty->print("IC miss (%s) call to", Bytecodes::name(bc));
|
|
callee_method->print_short_name(tty);
|
|
tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
|
|
}
|
|
|
|
if (ICMissHistogram) {
|
|
MutexLocker m(VMStatistic_lock);
|
|
RegisterMap reg_map(current,
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame f = current->last_frame().real_sender(®_map);// skip runtime stub
|
|
// produce statistics under the lock
|
|
trace_ic_miss(f.pc());
|
|
}
|
|
#endif
|
|
|
|
// install an event collector so that when a vtable stub is created the
|
|
// profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
|
|
// event can't be posted when the stub is created as locks are held
|
|
// - instead the event will be deferred until the event collector goes
|
|
// out of scope.
|
|
JvmtiDynamicCodeEventCollector event_collector;
|
|
|
|
// Update inline cache to megamorphic. Skip update if we are called from interpreted.
|
|
// Transitioning IC caches may require transition stubs. If we run out
|
|
// of transition stubs, we have to drop locks and perform a safepoint
|
|
// that refills them.
|
|
RegisterMap reg_map(current,
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame caller_frame = current->last_frame().sender(®_map);
|
|
CodeBlob* cb = caller_frame.cb();
|
|
CompiledMethod* caller_nm = cb->as_compiled_method();
|
|
|
|
for (;;) {
|
|
ICRefillVerifier ic_refill_verifier;
|
|
bool needs_ic_stub_refill = false;
|
|
bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
|
|
bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
|
|
if (successful || !needs_ic_stub_refill) {
|
|
return callee_method;
|
|
} else {
|
|
InlineCacheBuffer::refill_ic_stubs();
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
|
|
CompiledICLocker ml(caller_nm);
|
|
if (is_static_call) {
|
|
CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
|
|
if (!ssc->is_clean()) {
|
|
return ssc->set_to_clean();
|
|
}
|
|
} else {
|
|
// compiled, dispatched call (which used to call an interpreted method)
|
|
CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
|
|
if (!inline_cache->is_clean()) {
|
|
return inline_cache->set_to_clean();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Resets a call-site in compiled code so it will get resolved again.
|
|
// This routines handles both virtual call sites, optimized virtual call
|
|
// sites, and static call sites. Typically used to change a call sites
|
|
// destination from compiled to interpreted.
|
|
//
|
|
methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
|
|
JavaThread* current = THREAD;
|
|
ResourceMark rm(current);
|
|
RegisterMap reg_map(current,
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame stub_frame = current->last_frame();
|
|
assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
|
|
frame caller = stub_frame.sender(®_map);
|
|
|
|
// Do nothing if the frame isn't a live compiled frame.
|
|
// nmethod could be deoptimized by the time we get here
|
|
// so no update to the caller is needed.
|
|
|
|
if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
|
|
|
|
address pc = caller.pc();
|
|
|
|
// Check for static or virtual call
|
|
bool is_static_call = false;
|
|
CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
|
|
|
|
// Default call_addr is the location of the "basic" call.
|
|
// Determine the address of the call we a reresolving. With
|
|
// Inline Caches we will always find a recognizable call.
|
|
// With Inline Caches disabled we may or may not find a
|
|
// recognizable call. We will always find a call for static
|
|
// calls and for optimized virtual calls. For vanilla virtual
|
|
// calls it depends on the state of the UseInlineCaches switch.
|
|
//
|
|
// With Inline Caches disabled we can get here for a virtual call
|
|
// for two reasons:
|
|
// 1 - calling an abstract method. The vtable for abstract methods
|
|
// will run us thru handle_wrong_method and we will eventually
|
|
// end up in the interpreter to throw the ame.
|
|
// 2 - a racing deoptimization. We could be doing a vanilla vtable
|
|
// call and between the time we fetch the entry address and
|
|
// we jump to it the target gets deoptimized. Similar to 1
|
|
// we will wind up in the interprter (thru a c2i with c2).
|
|
//
|
|
address call_addr = NULL;
|
|
{
|
|
// Get call instruction under lock because another thread may be
|
|
// busy patching it.
|
|
CompiledICLocker ml(caller_nm);
|
|
// Location of call instruction
|
|
call_addr = caller_nm->call_instruction_address(pc);
|
|
}
|
|
|
|
// Check relocations for the matching call to 1) avoid false positives,
|
|
// and 2) determine the type.
|
|
if (call_addr != NULL) {
|
|
// On x86 the logic for finding a call instruction is blindly checking for a call opcode 5
|
|
// bytes back in the instruction stream so we must also check for reloc info.
|
|
RelocIterator iter(caller_nm, call_addr, call_addr+1);
|
|
bool ret = iter.next(); // Get item
|
|
if (ret) {
|
|
bool is_static_call = false;
|
|
switch (iter.type()) {
|
|
case relocInfo::static_call_type:
|
|
is_static_call = true;
|
|
|
|
case relocInfo::virtual_call_type:
|
|
case relocInfo::opt_virtual_call_type:
|
|
// Cleaning the inline cache will force a new resolve. This is more robust
|
|
// than directly setting it to the new destination, since resolving of calls
|
|
// is always done through the same code path. (experience shows that it
|
|
// leads to very hard to track down bugs, if an inline cache gets updated
|
|
// to a wrong method). It should not be performance critical, since the
|
|
// resolve is only done once.
|
|
guarantee(iter.addr() == call_addr, "must find call");
|
|
for (;;) {
|
|
ICRefillVerifier ic_refill_verifier;
|
|
if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
|
|
InlineCacheBuffer::refill_ic_stubs();
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
|
|
|
|
|
|
#ifndef PRODUCT
|
|
Atomic::inc(&_wrong_method_ctr);
|
|
|
|
if (TraceCallFixup) {
|
|
ResourceMark rm(current);
|
|
tty->print("handle_wrong_method reresolving call to");
|
|
callee_method->print_short_name(tty);
|
|
tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
|
|
}
|
|
#endif
|
|
|
|
return callee_method;
|
|
}
|
|
|
|
address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
|
|
// The faulting unsafe accesses should be changed to throw the error
|
|
// synchronously instead. Meanwhile the faulting instruction will be
|
|
// skipped over (effectively turning it into a no-op) and an
|
|
// asynchronous exception will be raised which the thread will
|
|
// handle at a later point. If the instruction is a load it will
|
|
// return garbage.
|
|
|
|
// Request an async exception.
|
|
thread->set_pending_unsafe_access_error();
|
|
|
|
// Return address of next instruction to execute.
|
|
return next_pc;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
|
|
const BasicType* sig_bt,
|
|
const VMRegPair* regs) {
|
|
ResourceMark rm;
|
|
const int total_args_passed = method->size_of_parameters();
|
|
const VMRegPair* regs_with_member_name = regs;
|
|
VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
|
|
|
|
const int member_arg_pos = total_args_passed - 1;
|
|
assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
|
|
assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
|
|
|
|
int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
|
|
|
|
for (int i = 0; i < member_arg_pos; i++) {
|
|
VMReg a = regs_with_member_name[i].first();
|
|
VMReg b = regs_without_member_name[i].first();
|
|
assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
|
|
}
|
|
assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
|
|
}
|
|
#endif
|
|
|
|
bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
|
|
if (destination != entry_point) {
|
|
CodeBlob* callee = CodeCache::find_blob(destination);
|
|
// callee == cb seems weird. It means calling interpreter thru stub.
|
|
if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
|
|
// static call or optimized virtual
|
|
if (TraceCallFixup) {
|
|
tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
|
|
moop->print_short_name(tty);
|
|
tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
|
|
}
|
|
return true;
|
|
} else {
|
|
if (TraceCallFixup) {
|
|
tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
|
|
moop->print_short_name(tty);
|
|
tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
|
|
}
|
|
// assert is too strong could also be resolve destinations.
|
|
// assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
|
|
}
|
|
} else {
|
|
if (TraceCallFixup) {
|
|
tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
|
|
moop->print_short_name(tty);
|
|
tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// We are calling the interpreter via a c2i. Normally this would mean that
|
|
// we were called by a compiled method. However we could have lost a race
|
|
// where we went int -> i2c -> c2i and so the caller could in fact be
|
|
// interpreted. If the caller is compiled we attempt to patch the caller
|
|
// so he no longer calls into the interpreter.
|
|
JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
|
|
Method* moop(method);
|
|
|
|
AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw"));
|
|
|
|
address entry_point = moop->from_compiled_entry_no_trampoline();
|
|
|
|
// It's possible that deoptimization can occur at a call site which hasn't
|
|
// been resolved yet, in which case this function will be called from
|
|
// an nmethod that has been patched for deopt and we can ignore the
|
|
// request for a fixup.
|
|
// Also it is possible that we lost a race in that from_compiled_entry
|
|
// is now back to the i2c in that case we don't need to patch and if
|
|
// we did we'd leap into space because the callsite needs to use
|
|
// "to interpreter" stub in order to load up the Method*. Don't
|
|
// ask me how I know this...
|
|
|
|
CodeBlob* cb = CodeCache::find_blob(caller_pc);
|
|
if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
|
|
return;
|
|
}
|
|
|
|
// The check above makes sure this is a nmethod.
|
|
CompiledMethod* nm = cb->as_compiled_method_or_null();
|
|
assert(nm, "must be");
|
|
|
|
// Get the return PC for the passed caller PC.
|
|
address return_pc = caller_pc + frame::pc_return_offset;
|
|
|
|
assert(!JavaThread::current()->is_interp_only_mode() || !nm->method()->is_continuation_enter_intrinsic()
|
|
|| ContinuationEntry::is_interpreted_call(return_pc), "interp_only_mode but not in enterSpecial interpreted entry");
|
|
|
|
// There is a benign race here. We could be attempting to patch to a compiled
|
|
// entry point at the same time the callee is being deoptimized. If that is
|
|
// the case then entry_point may in fact point to a c2i and we'd patch the
|
|
// call site with the same old data. clear_code will set code() to NULL
|
|
// at the end of it. If we happen to see that NULL then we can skip trying
|
|
// to patch. If we hit the window where the callee has a c2i in the
|
|
// from_compiled_entry and the NULL isn't present yet then we lose the race
|
|
// and patch the code with the same old data. Asi es la vida.
|
|
|
|
if (moop->code() == NULL) return;
|
|
|
|
if (nm->is_in_use()) {
|
|
// Expect to find a native call there (unless it was no-inline cache vtable dispatch)
|
|
CompiledICLocker ic_locker(nm);
|
|
if (NativeCall::is_call_before(return_pc)) {
|
|
ResourceMark mark;
|
|
NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
|
|
//
|
|
// bug 6281185. We might get here after resolving a call site to a vanilla
|
|
// virtual call. Because the resolvee uses the verified entry it may then
|
|
// see compiled code and attempt to patch the site by calling us. This would
|
|
// then incorrectly convert the call site to optimized and its downhill from
|
|
// there. If you're lucky you'll get the assert in the bugid, if not you've
|
|
// just made a call site that could be megamorphic into a monomorphic site
|
|
// for the rest of its life! Just another racing bug in the life of
|
|
// fixup_callers_callsite ...
|
|
//
|
|
RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
|
|
iter.next();
|
|
assert(iter.has_current(), "must have a reloc at java call site");
|
|
relocInfo::relocType typ = iter.reloc()->type();
|
|
if (typ != relocInfo::static_call_type &&
|
|
typ != relocInfo::opt_virtual_call_type &&
|
|
typ != relocInfo::static_stub_type) {
|
|
return;
|
|
}
|
|
if (nm->method()->is_continuation_enter_intrinsic()) {
|
|
assert(ContinuationEntry::is_interpreted_call(call->instruction_address()) == JavaThread::current()->is_interp_only_mode(),
|
|
"mode: %d", JavaThread::current()->is_interp_only_mode());
|
|
if (ContinuationEntry::is_interpreted_call(call->instruction_address())) {
|
|
return;
|
|
}
|
|
}
|
|
address destination = call->destination();
|
|
if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
|
|
call->set_destination_mt_safe(entry_point);
|
|
}
|
|
}
|
|
}
|
|
JRT_END
|
|
|
|
|
|
// same as JVM_Arraycopy, but called directly from compiled code
|
|
JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
|
|
oopDesc* dest, jint dest_pos,
|
|
jint length,
|
|
JavaThread* current)) {
|
|
#ifndef PRODUCT
|
|
_slow_array_copy_ctr++;
|
|
#endif
|
|
// Check if we have null pointers
|
|
if (src == NULL || dest == NULL) {
|
|
THROW(vmSymbols::java_lang_NullPointerException());
|
|
}
|
|
// Do the copy. The casts to arrayOop are necessary to the copy_array API,
|
|
// even though the copy_array API also performs dynamic checks to ensure
|
|
// that src and dest are truly arrays (and are conformable).
|
|
// The copy_array mechanism is awkward and could be removed, but
|
|
// the compilers don't call this function except as a last resort,
|
|
// so it probably doesn't matter.
|
|
src->klass()->copy_array((arrayOopDesc*)src, src_pos,
|
|
(arrayOopDesc*)dest, dest_pos,
|
|
length, current);
|
|
}
|
|
JRT_END
|
|
|
|
// The caller of generate_class_cast_message() (or one of its callers)
|
|
// must use a ResourceMark in order to correctly free the result.
|
|
char* SharedRuntime::generate_class_cast_message(
|
|
JavaThread* thread, Klass* caster_klass) {
|
|
|
|
// Get target class name from the checkcast instruction
|
|
vframeStream vfst(thread, true);
|
|
assert(!vfst.at_end(), "Java frame must exist");
|
|
Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
|
|
constantPoolHandle cpool(thread, vfst.method()->constants());
|
|
Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
|
|
Symbol* target_klass_name = NULL;
|
|
if (target_klass == NULL) {
|
|
// This klass should be resolved, but just in case, get the name in the klass slot.
|
|
target_klass_name = cpool->klass_name_at(cc.index());
|
|
}
|
|
return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
|
|
}
|
|
|
|
|
|
// The caller of generate_class_cast_message() (or one of its callers)
|
|
// must use a ResourceMark in order to correctly free the result.
|
|
char* SharedRuntime::generate_class_cast_message(
|
|
Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
|
|
const char* caster_name = caster_klass->external_name();
|
|
|
|
assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
|
|
const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
|
|
target_klass->external_name();
|
|
|
|
size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
|
|
|
|
const char* caster_klass_description = "";
|
|
const char* target_klass_description = "";
|
|
const char* klass_separator = "";
|
|
if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
|
|
caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
|
|
} else {
|
|
caster_klass_description = caster_klass->class_in_module_of_loader();
|
|
target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
|
|
klass_separator = (target_klass != NULL) ? "; " : "";
|
|
}
|
|
|
|
// add 3 for parenthesis and preceding space
|
|
msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
|
|
|
|
char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
|
|
if (message == NULL) {
|
|
// Shouldn't happen, but don't cause even more problems if it does
|
|
message = const_cast<char*>(caster_klass->external_name());
|
|
} else {
|
|
jio_snprintf(message,
|
|
msglen,
|
|
"class %s cannot be cast to class %s (%s%s%s)",
|
|
caster_name,
|
|
target_name,
|
|
caster_klass_description,
|
|
klass_separator,
|
|
target_klass_description
|
|
);
|
|
}
|
|
return message;
|
|
}
|
|
|
|
JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
|
|
(void) JavaThread::current()->stack_overflow_state()->reguard_stack();
|
|
JRT_END
|
|
|
|
void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
|
|
if (!SafepointSynchronize::is_synchronizing()) {
|
|
// Only try quick_enter() if we're not trying to reach a safepoint
|
|
// so that the calling thread reaches the safepoint more quickly.
|
|
if (ObjectSynchronizer::quick_enter(obj, current, lock)) {
|
|
return;
|
|
}
|
|
}
|
|
// NO_ASYNC required because an async exception on the state transition destructor
|
|
// would leave you with the lock held and it would never be released.
|
|
// The normal monitorenter NullPointerException is thrown without acquiring a lock
|
|
// and the model is that an exception implies the method failed.
|
|
JRT_BLOCK_NO_ASYNC
|
|
Handle h_obj(THREAD, obj);
|
|
ObjectSynchronizer::enter(h_obj, lock, current);
|
|
assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
|
|
JRT_BLOCK_END
|
|
}
|
|
|
|
// Handles the uncommon case in locking, i.e., contention or an inflated lock.
|
|
JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
|
|
SharedRuntime::monitor_enter_helper(obj, lock, current);
|
|
JRT_END
|
|
|
|
void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
|
|
assert(JavaThread::current() == current, "invariant");
|
|
// Exit must be non-blocking, and therefore no exceptions can be thrown.
|
|
ExceptionMark em(current);
|
|
// The object could become unlocked through a JNI call, which we have no other checks for.
|
|
// Give a fatal message if CheckJNICalls. Otherwise we ignore it.
|
|
if (obj->is_unlocked()) {
|
|
if (CheckJNICalls) {
|
|
fatal("Object has been unlocked by JNI");
|
|
}
|
|
return;
|
|
}
|
|
ObjectSynchronizer::exit(obj, lock, current);
|
|
}
|
|
|
|
// Handles the uncommon cases of monitor unlocking in compiled code
|
|
JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
|
|
SharedRuntime::monitor_exit_helper(obj, lock, current);
|
|
JRT_END
|
|
|
|
#ifndef PRODUCT
|
|
|
|
void SharedRuntime::print_statistics() {
|
|
ttyLocker ttyl;
|
|
if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
|
|
|
|
SharedRuntime::print_ic_miss_histogram();
|
|
|
|
// Dump the JRT_ENTRY counters
|
|
if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
|
|
if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
|
|
if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
|
|
if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
|
|
if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
|
|
if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
|
|
|
|
tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
|
|
tty->print_cr("%5d wrong method", _wrong_method_ctr);
|
|
tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
|
|
tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
|
|
tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
|
|
|
|
if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
|
|
if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
|
|
if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
|
|
if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
|
|
if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
|
|
if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
|
|
if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
|
|
if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
|
|
if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
|
|
if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
|
|
if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
|
|
if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
|
|
if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
|
|
if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
|
|
if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
|
|
if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
|
|
|
|
AdapterHandlerLibrary::print_statistics();
|
|
|
|
if (xtty != NULL) xtty->tail("statistics");
|
|
}
|
|
|
|
inline double percent(int x, int y) {
|
|
return 100.0 * x / MAX2(y, 1);
|
|
}
|
|
|
|
inline double percent(int64_t x, int64_t y) {
|
|
return 100.0 * x / MAX2(y, (int64_t)1);
|
|
}
|
|
|
|
class MethodArityHistogram {
|
|
public:
|
|
enum { MAX_ARITY = 256 };
|
|
private:
|
|
static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
|
|
static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words
|
|
static uint64_t _total_compiled_calls;
|
|
static uint64_t _max_compiled_calls_per_method;
|
|
static int _max_arity; // max. arity seen
|
|
static int _max_size; // max. arg size seen
|
|
|
|
static void add_method_to_histogram(nmethod* nm) {
|
|
Method* method = (nm == NULL) ? NULL : nm->method();
|
|
if (method != NULL) {
|
|
ArgumentCount args(method->signature());
|
|
int arity = args.size() + (method->is_static() ? 0 : 1);
|
|
int argsize = method->size_of_parameters();
|
|
arity = MIN2(arity, MAX_ARITY-1);
|
|
argsize = MIN2(argsize, MAX_ARITY-1);
|
|
uint64_t count = (uint64_t)method->compiled_invocation_count();
|
|
_max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
|
|
_total_compiled_calls += count;
|
|
_arity_histogram[arity] += count;
|
|
_size_histogram[argsize] += count;
|
|
_max_arity = MAX2(_max_arity, arity);
|
|
_max_size = MAX2(_max_size, argsize);
|
|
}
|
|
}
|
|
|
|
void print_histogram_helper(int n, uint64_t* histo, const char* name) {
|
|
const int N = MIN2(9, n);
|
|
double sum = 0;
|
|
double weighted_sum = 0;
|
|
for (int i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
|
|
if (sum >= 1.0) { // prevent divide by zero or divide overflow
|
|
double rest = sum;
|
|
double percent = sum / 100;
|
|
for (int i = 0; i <= N; i++) {
|
|
rest -= histo[i];
|
|
tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], histo[i] / percent);
|
|
}
|
|
tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
|
|
tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
|
|
tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
|
|
tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
|
|
} else {
|
|
tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
|
|
}
|
|
}
|
|
|
|
void print_histogram() {
|
|
tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
|
|
print_histogram_helper(_max_arity, _arity_histogram, "arity");
|
|
tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
|
|
print_histogram_helper(_max_size, _size_histogram, "size");
|
|
tty->cr();
|
|
}
|
|
|
|
public:
|
|
MethodArityHistogram() {
|
|
// Take the Compile_lock to protect against changes in the CodeBlob structures
|
|
MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
|
|
// Take the CodeCache_lock to protect against changes in the CodeHeap structure
|
|
MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
|
|
_max_arity = _max_size = 0;
|
|
_total_compiled_calls = 0;
|
|
_max_compiled_calls_per_method = 0;
|
|
for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
|
|
CodeCache::nmethods_do(add_method_to_histogram);
|
|
print_histogram();
|
|
}
|
|
};
|
|
|
|
uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
|
|
uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
|
|
uint64_t MethodArityHistogram::_total_compiled_calls;
|
|
uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
|
|
int MethodArityHistogram::_max_arity;
|
|
int MethodArityHistogram::_max_size;
|
|
|
|
void SharedRuntime::print_call_statistics(uint64_t comp_total) {
|
|
tty->print_cr("Calls from compiled code:");
|
|
int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
|
|
int64_t mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
|
|
int64_t mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total);
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
|
|
tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
|
|
tty->cr();
|
|
tty->print_cr("Note 1: counter updates are not MT-safe.");
|
|
tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
|
|
tty->print_cr(" %% in nested categories are relative to their category");
|
|
tty->print_cr(" (and thus add up to more than 100%% with inlining)");
|
|
tty->cr();
|
|
|
|
MethodArityHistogram h;
|
|
}
|
|
#endif
|
|
|
|
#ifndef PRODUCT
|
|
static int _lookups; // number of calls to lookup
|
|
static int _equals; // number of buckets checked with matching hash
|
|
static int _hits; // number of successful lookups
|
|
static int _compact; // number of equals calls with compact signature
|
|
#endif
|
|
|
|
// A simple wrapper class around the calling convention information
|
|
// that allows sharing of adapters for the same calling convention.
|
|
class AdapterFingerPrint : public CHeapObj<mtCode> {
|
|
private:
|
|
enum {
|
|
_basic_type_bits = 4,
|
|
_basic_type_mask = right_n_bits(_basic_type_bits),
|
|
_basic_types_per_int = BitsPerInt / _basic_type_bits,
|
|
_compact_int_count = 3
|
|
};
|
|
// TO DO: Consider integrating this with a more global scheme for compressing signatures.
|
|
// For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
|
|
|
|
union {
|
|
int _compact[_compact_int_count];
|
|
int* _fingerprint;
|
|
} _value;
|
|
int _length; // A negative length indicates the fingerprint is in the compact form,
|
|
// Otherwise _value._fingerprint is the array.
|
|
|
|
// Remap BasicTypes that are handled equivalently by the adapters.
|
|
// These are correct for the current system but someday it might be
|
|
// necessary to make this mapping platform dependent.
|
|
static int adapter_encoding(BasicType in) {
|
|
switch (in) {
|
|
case T_BOOLEAN:
|
|
case T_BYTE:
|
|
case T_SHORT:
|
|
case T_CHAR:
|
|
// There are all promoted to T_INT in the calling convention
|
|
return T_INT;
|
|
|
|
case T_OBJECT:
|
|
case T_ARRAY:
|
|
// In other words, we assume that any register good enough for
|
|
// an int or long is good enough for a managed pointer.
|
|
#ifdef _LP64
|
|
return T_LONG;
|
|
#else
|
|
return T_INT;
|
|
#endif
|
|
|
|
case T_INT:
|
|
case T_LONG:
|
|
case T_FLOAT:
|
|
case T_DOUBLE:
|
|
case T_VOID:
|
|
return in;
|
|
|
|
default:
|
|
ShouldNotReachHere();
|
|
return T_CONFLICT;
|
|
}
|
|
}
|
|
|
|
public:
|
|
AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
|
|
// The fingerprint is based on the BasicType signature encoded
|
|
// into an array of ints with eight entries per int.
|
|
int* ptr;
|
|
int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
|
|
if (len <= _compact_int_count) {
|
|
assert(_compact_int_count == 3, "else change next line");
|
|
_value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
|
|
// Storing the signature encoded as signed chars hits about 98%
|
|
// of the time.
|
|
_length = -len;
|
|
ptr = _value._compact;
|
|
} else {
|
|
_length = len;
|
|
_value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
|
|
ptr = _value._fingerprint;
|
|
}
|
|
|
|
// Now pack the BasicTypes with 8 per int
|
|
int sig_index = 0;
|
|
for (int index = 0; index < len; index++) {
|
|
int value = 0;
|
|
for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
|
|
int bt = adapter_encoding(sig_bt[sig_index++]);
|
|
assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
|
|
value = (value << _basic_type_bits) | bt;
|
|
}
|
|
ptr[index] = value;
|
|
}
|
|
}
|
|
|
|
~AdapterFingerPrint() {
|
|
if (_length > 0) {
|
|
FREE_C_HEAP_ARRAY(int, _value._fingerprint);
|
|
}
|
|
}
|
|
|
|
int value(int index) {
|
|
if (_length < 0) {
|
|
return _value._compact[index];
|
|
}
|
|
return _value._fingerprint[index];
|
|
}
|
|
int length() {
|
|
if (_length < 0) return -_length;
|
|
return _length;
|
|
}
|
|
|
|
bool is_compact() {
|
|
return _length <= 0;
|
|
}
|
|
|
|
unsigned int compute_hash() {
|
|
int hash = 0;
|
|
for (int i = 0; i < length(); i++) {
|
|
int v = value(i);
|
|
hash = (hash << 8) ^ v ^ (hash >> 5);
|
|
}
|
|
return (unsigned int)hash;
|
|
}
|
|
|
|
const char* as_string() {
|
|
stringStream st;
|
|
st.print("0x");
|
|
for (int i = 0; i < length(); i++) {
|
|
st.print("%x", value(i));
|
|
}
|
|
return st.as_string();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// Reconstitutes the basic type arguments from the fingerprint,
|
|
// producing strings like LIJDF
|
|
const char* as_basic_args_string() {
|
|
stringStream st;
|
|
bool long_prev = false;
|
|
for (int i = 0; i < length(); i++) {
|
|
unsigned val = (unsigned)value(i);
|
|
// args are packed so that first/lower arguments are in the highest
|
|
// bits of each int value, so iterate from highest to the lowest
|
|
for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
|
|
unsigned v = (val >> j) & _basic_type_mask;
|
|
if (v == 0) {
|
|
assert(i == length() - 1, "Only expect zeroes in the last word");
|
|
continue;
|
|
}
|
|
if (long_prev) {
|
|
long_prev = false;
|
|
if (v == T_VOID) {
|
|
st.print("J");
|
|
} else {
|
|
st.print("L");
|
|
}
|
|
}
|
|
switch (v) {
|
|
case T_INT: st.print("I"); break;
|
|
case T_LONG: long_prev = true; break;
|
|
case T_FLOAT: st.print("F"); break;
|
|
case T_DOUBLE: st.print("D"); break;
|
|
case T_VOID: break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
}
|
|
if (long_prev) {
|
|
st.print("L");
|
|
}
|
|
return st.as_string();
|
|
}
|
|
#endif // !product
|
|
|
|
bool equals(AdapterFingerPrint* other) {
|
|
if (other->_length != _length) {
|
|
return false;
|
|
}
|
|
if (_length < 0) {
|
|
assert(_compact_int_count == 3, "else change next line");
|
|
return _value._compact[0] == other->_value._compact[0] &&
|
|
_value._compact[1] == other->_value._compact[1] &&
|
|
_value._compact[2] == other->_value._compact[2];
|
|
} else {
|
|
for (int i = 0; i < _length; i++) {
|
|
if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) {
|
|
NOT_PRODUCT(_equals++);
|
|
return fp1->equals(fp2);
|
|
}
|
|
|
|
static unsigned int compute_hash(AdapterFingerPrint* const& fp) {
|
|
return fp->compute_hash();
|
|
}
|
|
};
|
|
|
|
// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
|
|
ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293,
|
|
ResourceObj::C_HEAP, mtCode,
|
|
AdapterFingerPrint::compute_hash,
|
|
AdapterFingerPrint::equals> _adapter_handler_table;
|
|
|
|
// Find a entry with the same fingerprint if it exists
|
|
static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
|
|
NOT_PRODUCT(_lookups++);
|
|
assert_lock_strong(AdapterHandlerLibrary_lock);
|
|
AdapterFingerPrint fp(total_args_passed, sig_bt);
|
|
AdapterHandlerEntry** entry = _adapter_handler_table.get(&fp);
|
|
if (entry != nullptr) {
|
|
#ifndef PRODUCT
|
|
if (fp.is_compact()) _compact++;
|
|
_hits++;
|
|
#endif
|
|
return *entry;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
static void print_table_statistics() {
|
|
auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
|
|
return sizeof(*key) + sizeof(*a);
|
|
};
|
|
TableStatistics ts = _adapter_handler_table.statistics_calculate(size);
|
|
ts.print(tty, "AdapterHandlerTable");
|
|
tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)",
|
|
_adapter_handler_table.table_size(), _adapter_handler_table.number_of_entries());
|
|
tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d",
|
|
_lookups, _equals, _hits, _compact);
|
|
}
|
|
#endif
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Implementation of AdapterHandlerLibrary
|
|
AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
|
|
AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = NULL;
|
|
AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = NULL;
|
|
AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = NULL;
|
|
AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = NULL;
|
|
AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = NULL;
|
|
const int AdapterHandlerLibrary_size = 16*K;
|
|
BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
|
|
|
|
BufferBlob* AdapterHandlerLibrary::buffer_blob() {
|
|
return _buffer;
|
|
}
|
|
|
|
extern "C" void unexpected_adapter_call() {
|
|
ShouldNotCallThis();
|
|
}
|
|
|
|
static void post_adapter_creation(const AdapterBlob* new_adapter,
|
|
const AdapterHandlerEntry* entry) {
|
|
if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) {
|
|
char blob_id[256];
|
|
jio_snprintf(blob_id,
|
|
sizeof(blob_id),
|
|
"%s(%s)",
|
|
new_adapter->name(),
|
|
entry->fingerprint()->as_string());
|
|
if (Forte::is_enabled()) {
|
|
Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
|
|
}
|
|
|
|
if (JvmtiExport::should_post_dynamic_code_generated()) {
|
|
JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
|
|
}
|
|
}
|
|
}
|
|
|
|
void AdapterHandlerLibrary::initialize() {
|
|
ResourceMark rm;
|
|
AdapterBlob* no_arg_blob = NULL;
|
|
AdapterBlob* int_arg_blob = NULL;
|
|
AdapterBlob* obj_arg_blob = NULL;
|
|
AdapterBlob* obj_int_arg_blob = NULL;
|
|
AdapterBlob* obj_obj_arg_blob = NULL;
|
|
{
|
|
MutexLocker mu(AdapterHandlerLibrary_lock);
|
|
|
|
// Create a special handler for abstract methods. Abstract methods
|
|
// are never compiled so an i2c entry is somewhat meaningless, but
|
|
// throw AbstractMethodError just in case.
|
|
// Pass wrong_method_abstract for the c2i transitions to return
|
|
// AbstractMethodError for invalid invocations.
|
|
address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
|
|
_abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
|
|
StubRoutines::throw_AbstractMethodError_entry(),
|
|
wrong_method_abstract, wrong_method_abstract);
|
|
|
|
_buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
|
|
_no_arg_handler = create_adapter(no_arg_blob, 0, NULL, true);
|
|
|
|
BasicType obj_args[] = { T_OBJECT };
|
|
_obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true);
|
|
|
|
BasicType int_args[] = { T_INT };
|
|
_int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true);
|
|
|
|
BasicType obj_int_args[] = { T_OBJECT, T_INT };
|
|
_obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true);
|
|
|
|
BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
|
|
_obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true);
|
|
|
|
assert(no_arg_blob != NULL &&
|
|
obj_arg_blob != NULL &&
|
|
int_arg_blob != NULL &&
|
|
obj_int_arg_blob != NULL &&
|
|
obj_obj_arg_blob != NULL, "Initial adapters must be properly created");
|
|
}
|
|
|
|
// Outside of the lock
|
|
post_adapter_creation(no_arg_blob, _no_arg_handler);
|
|
post_adapter_creation(obj_arg_blob, _obj_arg_handler);
|
|
post_adapter_creation(int_arg_blob, _int_arg_handler);
|
|
post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
|
|
post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
|
|
}
|
|
|
|
AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
|
|
address i2c_entry,
|
|
address c2i_entry,
|
|
address c2i_unverified_entry,
|
|
address c2i_no_clinit_check_entry) {
|
|
// Insert an entry into the table
|
|
return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry,
|
|
c2i_no_clinit_check_entry);
|
|
}
|
|
|
|
AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
|
|
if (method->is_abstract()) {
|
|
return _abstract_method_handler;
|
|
}
|
|
int total_args_passed = method->size_of_parameters(); // All args on stack
|
|
if (total_args_passed == 0) {
|
|
return _no_arg_handler;
|
|
} else if (total_args_passed == 1) {
|
|
if (!method->is_static()) {
|
|
return _obj_arg_handler;
|
|
}
|
|
switch (method->signature()->char_at(1)) {
|
|
case JVM_SIGNATURE_CLASS:
|
|
case JVM_SIGNATURE_ARRAY:
|
|
return _obj_arg_handler;
|
|
case JVM_SIGNATURE_INT:
|
|
case JVM_SIGNATURE_BOOLEAN:
|
|
case JVM_SIGNATURE_CHAR:
|
|
case JVM_SIGNATURE_BYTE:
|
|
case JVM_SIGNATURE_SHORT:
|
|
return _int_arg_handler;
|
|
}
|
|
} else if (total_args_passed == 2 &&
|
|
!method->is_static()) {
|
|
switch (method->signature()->char_at(1)) {
|
|
case JVM_SIGNATURE_CLASS:
|
|
case JVM_SIGNATURE_ARRAY:
|
|
return _obj_obj_arg_handler;
|
|
case JVM_SIGNATURE_INT:
|
|
case JVM_SIGNATURE_BOOLEAN:
|
|
case JVM_SIGNATURE_CHAR:
|
|
case JVM_SIGNATURE_BYTE:
|
|
case JVM_SIGNATURE_SHORT:
|
|
return _obj_int_arg_handler;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
class AdapterSignatureIterator : public SignatureIterator {
|
|
private:
|
|
BasicType stack_sig_bt[16];
|
|
BasicType* sig_bt;
|
|
int index;
|
|
|
|
public:
|
|
AdapterSignatureIterator(Symbol* signature,
|
|
fingerprint_t fingerprint,
|
|
bool is_static,
|
|
int total_args_passed) :
|
|
SignatureIterator(signature, fingerprint),
|
|
index(0)
|
|
{
|
|
sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
|
|
if (!is_static) { // Pass in receiver first
|
|
sig_bt[index++] = T_OBJECT;
|
|
}
|
|
do_parameters_on(this);
|
|
}
|
|
|
|
BasicType* basic_types() {
|
|
return sig_bt;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
int slots() {
|
|
return index;
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
|
|
friend class SignatureIterator; // so do_parameters_on can call do_type
|
|
void do_type(BasicType type) {
|
|
sig_bt[index++] = type;
|
|
if (type == T_LONG || type == T_DOUBLE) {
|
|
sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
|
|
}
|
|
}
|
|
};
|
|
|
|
AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
|
|
// Use customized signature handler. Need to lock around updates to
|
|
// the _adapter_handler_table (it is not safe for concurrent readers
|
|
// and a single writer: this could be fixed if it becomes a
|
|
// problem).
|
|
|
|
// Fast-path for trivial adapters
|
|
AdapterHandlerEntry* entry = get_simple_adapter(method);
|
|
if (entry != NULL) {
|
|
return entry;
|
|
}
|
|
|
|
ResourceMark rm;
|
|
AdapterBlob* new_adapter = NULL;
|
|
|
|
// Fill in the signature array, for the calling-convention call.
|
|
int total_args_passed = method->size_of_parameters(); // All args on stack
|
|
|
|
AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
|
|
method->is_static(), total_args_passed);
|
|
assert(si.slots() == total_args_passed, "");
|
|
BasicType* sig_bt = si.basic_types();
|
|
{
|
|
MutexLocker mu(AdapterHandlerLibrary_lock);
|
|
|
|
// Lookup method signature's fingerprint
|
|
entry = lookup(total_args_passed, sig_bt);
|
|
|
|
if (entry != NULL) {
|
|
#ifdef ASSERT
|
|
if (VerifyAdapterSharing) {
|
|
AdapterBlob* comparison_blob = NULL;
|
|
AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false);
|
|
assert(comparison_blob == NULL, "no blob should be created when creating an adapter for comparison");
|
|
assert(comparison_entry->compare_code(entry), "code must match");
|
|
// Release the one just created and return the original
|
|
delete comparison_entry;
|
|
}
|
|
#endif
|
|
return entry;
|
|
}
|
|
|
|
entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true);
|
|
}
|
|
|
|
// Outside of the lock
|
|
if (new_adapter != NULL) {
|
|
post_adapter_creation(new_adapter, entry);
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter,
|
|
int total_args_passed,
|
|
BasicType* sig_bt,
|
|
bool allocate_code_blob) {
|
|
|
|
// StubRoutines::code2() is initialized after this function can be called. As a result,
|
|
// VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
|
|
// prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
|
|
// stub that ensure that an I2C stub is called from an interpreter frame.
|
|
bool contains_all_checks = StubRoutines::code2() != NULL;
|
|
|
|
VMRegPair stack_regs[16];
|
|
VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
|
|
|
|
// Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
|
|
int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
|
|
BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
|
|
CodeBuffer buffer(buf);
|
|
short buffer_locs[20];
|
|
buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
|
|
sizeof(buffer_locs)/sizeof(relocInfo));
|
|
|
|
// Make a C heap allocated version of the fingerprint to store in the adapter
|
|
AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
|
|
MacroAssembler _masm(&buffer);
|
|
AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
|
|
total_args_passed,
|
|
comp_args_on_stack,
|
|
sig_bt,
|
|
regs,
|
|
fingerprint);
|
|
|
|
#ifdef ASSERT
|
|
if (VerifyAdapterSharing) {
|
|
entry->save_code(buf->code_begin(), buffer.insts_size());
|
|
if (!allocate_code_blob) {
|
|
return entry;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
new_adapter = AdapterBlob::create(&buffer);
|
|
NOT_PRODUCT(int insts_size = buffer.insts_size());
|
|
if (new_adapter == NULL) {
|
|
// CodeCache is full, disable compilation
|
|
// Ought to log this but compile log is only per compile thread
|
|
// and we're some non descript Java thread.
|
|
return NULL;
|
|
}
|
|
entry->relocate(new_adapter->content_begin());
|
|
#ifndef PRODUCT
|
|
// debugging support
|
|
if (PrintAdapterHandlers || PrintStubCode) {
|
|
ttyLocker ttyl;
|
|
entry->print_adapter_on(tty);
|
|
tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
|
|
_adapter_handler_table.number_of_entries(), fingerprint->as_basic_args_string(),
|
|
fingerprint->as_string(), insts_size);
|
|
tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry()));
|
|
if (Verbose || PrintStubCode) {
|
|
address first_pc = entry->base_address();
|
|
if (first_pc != NULL) {
|
|
Disassembler::decode(first_pc, first_pc + insts_size, tty
|
|
NOT_PRODUCT(COMMA &new_adapter->asm_remarks()));
|
|
tty->cr();
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
|
|
// The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
|
|
if (contains_all_checks || !VerifyAdapterCalls) {
|
|
assert_lock_strong(AdapterHandlerLibrary_lock);
|
|
_adapter_handler_table.put(fingerprint, entry);
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
address AdapterHandlerEntry::base_address() {
|
|
address base = _i2c_entry;
|
|
if (base == NULL) base = _c2i_entry;
|
|
assert(base <= _c2i_entry || _c2i_entry == NULL, "");
|
|
assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
|
|
assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
|
|
return base;
|
|
}
|
|
|
|
void AdapterHandlerEntry::relocate(address new_base) {
|
|
address old_base = base_address();
|
|
assert(old_base != NULL, "");
|
|
ptrdiff_t delta = new_base - old_base;
|
|
if (_i2c_entry != NULL)
|
|
_i2c_entry += delta;
|
|
if (_c2i_entry != NULL)
|
|
_c2i_entry += delta;
|
|
if (_c2i_unverified_entry != NULL)
|
|
_c2i_unverified_entry += delta;
|
|
if (_c2i_no_clinit_check_entry != NULL)
|
|
_c2i_no_clinit_check_entry += delta;
|
|
assert(base_address() == new_base, "");
|
|
}
|
|
|
|
|
|
AdapterHandlerEntry::~AdapterHandlerEntry() {
|
|
delete _fingerprint;
|
|
#ifdef ASSERT
|
|
FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifdef ASSERT
|
|
// Capture the code before relocation so that it can be compared
|
|
// against other versions. If the code is captured after relocation
|
|
// then relative instructions won't be equivalent.
|
|
void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
|
|
_saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
|
|
_saved_code_length = length;
|
|
memcpy(_saved_code, buffer, length);
|
|
}
|
|
|
|
|
|
bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
|
|
assert(_saved_code != NULL && other->_saved_code != NULL, "code not saved");
|
|
|
|
if (other->_saved_code_length != _saved_code_length) {
|
|
return false;
|
|
}
|
|
|
|
return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* Create a native wrapper for this native method. The wrapper converts the
|
|
* Java-compiled calling convention to the native convention, handles
|
|
* arguments, and transitions to native. On return from the native we transition
|
|
* back to java blocking if a safepoint is in progress.
|
|
*/
|
|
void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
|
|
ResourceMark rm;
|
|
nmethod* nm = NULL;
|
|
|
|
// Check if memory should be freed before allocation
|
|
CodeCache::gc_on_allocation();
|
|
|
|
assert(method->is_native(), "must be native");
|
|
assert(method->is_special_native_intrinsic() ||
|
|
method->has_native_function(), "must have something valid to call!");
|
|
|
|
{
|
|
// Perform the work while holding the lock, but perform any printing outside the lock
|
|
MutexLocker mu(AdapterHandlerLibrary_lock);
|
|
// See if somebody beat us to it
|
|
if (method->code() != NULL) {
|
|
return;
|
|
}
|
|
|
|
const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
|
|
assert(compile_id > 0, "Must generate native wrapper");
|
|
|
|
|
|
ResourceMark rm;
|
|
BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
|
|
if (buf != NULL) {
|
|
CodeBuffer buffer(buf);
|
|
|
|
if (method->is_continuation_enter_intrinsic()) {
|
|
buffer.initialize_stubs_size(128);
|
|
}
|
|
|
|
struct { double data[20]; } locs_buf;
|
|
struct { double data[20]; } stubs_locs_buf;
|
|
buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
|
|
#if defined(AARCH64)
|
|
// On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
|
|
// in the constant pool to ensure ordering between the barrier and oops
|
|
// accesses. For native_wrappers we need a constant.
|
|
buffer.initialize_consts_size(8);
|
|
#endif
|
|
buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo));
|
|
MacroAssembler _masm(&buffer);
|
|
|
|
// Fill in the signature array, for the calling-convention call.
|
|
const int total_args_passed = method->size_of_parameters();
|
|
|
|
VMRegPair stack_regs[16];
|
|
VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
|
|
|
|
AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
|
|
method->is_static(), total_args_passed);
|
|
BasicType* sig_bt = si.basic_types();
|
|
assert(si.slots() == total_args_passed, "");
|
|
BasicType ret_type = si.return_type();
|
|
|
|
// Now get the compiled-Java arguments layout.
|
|
int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
|
|
|
|
// Generate the compiled-to-native wrapper code
|
|
nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
|
|
|
|
if (nm != NULL) {
|
|
{
|
|
MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
|
|
if (nm->make_in_use()) {
|
|
method->set_code(method, nm);
|
|
}
|
|
}
|
|
|
|
DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
|
|
if (directive->PrintAssemblyOption) {
|
|
nm->print_code();
|
|
}
|
|
DirectivesStack::release(directive);
|
|
}
|
|
}
|
|
} // Unlock AdapterHandlerLibrary_lock
|
|
|
|
|
|
// Install the generated code.
|
|
if (nm != NULL) {
|
|
const char *msg = method->is_static() ? "(static)" : "";
|
|
CompileTask::print_ul(nm, msg);
|
|
if (PrintCompilation) {
|
|
ttyLocker ttyl;
|
|
CompileTask::print(tty, nm, msg);
|
|
}
|
|
nm->post_compiled_method_load_event();
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Java-Java calling convention
|
|
// (what you use when Java calls Java)
|
|
|
|
//------------------------------name_for_receiver----------------------------------
|
|
// For a given signature, return the VMReg for parameter 0.
|
|
VMReg SharedRuntime::name_for_receiver() {
|
|
VMRegPair regs;
|
|
BasicType sig_bt = T_OBJECT;
|
|
(void) java_calling_convention(&sig_bt, ®s, 1);
|
|
// Return argument 0 register. In the LP64 build pointers
|
|
// take 2 registers, but the VM wants only the 'main' name.
|
|
return regs.first();
|
|
}
|
|
|
|
VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
|
|
// This method is returning a data structure allocating as a
|
|
// ResourceObject, so do not put any ResourceMarks in here.
|
|
|
|
BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
|
|
VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
|
|
int cnt = 0;
|
|
if (has_receiver) {
|
|
sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
|
|
}
|
|
|
|
for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
|
|
BasicType type = ss.type();
|
|
sig_bt[cnt++] = type;
|
|
if (is_double_word_type(type))
|
|
sig_bt[cnt++] = T_VOID;
|
|
}
|
|
|
|
if (has_appendix) {
|
|
sig_bt[cnt++] = T_OBJECT;
|
|
}
|
|
|
|
assert(cnt < 256, "grow table size");
|
|
|
|
int comp_args_on_stack;
|
|
comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
|
|
|
|
// the calling convention doesn't count out_preserve_stack_slots so
|
|
// we must add that in to get "true" stack offsets.
|
|
|
|
if (comp_args_on_stack) {
|
|
for (int i = 0; i < cnt; i++) {
|
|
VMReg reg1 = regs[i].first();
|
|
if (reg1->is_stack()) {
|
|
// Yuck
|
|
reg1 = reg1->bias(out_preserve_stack_slots());
|
|
}
|
|
VMReg reg2 = regs[i].second();
|
|
if (reg2->is_stack()) {
|
|
// Yuck
|
|
reg2 = reg2->bias(out_preserve_stack_slots());
|
|
}
|
|
regs[i].set_pair(reg2, reg1);
|
|
}
|
|
}
|
|
|
|
// results
|
|
*arg_size = cnt;
|
|
return regs;
|
|
}
|
|
|
|
// OSR Migration Code
|
|
//
|
|
// This code is used convert interpreter frames into compiled frames. It is
|
|
// called from very start of a compiled OSR nmethod. A temp array is
|
|
// allocated to hold the interesting bits of the interpreter frame. All
|
|
// active locks are inflated to allow them to move. The displaced headers and
|
|
// active interpreter locals are copied into the temp buffer. Then we return
|
|
// back to the compiled code. The compiled code then pops the current
|
|
// interpreter frame off the stack and pushes a new compiled frame. Then it
|
|
// copies the interpreter locals and displaced headers where it wants.
|
|
// Finally it calls back to free the temp buffer.
|
|
//
|
|
// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
|
|
|
|
JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
|
|
// During OSR migration, we unwind the interpreted frame and replace it with a compiled
|
|
// frame. The stack watermark code below ensures that the interpreted frame is processed
|
|
// before it gets unwound. This is helpful as the size of the compiled frame could be
|
|
// larger than the interpreted frame, which could result in the new frame not being
|
|
// processed correctly.
|
|
StackWatermarkSet::before_unwind(current);
|
|
|
|
//
|
|
// This code is dependent on the memory layout of the interpreter local
|
|
// array and the monitors. On all of our platforms the layout is identical
|
|
// so this code is shared. If some platform lays the their arrays out
|
|
// differently then this code could move to platform specific code or
|
|
// the code here could be modified to copy items one at a time using
|
|
// frame accessor methods and be platform independent.
|
|
|
|
frame fr = current->last_frame();
|
|
assert(fr.is_interpreted_frame(), "");
|
|
assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
|
|
|
|
// Figure out how many monitors are active.
|
|
int active_monitor_count = 0;
|
|
for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
|
|
kptr < fr.interpreter_frame_monitor_begin();
|
|
kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
|
|
if (kptr->obj() != NULL) active_monitor_count++;
|
|
}
|
|
|
|
// QQQ we could place number of active monitors in the array so that compiled code
|
|
// could double check it.
|
|
|
|
Method* moop = fr.interpreter_frame_method();
|
|
int max_locals = moop->max_locals();
|
|
// Allocate temp buffer, 1 word per local & 2 per active monitor
|
|
int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
|
|
intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
|
|
|
|
// Copy the locals. Order is preserved so that loading of longs works.
|
|
// Since there's no GC I can copy the oops blindly.
|
|
assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
|
|
Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
|
|
(HeapWord*)&buf[0],
|
|
max_locals);
|
|
|
|
// Inflate locks. Copy the displaced headers. Be careful, there can be holes.
|
|
int i = max_locals;
|
|
for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
|
|
kptr2 < fr.interpreter_frame_monitor_begin();
|
|
kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
|
|
if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
|
|
BasicLock *lock = kptr2->lock();
|
|
// Inflate so the object's header no longer refers to the BasicLock.
|
|
if (lock->displaced_header().is_unlocked()) {
|
|
// The object is locked and the resulting ObjectMonitor* will also be
|
|
// locked so it can't be async deflated until ownership is dropped.
|
|
// See the big comment in basicLock.cpp: BasicLock::move_to().
|
|
ObjectSynchronizer::inflate_helper(kptr2->obj());
|
|
}
|
|
// Now the displaced header is free to move because the
|
|
// object's header no longer refers to it.
|
|
buf[i++] = (intptr_t)lock->displaced_header().value();
|
|
buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
|
|
}
|
|
}
|
|
assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
|
|
|
|
RegisterMap map(current,
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::include,
|
|
RegisterMap::WalkContinuation::skip);
|
|
frame sender = fr.sender(&map);
|
|
if (sender.is_interpreted_frame()) {
|
|
current->push_cont_fastpath(sender.sp());
|
|
}
|
|
|
|
return buf;
|
|
JRT_END
|
|
|
|
JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
|
|
FREE_C_HEAP_ARRAY(intptr_t, buf);
|
|
JRT_END
|
|
|
|
bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
|
|
bool found = false;
|
|
auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
|
|
return (found = (b == CodeCache::find_blob(a->get_i2c_entry())));
|
|
};
|
|
assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
|
|
_adapter_handler_table.iterate(findblob);
|
|
return found;
|
|
}
|
|
|
|
void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
|
|
bool found = false;
|
|
auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) {
|
|
if (b == CodeCache::find_blob(a->get_i2c_entry())) {
|
|
found = true;
|
|
st->print("Adapter for signature: ");
|
|
a->print_adapter_on(st);
|
|
return true;
|
|
} else {
|
|
return false; // keep looking
|
|
}
|
|
};
|
|
assert_locked_or_safepoint(AdapterHandlerLibrary_lock);
|
|
_adapter_handler_table.iterate(findblob);
|
|
assert(found, "Should have found handler");
|
|
}
|
|
|
|
void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
|
|
st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
|
|
if (get_i2c_entry() != NULL) {
|
|
st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
|
|
}
|
|
if (get_c2i_entry() != NULL) {
|
|
st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
|
|
}
|
|
if (get_c2i_unverified_entry() != NULL) {
|
|
st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
|
|
}
|
|
if (get_c2i_no_clinit_check_entry() != NULL) {
|
|
st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
|
|
void AdapterHandlerLibrary::print_statistics() {
|
|
print_table_statistics();
|
|
}
|
|
|
|
#endif /* PRODUCT */
|
|
|
|
JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
|
|
StackOverflow* overflow_state = current->stack_overflow_state();
|
|
overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
|
|
overflow_state->set_reserved_stack_activation(current->stack_base());
|
|
JRT_END
|
|
|
|
frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
|
|
ResourceMark rm(current);
|
|
frame activation;
|
|
CompiledMethod* nm = NULL;
|
|
int count = 1;
|
|
|
|
assert(fr.is_java_frame(), "Must start on Java frame");
|
|
|
|
RegisterMap map(JavaThread::current(),
|
|
RegisterMap::UpdateMap::skip,
|
|
RegisterMap::ProcessFrames::skip,
|
|
RegisterMap::WalkContinuation::skip); // don't walk continuations
|
|
for (; !fr.is_first_frame(); fr = fr.sender(&map)) {
|
|
if (!fr.is_java_frame()) {
|
|
continue;
|
|
}
|
|
|
|
Method* method = NULL;
|
|
bool found = false;
|
|
if (fr.is_interpreted_frame()) {
|
|
method = fr.interpreter_frame_method();
|
|
if (method != NULL && method->has_reserved_stack_access()) {
|
|
found = true;
|
|
}
|
|
} else {
|
|
CodeBlob* cb = fr.cb();
|
|
if (cb != NULL && cb->is_compiled()) {
|
|
nm = cb->as_compiled_method();
|
|
method = nm->method();
|
|
// scope_desc_near() must be used, instead of scope_desc_at() because on
|
|
// SPARC, the pcDesc can be on the delay slot after the call instruction.
|
|
for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
|
|
method = sd->method();
|
|
if (method != NULL && method->has_reserved_stack_access()) {
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (found) {
|
|
activation = fr;
|
|
warning("Potentially dangerous stack overflow in "
|
|
"ReservedStackAccess annotated method %s [%d]",
|
|
method->name_and_sig_as_C_string(), count++);
|
|
EventReservedStackActivation event;
|
|
if (event.should_commit()) {
|
|
event.set_method(method);
|
|
event.commit();
|
|
}
|
|
}
|
|
}
|
|
return activation;
|
|
}
|
|
|
|
void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
|
|
// After any safepoint, just before going back to compiled code,
|
|
// we inform the GC that we will be doing initializing writes to
|
|
// this object in the future without emitting card-marks, so
|
|
// GC may take any compensating steps.
|
|
|
|
oop new_obj = current->vm_result();
|
|
if (new_obj == NULL) return;
|
|
|
|
BarrierSet *bs = BarrierSet::barrier_set();
|
|
bs->on_slowpath_allocation_exit(current, new_obj);
|
|
}
|