mirror of
https://github.com/openjdk/jdk.git
synced 2025-09-15 16:44:36 +02:00
5482 lines
192 KiB
C++
5482 lines
192 KiB
C++
/*
|
|
* Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
// no precompiled headers
|
|
#include "jvm.h"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "compiler/compileBroker.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "jvmtifiles/jvmti.h"
|
|
#include "logging/log.hpp"
|
|
#include "logging/logStream.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "os_linux.inline.hpp"
|
|
#include "os_posix.inline.hpp"
|
|
#include "os_share_linux.hpp"
|
|
#include "osContainer_linux.hpp"
|
|
#include "prims/jniFastGetField.hpp"
|
|
#include "prims/jvm_misc.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/globals.hpp"
|
|
#include "runtime/globals_extension.hpp"
|
|
#include "runtime/interfaceSupport.inline.hpp"
|
|
#include "runtime/init.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/objectMonitor.hpp"
|
|
#include "runtime/osThread.hpp"
|
|
#include "runtime/perfMemory.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/statSampler.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/threadCritical.hpp"
|
|
#include "runtime/threadSMR.hpp"
|
|
#include "runtime/timer.hpp"
|
|
#include "runtime/vm_version.hpp"
|
|
#include "signals_posix.hpp"
|
|
#include "semaphore_posix.hpp"
|
|
#include "services/memTracker.hpp"
|
|
#include "services/runtimeService.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/decoder.hpp"
|
|
#include "utilities/defaultStream.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/elfFile.hpp"
|
|
#include "utilities/growableArray.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/powerOfTwo.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
|
|
// put OS-includes here
|
|
# include <sys/types.h>
|
|
# include <sys/mman.h>
|
|
# include <sys/stat.h>
|
|
# include <sys/select.h>
|
|
# include <pthread.h>
|
|
# include <signal.h>
|
|
# include <endian.h>
|
|
# include <errno.h>
|
|
# include <dlfcn.h>
|
|
# include <stdio.h>
|
|
# include <unistd.h>
|
|
# include <sys/resource.h>
|
|
# include <pthread.h>
|
|
# include <sys/stat.h>
|
|
# include <sys/time.h>
|
|
# include <sys/times.h>
|
|
# include <sys/utsname.h>
|
|
# include <sys/socket.h>
|
|
# include <pwd.h>
|
|
# include <poll.h>
|
|
# include <fcntl.h>
|
|
# include <string.h>
|
|
# include <syscall.h>
|
|
# include <sys/sysinfo.h>
|
|
# include <sys/ipc.h>
|
|
# include <sys/shm.h>
|
|
# include <link.h>
|
|
# include <stdint.h>
|
|
# include <inttypes.h>
|
|
# include <sys/ioctl.h>
|
|
# include <linux/elf-em.h>
|
|
#ifdef __GLIBC__
|
|
# include <malloc.h>
|
|
#endif
|
|
|
|
#ifndef _GNU_SOURCE
|
|
#define _GNU_SOURCE
|
|
#include <sched.h>
|
|
#undef _GNU_SOURCE
|
|
#else
|
|
#include <sched.h>
|
|
#endif
|
|
|
|
// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
|
|
// getrusage() is prepared to handle the associated failure.
|
|
#ifndef RUSAGE_THREAD
|
|
#define RUSAGE_THREAD (1) /* only the calling thread */
|
|
#endif
|
|
|
|
#define MAX_PATH (2 * K)
|
|
|
|
#define MAX_SECS 100000000
|
|
|
|
// for timer info max values which include all bits
|
|
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
|
|
|
|
#ifdef MUSL_LIBC
|
|
// dlvsym is not a part of POSIX
|
|
// and musl libc doesn't implement it.
|
|
static void *dlvsym(void *handle,
|
|
const char *symbol,
|
|
const char *version) {
|
|
// load the latest version of symbol
|
|
return dlsym(handle, symbol);
|
|
}
|
|
#endif
|
|
|
|
enum CoredumpFilterBit {
|
|
FILE_BACKED_PVT_BIT = 1 << 2,
|
|
FILE_BACKED_SHARED_BIT = 1 << 3,
|
|
LARGEPAGES_BIT = 1 << 6,
|
|
DAX_SHARED_BIT = 1 << 8
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// global variables
|
|
julong os::Linux::_physical_memory = 0;
|
|
|
|
address os::Linux::_initial_thread_stack_bottom = NULL;
|
|
uintptr_t os::Linux::_initial_thread_stack_size = 0;
|
|
|
|
int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
|
|
int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
|
|
pthread_t os::Linux::_main_thread;
|
|
int os::Linux::_page_size = -1;
|
|
bool os::Linux::_supports_fast_thread_cpu_time = false;
|
|
const char * os::Linux::_libc_version = NULL;
|
|
const char * os::Linux::_libpthread_version = NULL;
|
|
size_t os::Linux::_default_large_page_size = 0;
|
|
|
|
#ifdef __GLIBC__
|
|
os::Linux::mallinfo_func_t os::Linux::_mallinfo = NULL;
|
|
os::Linux::mallinfo2_func_t os::Linux::_mallinfo2 = NULL;
|
|
#endif // __GLIBC__
|
|
|
|
static jlong initial_time_count=0;
|
|
|
|
static int clock_tics_per_sec = 100;
|
|
|
|
// If the VM might have been created on the primordial thread, we need to resolve the
|
|
// primordial thread stack bounds and check if the current thread might be the
|
|
// primordial thread in places. If we know that the primordial thread is never used,
|
|
// such as when the VM was created by one of the standard java launchers, we can
|
|
// avoid this
|
|
static bool suppress_primordial_thread_resolution = false;
|
|
|
|
// utility functions
|
|
|
|
julong os::available_memory() {
|
|
return Linux::available_memory();
|
|
}
|
|
|
|
julong os::Linux::available_memory() {
|
|
// values in struct sysinfo are "unsigned long"
|
|
struct sysinfo si;
|
|
julong avail_mem;
|
|
|
|
if (OSContainer::is_containerized()) {
|
|
jlong mem_limit, mem_usage;
|
|
if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
|
|
log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
|
|
mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
|
|
}
|
|
if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
|
|
log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
|
|
}
|
|
if (mem_limit > 0 && mem_usage > 0 ) {
|
|
avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
|
|
log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
|
|
return avail_mem;
|
|
}
|
|
}
|
|
|
|
sysinfo(&si);
|
|
avail_mem = (julong)si.freeram * si.mem_unit;
|
|
log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
|
|
return avail_mem;
|
|
}
|
|
|
|
julong os::physical_memory() {
|
|
jlong phys_mem = 0;
|
|
if (OSContainer::is_containerized()) {
|
|
jlong mem_limit;
|
|
if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
|
|
log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
|
|
return mem_limit;
|
|
}
|
|
log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
|
|
mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
|
|
}
|
|
|
|
phys_mem = Linux::physical_memory();
|
|
log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
|
|
return phys_mem;
|
|
}
|
|
|
|
static uint64_t initial_total_ticks = 0;
|
|
static uint64_t initial_steal_ticks = 0;
|
|
static bool has_initial_tick_info = false;
|
|
|
|
static void next_line(FILE *f) {
|
|
int c;
|
|
do {
|
|
c = fgetc(f);
|
|
} while (c != '\n' && c != EOF);
|
|
}
|
|
|
|
bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
|
|
FILE* fh;
|
|
uint64_t userTicks, niceTicks, systemTicks, idleTicks;
|
|
// since at least kernel 2.6 : iowait: time waiting for I/O to complete
|
|
// irq: time servicing interrupts; softirq: time servicing softirqs
|
|
uint64_t iowTicks = 0, irqTicks = 0, sirqTicks= 0;
|
|
// steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
|
|
uint64_t stealTicks = 0;
|
|
// guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
|
|
// control of the Linux kernel
|
|
uint64_t guestNiceTicks = 0;
|
|
int logical_cpu = -1;
|
|
const int required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
|
|
int n;
|
|
|
|
memset(pticks, 0, sizeof(CPUPerfTicks));
|
|
|
|
if ((fh = fopen("/proc/stat", "r")) == NULL) {
|
|
return false;
|
|
}
|
|
|
|
if (which_logical_cpu == -1) {
|
|
n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
|
|
UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
|
|
UINT64_FORMAT " " UINT64_FORMAT " ",
|
|
&userTicks, &niceTicks, &systemTicks, &idleTicks,
|
|
&iowTicks, &irqTicks, &sirqTicks,
|
|
&stealTicks, &guestNiceTicks);
|
|
} else {
|
|
// Move to next line
|
|
next_line(fh);
|
|
|
|
// find the line for requested cpu faster to just iterate linefeeds?
|
|
for (int i = 0; i < which_logical_cpu; i++) {
|
|
next_line(fh);
|
|
}
|
|
|
|
n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
|
|
UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
|
|
UINT64_FORMAT " " UINT64_FORMAT " ",
|
|
&logical_cpu, &userTicks, &niceTicks,
|
|
&systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
|
|
&stealTicks, &guestNiceTicks);
|
|
}
|
|
|
|
fclose(fh);
|
|
if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
|
|
return false;
|
|
}
|
|
pticks->used = userTicks + niceTicks;
|
|
pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
|
|
pticks->total = userTicks + niceTicks + systemTicks + idleTicks +
|
|
iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
|
|
|
|
if (n > required_tickinfo_count + 3) {
|
|
pticks->steal = stealTicks;
|
|
pticks->has_steal_ticks = true;
|
|
} else {
|
|
pticks->steal = 0;
|
|
pticks->has_steal_ticks = false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return true if user is running as root.
|
|
|
|
bool os::have_special_privileges() {
|
|
static bool init = false;
|
|
static bool privileges = false;
|
|
if (!init) {
|
|
privileges = (getuid() != geteuid()) || (getgid() != getegid());
|
|
init = true;
|
|
}
|
|
return privileges;
|
|
}
|
|
|
|
|
|
#ifndef SYS_gettid
|
|
// i386: 224, ia64: 1105, amd64: 186, sparc: 143
|
|
#ifdef __ia64__
|
|
#define SYS_gettid 1105
|
|
#else
|
|
#ifdef __i386__
|
|
#define SYS_gettid 224
|
|
#else
|
|
#ifdef __amd64__
|
|
#define SYS_gettid 186
|
|
#else
|
|
#ifdef __sparc__
|
|
#define SYS_gettid 143
|
|
#else
|
|
#error define gettid for the arch
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
|
|
// pid_t gettid()
|
|
//
|
|
// Returns the kernel thread id of the currently running thread. Kernel
|
|
// thread id is used to access /proc.
|
|
pid_t os::Linux::gettid() {
|
|
int rslt = syscall(SYS_gettid);
|
|
assert(rslt != -1, "must be."); // old linuxthreads implementation?
|
|
return (pid_t)rslt;
|
|
}
|
|
|
|
// Most versions of linux have a bug where the number of processors are
|
|
// determined by looking at the /proc file system. In a chroot environment,
|
|
// the system call returns 1.
|
|
static bool unsafe_chroot_detected = false;
|
|
static const char *unstable_chroot_error = "/proc file system not found.\n"
|
|
"Java may be unstable running multithreaded in a chroot "
|
|
"environment on Linux when /proc filesystem is not mounted.";
|
|
|
|
void os::Linux::initialize_system_info() {
|
|
set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
|
|
if (processor_count() == 1) {
|
|
pid_t pid = os::Linux::gettid();
|
|
char fname[32];
|
|
jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
|
|
FILE *fp = fopen(fname, "r");
|
|
if (fp == NULL) {
|
|
unsafe_chroot_detected = true;
|
|
} else {
|
|
fclose(fp);
|
|
}
|
|
}
|
|
_physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
|
|
assert(processor_count() > 0, "linux error");
|
|
}
|
|
|
|
void os::init_system_properties_values() {
|
|
// The next steps are taken in the product version:
|
|
//
|
|
// Obtain the JAVA_HOME value from the location of libjvm.so.
|
|
// This library should be located at:
|
|
// <JAVA_HOME>/lib/{client|server}/libjvm.so.
|
|
//
|
|
// If "/jre/lib/" appears at the right place in the path, then we
|
|
// assume libjvm.so is installed in a JDK and we use this path.
|
|
//
|
|
// Otherwise exit with message: "Could not create the Java virtual machine."
|
|
//
|
|
// The following extra steps are taken in the debugging version:
|
|
//
|
|
// If "/jre/lib/" does NOT appear at the right place in the path
|
|
// instead of exit check for $JAVA_HOME environment variable.
|
|
//
|
|
// If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
|
|
// then we append a fake suffix "hotspot/libjvm.so" to this path so
|
|
// it looks like libjvm.so is installed there
|
|
// <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
|
|
//
|
|
// Otherwise exit.
|
|
//
|
|
// Important note: if the location of libjvm.so changes this
|
|
// code needs to be changed accordingly.
|
|
|
|
// See ld(1):
|
|
// The linker uses the following search paths to locate required
|
|
// shared libraries:
|
|
// 1: ...
|
|
// ...
|
|
// 7: The default directories, normally /lib and /usr/lib.
|
|
#ifndef OVERRIDE_LIBPATH
|
|
#if defined(_LP64)
|
|
#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
|
|
#else
|
|
#define DEFAULT_LIBPATH "/lib:/usr/lib"
|
|
#endif
|
|
#else
|
|
#define DEFAULT_LIBPATH OVERRIDE_LIBPATH
|
|
#endif
|
|
|
|
// Base path of extensions installed on the system.
|
|
#define SYS_EXT_DIR "/usr/java/packages"
|
|
#define EXTENSIONS_DIR "/lib/ext"
|
|
|
|
// Buffer that fits several sprintfs.
|
|
// Note that the space for the colon and the trailing null are provided
|
|
// by the nulls included by the sizeof operator.
|
|
const size_t bufsize =
|
|
MAX2((size_t)MAXPATHLEN, // For dll_dir & friends.
|
|
(size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
|
|
char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
|
|
|
|
// sysclasspath, java_home, dll_dir
|
|
{
|
|
char *pslash;
|
|
os::jvm_path(buf, bufsize);
|
|
|
|
// Found the full path to libjvm.so.
|
|
// Now cut the path to <java_home>/jre if we can.
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /libjvm.so.
|
|
}
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /{client|server|hotspot}.
|
|
}
|
|
Arguments::set_dll_dir(buf);
|
|
|
|
if (pslash != NULL) {
|
|
pslash = strrchr(buf, '/');
|
|
if (pslash != NULL) {
|
|
*pslash = '\0'; // Get rid of /lib.
|
|
}
|
|
}
|
|
Arguments::set_java_home(buf);
|
|
if (!set_boot_path('/', ':')) {
|
|
vm_exit_during_initialization("Failed setting boot class path.", NULL);
|
|
}
|
|
}
|
|
|
|
// Where to look for native libraries.
|
|
//
|
|
// Note: Due to a legacy implementation, most of the library path
|
|
// is set in the launcher. This was to accomodate linking restrictions
|
|
// on legacy Linux implementations (which are no longer supported).
|
|
// Eventually, all the library path setting will be done here.
|
|
//
|
|
// However, to prevent the proliferation of improperly built native
|
|
// libraries, the new path component /usr/java/packages is added here.
|
|
// Eventually, all the library path setting will be done here.
|
|
{
|
|
// Get the user setting of LD_LIBRARY_PATH, and prepended it. It
|
|
// should always exist (until the legacy problem cited above is
|
|
// addressed).
|
|
const char *v = ::getenv("LD_LIBRARY_PATH");
|
|
const char *v_colon = ":";
|
|
if (v == NULL) { v = ""; v_colon = ""; }
|
|
// That's +1 for the colon and +1 for the trailing '\0'.
|
|
char *ld_library_path = NEW_C_HEAP_ARRAY(char,
|
|
strlen(v) + 1 +
|
|
sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
|
|
mtInternal);
|
|
sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
|
|
Arguments::set_library_path(ld_library_path);
|
|
FREE_C_HEAP_ARRAY(char, ld_library_path);
|
|
}
|
|
|
|
// Extensions directories.
|
|
sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
|
|
Arguments::set_ext_dirs(buf);
|
|
|
|
FREE_C_HEAP_ARRAY(char, buf);
|
|
|
|
#undef DEFAULT_LIBPATH
|
|
#undef SYS_EXT_DIR
|
|
#undef EXTENSIONS_DIR
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// breakpoint support
|
|
|
|
void os::breakpoint() {
|
|
BREAKPOINT;
|
|
}
|
|
|
|
extern "C" void breakpoint() {
|
|
// use debugger to set breakpoint here
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// detecting pthread library
|
|
|
|
void os::Linux::libpthread_init() {
|
|
// Save glibc and pthread version strings.
|
|
#if !defined(_CS_GNU_LIBC_VERSION) || \
|
|
!defined(_CS_GNU_LIBPTHREAD_VERSION)
|
|
#error "glibc too old (< 2.3.2)"
|
|
#endif
|
|
|
|
#ifdef MUSL_LIBC
|
|
// confstr() from musl libc returns EINVAL for
|
|
// _CS_GNU_LIBC_VERSION and _CS_GNU_LIBPTHREAD_VERSION
|
|
os::Linux::set_libc_version("musl - unknown");
|
|
os::Linux::set_libpthread_version("musl - unknown");
|
|
#else
|
|
size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
|
|
assert(n > 0, "cannot retrieve glibc version");
|
|
char *str = (char *)malloc(n, mtInternal);
|
|
confstr(_CS_GNU_LIBC_VERSION, str, n);
|
|
os::Linux::set_libc_version(str);
|
|
|
|
n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
|
|
assert(n > 0, "cannot retrieve pthread version");
|
|
str = (char *)malloc(n, mtInternal);
|
|
confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
|
|
os::Linux::set_libpthread_version(str);
|
|
#endif
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// thread stack expansion
|
|
|
|
// os::Linux::manually_expand_stack() takes care of expanding the thread
|
|
// stack. Note that this is normally not needed: pthread stacks allocate
|
|
// thread stack using mmap() without MAP_NORESERVE, so the stack is already
|
|
// committed. Therefore it is not necessary to expand the stack manually.
|
|
//
|
|
// Manually expanding the stack was historically needed on LinuxThreads
|
|
// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
|
|
// it is kept to deal with very rare corner cases:
|
|
//
|
|
// For one, user may run the VM on an own implementation of threads
|
|
// whose stacks are - like the old LinuxThreads - implemented using
|
|
// mmap(MAP_GROWSDOWN).
|
|
//
|
|
// Also, this coding may be needed if the VM is running on the primordial
|
|
// thread. Normally we avoid running on the primordial thread; however,
|
|
// user may still invoke the VM on the primordial thread.
|
|
//
|
|
// The following historical comment describes the details about running
|
|
// on a thread stack allocated with mmap(MAP_GROWSDOWN):
|
|
|
|
|
|
// Force Linux kernel to expand current thread stack. If "bottom" is close
|
|
// to the stack guard, caller should block all signals.
|
|
//
|
|
// MAP_GROWSDOWN:
|
|
// A special mmap() flag that is used to implement thread stacks. It tells
|
|
// kernel that the memory region should extend downwards when needed. This
|
|
// allows early versions of LinuxThreads to only mmap the first few pages
|
|
// when creating a new thread. Linux kernel will automatically expand thread
|
|
// stack as needed (on page faults).
|
|
//
|
|
// However, because the memory region of a MAP_GROWSDOWN stack can grow on
|
|
// demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
|
|
// region, it's hard to tell if the fault is due to a legitimate stack
|
|
// access or because of reading/writing non-exist memory (e.g. buffer
|
|
// overrun). As a rule, if the fault happens below current stack pointer,
|
|
// Linux kernel does not expand stack, instead a SIGSEGV is sent to the
|
|
// application (see Linux kernel fault.c).
|
|
//
|
|
// This Linux feature can cause SIGSEGV when VM bangs thread stack for
|
|
// stack overflow detection.
|
|
//
|
|
// Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
|
|
// not use MAP_GROWSDOWN.
|
|
//
|
|
// To get around the problem and allow stack banging on Linux, we need to
|
|
// manually expand thread stack after receiving the SIGSEGV.
|
|
//
|
|
// There are two ways to expand thread stack to address "bottom", we used
|
|
// both of them in JVM before 1.5:
|
|
// 1. adjust stack pointer first so that it is below "bottom", and then
|
|
// touch "bottom"
|
|
// 2. mmap() the page in question
|
|
//
|
|
// Now alternate signal stack is gone, it's harder to use 2. For instance,
|
|
// if current sp is already near the lower end of page 101, and we need to
|
|
// call mmap() to map page 100, it is possible that part of the mmap() frame
|
|
// will be placed in page 100. When page 100 is mapped, it is zero-filled.
|
|
// That will destroy the mmap() frame and cause VM to crash.
|
|
//
|
|
// The following code works by adjusting sp first, then accessing the "bottom"
|
|
// page to force a page fault. Linux kernel will then automatically expand the
|
|
// stack mapping.
|
|
//
|
|
// _expand_stack_to() assumes its frame size is less than page size, which
|
|
// should always be true if the function is not inlined.
|
|
|
|
static void NOINLINE _expand_stack_to(address bottom) {
|
|
address sp;
|
|
size_t size;
|
|
volatile char *p;
|
|
|
|
// Adjust bottom to point to the largest address within the same page, it
|
|
// gives us a one-page buffer if alloca() allocates slightly more memory.
|
|
bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
|
|
bottom += os::Linux::page_size() - 1;
|
|
|
|
// sp might be slightly above current stack pointer; if that's the case, we
|
|
// will alloca() a little more space than necessary, which is OK. Don't use
|
|
// os::current_stack_pointer(), as its result can be slightly below current
|
|
// stack pointer, causing us to not alloca enough to reach "bottom".
|
|
sp = (address)&sp;
|
|
|
|
if (sp > bottom) {
|
|
size = sp - bottom;
|
|
p = (volatile char *)alloca(size);
|
|
assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
|
|
p[0] = '\0';
|
|
}
|
|
}
|
|
|
|
void os::Linux::expand_stack_to(address bottom) {
|
|
_expand_stack_to(bottom);
|
|
}
|
|
|
|
bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
|
|
assert(t!=NULL, "just checking");
|
|
assert(t->osthread()->expanding_stack(), "expand should be set");
|
|
|
|
if (t->is_in_usable_stack(addr)) {
|
|
sigset_t mask_all, old_sigset;
|
|
sigfillset(&mask_all);
|
|
pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
|
|
_expand_stack_to(addr);
|
|
pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// create new thread
|
|
|
|
// Thread start routine for all newly created threads
|
|
static void *thread_native_entry(Thread *thread) {
|
|
|
|
thread->record_stack_base_and_size();
|
|
|
|
#ifndef __GLIBC__
|
|
// Try to randomize the cache line index of hot stack frames.
|
|
// This helps when threads of the same stack traces evict each other's
|
|
// cache lines. The threads can be either from the same JVM instance, or
|
|
// from different JVM instances. The benefit is especially true for
|
|
// processors with hyperthreading technology.
|
|
// This code is not needed anymore in glibc because it has MULTI_PAGE_ALIASING
|
|
// and we did not see any degradation in performance without `alloca()`.
|
|
static int counter = 0;
|
|
int pid = os::current_process_id();
|
|
int random = ((pid ^ counter++) & 7) * 128;
|
|
void *stackmem = alloca(random != 0 ? random : 1); // ensure we allocate > 0
|
|
// Ensure the alloca result is used in a way that prevents the compiler from eliding it.
|
|
*(char *)stackmem = 1;
|
|
#endif
|
|
|
|
thread->initialize_thread_current();
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
Monitor* sync = osthread->startThread_lock();
|
|
|
|
osthread->set_thread_id(os::current_thread_id());
|
|
|
|
if (UseNUMA) {
|
|
int lgrp_id = os::numa_get_group_id();
|
|
if (lgrp_id != -1) {
|
|
thread->set_lgrp_id(lgrp_id);
|
|
}
|
|
}
|
|
// initialize signal mask for this thread
|
|
PosixSignals::hotspot_sigmask(thread);
|
|
|
|
// initialize floating point control register
|
|
os::Linux::init_thread_fpu_state();
|
|
|
|
// handshaking with parent thread
|
|
{
|
|
MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
|
|
|
|
// notify parent thread
|
|
osthread->set_state(INITIALIZED);
|
|
sync->notify_all();
|
|
|
|
// wait until os::start_thread()
|
|
while (osthread->get_state() == INITIALIZED) {
|
|
sync->wait_without_safepoint_check();
|
|
}
|
|
}
|
|
|
|
log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
|
|
os::current_thread_id(), (uintx) pthread_self());
|
|
|
|
assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
|
|
|
|
// call one more level start routine
|
|
thread->call_run();
|
|
|
|
// Note: at this point the thread object may already have deleted itself.
|
|
// Prevent dereferencing it from here on out.
|
|
thread = NULL;
|
|
|
|
log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
|
|
os::current_thread_id(), (uintx) pthread_self());
|
|
|
|
return 0;
|
|
}
|
|
|
|
// On Linux, glibc places static TLS blocks (for __thread variables) on
|
|
// the thread stack. This decreases the stack size actually available
|
|
// to threads.
|
|
//
|
|
// For large static TLS sizes, this may cause threads to malfunction due
|
|
// to insufficient stack space. This is a well-known issue in glibc:
|
|
// http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
|
|
//
|
|
// As a workaround, we call a private but assumed-stable glibc function,
|
|
// __pthread_get_minstack() to obtain the minstack size and derive the
|
|
// static TLS size from it. We then increase the user requested stack
|
|
// size by this TLS size.
|
|
//
|
|
// Due to compatibility concerns, this size adjustment is opt-in and
|
|
// controlled via AdjustStackSizeForTLS.
|
|
typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
|
|
|
|
GetMinStack _get_minstack_func = NULL;
|
|
|
|
static void get_minstack_init() {
|
|
_get_minstack_func =
|
|
(GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
|
|
log_info(os, thread)("Lookup of __pthread_get_minstack %s",
|
|
_get_minstack_func == NULL ? "failed" : "succeeded");
|
|
}
|
|
|
|
// Returns the size of the static TLS area glibc puts on thread stacks.
|
|
// The value is cached on first use, which occurs when the first thread
|
|
// is created during VM initialization.
|
|
static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
|
|
size_t tls_size = 0;
|
|
if (_get_minstack_func != NULL) {
|
|
// Obtain the pthread minstack size by calling __pthread_get_minstack.
|
|
size_t minstack_size = _get_minstack_func(attr);
|
|
|
|
// Remove non-TLS area size included in minstack size returned
|
|
// by __pthread_get_minstack() to get the static TLS size.
|
|
// In glibc before 2.27, minstack size includes guard_size.
|
|
// In glibc 2.27 and later, guard_size is automatically added
|
|
// to the stack size by pthread_create and is no longer included
|
|
// in minstack size. In both cases, the guard_size is taken into
|
|
// account, so there is no need to adjust the result for that.
|
|
//
|
|
// Although __pthread_get_minstack() is a private glibc function,
|
|
// it is expected to have a stable behavior across future glibc
|
|
// versions while glibc still allocates the static TLS blocks off
|
|
// the stack. Following is glibc 2.28 __pthread_get_minstack():
|
|
//
|
|
// size_t
|
|
// __pthread_get_minstack (const pthread_attr_t *attr)
|
|
// {
|
|
// return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
|
|
// }
|
|
//
|
|
//
|
|
// The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
|
|
// if check is done for precaution.
|
|
if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
|
|
tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
|
|
}
|
|
}
|
|
|
|
log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
|
|
tls_size);
|
|
return tls_size;
|
|
}
|
|
|
|
bool os::create_thread(Thread* thread, ThreadType thr_type,
|
|
size_t req_stack_size) {
|
|
assert(thread->osthread() == NULL, "caller responsible");
|
|
|
|
// Allocate the OSThread object
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
if (osthread == NULL) {
|
|
return false;
|
|
}
|
|
|
|
// set the correct thread state
|
|
osthread->set_thread_type(thr_type);
|
|
|
|
// Initial state is ALLOCATED but not INITIALIZED
|
|
osthread->set_state(ALLOCATED);
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
// init thread attributes
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
// Calculate stack size if it's not specified by caller.
|
|
size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
|
|
// In glibc versions prior to 2.7 the guard size mechanism
|
|
// is not implemented properly. The posix standard requires adding
|
|
// the size of the guard pages to the stack size, instead Linux
|
|
// takes the space out of 'stacksize'. Thus we adapt the requested
|
|
// stack_size by the size of the guard pages to mimick proper
|
|
// behaviour. However, be careful not to end up with a size
|
|
// of zero due to overflow. Don't add the guard page in that case.
|
|
size_t guard_size = os::Linux::default_guard_size(thr_type);
|
|
// Configure glibc guard page. Must happen before calling
|
|
// get_static_tls_area_size(), which uses the guard_size.
|
|
pthread_attr_setguardsize(&attr, guard_size);
|
|
|
|
size_t stack_adjust_size = 0;
|
|
if (AdjustStackSizeForTLS) {
|
|
// Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
|
|
stack_adjust_size += get_static_tls_area_size(&attr);
|
|
} else {
|
|
stack_adjust_size += guard_size;
|
|
}
|
|
|
|
stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
|
|
if (stack_size <= SIZE_MAX - stack_adjust_size) {
|
|
stack_size += stack_adjust_size;
|
|
}
|
|
assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
|
|
|
|
int status = pthread_attr_setstacksize(&attr, stack_size);
|
|
if (status != 0) {
|
|
// pthread_attr_setstacksize() function can fail
|
|
// if the stack size exceeds a system-imposed limit.
|
|
assert_status(status == EINVAL, status, "pthread_attr_setstacksize");
|
|
log_warning(os, thread)("The %sthread stack size specified is invalid: " SIZE_FORMAT "k",
|
|
(thr_type == compiler_thread) ? "compiler " : ((thr_type == java_thread) ? "" : "VM "),
|
|
stack_size / K);
|
|
thread->set_osthread(NULL);
|
|
delete osthread;
|
|
return false;
|
|
}
|
|
|
|
ThreadState state;
|
|
|
|
{
|
|
ResourceMark rm;
|
|
pthread_t tid;
|
|
int ret = 0;
|
|
int limit = 3;
|
|
do {
|
|
ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
|
|
} while (ret == EAGAIN && limit-- > 0);
|
|
|
|
char buf[64];
|
|
if (ret == 0) {
|
|
log_info(os, thread)("Thread \"%s\" started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
|
|
thread->name(), (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
|
|
} else {
|
|
log_warning(os, thread)("Failed to start thread \"%s\" - pthread_create failed (%s) for attributes: %s.",
|
|
thread->name(), os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
|
|
// Log some OS information which might explain why creating the thread failed.
|
|
log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
|
|
LogStream st(Log(os, thread)::info());
|
|
os::Posix::print_rlimit_info(&st);
|
|
os::print_memory_info(&st);
|
|
os::Linux::print_proc_sys_info(&st);
|
|
os::Linux::print_container_info(&st);
|
|
}
|
|
|
|
pthread_attr_destroy(&attr);
|
|
|
|
if (ret != 0) {
|
|
// Need to clean up stuff we've allocated so far
|
|
thread->set_osthread(NULL);
|
|
delete osthread;
|
|
return false;
|
|
}
|
|
|
|
// Store pthread info into the OSThread
|
|
osthread->set_pthread_id(tid);
|
|
|
|
// Wait until child thread is either initialized or aborted
|
|
{
|
|
Monitor* sync_with_child = osthread->startThread_lock();
|
|
MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
|
|
while ((state = osthread->get_state()) == ALLOCATED) {
|
|
sync_with_child->wait_without_safepoint_check();
|
|
}
|
|
}
|
|
}
|
|
|
|
// The thread is returned suspended (in state INITIALIZED),
|
|
// and is started higher up in the call chain
|
|
assert(state == INITIALIZED, "race condition");
|
|
return true;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// attach existing thread
|
|
|
|
// bootstrap the main thread
|
|
bool os::create_main_thread(JavaThread* thread) {
|
|
assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
|
|
return create_attached_thread(thread);
|
|
}
|
|
|
|
bool os::create_attached_thread(JavaThread* thread) {
|
|
#ifdef ASSERT
|
|
thread->verify_not_published();
|
|
#endif
|
|
|
|
// Allocate the OSThread object
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
|
|
if (osthread == NULL) {
|
|
return false;
|
|
}
|
|
|
|
// Store pthread info into the OSThread
|
|
osthread->set_thread_id(os::Linux::gettid());
|
|
osthread->set_pthread_id(::pthread_self());
|
|
|
|
// initialize floating point control register
|
|
os::Linux::init_thread_fpu_state();
|
|
|
|
// Initial thread state is RUNNABLE
|
|
osthread->set_state(RUNNABLE);
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
if (UseNUMA) {
|
|
int lgrp_id = os::numa_get_group_id();
|
|
if (lgrp_id != -1) {
|
|
thread->set_lgrp_id(lgrp_id);
|
|
}
|
|
}
|
|
|
|
if (os::is_primordial_thread()) {
|
|
// If current thread is primordial thread, its stack is mapped on demand,
|
|
// see notes about MAP_GROWSDOWN. Here we try to force kernel to map
|
|
// the entire stack region to avoid SEGV in stack banging.
|
|
// It is also useful to get around the heap-stack-gap problem on SuSE
|
|
// kernel (see 4821821 for details). We first expand stack to the top
|
|
// of yellow zone, then enable stack yellow zone (order is significant,
|
|
// enabling yellow zone first will crash JVM on SuSE Linux), so there
|
|
// is no gap between the last two virtual memory regions.
|
|
|
|
StackOverflow* overflow_state = thread->stack_overflow_state();
|
|
address addr = overflow_state->stack_reserved_zone_base();
|
|
assert(addr != NULL, "initialization problem?");
|
|
assert(overflow_state->stack_available(addr) > 0, "stack guard should not be enabled");
|
|
|
|
osthread->set_expanding_stack();
|
|
os::Linux::manually_expand_stack(thread, addr);
|
|
osthread->clear_expanding_stack();
|
|
}
|
|
|
|
// initialize signal mask for this thread
|
|
// and save the caller's signal mask
|
|
PosixSignals::hotspot_sigmask(thread);
|
|
|
|
log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
|
|
os::current_thread_id(), (uintx) pthread_self());
|
|
|
|
return true;
|
|
}
|
|
|
|
void os::pd_start_thread(Thread* thread) {
|
|
OSThread * osthread = thread->osthread();
|
|
assert(osthread->get_state() != INITIALIZED, "just checking");
|
|
Monitor* sync_with_child = osthread->startThread_lock();
|
|
MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
|
|
sync_with_child->notify();
|
|
}
|
|
|
|
// Free Linux resources related to the OSThread
|
|
void os::free_thread(OSThread* osthread) {
|
|
assert(osthread != NULL, "osthread not set");
|
|
|
|
// We are told to free resources of the argument thread,
|
|
// but we can only really operate on the current thread.
|
|
assert(Thread::current()->osthread() == osthread,
|
|
"os::free_thread but not current thread");
|
|
|
|
#ifdef ASSERT
|
|
sigset_t current;
|
|
sigemptyset(¤t);
|
|
pthread_sigmask(SIG_SETMASK, NULL, ¤t);
|
|
assert(!sigismember(¤t, PosixSignals::SR_signum), "SR signal should not be blocked!");
|
|
#endif
|
|
|
|
// Restore caller's signal mask
|
|
sigset_t sigmask = osthread->caller_sigmask();
|
|
pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
|
|
|
|
delete osthread;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// primordial thread
|
|
|
|
// Check if current thread is the primordial thread, similar to Solaris thr_main.
|
|
bool os::is_primordial_thread(void) {
|
|
if (suppress_primordial_thread_resolution) {
|
|
return false;
|
|
}
|
|
char dummy;
|
|
// If called before init complete, thread stack bottom will be null.
|
|
// Can be called if fatal error occurs before initialization.
|
|
if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
|
|
assert(os::Linux::initial_thread_stack_bottom() != NULL &&
|
|
os::Linux::initial_thread_stack_size() != 0,
|
|
"os::init did not locate primordial thread's stack region");
|
|
if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
|
|
(address)&dummy < os::Linux::initial_thread_stack_bottom() +
|
|
os::Linux::initial_thread_stack_size()) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Find the virtual memory area that contains addr
|
|
static bool find_vma(address addr, address* vma_low, address* vma_high) {
|
|
FILE *fp = fopen("/proc/self/maps", "r");
|
|
if (fp) {
|
|
address low, high;
|
|
while (!feof(fp)) {
|
|
if (fscanf(fp, "%p-%p", &low, &high) == 2) {
|
|
if (low <= addr && addr < high) {
|
|
if (vma_low) *vma_low = low;
|
|
if (vma_high) *vma_high = high;
|
|
fclose(fp);
|
|
return true;
|
|
}
|
|
}
|
|
for (;;) {
|
|
int ch = fgetc(fp);
|
|
if (ch == EOF || ch == (int)'\n') break;
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Locate primordial thread stack. This special handling of primordial thread stack
|
|
// is needed because pthread_getattr_np() on most (all?) Linux distros returns
|
|
// bogus value for the primordial process thread. While the launcher has created
|
|
// the VM in a new thread since JDK 6, we still have to allow for the use of the
|
|
// JNI invocation API from a primordial thread.
|
|
void os::Linux::capture_initial_stack(size_t max_size) {
|
|
|
|
// max_size is either 0 (which means accept OS default for thread stacks) or
|
|
// a user-specified value known to be at least the minimum needed. If we
|
|
// are actually on the primordial thread we can make it appear that we have a
|
|
// smaller max_size stack by inserting the guard pages at that location. But we
|
|
// cannot do anything to emulate a larger stack than what has been provided by
|
|
// the OS or threading library. In fact if we try to use a stack greater than
|
|
// what is set by rlimit then we will crash the hosting process.
|
|
|
|
// Maximum stack size is the easy part, get it from RLIMIT_STACK.
|
|
// If this is "unlimited" then it will be a huge value.
|
|
struct rlimit rlim;
|
|
getrlimit(RLIMIT_STACK, &rlim);
|
|
size_t stack_size = rlim.rlim_cur;
|
|
|
|
// 6308388: a bug in ld.so will relocate its own .data section to the
|
|
// lower end of primordial stack; reduce ulimit -s value a little bit
|
|
// so we won't install guard page on ld.so's data section.
|
|
// But ensure we don't underflow the stack size - allow 1 page spare
|
|
if (stack_size >= (size_t)(3 * page_size())) {
|
|
stack_size -= 2 * page_size();
|
|
}
|
|
|
|
// Try to figure out where the stack base (top) is. This is harder.
|
|
//
|
|
// When an application is started, glibc saves the initial stack pointer in
|
|
// a global variable "__libc_stack_end", which is then used by system
|
|
// libraries. __libc_stack_end should be pretty close to stack top. The
|
|
// variable is available since the very early days. However, because it is
|
|
// a private interface, it could disappear in the future.
|
|
//
|
|
// Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
|
|
// to __libc_stack_end, it is very close to stack top, but isn't the real
|
|
// stack top. Note that /proc may not exist if VM is running as a chroot
|
|
// program, so reading /proc/<pid>/stat could fail. Also the contents of
|
|
// /proc/<pid>/stat could change in the future (though unlikely).
|
|
//
|
|
// We try __libc_stack_end first. If that doesn't work, look for
|
|
// /proc/<pid>/stat. If neither of them works, we use current stack pointer
|
|
// as a hint, which should work well in most cases.
|
|
|
|
uintptr_t stack_start;
|
|
|
|
// try __libc_stack_end first
|
|
uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
|
|
if (p && *p) {
|
|
stack_start = *p;
|
|
} else {
|
|
// see if we can get the start_stack field from /proc/self/stat
|
|
FILE *fp;
|
|
int pid;
|
|
char state;
|
|
int ppid;
|
|
int pgrp;
|
|
int session;
|
|
int nr;
|
|
int tpgrp;
|
|
unsigned long flags;
|
|
unsigned long minflt;
|
|
unsigned long cminflt;
|
|
unsigned long majflt;
|
|
unsigned long cmajflt;
|
|
unsigned long utime;
|
|
unsigned long stime;
|
|
long cutime;
|
|
long cstime;
|
|
long prio;
|
|
long nice;
|
|
long junk;
|
|
long it_real;
|
|
uintptr_t start;
|
|
uintptr_t vsize;
|
|
intptr_t rss;
|
|
uintptr_t rsslim;
|
|
uintptr_t scodes;
|
|
uintptr_t ecode;
|
|
int i;
|
|
|
|
// Figure what the primordial thread stack base is. Code is inspired
|
|
// by email from Hans Boehm. /proc/self/stat begins with current pid,
|
|
// followed by command name surrounded by parentheses, state, etc.
|
|
char stat[2048];
|
|
int statlen;
|
|
|
|
fp = fopen("/proc/self/stat", "r");
|
|
if (fp) {
|
|
statlen = fread(stat, 1, 2047, fp);
|
|
stat[statlen] = '\0';
|
|
fclose(fp);
|
|
|
|
// Skip pid and the command string. Note that we could be dealing with
|
|
// weird command names, e.g. user could decide to rename java launcher
|
|
// to "java 1.4.2 :)", then the stat file would look like
|
|
// 1234 (java 1.4.2 :)) R ... ...
|
|
// We don't really need to know the command string, just find the last
|
|
// occurrence of ")" and then start parsing from there. See bug 4726580.
|
|
char * s = strrchr(stat, ')');
|
|
|
|
i = 0;
|
|
if (s) {
|
|
// Skip blank chars
|
|
do { s++; } while (s && isspace(*s));
|
|
|
|
#define _UFM UINTX_FORMAT
|
|
#define _DFM INTX_FORMAT
|
|
|
|
// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
|
|
// 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
|
|
i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
|
|
&state, // 3 %c
|
|
&ppid, // 4 %d
|
|
&pgrp, // 5 %d
|
|
&session, // 6 %d
|
|
&nr, // 7 %d
|
|
&tpgrp, // 8 %d
|
|
&flags, // 9 %lu
|
|
&minflt, // 10 %lu
|
|
&cminflt, // 11 %lu
|
|
&majflt, // 12 %lu
|
|
&cmajflt, // 13 %lu
|
|
&utime, // 14 %lu
|
|
&stime, // 15 %lu
|
|
&cutime, // 16 %ld
|
|
&cstime, // 17 %ld
|
|
&prio, // 18 %ld
|
|
&nice, // 19 %ld
|
|
&junk, // 20 %ld
|
|
&it_real, // 21 %ld
|
|
&start, // 22 UINTX_FORMAT
|
|
&vsize, // 23 UINTX_FORMAT
|
|
&rss, // 24 INTX_FORMAT
|
|
&rsslim, // 25 UINTX_FORMAT
|
|
&scodes, // 26 UINTX_FORMAT
|
|
&ecode, // 27 UINTX_FORMAT
|
|
&stack_start); // 28 UINTX_FORMAT
|
|
}
|
|
|
|
#undef _UFM
|
|
#undef _DFM
|
|
|
|
if (i != 28 - 2) {
|
|
assert(false, "Bad conversion from /proc/self/stat");
|
|
// product mode - assume we are the primordial thread, good luck in the
|
|
// embedded case.
|
|
warning("Can't detect primordial thread stack location - bad conversion");
|
|
stack_start = (uintptr_t) &rlim;
|
|
}
|
|
} else {
|
|
// For some reason we can't open /proc/self/stat (for example, running on
|
|
// FreeBSD with a Linux emulator, or inside chroot), this should work for
|
|
// most cases, so don't abort:
|
|
warning("Can't detect primordial thread stack location - no /proc/self/stat");
|
|
stack_start = (uintptr_t) &rlim;
|
|
}
|
|
}
|
|
|
|
// Now we have a pointer (stack_start) very close to the stack top, the
|
|
// next thing to do is to figure out the exact location of stack top. We
|
|
// can find out the virtual memory area that contains stack_start by
|
|
// reading /proc/self/maps, it should be the last vma in /proc/self/maps,
|
|
// and its upper limit is the real stack top. (again, this would fail if
|
|
// running inside chroot, because /proc may not exist.)
|
|
|
|
uintptr_t stack_top;
|
|
address low, high;
|
|
if (find_vma((address)stack_start, &low, &high)) {
|
|
// success, "high" is the true stack top. (ignore "low", because initial
|
|
// thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
|
|
stack_top = (uintptr_t)high;
|
|
} else {
|
|
// failed, likely because /proc/self/maps does not exist
|
|
warning("Can't detect primordial thread stack location - find_vma failed");
|
|
// best effort: stack_start is normally within a few pages below the real
|
|
// stack top, use it as stack top, and reduce stack size so we won't put
|
|
// guard page outside stack.
|
|
stack_top = stack_start;
|
|
stack_size -= 16 * page_size();
|
|
}
|
|
|
|
// stack_top could be partially down the page so align it
|
|
stack_top = align_up(stack_top, page_size());
|
|
|
|
// Allowed stack value is minimum of max_size and what we derived from rlimit
|
|
if (max_size > 0) {
|
|
_initial_thread_stack_size = MIN2(max_size, stack_size);
|
|
} else {
|
|
// Accept the rlimit max, but if stack is unlimited then it will be huge, so
|
|
// clamp it at 8MB as we do on Solaris
|
|
_initial_thread_stack_size = MIN2(stack_size, 8*M);
|
|
}
|
|
_initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
|
|
_initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
|
|
|
|
assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
|
|
|
|
if (log_is_enabled(Info, os, thread)) {
|
|
// See if we seem to be on primordial process thread
|
|
bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
|
|
uintptr_t(&rlim) < stack_top;
|
|
|
|
log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
|
|
SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
|
|
primordial ? "primordial" : "user", max_size / K, _initial_thread_stack_size / K,
|
|
stack_top, intptr_t(_initial_thread_stack_bottom));
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// time support
|
|
|
|
// Time since start-up in seconds to a fine granularity.
|
|
double os::elapsedTime() {
|
|
return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
|
|
}
|
|
|
|
jlong os::elapsed_counter() {
|
|
return javaTimeNanos() - initial_time_count;
|
|
}
|
|
|
|
jlong os::elapsed_frequency() {
|
|
return NANOSECS_PER_SEC; // nanosecond resolution
|
|
}
|
|
|
|
bool os::supports_vtime() { return true; }
|
|
|
|
double os::elapsedVTime() {
|
|
struct rusage usage;
|
|
int retval = getrusage(RUSAGE_THREAD, &usage);
|
|
if (retval == 0) {
|
|
return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
|
|
} else {
|
|
// better than nothing, but not much
|
|
return elapsedTime();
|
|
}
|
|
}
|
|
|
|
void os::Linux::fast_thread_clock_init() {
|
|
if (!UseLinuxPosixThreadCPUClocks) {
|
|
return;
|
|
}
|
|
clockid_t clockid;
|
|
struct timespec tp;
|
|
int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
|
|
(int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
|
|
|
|
// Switch to using fast clocks for thread cpu time if
|
|
// the clock_getres() returns 0 error code.
|
|
// Note, that some kernels may support the current thread
|
|
// clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
|
|
// returned by the pthread_getcpuclockid().
|
|
// If the fast Posix clocks are supported then the clock_getres()
|
|
// must return at least tp.tv_sec == 0 which means a resolution
|
|
// better than 1 sec. This is extra check for reliability.
|
|
|
|
if (pthread_getcpuclockid_func &&
|
|
pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
|
|
clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
|
|
_supports_fast_thread_cpu_time = true;
|
|
_pthread_getcpuclockid = pthread_getcpuclockid_func;
|
|
}
|
|
}
|
|
|
|
// Return the real, user, and system times in seconds from an
|
|
// arbitrary fixed point in the past.
|
|
bool os::getTimesSecs(double* process_real_time,
|
|
double* process_user_time,
|
|
double* process_system_time) {
|
|
struct tms ticks;
|
|
clock_t real_ticks = times(&ticks);
|
|
|
|
if (real_ticks == (clock_t) (-1)) {
|
|
return false;
|
|
} else {
|
|
double ticks_per_second = (double) clock_tics_per_sec;
|
|
*process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
|
|
*process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
|
|
*process_real_time = ((double) real_ticks) / ticks_per_second;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
char * os::local_time_string(char *buf, size_t buflen) {
|
|
struct tm t;
|
|
time_t long_time;
|
|
time(&long_time);
|
|
localtime_r(&long_time, &t);
|
|
jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
|
|
t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
|
|
t.tm_hour, t.tm_min, t.tm_sec);
|
|
return buf;
|
|
}
|
|
|
|
struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
|
|
return localtime_r(clock, res);
|
|
}
|
|
|
|
// thread_id is kernel thread id (similar to Solaris LWP id)
|
|
intx os::current_thread_id() { return os::Linux::gettid(); }
|
|
int os::current_process_id() {
|
|
return ::getpid();
|
|
}
|
|
|
|
// DLL functions
|
|
|
|
const char* os::dll_file_extension() { return ".so"; }
|
|
|
|
// This must be hard coded because it's the system's temporary
|
|
// directory not the java application's temp directory, ala java.io.tmpdir.
|
|
const char* os::get_temp_directory() { return "/tmp"; }
|
|
|
|
static bool file_exists(const char* filename) {
|
|
struct stat statbuf;
|
|
if (filename == NULL || strlen(filename) == 0) {
|
|
return false;
|
|
}
|
|
return os::stat(filename, &statbuf) == 0;
|
|
}
|
|
|
|
// check if addr is inside libjvm.so
|
|
bool os::address_is_in_vm(address addr) {
|
|
static address libjvm_base_addr;
|
|
Dl_info dlinfo;
|
|
|
|
if (libjvm_base_addr == NULL) {
|
|
if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
|
|
libjvm_base_addr = (address)dlinfo.dli_fbase;
|
|
}
|
|
assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
|
|
}
|
|
|
|
if (dladdr((void *)addr, &dlinfo) != 0) {
|
|
if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool os::dll_address_to_function_name(address addr, char *buf,
|
|
int buflen, int *offset,
|
|
bool demangle) {
|
|
// buf is not optional, but offset is optional
|
|
assert(buf != NULL, "sanity check");
|
|
|
|
Dl_info dlinfo;
|
|
|
|
if (dladdr((void*)addr, &dlinfo) != 0) {
|
|
// see if we have a matching symbol
|
|
if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
|
|
if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
|
|
jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
|
|
}
|
|
if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
|
|
return true;
|
|
}
|
|
// no matching symbol so try for just file info
|
|
if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
|
|
if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
|
|
buf, buflen, offset, dlinfo.dli_fname, demangle)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
buf[0] = '\0';
|
|
if (offset != NULL) *offset = -1;
|
|
return false;
|
|
}
|
|
|
|
struct _address_to_library_name {
|
|
address addr; // input : memory address
|
|
size_t buflen; // size of fname
|
|
char* fname; // output: library name
|
|
address base; // library base addr
|
|
};
|
|
|
|
static int address_to_library_name_callback(struct dl_phdr_info *info,
|
|
size_t size, void *data) {
|
|
int i;
|
|
bool found = false;
|
|
address libbase = NULL;
|
|
struct _address_to_library_name * d = (struct _address_to_library_name *)data;
|
|
|
|
// iterate through all loadable segments
|
|
for (i = 0; i < info->dlpi_phnum; i++) {
|
|
address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
|
|
if (info->dlpi_phdr[i].p_type == PT_LOAD) {
|
|
// base address of a library is the lowest address of its loaded
|
|
// segments.
|
|
if (libbase == NULL || libbase > segbase) {
|
|
libbase = segbase;
|
|
}
|
|
// see if 'addr' is within current segment
|
|
if (segbase <= d->addr &&
|
|
d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// dlpi_name is NULL or empty if the ELF file is executable, return 0
|
|
// so dll_address_to_library_name() can fall through to use dladdr() which
|
|
// can figure out executable name from argv[0].
|
|
if (found && info->dlpi_name && info->dlpi_name[0]) {
|
|
d->base = libbase;
|
|
if (d->fname) {
|
|
jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool os::dll_address_to_library_name(address addr, char* buf,
|
|
int buflen, int* offset) {
|
|
// buf is not optional, but offset is optional
|
|
assert(buf != NULL, "sanity check");
|
|
|
|
Dl_info dlinfo;
|
|
struct _address_to_library_name data;
|
|
|
|
// There is a bug in old glibc dladdr() implementation that it could resolve
|
|
// to wrong library name if the .so file has a base address != NULL. Here
|
|
// we iterate through the program headers of all loaded libraries to find
|
|
// out which library 'addr' really belongs to. This workaround can be
|
|
// removed once the minimum requirement for glibc is moved to 2.3.x.
|
|
data.addr = addr;
|
|
data.fname = buf;
|
|
data.buflen = buflen;
|
|
data.base = NULL;
|
|
int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
|
|
|
|
if (rslt) {
|
|
// buf already contains library name
|
|
if (offset) *offset = addr - data.base;
|
|
return true;
|
|
}
|
|
if (dladdr((void*)addr, &dlinfo) != 0) {
|
|
if (dlinfo.dli_fname != NULL) {
|
|
jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
|
|
}
|
|
if (dlinfo.dli_fbase != NULL && offset != NULL) {
|
|
*offset = addr - (address)dlinfo.dli_fbase;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
buf[0] = '\0';
|
|
if (offset) *offset = -1;
|
|
return false;
|
|
}
|
|
|
|
// Loads .dll/.so and
|
|
// in case of error it checks if .dll/.so was built for the
|
|
// same architecture as Hotspot is running on
|
|
|
|
|
|
// Remember the stack's state. The Linux dynamic linker will change
|
|
// the stack to 'executable' at most once, so we must safepoint only once.
|
|
bool os::Linux::_stack_is_executable = false;
|
|
|
|
// VM operation that loads a library. This is necessary if stack protection
|
|
// of the Java stacks can be lost during loading the library. If we
|
|
// do not stop the Java threads, they can stack overflow before the stacks
|
|
// are protected again.
|
|
class VM_LinuxDllLoad: public VM_Operation {
|
|
private:
|
|
const char *_filename;
|
|
char *_ebuf;
|
|
int _ebuflen;
|
|
void *_lib;
|
|
public:
|
|
VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
|
|
_filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
|
|
VMOp_Type type() const { return VMOp_LinuxDllLoad; }
|
|
void doit() {
|
|
_lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
|
|
os::Linux::_stack_is_executable = true;
|
|
}
|
|
void* loaded_library() { return _lib; }
|
|
};
|
|
|
|
void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
|
|
void * result = NULL;
|
|
bool load_attempted = false;
|
|
|
|
log_info(os)("attempting shared library load of %s", filename);
|
|
|
|
// Check whether the library to load might change execution rights
|
|
// of the stack. If they are changed, the protection of the stack
|
|
// guard pages will be lost. We need a safepoint to fix this.
|
|
//
|
|
// See Linux man page execstack(8) for more info.
|
|
if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
|
|
if (!ElfFile::specifies_noexecstack(filename)) {
|
|
if (!is_init_completed()) {
|
|
os::Linux::_stack_is_executable = true;
|
|
// This is OK - No Java threads have been created yet, and hence no
|
|
// stack guard pages to fix.
|
|
//
|
|
// Dynamic loader will make all stacks executable after
|
|
// this function returns, and will not do that again.
|
|
assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
|
|
} else {
|
|
warning("You have loaded library %s which might have disabled stack guard. "
|
|
"The VM will try to fix the stack guard now.\n"
|
|
"It's highly recommended that you fix the library with "
|
|
"'execstack -c <libfile>', or link it with '-z noexecstack'.",
|
|
filename);
|
|
|
|
JavaThread *jt = JavaThread::current();
|
|
if (jt->thread_state() != _thread_in_native) {
|
|
// This happens when a compiler thread tries to load a hsdis-<arch>.so file
|
|
// that requires ExecStack. Cannot enter safe point. Let's give up.
|
|
warning("Unable to fix stack guard. Giving up.");
|
|
} else {
|
|
if (!LoadExecStackDllInVMThread) {
|
|
// This is for the case where the DLL has an static
|
|
// constructor function that executes JNI code. We cannot
|
|
// load such DLLs in the VMThread.
|
|
result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
|
|
}
|
|
|
|
ThreadInVMfromNative tiv(jt);
|
|
debug_only(VMNativeEntryWrapper vew;)
|
|
|
|
VM_LinuxDllLoad op(filename, ebuf, ebuflen);
|
|
VMThread::execute(&op);
|
|
if (LoadExecStackDllInVMThread) {
|
|
result = op.loaded_library();
|
|
}
|
|
load_attempted = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!load_attempted) {
|
|
result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
|
|
}
|
|
|
|
if (result != NULL) {
|
|
// Successful loading
|
|
return result;
|
|
}
|
|
|
|
Elf32_Ehdr elf_head;
|
|
int diag_msg_max_length=ebuflen-strlen(ebuf);
|
|
char* diag_msg_buf=ebuf+strlen(ebuf);
|
|
|
|
if (diag_msg_max_length==0) {
|
|
// No more space in ebuf for additional diagnostics message
|
|
return NULL;
|
|
}
|
|
|
|
|
|
int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
|
|
|
|
if (file_descriptor < 0) {
|
|
// Can't open library, report dlerror() message
|
|
return NULL;
|
|
}
|
|
|
|
bool failed_to_read_elf_head=
|
|
(sizeof(elf_head)!=
|
|
(::read(file_descriptor, &elf_head,sizeof(elf_head))));
|
|
|
|
::close(file_descriptor);
|
|
if (failed_to_read_elf_head) {
|
|
// file i/o error - report dlerror() msg
|
|
return NULL;
|
|
}
|
|
|
|
if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
|
|
// handle invalid/out of range endianness values
|
|
if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
|
|
return NULL;
|
|
}
|
|
|
|
#if defined(VM_LITTLE_ENDIAN)
|
|
// VM is LE, shared object BE
|
|
elf_head.e_machine = be16toh(elf_head.e_machine);
|
|
#else
|
|
// VM is BE, shared object LE
|
|
elf_head.e_machine = le16toh(elf_head.e_machine);
|
|
#endif
|
|
}
|
|
|
|
typedef struct {
|
|
Elf32_Half code; // Actual value as defined in elf.h
|
|
Elf32_Half compat_class; // Compatibility of archs at VM's sense
|
|
unsigned char elf_class; // 32 or 64 bit
|
|
unsigned char endianness; // MSB or LSB
|
|
char* name; // String representation
|
|
} arch_t;
|
|
|
|
#ifndef EM_AARCH64
|
|
#define EM_AARCH64 183 /* ARM AARCH64 */
|
|
#endif
|
|
#ifndef EM_RISCV
|
|
#define EM_RISCV 243 /* RISC-V */
|
|
#endif
|
|
#ifndef EM_LOONGARCH
|
|
#define EM_LOONGARCH 258 /* LoongArch */
|
|
#endif
|
|
|
|
static const arch_t arch_array[]={
|
|
{EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
|
|
{EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
|
|
{EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
|
|
{EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
|
|
{EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
|
|
{EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
|
|
{EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
|
|
{EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
|
|
#if defined(VM_LITTLE_ENDIAN)
|
|
{EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
|
|
{EM_SH, EM_SH, ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
|
|
#else
|
|
{EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
|
|
{EM_SH, EM_SH, ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
|
|
#endif
|
|
{EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
|
|
// we only support 64 bit z architecture
|
|
{EM_S390, EM_S390, ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
|
|
{EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
|
|
{EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
|
|
{EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
|
|
{EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
|
|
{EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
|
|
{EM_AARCH64, EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
|
|
{EM_RISCV, EM_RISCV, ELFCLASS64, ELFDATA2LSB, (char*)"RISC-V"},
|
|
{EM_LOONGARCH, EM_LOONGARCH, ELFCLASS64, ELFDATA2LSB, (char*)"LoongArch"},
|
|
};
|
|
|
|
#if (defined IA32)
|
|
static Elf32_Half running_arch_code=EM_386;
|
|
#elif (defined AMD64) || (defined X32)
|
|
static Elf32_Half running_arch_code=EM_X86_64;
|
|
#elif (defined IA64)
|
|
static Elf32_Half running_arch_code=EM_IA_64;
|
|
#elif (defined __sparc) && (defined _LP64)
|
|
static Elf32_Half running_arch_code=EM_SPARCV9;
|
|
#elif (defined __sparc) && (!defined _LP64)
|
|
static Elf32_Half running_arch_code=EM_SPARC;
|
|
#elif (defined __powerpc64__)
|
|
static Elf32_Half running_arch_code=EM_PPC64;
|
|
#elif (defined __powerpc__)
|
|
static Elf32_Half running_arch_code=EM_PPC;
|
|
#elif (defined AARCH64)
|
|
static Elf32_Half running_arch_code=EM_AARCH64;
|
|
#elif (defined ARM)
|
|
static Elf32_Half running_arch_code=EM_ARM;
|
|
#elif (defined S390)
|
|
static Elf32_Half running_arch_code=EM_S390;
|
|
#elif (defined ALPHA)
|
|
static Elf32_Half running_arch_code=EM_ALPHA;
|
|
#elif (defined MIPSEL)
|
|
static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
|
|
#elif (defined PARISC)
|
|
static Elf32_Half running_arch_code=EM_PARISC;
|
|
#elif (defined MIPS)
|
|
static Elf32_Half running_arch_code=EM_MIPS;
|
|
#elif (defined M68K)
|
|
static Elf32_Half running_arch_code=EM_68K;
|
|
#elif (defined SH)
|
|
static Elf32_Half running_arch_code=EM_SH;
|
|
#elif (defined RISCV)
|
|
static Elf32_Half running_arch_code=EM_RISCV;
|
|
#elif (defined LOONGARCH)
|
|
static Elf32_Half running_arch_code=EM_LOONGARCH;
|
|
#else
|
|
#error Method os::dll_load requires that one of following is defined:\
|
|
AARCH64, ALPHA, ARM, AMD64, IA32, IA64, LOONGARCH, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, RISCV, S390, SH, __sparc
|
|
#endif
|
|
|
|
// Identify compatibility class for VM's architecture and library's architecture
|
|
// Obtain string descriptions for architectures
|
|
|
|
arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
|
|
int running_arch_index=-1;
|
|
|
|
for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
|
|
if (running_arch_code == arch_array[i].code) {
|
|
running_arch_index = i;
|
|
}
|
|
if (lib_arch.code == arch_array[i].code) {
|
|
lib_arch.compat_class = arch_array[i].compat_class;
|
|
lib_arch.name = arch_array[i].name;
|
|
}
|
|
}
|
|
|
|
assert(running_arch_index != -1,
|
|
"Didn't find running architecture code (running_arch_code) in arch_array");
|
|
if (running_arch_index == -1) {
|
|
// Even though running architecture detection failed
|
|
// we may still continue with reporting dlerror() message
|
|
return NULL;
|
|
}
|
|
|
|
if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
|
|
if (lib_arch.name != NULL) {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1,
|
|
" (Possible cause: can't load %s .so on a %s platform)",
|
|
lib_arch.name, arch_array[running_arch_index].name);
|
|
} else {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1,
|
|
" (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
|
|
lib_arch.code, arch_array[running_arch_index].name);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
|
|
return NULL;
|
|
}
|
|
|
|
// ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
|
|
if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
|
|
return NULL;
|
|
}
|
|
|
|
if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1,
|
|
" (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
|
|
(int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
|
|
return NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
|
|
int ebuflen) {
|
|
void * result = ::dlopen(filename, RTLD_LAZY);
|
|
if (result == NULL) {
|
|
const char* error_report = ::dlerror();
|
|
if (error_report == NULL) {
|
|
error_report = "dlerror returned no error description";
|
|
}
|
|
if (ebuf != NULL && ebuflen > 0) {
|
|
::strncpy(ebuf, error_report, ebuflen-1);
|
|
ebuf[ebuflen-1]='\0';
|
|
}
|
|
Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
|
|
log_info(os)("shared library load of %s failed, %s", filename, error_report);
|
|
} else {
|
|
Events::log(NULL, "Loaded shared library %s", filename);
|
|
log_info(os)("shared library load of %s was successful", filename);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
|
|
int ebuflen) {
|
|
void * result = NULL;
|
|
if (LoadExecStackDllInVMThread) {
|
|
result = dlopen_helper(filename, ebuf, ebuflen);
|
|
}
|
|
|
|
// Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
|
|
// library that requires an executable stack, or which does not have this
|
|
// stack attribute set, dlopen changes the stack attribute to executable. The
|
|
// read protection of the guard pages gets lost.
|
|
//
|
|
// Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
|
|
// may have been queued at the same time.
|
|
|
|
if (!_stack_is_executable) {
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
|
|
StackOverflow* overflow_state = jt->stack_overflow_state();
|
|
if (!overflow_state->stack_guard_zone_unused() && // Stack not yet fully initialized
|
|
overflow_state->stack_guards_enabled()) { // No pending stack overflow exceptions
|
|
if (!os::guard_memory((char *)jt->stack_end(), StackOverflow::stack_guard_zone_size())) {
|
|
warning("Attempt to reguard stack yellow zone failed.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void* os::dll_lookup(void* handle, const char* name) {
|
|
void* res = dlsym(handle, name);
|
|
return res;
|
|
}
|
|
|
|
void* os::get_default_process_handle() {
|
|
return (void*)::dlopen(NULL, RTLD_LAZY);
|
|
}
|
|
|
|
static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
|
|
int fd = ::open(filename, O_RDONLY);
|
|
if (fd == -1) {
|
|
return false;
|
|
}
|
|
|
|
if (hdr != NULL) {
|
|
st->print_cr("%s", hdr);
|
|
}
|
|
|
|
char buf[33];
|
|
int bytes;
|
|
buf[32] = '\0';
|
|
while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
|
|
st->print_raw(buf, bytes);
|
|
}
|
|
|
|
::close(fd);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void _print_ascii_file_h(const char* header, const char* filename, outputStream* st, bool same_line = true) {
|
|
st->print("%s:%c", header, same_line ? ' ' : '\n');
|
|
if (!_print_ascii_file(filename, st)) {
|
|
st->print_cr("<Not Available>");
|
|
}
|
|
}
|
|
|
|
void os::print_dll_info(outputStream *st) {
|
|
st->print_cr("Dynamic libraries:");
|
|
|
|
char fname[32];
|
|
pid_t pid = os::Linux::gettid();
|
|
|
|
jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
|
|
|
|
if (!_print_ascii_file(fname, st)) {
|
|
st->print_cr("Can not get library information for pid = %d", pid);
|
|
}
|
|
}
|
|
|
|
struct loaded_modules_info_param {
|
|
os::LoadedModulesCallbackFunc callback;
|
|
void *param;
|
|
};
|
|
|
|
static int dl_iterate_callback(struct dl_phdr_info *info, size_t size, void *data) {
|
|
if ((info->dlpi_name == NULL) || (*info->dlpi_name == '\0')) {
|
|
return 0;
|
|
}
|
|
|
|
struct loaded_modules_info_param *callback_param = reinterpret_cast<struct loaded_modules_info_param *>(data);
|
|
address base = NULL;
|
|
address top = NULL;
|
|
for (int idx = 0; idx < info->dlpi_phnum; idx++) {
|
|
const ElfW(Phdr) *phdr = info->dlpi_phdr + idx;
|
|
if (phdr->p_type == PT_LOAD) {
|
|
address raw_phdr_base = reinterpret_cast<address>(info->dlpi_addr + phdr->p_vaddr);
|
|
|
|
address phdr_base = align_down(raw_phdr_base, phdr->p_align);
|
|
if ((base == NULL) || (base > phdr_base)) {
|
|
base = phdr_base;
|
|
}
|
|
|
|
address phdr_top = align_up(raw_phdr_base + phdr->p_memsz, phdr->p_align);
|
|
if ((top == NULL) || (top < phdr_top)) {
|
|
top = phdr_top;
|
|
}
|
|
}
|
|
}
|
|
|
|
return callback_param->callback(info->dlpi_name, base, top, callback_param->param);
|
|
}
|
|
|
|
int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
|
|
struct loaded_modules_info_param callback_param = {callback, param};
|
|
return dl_iterate_phdr(&dl_iterate_callback, &callback_param);
|
|
}
|
|
|
|
void os::print_os_info_brief(outputStream* st) {
|
|
os::Linux::print_distro_info(st);
|
|
|
|
os::Posix::print_uname_info(st);
|
|
|
|
os::Linux::print_libversion_info(st);
|
|
|
|
}
|
|
|
|
void os::print_os_info(outputStream* st) {
|
|
st->print_cr("OS:");
|
|
|
|
os::Linux::print_distro_info(st);
|
|
|
|
os::Posix::print_uname_info(st);
|
|
|
|
os::Linux::print_uptime_info(st);
|
|
|
|
// Print warning if unsafe chroot environment detected
|
|
if (unsafe_chroot_detected) {
|
|
st->print_cr("WARNING!! %s", unstable_chroot_error);
|
|
}
|
|
|
|
os::Linux::print_libversion_info(st);
|
|
|
|
os::Posix::print_rlimit_info(st);
|
|
|
|
os::Posix::print_load_average(st);
|
|
st->cr();
|
|
|
|
os::Linux::print_system_memory_info(st);
|
|
st->cr();
|
|
|
|
os::Linux::print_process_memory_info(st);
|
|
st->cr();
|
|
|
|
os::Linux::print_proc_sys_info(st);
|
|
st->cr();
|
|
|
|
if (os::Linux::print_ld_preload_file(st)) {
|
|
st->cr();
|
|
}
|
|
|
|
if (os::Linux::print_container_info(st)) {
|
|
st->cr();
|
|
}
|
|
|
|
VM_Version::print_platform_virtualization_info(st);
|
|
|
|
os::Linux::print_steal_info(st);
|
|
}
|
|
|
|
// Try to identify popular distros.
|
|
// Most Linux distributions have a /etc/XXX-release file, which contains
|
|
// the OS version string. Newer Linux distributions have a /etc/lsb-release
|
|
// file that also contains the OS version string. Some have more than one
|
|
// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
|
|
// /etc/redhat-release.), so the order is important.
|
|
// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
|
|
// their own specific XXX-release file as well as a redhat-release file.
|
|
// Because of this the XXX-release file needs to be searched for before the
|
|
// redhat-release file.
|
|
// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
|
|
// search for redhat-release / SuSE-release needs to be before lsb-release.
|
|
// Since the lsb-release file is the new standard it needs to be searched
|
|
// before the older style release files.
|
|
// Searching system-release (Red Hat) and os-release (other Linuxes) are a
|
|
// next to last resort. The os-release file is a new standard that contains
|
|
// distribution information and the system-release file seems to be an old
|
|
// standard that has been replaced by the lsb-release and os-release files.
|
|
// Searching for the debian_version file is the last resort. It contains
|
|
// an informative string like "6.0.6" or "wheezy/sid". Because of this
|
|
// "Debian " is printed before the contents of the debian_version file.
|
|
|
|
const char* distro_files[] = {
|
|
"/etc/oracle-release",
|
|
"/etc/mandriva-release",
|
|
"/etc/mandrake-release",
|
|
"/etc/sun-release",
|
|
"/etc/redhat-release",
|
|
"/etc/SuSE-release",
|
|
"/etc/lsb-release",
|
|
"/etc/turbolinux-release",
|
|
"/etc/gentoo-release",
|
|
"/etc/ltib-release",
|
|
"/etc/angstrom-version",
|
|
"/etc/system-release",
|
|
"/etc/os-release",
|
|
NULL };
|
|
|
|
void os::Linux::print_distro_info(outputStream* st) {
|
|
for (int i = 0;; i++) {
|
|
const char* file = distro_files[i];
|
|
if (file == NULL) {
|
|
break; // done
|
|
}
|
|
// If file prints, we found it.
|
|
if (_print_ascii_file(file, st)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (file_exists("/etc/debian_version")) {
|
|
st->print("Debian ");
|
|
_print_ascii_file("/etc/debian_version", st);
|
|
} else {
|
|
st->print_cr("Linux");
|
|
}
|
|
}
|
|
|
|
static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
|
|
char buf[256];
|
|
while (fgets(buf, sizeof(buf), fp)) {
|
|
// Edit out extra stuff in expected format
|
|
if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
|
|
char* ptr = strstr(buf, "\""); // the name is in quotes
|
|
if (ptr != NULL) {
|
|
ptr++; // go beyond first quote
|
|
char* nl = strchr(ptr, '\"');
|
|
if (nl != NULL) *nl = '\0';
|
|
strncpy(distro, ptr, length);
|
|
} else {
|
|
ptr = strstr(buf, "=");
|
|
ptr++; // go beyond equals then
|
|
char* nl = strchr(ptr, '\n');
|
|
if (nl != NULL) *nl = '\0';
|
|
strncpy(distro, ptr, length);
|
|
}
|
|
return;
|
|
} else if (get_first_line) {
|
|
char* nl = strchr(buf, '\n');
|
|
if (nl != NULL) *nl = '\0';
|
|
strncpy(distro, buf, length);
|
|
return;
|
|
}
|
|
}
|
|
// print last line and close
|
|
char* nl = strchr(buf, '\n');
|
|
if (nl != NULL) *nl = '\0';
|
|
strncpy(distro, buf, length);
|
|
}
|
|
|
|
static void parse_os_info(char* distro, size_t length, const char* file) {
|
|
FILE* fp = fopen(file, "r");
|
|
if (fp != NULL) {
|
|
// if suse format, print out first line
|
|
bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
|
|
parse_os_info_helper(fp, distro, length, get_first_line);
|
|
fclose(fp);
|
|
}
|
|
}
|
|
|
|
void os::get_summary_os_info(char* buf, size_t buflen) {
|
|
for (int i = 0;; i++) {
|
|
const char* file = distro_files[i];
|
|
if (file == NULL) {
|
|
break; // ran out of distro_files
|
|
}
|
|
if (file_exists(file)) {
|
|
parse_os_info(buf, buflen, file);
|
|
return;
|
|
}
|
|
}
|
|
// special case for debian
|
|
if (file_exists("/etc/debian_version")) {
|
|
strncpy(buf, "Debian ", buflen);
|
|
if (buflen > 7) {
|
|
parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
|
|
}
|
|
} else {
|
|
strncpy(buf, "Linux", buflen);
|
|
}
|
|
}
|
|
|
|
void os::Linux::print_libversion_info(outputStream* st) {
|
|
// libc, pthread
|
|
st->print("libc: ");
|
|
st->print("%s ", os::Linux::libc_version());
|
|
st->print("%s ", os::Linux::libpthread_version());
|
|
st->cr();
|
|
}
|
|
|
|
void os::Linux::print_proc_sys_info(outputStream* st) {
|
|
_print_ascii_file_h("/proc/sys/kernel/threads-max (system-wide limit on the number of threads)",
|
|
"/proc/sys/kernel/threads-max", st);
|
|
_print_ascii_file_h("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have)",
|
|
"/proc/sys/vm/max_map_count", st);
|
|
_print_ascii_file_h("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers)",
|
|
"/proc/sys/kernel/pid_max", st);
|
|
}
|
|
|
|
void os::Linux::print_system_memory_info(outputStream* st) {
|
|
_print_ascii_file_h("/proc/meminfo", "/proc/meminfo", st, false);
|
|
st->cr();
|
|
|
|
// some information regarding THPs; for details see
|
|
// https://www.kernel.org/doc/Documentation/vm/transhuge.txt
|
|
_print_ascii_file_h("/sys/kernel/mm/transparent_hugepage/enabled",
|
|
"/sys/kernel/mm/transparent_hugepage/enabled", st);
|
|
_print_ascii_file_h("/sys/kernel/mm/transparent_hugepage/defrag (defrag/compaction efforts parameter)",
|
|
"/sys/kernel/mm/transparent_hugepage/defrag", st);
|
|
}
|
|
|
|
bool os::Linux::query_process_memory_info(os::Linux::meminfo_t* info) {
|
|
FILE* f = ::fopen("/proc/self/status", "r");
|
|
const int num_values = sizeof(os::Linux::meminfo_t) / sizeof(size_t);
|
|
int num_found = 0;
|
|
char buf[256];
|
|
info->vmsize = info->vmpeak = info->vmrss = info->vmhwm = info->vmswap =
|
|
info->rssanon = info->rssfile = info->rssshmem = -1;
|
|
if (f != NULL) {
|
|
while (::fgets(buf, sizeof(buf), f) != NULL && num_found < num_values) {
|
|
if ( (info->vmsize == -1 && sscanf(buf, "VmSize: " SSIZE_FORMAT " kB", &info->vmsize) == 1) ||
|
|
(info->vmpeak == -1 && sscanf(buf, "VmPeak: " SSIZE_FORMAT " kB", &info->vmpeak) == 1) ||
|
|
(info->vmswap == -1 && sscanf(buf, "VmSwap: " SSIZE_FORMAT " kB", &info->vmswap) == 1) ||
|
|
(info->vmhwm == -1 && sscanf(buf, "VmHWM: " SSIZE_FORMAT " kB", &info->vmhwm) == 1) ||
|
|
(info->vmrss == -1 && sscanf(buf, "VmRSS: " SSIZE_FORMAT " kB", &info->vmrss) == 1) ||
|
|
(info->rssanon == -1 && sscanf(buf, "RssAnon: " SSIZE_FORMAT " kB", &info->rssanon) == 1) || // Needs Linux 4.5
|
|
(info->rssfile == -1 && sscanf(buf, "RssFile: " SSIZE_FORMAT " kB", &info->rssfile) == 1) || // Needs Linux 4.5
|
|
(info->rssshmem == -1 && sscanf(buf, "RssShmem: " SSIZE_FORMAT " kB", &info->rssshmem) == 1) // Needs Linux 4.5
|
|
)
|
|
{
|
|
num_found ++;
|
|
}
|
|
}
|
|
fclose(f);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void os::Linux::print_process_memory_info(outputStream* st) {
|
|
|
|
st->print_cr("Process Memory:");
|
|
|
|
// Print virtual and resident set size; peak values; swap; and for
|
|
// rss its components if the kernel is recent enough.
|
|
meminfo_t info;
|
|
if (query_process_memory_info(&info)) {
|
|
st->print_cr("Virtual Size: " SSIZE_FORMAT "K (peak: " SSIZE_FORMAT "K)", info.vmsize, info.vmpeak);
|
|
st->print("Resident Set Size: " SSIZE_FORMAT "K (peak: " SSIZE_FORMAT "K)", info.vmrss, info.vmhwm);
|
|
if (info.rssanon != -1) { // requires kernel >= 4.5
|
|
st->print(" (anon: " SSIZE_FORMAT "K, file: " SSIZE_FORMAT "K, shmem: " SSIZE_FORMAT "K)",
|
|
info.rssanon, info.rssfile, info.rssshmem);
|
|
}
|
|
st->cr();
|
|
if (info.vmswap != -1) { // requires kernel >= 2.6.34
|
|
st->print_cr("Swapped out: " SSIZE_FORMAT "K", info.vmswap);
|
|
}
|
|
} else {
|
|
st->print_cr("Could not open /proc/self/status to get process memory related information");
|
|
}
|
|
|
|
// Print glibc outstanding allocations.
|
|
// (note: there is no implementation of mallinfo for muslc)
|
|
#ifdef __GLIBC__
|
|
size_t total_allocated = 0;
|
|
bool might_have_wrapped = false;
|
|
if (_mallinfo2 != NULL) {
|
|
struct glibc_mallinfo2 mi = _mallinfo2();
|
|
total_allocated = mi.uordblks;
|
|
} else if (_mallinfo != NULL) {
|
|
// mallinfo is an old API. Member names mean next to nothing and, beyond that, are int.
|
|
// So values may have wrapped around. Still useful enough to see how much glibc thinks
|
|
// we allocated.
|
|
struct glibc_mallinfo mi = _mallinfo();
|
|
total_allocated = (size_t)(unsigned)mi.uordblks;
|
|
// Since mallinfo members are int, glibc values may have wrapped. Warn about this.
|
|
might_have_wrapped = (info.vmrss * K) > UINT_MAX && (info.vmrss * K) > (total_allocated + UINT_MAX);
|
|
}
|
|
if (_mallinfo2 != NULL || _mallinfo != NULL) {
|
|
st->print_cr("C-Heap outstanding allocations: " SIZE_FORMAT "K%s",
|
|
total_allocated / K,
|
|
might_have_wrapped ? " (may have wrapped)" : "");
|
|
}
|
|
#endif // __GLIBC__
|
|
|
|
}
|
|
|
|
bool os::Linux::print_ld_preload_file(outputStream* st) {
|
|
return _print_ascii_file("/etc/ld.so.preload", st, "/etc/ld.so.preload:");
|
|
}
|
|
|
|
void os::Linux::print_uptime_info(outputStream* st) {
|
|
struct sysinfo sinfo;
|
|
int ret = sysinfo(&sinfo);
|
|
if (ret == 0) {
|
|
os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
|
|
}
|
|
}
|
|
|
|
bool os::Linux::print_container_info(outputStream* st) {
|
|
if (!OSContainer::is_containerized()) {
|
|
st->print_cr("container information not found.");
|
|
return false;
|
|
}
|
|
|
|
st->print_cr("container (cgroup) information:");
|
|
|
|
const char *p_ct = OSContainer::container_type();
|
|
st->print_cr("container_type: %s", p_ct != NULL ? p_ct : "not supported");
|
|
|
|
char *p = OSContainer::cpu_cpuset_cpus();
|
|
st->print_cr("cpu_cpuset_cpus: %s", p != NULL ? p : "not supported");
|
|
free(p);
|
|
|
|
p = OSContainer::cpu_cpuset_memory_nodes();
|
|
st->print_cr("cpu_memory_nodes: %s", p != NULL ? p : "not supported");
|
|
free(p);
|
|
|
|
int i = OSContainer::active_processor_count();
|
|
st->print("active_processor_count: ");
|
|
if (i > 0) {
|
|
st->print_cr("%d", i);
|
|
} else {
|
|
st->print_cr("not supported");
|
|
}
|
|
|
|
i = OSContainer::cpu_quota();
|
|
st->print("cpu_quota: ");
|
|
if (i > 0) {
|
|
st->print_cr("%d", i);
|
|
} else {
|
|
st->print_cr("%s", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
|
|
}
|
|
|
|
i = OSContainer::cpu_period();
|
|
st->print("cpu_period: ");
|
|
if (i > 0) {
|
|
st->print_cr("%d", i);
|
|
} else {
|
|
st->print_cr("%s", i == OSCONTAINER_ERROR ? "not supported" : "no period");
|
|
}
|
|
|
|
i = OSContainer::cpu_shares();
|
|
st->print("cpu_shares: ");
|
|
if (i > 0) {
|
|
st->print_cr("%d", i);
|
|
} else {
|
|
st->print_cr("%s", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
|
|
}
|
|
|
|
jlong j = OSContainer::memory_limit_in_bytes();
|
|
st->print("memory_limit_in_bytes: ");
|
|
if (j > 0) {
|
|
st->print_cr(JLONG_FORMAT, j);
|
|
} else {
|
|
st->print_cr("%s", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
|
|
}
|
|
|
|
j = OSContainer::memory_and_swap_limit_in_bytes();
|
|
st->print("memory_and_swap_limit_in_bytes: ");
|
|
if (j > 0) {
|
|
st->print_cr(JLONG_FORMAT, j);
|
|
} else {
|
|
st->print_cr("%s", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
|
|
}
|
|
|
|
j = OSContainer::memory_soft_limit_in_bytes();
|
|
st->print("memory_soft_limit_in_bytes: ");
|
|
if (j > 0) {
|
|
st->print_cr(JLONG_FORMAT, j);
|
|
} else {
|
|
st->print_cr("%s", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
|
|
}
|
|
|
|
j = OSContainer::OSContainer::memory_usage_in_bytes();
|
|
st->print("memory_usage_in_bytes: ");
|
|
if (j > 0) {
|
|
st->print_cr(JLONG_FORMAT, j);
|
|
} else {
|
|
st->print_cr("%s", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
|
|
}
|
|
|
|
j = OSContainer::OSContainer::memory_max_usage_in_bytes();
|
|
st->print("memory_max_usage_in_bytes: ");
|
|
if (j > 0) {
|
|
st->print_cr(JLONG_FORMAT, j);
|
|
} else {
|
|
st->print_cr("%s", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
|
|
}
|
|
|
|
j = OSContainer::OSContainer::pids_max();
|
|
st->print("maximum number of tasks: ");
|
|
if (j > 0) {
|
|
st->print_cr(JLONG_FORMAT, j);
|
|
} else {
|
|
st->print_cr("%s", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void os::Linux::print_steal_info(outputStream* st) {
|
|
if (has_initial_tick_info) {
|
|
CPUPerfTicks pticks;
|
|
bool res = os::Linux::get_tick_information(&pticks, -1);
|
|
|
|
if (res && pticks.has_steal_ticks) {
|
|
uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
|
|
uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
|
|
double steal_ticks_perc = 0.0;
|
|
if (total_ticks_difference != 0) {
|
|
steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
|
|
}
|
|
st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
|
|
st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
|
|
}
|
|
}
|
|
}
|
|
|
|
void os::print_memory_info(outputStream* st) {
|
|
|
|
st->print("Memory:");
|
|
st->print(" %dk page", os::vm_page_size()>>10);
|
|
|
|
// values in struct sysinfo are "unsigned long"
|
|
struct sysinfo si;
|
|
sysinfo(&si);
|
|
|
|
st->print(", physical " UINT64_FORMAT "k",
|
|
os::physical_memory() >> 10);
|
|
st->print("(" UINT64_FORMAT "k free)",
|
|
os::available_memory() >> 10);
|
|
st->print(", swap " UINT64_FORMAT "k",
|
|
((jlong)si.totalswap * si.mem_unit) >> 10);
|
|
st->print("(" UINT64_FORMAT "k free)",
|
|
((jlong)si.freeswap * si.mem_unit) >> 10);
|
|
st->cr();
|
|
st->print("Page Sizes: ");
|
|
_page_sizes.print_on(st);
|
|
st->cr();
|
|
}
|
|
|
|
// Print the first "model name" line and the first "flags" line
|
|
// that we find and nothing more. We assume "model name" comes
|
|
// before "flags" so if we find a second "model name", then the
|
|
// "flags" field is considered missing.
|
|
static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
|
|
#if defined(IA32) || defined(AMD64)
|
|
// Other platforms have less repetitive cpuinfo files
|
|
FILE *fp = fopen("/proc/cpuinfo", "r");
|
|
if (fp) {
|
|
bool model_name_printed = false;
|
|
while (!feof(fp)) {
|
|
if (fgets(buf, buflen, fp)) {
|
|
// Assume model name comes before flags
|
|
if (strstr(buf, "model name") != NULL) {
|
|
if (!model_name_printed) {
|
|
st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
|
|
st->print_raw(buf);
|
|
model_name_printed = true;
|
|
} else {
|
|
// model name printed but not flags? Odd, just return
|
|
fclose(fp);
|
|
return true;
|
|
}
|
|
}
|
|
// print the flags line too
|
|
if (strstr(buf, "flags") != NULL) {
|
|
st->print_raw(buf);
|
|
fclose(fp);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
#endif // x86 platforms
|
|
return false;
|
|
}
|
|
|
|
// additional information about CPU e.g. available frequency ranges
|
|
static void print_sys_devices_cpu_info(outputStream* st, char* buf, size_t buflen) {
|
|
_print_ascii_file_h("Online cpus", "/sys/devices/system/cpu/online", st);
|
|
_print_ascii_file_h("Offline cpus", "/sys/devices/system/cpu/offline", st);
|
|
|
|
if (ExtensiveErrorReports) {
|
|
// cache related info (cpu 0, should be similar for other CPUs)
|
|
for (unsigned int i=0; i < 10; i++) { // handle max. 10 cache entries
|
|
char hbuf_level[60];
|
|
char hbuf_type[60];
|
|
char hbuf_size[60];
|
|
char hbuf_coherency_line_size[80];
|
|
snprintf(hbuf_level, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/level", i);
|
|
snprintf(hbuf_type, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/type", i);
|
|
snprintf(hbuf_size, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/size", i);
|
|
snprintf(hbuf_coherency_line_size, 80, "/sys/devices/system/cpu/cpu0/cache/index%u/coherency_line_size", i);
|
|
if (file_exists(hbuf_level)) {
|
|
_print_ascii_file_h("cache level", hbuf_level, st);
|
|
_print_ascii_file_h("cache type", hbuf_type, st);
|
|
_print_ascii_file_h("cache size", hbuf_size, st);
|
|
_print_ascii_file_h("cache coherency line size", hbuf_coherency_line_size, st);
|
|
}
|
|
}
|
|
}
|
|
|
|
// we miss the cpufreq entries on Power and s390x
|
|
#if defined(IA32) || defined(AMD64)
|
|
_print_ascii_file_h("BIOS frequency limitation", "/sys/devices/system/cpu/cpu0/cpufreq/bios_limit", st);
|
|
_print_ascii_file_h("Frequency switch latency (ns)", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_transition_latency", st);
|
|
_print_ascii_file_h("Available cpu frequencies", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies", st);
|
|
// min and max should be in the Available range but still print them (not all info might be available for all kernels)
|
|
if (ExtensiveErrorReports) {
|
|
_print_ascii_file_h("Maximum cpu frequency", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", st);
|
|
_print_ascii_file_h("Minimum cpu frequency", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_min_freq", st);
|
|
_print_ascii_file_h("Current cpu frequency", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq", st);
|
|
}
|
|
// governors are power schemes, see https://wiki.archlinux.org/index.php/CPU_frequency_scaling
|
|
if (ExtensiveErrorReports) {
|
|
_print_ascii_file_h("Available governors", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors", st);
|
|
}
|
|
_print_ascii_file_h("Current governor", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor", st);
|
|
// Core performance boost, see https://www.kernel.org/doc/Documentation/cpu-freq/boost.txt
|
|
// Raise operating frequency of some cores in a multi-core package if certain conditions apply, e.g.
|
|
// whole chip is not fully utilized
|
|
_print_ascii_file_h("Core performance/turbo boost", "/sys/devices/system/cpu/cpufreq/boost", st);
|
|
#endif
|
|
}
|
|
|
|
void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
|
|
// Only print the model name if the platform provides this as a summary
|
|
if (!print_model_name_and_flags(st, buf, buflen)) {
|
|
_print_ascii_file_h("/proc/cpuinfo", "/proc/cpuinfo", st, false);
|
|
}
|
|
st->cr();
|
|
print_sys_devices_cpu_info(st, buf, buflen);
|
|
}
|
|
|
|
#if defined(AMD64) || defined(IA32) || defined(X32)
|
|
const char* search_string = "model name";
|
|
#elif defined(M68K)
|
|
const char* search_string = "CPU";
|
|
#elif defined(PPC64)
|
|
const char* search_string = "cpu";
|
|
#elif defined(S390)
|
|
const char* search_string = "machine =";
|
|
#elif defined(SPARC)
|
|
const char* search_string = "cpu";
|
|
#else
|
|
const char* search_string = "Processor";
|
|
#endif
|
|
|
|
// Parses the cpuinfo file for string representing the model name.
|
|
void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
|
|
FILE* fp = fopen("/proc/cpuinfo", "r");
|
|
if (fp != NULL) {
|
|
while (!feof(fp)) {
|
|
char buf[256];
|
|
if (fgets(buf, sizeof(buf), fp)) {
|
|
char* start = strstr(buf, search_string);
|
|
if (start != NULL) {
|
|
char *ptr = start + strlen(search_string);
|
|
char *end = buf + strlen(buf);
|
|
while (ptr != end) {
|
|
// skip whitespace and colon for the rest of the name.
|
|
if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
|
|
break;
|
|
}
|
|
ptr++;
|
|
}
|
|
if (ptr != end) {
|
|
// reasonable string, get rid of newline and keep the rest
|
|
char* nl = strchr(buf, '\n');
|
|
if (nl != NULL) *nl = '\0';
|
|
strncpy(cpuinfo, ptr, length);
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
// cpuinfo not found or parsing failed, just print generic string. The entire
|
|
// /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
|
|
#if defined(AARCH64)
|
|
strncpy(cpuinfo, "AArch64", length);
|
|
#elif defined(AMD64)
|
|
strncpy(cpuinfo, "x86_64", length);
|
|
#elif defined(ARM) // Order wrt. AARCH64 is relevant!
|
|
strncpy(cpuinfo, "ARM", length);
|
|
#elif defined(IA32)
|
|
strncpy(cpuinfo, "x86_32", length);
|
|
#elif defined(IA64)
|
|
strncpy(cpuinfo, "IA64", length);
|
|
#elif defined(PPC)
|
|
strncpy(cpuinfo, "PPC64", length);
|
|
#elif defined(S390)
|
|
strncpy(cpuinfo, "S390", length);
|
|
#elif defined(SPARC)
|
|
strncpy(cpuinfo, "sparcv9", length);
|
|
#elif defined(ZERO_LIBARCH)
|
|
strncpy(cpuinfo, ZERO_LIBARCH, length);
|
|
#else
|
|
strncpy(cpuinfo, "unknown", length);
|
|
#endif
|
|
}
|
|
|
|
static char saved_jvm_path[MAXPATHLEN] = {0};
|
|
|
|
// Find the full path to the current module, libjvm.so
|
|
void os::jvm_path(char *buf, jint buflen) {
|
|
// Error checking.
|
|
if (buflen < MAXPATHLEN) {
|
|
assert(false, "must use a large-enough buffer");
|
|
buf[0] = '\0';
|
|
return;
|
|
}
|
|
// Lazy resolve the path to current module.
|
|
if (saved_jvm_path[0] != 0) {
|
|
strcpy(buf, saved_jvm_path);
|
|
return;
|
|
}
|
|
|
|
char dli_fname[MAXPATHLEN];
|
|
dli_fname[0] = '\0';
|
|
bool ret = dll_address_to_library_name(
|
|
CAST_FROM_FN_PTR(address, os::jvm_path),
|
|
dli_fname, sizeof(dli_fname), NULL);
|
|
assert(ret, "cannot locate libjvm");
|
|
char *rp = NULL;
|
|
if (ret && dli_fname[0] != '\0') {
|
|
rp = os::Posix::realpath(dli_fname, buf, buflen);
|
|
}
|
|
if (rp == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (Arguments::sun_java_launcher_is_altjvm()) {
|
|
// Support for the java launcher's '-XXaltjvm=<path>' option. Typical
|
|
// value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
|
|
// If "/jre/lib/" appears at the right place in the string, then
|
|
// assume we are installed in a JDK and we're done. Otherwise, check
|
|
// for a JAVA_HOME environment variable and fix up the path so it
|
|
// looks like libjvm.so is installed there (append a fake suffix
|
|
// hotspot/libjvm.so).
|
|
const char *p = buf + strlen(buf) - 1;
|
|
for (int count = 0; p > buf && count < 5; ++count) {
|
|
for (--p; p > buf && *p != '/'; --p)
|
|
/* empty */ ;
|
|
}
|
|
|
|
if (strncmp(p, "/jre/lib/", 9) != 0) {
|
|
// Look for JAVA_HOME in the environment.
|
|
char* java_home_var = ::getenv("JAVA_HOME");
|
|
if (java_home_var != NULL && java_home_var[0] != 0) {
|
|
char* jrelib_p;
|
|
int len;
|
|
|
|
// Check the current module name "libjvm.so".
|
|
p = strrchr(buf, '/');
|
|
if (p == NULL) {
|
|
return;
|
|
}
|
|
assert(strstr(p, "/libjvm") == p, "invalid library name");
|
|
|
|
rp = os::Posix::realpath(java_home_var, buf, buflen);
|
|
if (rp == NULL) {
|
|
return;
|
|
}
|
|
|
|
// determine if this is a legacy image or modules image
|
|
// modules image doesn't have "jre" subdirectory
|
|
len = strlen(buf);
|
|
assert(len < buflen, "Ran out of buffer room");
|
|
jrelib_p = buf + len;
|
|
snprintf(jrelib_p, buflen-len, "/jre/lib");
|
|
if (0 != access(buf, F_OK)) {
|
|
snprintf(jrelib_p, buflen-len, "/lib");
|
|
}
|
|
|
|
if (0 == access(buf, F_OK)) {
|
|
// Use current module name "libjvm.so"
|
|
len = strlen(buf);
|
|
snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
|
|
} else {
|
|
// Go back to path of .so
|
|
rp = os::Posix::realpath(dli_fname, buf, buflen);
|
|
if (rp == NULL) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
strncpy(saved_jvm_path, buf, MAXPATHLEN);
|
|
saved_jvm_path[MAXPATHLEN - 1] = '\0';
|
|
}
|
|
|
|
void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
|
|
// no prefix required, not even "_"
|
|
}
|
|
|
|
void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
|
|
// no suffix required
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Virtual Memory
|
|
|
|
int os::vm_page_size() {
|
|
// Seems redundant as all get out
|
|
assert(os::Linux::page_size() != -1, "must call os::init");
|
|
return os::Linux::page_size();
|
|
}
|
|
|
|
// Solaris allocates memory by pages.
|
|
int os::vm_allocation_granularity() {
|
|
assert(os::Linux::page_size() != -1, "must call os::init");
|
|
return os::Linux::page_size();
|
|
}
|
|
|
|
// Rationale behind this function:
|
|
// current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
|
|
// mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
|
|
// samples for JITted code. Here we create private executable mapping over the code cache
|
|
// and then we can use standard (well, almost, as mapping can change) way to provide
|
|
// info for the reporting script by storing timestamp and location of symbol
|
|
void linux_wrap_code(char* base, size_t size) {
|
|
static volatile jint cnt = 0;
|
|
|
|
if (!UseOprofile) {
|
|
return;
|
|
}
|
|
|
|
char buf[PATH_MAX+1];
|
|
int num = Atomic::add(&cnt, 1);
|
|
|
|
snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
|
|
os::get_temp_directory(), os::current_process_id(), num);
|
|
unlink(buf);
|
|
|
|
int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
|
|
|
|
if (fd != -1) {
|
|
off_t rv = ::lseek(fd, size-2, SEEK_SET);
|
|
if (rv != (off_t)-1) {
|
|
if (::write(fd, "", 1) == 1) {
|
|
mmap(base, size,
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
|
|
}
|
|
}
|
|
::close(fd);
|
|
unlink(buf);
|
|
}
|
|
}
|
|
|
|
static bool recoverable_mmap_error(int err) {
|
|
// See if the error is one we can let the caller handle. This
|
|
// list of errno values comes from JBS-6843484. I can't find a
|
|
// Linux man page that documents this specific set of errno
|
|
// values so while this list currently matches Solaris, it may
|
|
// change as we gain experience with this failure mode.
|
|
switch (err) {
|
|
case EBADF:
|
|
case EINVAL:
|
|
case ENOTSUP:
|
|
// let the caller deal with these errors
|
|
return true;
|
|
|
|
default:
|
|
// Any remaining errors on this OS can cause our reserved mapping
|
|
// to be lost. That can cause confusion where different data
|
|
// structures think they have the same memory mapped. The worst
|
|
// scenario is if both the VM and a library think they have the
|
|
// same memory mapped.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
|
|
int err) {
|
|
warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
|
|
", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
|
|
os::strerror(err), err);
|
|
}
|
|
|
|
static void warn_fail_commit_memory(char* addr, size_t size,
|
|
size_t alignment_hint, bool exec,
|
|
int err) {
|
|
warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
|
|
", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
|
|
alignment_hint, exec, os::strerror(err), err);
|
|
}
|
|
|
|
// NOTE: Linux kernel does not really reserve the pages for us.
|
|
// All it does is to check if there are enough free pages
|
|
// left at the time of mmap(). This could be a potential
|
|
// problem.
|
|
int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
|
|
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
|
|
uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
|
|
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
|
|
if (res != (uintptr_t) MAP_FAILED) {
|
|
if (UseNUMAInterleaving) {
|
|
numa_make_global(addr, size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int err = errno; // save errno from mmap() call above
|
|
|
|
if (!recoverable_mmap_error(err)) {
|
|
warn_fail_commit_memory(addr, size, exec, err);
|
|
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
|
|
return os::Linux::commit_memory_impl(addr, size, exec) == 0;
|
|
}
|
|
|
|
void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
|
|
const char* mesg) {
|
|
assert(mesg != NULL, "mesg must be specified");
|
|
int err = os::Linux::commit_memory_impl(addr, size, exec);
|
|
if (err != 0) {
|
|
// the caller wants all commit errors to exit with the specified mesg:
|
|
warn_fail_commit_memory(addr, size, exec, err);
|
|
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
|
|
}
|
|
}
|
|
|
|
// Define MAP_HUGETLB here so we can build HotSpot on old systems.
|
|
#ifndef MAP_HUGETLB
|
|
#define MAP_HUGETLB 0x40000
|
|
#endif
|
|
|
|
// If mmap flags are set with MAP_HUGETLB and the system supports multiple
|
|
// huge page sizes, flag bits [26:31] can be used to encode the log2 of the
|
|
// desired huge page size. Otherwise, the system's default huge page size will be used.
|
|
// See mmap(2) man page for more info (since Linux 3.8).
|
|
// https://lwn.net/Articles/533499/
|
|
#ifndef MAP_HUGE_SHIFT
|
|
#define MAP_HUGE_SHIFT 26
|
|
#endif
|
|
|
|
// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
|
|
#ifndef MADV_HUGEPAGE
|
|
#define MADV_HUGEPAGE 14
|
|
#endif
|
|
|
|
int os::Linux::commit_memory_impl(char* addr, size_t size,
|
|
size_t alignment_hint, bool exec) {
|
|
int err = os::Linux::commit_memory_impl(addr, size, exec);
|
|
if (err == 0) {
|
|
realign_memory(addr, size, alignment_hint);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
|
|
bool exec) {
|
|
return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
|
|
}
|
|
|
|
void os::pd_commit_memory_or_exit(char* addr, size_t size,
|
|
size_t alignment_hint, bool exec,
|
|
const char* mesg) {
|
|
assert(mesg != NULL, "mesg must be specified");
|
|
int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
|
|
if (err != 0) {
|
|
// the caller wants all commit errors to exit with the specified mesg:
|
|
warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
|
|
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
|
|
}
|
|
}
|
|
|
|
void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
|
|
if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
|
|
// We don't check the return value: madvise(MADV_HUGEPAGE) may not
|
|
// be supported or the memory may already be backed by huge pages.
|
|
::madvise(addr, bytes, MADV_HUGEPAGE);
|
|
}
|
|
}
|
|
|
|
void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
|
|
// This method works by doing an mmap over an existing mmaping and effectively discarding
|
|
// the existing pages. However it won't work for SHM-based large pages that cannot be
|
|
// uncommitted at all. We don't do anything in this case to avoid creating a segment with
|
|
// small pages on top of the SHM segment. This method always works for small pages, so we
|
|
// allow that in any case.
|
|
if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
|
|
commit_memory(addr, bytes, alignment_hint, !ExecMem);
|
|
}
|
|
}
|
|
|
|
void os::numa_make_global(char *addr, size_t bytes) {
|
|
Linux::numa_interleave_memory(addr, bytes);
|
|
}
|
|
|
|
// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
|
|
// bind policy to MPOL_PREFERRED for the current thread.
|
|
#define USE_MPOL_PREFERRED 0
|
|
|
|
void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
|
|
// To make NUMA and large pages more robust when both enabled, we need to ease
|
|
// the requirements on where the memory should be allocated. MPOL_BIND is the
|
|
// default policy and it will force memory to be allocated on the specified
|
|
// node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
|
|
// the specified node, but will not force it. Using this policy will prevent
|
|
// getting SIGBUS when trying to allocate large pages on NUMA nodes with no
|
|
// free large pages.
|
|
Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
|
|
Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
|
|
}
|
|
|
|
bool os::numa_topology_changed() { return false; }
|
|
|
|
size_t os::numa_get_groups_num() {
|
|
// Return just the number of nodes in which it's possible to allocate memory
|
|
// (in numa terminology, configured nodes).
|
|
return Linux::numa_num_configured_nodes();
|
|
}
|
|
|
|
int os::numa_get_group_id() {
|
|
int cpu_id = Linux::sched_getcpu();
|
|
if (cpu_id != -1) {
|
|
int lgrp_id = Linux::get_node_by_cpu(cpu_id);
|
|
if (lgrp_id != -1) {
|
|
return lgrp_id;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int os::numa_get_group_id_for_address(const void* address) {
|
|
void** pages = const_cast<void**>(&address);
|
|
int id = -1;
|
|
|
|
if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
|
|
return -1;
|
|
}
|
|
if (id < 0) {
|
|
return -1;
|
|
}
|
|
return id;
|
|
}
|
|
|
|
int os::Linux::get_existing_num_nodes() {
|
|
int node;
|
|
int highest_node_number = Linux::numa_max_node();
|
|
int num_nodes = 0;
|
|
|
|
// Get the total number of nodes in the system including nodes without memory.
|
|
for (node = 0; node <= highest_node_number; node++) {
|
|
if (is_node_in_existing_nodes(node)) {
|
|
num_nodes++;
|
|
}
|
|
}
|
|
return num_nodes;
|
|
}
|
|
|
|
size_t os::numa_get_leaf_groups(int *ids, size_t size) {
|
|
int highest_node_number = Linux::numa_max_node();
|
|
size_t i = 0;
|
|
|
|
// Map all node ids in which it is possible to allocate memory. Also nodes are
|
|
// not always consecutively available, i.e. available from 0 to the highest
|
|
// node number. If the nodes have been bound explicitly using numactl membind,
|
|
// then allocate memory from those nodes only.
|
|
for (int node = 0; node <= highest_node_number; node++) {
|
|
if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
|
|
ids[i++] = node;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
bool os::get_page_info(char *start, page_info* info) {
|
|
return false;
|
|
}
|
|
|
|
char *os::scan_pages(char *start, char* end, page_info* page_expected,
|
|
page_info* page_found) {
|
|
return end;
|
|
}
|
|
|
|
|
|
int os::Linux::sched_getcpu_syscall(void) {
|
|
unsigned int cpu = 0;
|
|
int retval = -1;
|
|
|
|
#if defined(IA32)
|
|
#ifndef SYS_getcpu
|
|
#define SYS_getcpu 318
|
|
#endif
|
|
retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
|
|
#elif defined(AMD64)
|
|
// Unfortunately we have to bring all these macros here from vsyscall.h
|
|
// to be able to compile on old linuxes.
|
|
#define __NR_vgetcpu 2
|
|
#define VSYSCALL_START (-10UL << 20)
|
|
#define VSYSCALL_SIZE 1024
|
|
#define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
|
|
typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
|
|
vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
|
|
retval = vgetcpu(&cpu, NULL, NULL);
|
|
#endif
|
|
|
|
return (retval == -1) ? retval : cpu;
|
|
}
|
|
|
|
void os::Linux::sched_getcpu_init() {
|
|
// sched_getcpu() should be in libc.
|
|
set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
|
|
dlsym(RTLD_DEFAULT, "sched_getcpu")));
|
|
|
|
// If it's not, try a direct syscall.
|
|
if (sched_getcpu() == -1) {
|
|
set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
|
|
(void*)&sched_getcpu_syscall));
|
|
}
|
|
|
|
if (sched_getcpu() == -1) {
|
|
vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
|
|
}
|
|
}
|
|
|
|
// Something to do with the numa-aware allocator needs these symbols
|
|
extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
|
|
extern "C" JNIEXPORT void numa_error(char *where) { }
|
|
|
|
// Handle request to load libnuma symbol version 1.1 (API v1). If it fails
|
|
// load symbol from base version instead.
|
|
void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
|
|
void *f = dlvsym(handle, name, "libnuma_1.1");
|
|
if (f == NULL) {
|
|
f = dlsym(handle, name);
|
|
}
|
|
return f;
|
|
}
|
|
|
|
// Handle request to load libnuma symbol version 1.2 (API v2) only.
|
|
// Return NULL if the symbol is not defined in this particular version.
|
|
void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
|
|
return dlvsym(handle, name, "libnuma_1.2");
|
|
}
|
|
|
|
// Check numa dependent syscalls
|
|
static bool numa_syscall_check() {
|
|
// NUMA APIs depend on several syscalls. E.g., get_mempolicy is required for numa_get_membind and
|
|
// numa_get_interleave_mask. But these dependent syscalls can be unsupported for various reasons.
|
|
// Especially in dockers, get_mempolicy is not allowed with the default configuration. So it's necessary
|
|
// to check whether the syscalls are available. Currently, only get_mempolicy is checked since checking
|
|
// others like mbind would cause unexpected side effects.
|
|
#ifdef SYS_get_mempolicy
|
|
int dummy = 0;
|
|
if (syscall(SYS_get_mempolicy, &dummy, NULL, 0, (void*)&dummy, 3) == -1) {
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
bool os::Linux::libnuma_init() {
|
|
// Requires sched_getcpu() and numa dependent syscalls support
|
|
if ((sched_getcpu() != -1) && numa_syscall_check()) {
|
|
void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
|
|
if (handle != NULL) {
|
|
set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
|
|
libnuma_dlsym(handle, "numa_node_to_cpus")));
|
|
set_numa_node_to_cpus_v2(CAST_TO_FN_PTR(numa_node_to_cpus_v2_func_t,
|
|
libnuma_v2_dlsym(handle, "numa_node_to_cpus")));
|
|
set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
|
|
libnuma_dlsym(handle, "numa_max_node")));
|
|
set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
|
|
libnuma_dlsym(handle, "numa_num_configured_nodes")));
|
|
set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
|
|
libnuma_dlsym(handle, "numa_available")));
|
|
set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
|
|
libnuma_dlsym(handle, "numa_tonode_memory")));
|
|
set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
|
|
libnuma_dlsym(handle, "numa_interleave_memory")));
|
|
set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
|
|
libnuma_v2_dlsym(handle, "numa_interleave_memory")));
|
|
set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
|
|
libnuma_dlsym(handle, "numa_set_bind_policy")));
|
|
set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
|
|
libnuma_dlsym(handle, "numa_bitmask_isbitset")));
|
|
set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
|
|
libnuma_dlsym(handle, "numa_distance")));
|
|
set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
|
|
libnuma_v2_dlsym(handle, "numa_get_membind")));
|
|
set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
|
|
libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
|
|
set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
|
|
libnuma_dlsym(handle, "numa_move_pages")));
|
|
set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
|
|
libnuma_dlsym(handle, "numa_set_preferred")));
|
|
|
|
if (numa_available() != -1) {
|
|
set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
|
|
set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
|
|
set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
|
|
set_numa_interleave_bitmask(_numa_get_interleave_mask());
|
|
set_numa_membind_bitmask(_numa_get_membind());
|
|
// Create an index -> node mapping, since nodes are not always consecutive
|
|
_nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, mtInternal);
|
|
rebuild_nindex_to_node_map();
|
|
// Create a cpu -> node mapping
|
|
_cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, mtInternal);
|
|
rebuild_cpu_to_node_map();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
|
|
// Creating guard page is very expensive. Java thread has HotSpot
|
|
// guard pages, only enable glibc guard page for non-Java threads.
|
|
// (Remember: compiler thread is a Java thread, too!)
|
|
return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
|
|
}
|
|
|
|
void os::Linux::rebuild_nindex_to_node_map() {
|
|
int highest_node_number = Linux::numa_max_node();
|
|
|
|
nindex_to_node()->clear();
|
|
for (int node = 0; node <= highest_node_number; node++) {
|
|
if (Linux::is_node_in_existing_nodes(node)) {
|
|
nindex_to_node()->append(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
|
|
// The table is later used in get_node_by_cpu().
|
|
void os::Linux::rebuild_cpu_to_node_map() {
|
|
const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
|
|
// in libnuma (possible values are starting from 16,
|
|
// and continuing up with every other power of 2, but less
|
|
// than the maximum number of CPUs supported by kernel), and
|
|
// is a subject to change (in libnuma version 2 the requirements
|
|
// are more reasonable) we'll just hardcode the number they use
|
|
// in the library.
|
|
const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
|
|
|
|
size_t cpu_num = processor_count();
|
|
size_t cpu_map_size = NCPUS / BitsPerCLong;
|
|
size_t cpu_map_valid_size =
|
|
MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
|
|
|
|
cpu_to_node()->clear();
|
|
cpu_to_node()->at_grow(cpu_num - 1);
|
|
|
|
size_t node_num = get_existing_num_nodes();
|
|
|
|
int distance = 0;
|
|
int closest_distance = INT_MAX;
|
|
int closest_node = 0;
|
|
unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
|
|
for (size_t i = 0; i < node_num; i++) {
|
|
// Check if node is configured (not a memory-less node). If it is not, find
|
|
// the closest configured node. Check also if node is bound, i.e. it's allowed
|
|
// to allocate memory from the node. If it's not allowed, map cpus in that node
|
|
// to the closest node from which memory allocation is allowed.
|
|
if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
|
|
!is_node_in_bound_nodes(nindex_to_node()->at(i))) {
|
|
closest_distance = INT_MAX;
|
|
// Check distance from all remaining nodes in the system. Ignore distance
|
|
// from itself, from another non-configured node, and from another non-bound
|
|
// node.
|
|
for (size_t m = 0; m < node_num; m++) {
|
|
if (m != i &&
|
|
is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
|
|
is_node_in_bound_nodes(nindex_to_node()->at(m))) {
|
|
distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
|
|
// If a closest node is found, update. There is always at least one
|
|
// configured and bound node in the system so there is always at least
|
|
// one node close.
|
|
if (distance != 0 && distance < closest_distance) {
|
|
closest_distance = distance;
|
|
closest_node = nindex_to_node()->at(m);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Current node is already a configured node.
|
|
closest_node = nindex_to_node()->at(i);
|
|
}
|
|
|
|
// Get cpus from the original node and map them to the closest node. If node
|
|
// is a configured node (not a memory-less node), then original node and
|
|
// closest node are the same.
|
|
if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
|
|
for (size_t j = 0; j < cpu_map_valid_size; j++) {
|
|
if (cpu_map[j] != 0) {
|
|
for (size_t k = 0; k < BitsPerCLong; k++) {
|
|
if (cpu_map[j] & (1UL << k)) {
|
|
int cpu_index = j * BitsPerCLong + k;
|
|
|
|
#ifndef PRODUCT
|
|
if (UseDebuggerErgo1 && cpu_index >= (int)cpu_num) {
|
|
// Some debuggers limit the processor count without
|
|
// intercepting the NUMA APIs. Just fake the values.
|
|
cpu_index = 0;
|
|
}
|
|
#endif
|
|
|
|
cpu_to_node()->at_put(cpu_index, closest_node);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
|
|
}
|
|
|
|
int os::Linux::numa_node_to_cpus(int node, unsigned long *buffer, int bufferlen) {
|
|
// use the latest version of numa_node_to_cpus if available
|
|
if (_numa_node_to_cpus_v2 != NULL) {
|
|
|
|
// libnuma bitmask struct
|
|
struct bitmask {
|
|
unsigned long size; /* number of bits in the map */
|
|
unsigned long *maskp;
|
|
};
|
|
|
|
struct bitmask mask;
|
|
mask.maskp = (unsigned long *)buffer;
|
|
mask.size = bufferlen * 8;
|
|
return _numa_node_to_cpus_v2(node, &mask);
|
|
} else if (_numa_node_to_cpus != NULL) {
|
|
return _numa_node_to_cpus(node, buffer, bufferlen);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int os::Linux::get_node_by_cpu(int cpu_id) {
|
|
if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
|
|
return cpu_to_node()->at(cpu_id);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
GrowableArray<int>* os::Linux::_cpu_to_node;
|
|
GrowableArray<int>* os::Linux::_nindex_to_node;
|
|
os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
|
|
os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
|
|
os::Linux::numa_node_to_cpus_v2_func_t os::Linux::_numa_node_to_cpus_v2;
|
|
os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
|
|
os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
|
|
os::Linux::numa_available_func_t os::Linux::_numa_available;
|
|
os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
|
|
os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
|
|
os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
|
|
os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
|
|
os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
|
|
os::Linux::numa_distance_func_t os::Linux::_numa_distance;
|
|
os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
|
|
os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
|
|
os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
|
|
os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
|
|
os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
|
|
unsigned long* os::Linux::_numa_all_nodes;
|
|
struct bitmask* os::Linux::_numa_all_nodes_ptr;
|
|
struct bitmask* os::Linux::_numa_nodes_ptr;
|
|
struct bitmask* os::Linux::_numa_interleave_bitmask;
|
|
struct bitmask* os::Linux::_numa_membind_bitmask;
|
|
|
|
bool os::pd_uncommit_memory(char* addr, size_t size, bool exec) {
|
|
uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
|
|
MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
|
|
return res != (uintptr_t) MAP_FAILED;
|
|
}
|
|
|
|
static address get_stack_commited_bottom(address bottom, size_t size) {
|
|
address nbot = bottom;
|
|
address ntop = bottom + size;
|
|
|
|
size_t page_sz = os::vm_page_size();
|
|
unsigned pages = size / page_sz;
|
|
|
|
unsigned char vec[1];
|
|
unsigned imin = 1, imax = pages + 1, imid;
|
|
int mincore_return_value = 0;
|
|
|
|
assert(imin <= imax, "Unexpected page size");
|
|
|
|
while (imin < imax) {
|
|
imid = (imax + imin) / 2;
|
|
nbot = ntop - (imid * page_sz);
|
|
|
|
// Use a trick with mincore to check whether the page is mapped or not.
|
|
// mincore sets vec to 1 if page resides in memory and to 0 if page
|
|
// is swapped output but if page we are asking for is unmapped
|
|
// it returns -1,ENOMEM
|
|
mincore_return_value = mincore(nbot, page_sz, vec);
|
|
|
|
if (mincore_return_value == -1) {
|
|
// Page is not mapped go up
|
|
// to find first mapped page
|
|
if (errno != EAGAIN) {
|
|
assert(errno == ENOMEM, "Unexpected mincore errno");
|
|
imax = imid;
|
|
}
|
|
} else {
|
|
// Page is mapped go down
|
|
// to find first not mapped page
|
|
imin = imid + 1;
|
|
}
|
|
}
|
|
|
|
nbot = nbot + page_sz;
|
|
|
|
// Adjust stack bottom one page up if last checked page is not mapped
|
|
if (mincore_return_value == -1) {
|
|
nbot = nbot + page_sz;
|
|
}
|
|
|
|
return nbot;
|
|
}
|
|
|
|
bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
|
|
int mincore_return_value;
|
|
const size_t stripe = 1024; // query this many pages each time
|
|
unsigned char vec[stripe + 1];
|
|
// set a guard
|
|
vec[stripe] = 'X';
|
|
|
|
const size_t page_sz = os::vm_page_size();
|
|
size_t pages = size / page_sz;
|
|
|
|
assert(is_aligned(start, page_sz), "Start address must be page aligned");
|
|
assert(is_aligned(size, page_sz), "Size must be page aligned");
|
|
|
|
committed_start = NULL;
|
|
|
|
int loops = (pages + stripe - 1) / stripe;
|
|
int committed_pages = 0;
|
|
address loop_base = start;
|
|
bool found_range = false;
|
|
|
|
for (int index = 0; index < loops && !found_range; index ++) {
|
|
assert(pages > 0, "Nothing to do");
|
|
int pages_to_query = (pages >= stripe) ? stripe : pages;
|
|
pages -= pages_to_query;
|
|
|
|
// Get stable read
|
|
while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
|
|
|
|
// During shutdown, some memory goes away without properly notifying NMT,
|
|
// E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
|
|
// Bailout and return as not committed for now.
|
|
if (mincore_return_value == -1 && errno == ENOMEM) {
|
|
return false;
|
|
}
|
|
|
|
assert(vec[stripe] == 'X', "overflow guard");
|
|
assert(mincore_return_value == 0, "Range must be valid");
|
|
// Process this stripe
|
|
for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
|
|
if ((vec[vecIdx] & 0x01) == 0) { // not committed
|
|
// End of current contiguous region
|
|
if (committed_start != NULL) {
|
|
found_range = true;
|
|
break;
|
|
}
|
|
} else { // committed
|
|
// Start of region
|
|
if (committed_start == NULL) {
|
|
committed_start = loop_base + page_sz * vecIdx;
|
|
}
|
|
committed_pages ++;
|
|
}
|
|
}
|
|
|
|
loop_base += pages_to_query * page_sz;
|
|
}
|
|
|
|
if (committed_start != NULL) {
|
|
assert(committed_pages > 0, "Must have committed region");
|
|
assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
|
|
assert(committed_start >= start && committed_start < start + size, "Out of range");
|
|
committed_size = page_sz * committed_pages;
|
|
return true;
|
|
} else {
|
|
assert(committed_pages == 0, "Should not have committed region");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Linux uses a growable mapping for the stack, and if the mapping for
|
|
// the stack guard pages is not removed when we detach a thread the
|
|
// stack cannot grow beyond the pages where the stack guard was
|
|
// mapped. If at some point later in the process the stack expands to
|
|
// that point, the Linux kernel cannot expand the stack any further
|
|
// because the guard pages are in the way, and a segfault occurs.
|
|
//
|
|
// However, it's essential not to split the stack region by unmapping
|
|
// a region (leaving a hole) that's already part of the stack mapping,
|
|
// so if the stack mapping has already grown beyond the guard pages at
|
|
// the time we create them, we have to truncate the stack mapping.
|
|
// So, we need to know the extent of the stack mapping when
|
|
// create_stack_guard_pages() is called.
|
|
|
|
// We only need this for stacks that are growable: at the time of
|
|
// writing thread stacks don't use growable mappings (i.e. those
|
|
// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
|
|
// only applies to the main thread.
|
|
|
|
// If the (growable) stack mapping already extends beyond the point
|
|
// where we're going to put our guard pages, truncate the mapping at
|
|
// that point by munmap()ping it. This ensures that when we later
|
|
// munmap() the guard pages we don't leave a hole in the stack
|
|
// mapping. This only affects the main/primordial thread
|
|
|
|
bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
|
|
if (os::is_primordial_thread()) {
|
|
// As we manually grow stack up to bottom inside create_attached_thread(),
|
|
// it's likely that os::Linux::initial_thread_stack_bottom is mapped and
|
|
// we don't need to do anything special.
|
|
// Check it first, before calling heavy function.
|
|
uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
|
|
unsigned char vec[1];
|
|
|
|
if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
|
|
// Fallback to slow path on all errors, including EAGAIN
|
|
stack_extent = (uintptr_t) get_stack_commited_bottom(
|
|
os::Linux::initial_thread_stack_bottom(),
|
|
(size_t)addr - stack_extent);
|
|
}
|
|
|
|
if (stack_extent < (uintptr_t)addr) {
|
|
::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
|
|
}
|
|
}
|
|
|
|
return os::commit_memory(addr, size, !ExecMem);
|
|
}
|
|
|
|
// If this is a growable mapping, remove the guard pages entirely by
|
|
// munmap()ping them. If not, just call uncommit_memory(). This only
|
|
// affects the main/primordial thread, but guard against future OS changes.
|
|
// It's safe to always unmap guard pages for primordial thread because we
|
|
// always place it right after end of the mapped region.
|
|
|
|
bool os::remove_stack_guard_pages(char* addr, size_t size) {
|
|
uintptr_t stack_extent, stack_base;
|
|
|
|
if (os::is_primordial_thread()) {
|
|
return ::munmap(addr, size) == 0;
|
|
}
|
|
|
|
return os::uncommit_memory(addr, size);
|
|
}
|
|
|
|
// 'requested_addr' is only treated as a hint, the return value may or
|
|
// may not start from the requested address. Unlike Linux mmap(), this
|
|
// function returns NULL to indicate failure.
|
|
static char* anon_mmap(char* requested_addr, size_t bytes) {
|
|
// MAP_FIXED is intentionally left out, to leave existing mappings intact.
|
|
const int flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
|
|
|
|
// Map reserved/uncommitted pages PROT_NONE so we fail early if we
|
|
// touch an uncommitted page. Otherwise, the read/write might
|
|
// succeed if we have enough swap space to back the physical page.
|
|
char* addr = (char*)::mmap(requested_addr, bytes, PROT_NONE, flags, -1, 0);
|
|
|
|
return addr == MAP_FAILED ? NULL : addr;
|
|
}
|
|
|
|
// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
|
|
// (req_addr != NULL) or with a given alignment.
|
|
// - bytes shall be a multiple of alignment.
|
|
// - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
|
|
// - alignment sets the alignment at which memory shall be allocated.
|
|
// It must be a multiple of allocation granularity.
|
|
// Returns address of memory or NULL. If req_addr was not NULL, will only return
|
|
// req_addr or NULL.
|
|
static char* anon_mmap_aligned(char* req_addr, size_t bytes, size_t alignment) {
|
|
size_t extra_size = bytes;
|
|
if (req_addr == NULL && alignment > 0) {
|
|
extra_size += alignment;
|
|
}
|
|
|
|
char* start = anon_mmap(req_addr, extra_size);
|
|
if (start != NULL) {
|
|
if (req_addr != NULL) {
|
|
if (start != req_addr) {
|
|
::munmap(start, extra_size);
|
|
start = NULL;
|
|
}
|
|
} else {
|
|
char* const start_aligned = align_up(start, alignment);
|
|
char* const end_aligned = start_aligned + bytes;
|
|
char* const end = start + extra_size;
|
|
if (start_aligned > start) {
|
|
::munmap(start, start_aligned - start);
|
|
}
|
|
if (end_aligned < end) {
|
|
::munmap(end_aligned, end - end_aligned);
|
|
}
|
|
start = start_aligned;
|
|
}
|
|
}
|
|
return start;
|
|
}
|
|
|
|
static int anon_munmap(char * addr, size_t size) {
|
|
return ::munmap(addr, size) == 0;
|
|
}
|
|
|
|
char* os::pd_reserve_memory(size_t bytes, bool exec) {
|
|
return anon_mmap(NULL, bytes);
|
|
}
|
|
|
|
bool os::pd_release_memory(char* addr, size_t size) {
|
|
return anon_munmap(addr, size);
|
|
}
|
|
|
|
#ifdef CAN_SHOW_REGISTERS_ON_ASSERT
|
|
extern char* g_assert_poison; // assertion poison page address
|
|
#endif
|
|
|
|
static bool linux_mprotect(char* addr, size_t size, int prot) {
|
|
// Linux wants the mprotect address argument to be page aligned.
|
|
char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
|
|
|
|
// According to SUSv3, mprotect() should only be used with mappings
|
|
// established by mmap(), and mmap() always maps whole pages. Unaligned
|
|
// 'addr' likely indicates problem in the VM (e.g. trying to change
|
|
// protection of malloc'ed or statically allocated memory). Check the
|
|
// caller if you hit this assert.
|
|
assert(addr == bottom, "sanity check");
|
|
|
|
size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
|
|
// Don't log anything if we're executing in the poison page signal handling
|
|
// context. It can lead to reentrant use of other parts of the VM code.
|
|
#ifdef CAN_SHOW_REGISTERS_ON_ASSERT
|
|
if (addr != g_assert_poison)
|
|
#endif
|
|
Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
|
|
return ::mprotect(bottom, size, prot) == 0;
|
|
}
|
|
|
|
// Set protections specified
|
|
bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
|
|
bool is_committed) {
|
|
unsigned int p = 0;
|
|
switch (prot) {
|
|
case MEM_PROT_NONE: p = PROT_NONE; break;
|
|
case MEM_PROT_READ: p = PROT_READ; break;
|
|
case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
|
|
case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
// is_committed is unused.
|
|
return linux_mprotect(addr, bytes, p);
|
|
}
|
|
|
|
bool os::guard_memory(char* addr, size_t size) {
|
|
return linux_mprotect(addr, size, PROT_NONE);
|
|
}
|
|
|
|
bool os::unguard_memory(char* addr, size_t size) {
|
|
return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
|
|
}
|
|
|
|
bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
|
|
size_t page_size) {
|
|
bool result = false;
|
|
void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
|
|
MAP_ANONYMOUS|MAP_PRIVATE,
|
|
-1, 0);
|
|
if (p != MAP_FAILED) {
|
|
void *aligned_p = align_up(p, page_size);
|
|
|
|
result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
|
|
|
|
munmap(p, page_size * 2);
|
|
}
|
|
|
|
if (warn && !result) {
|
|
warning("TransparentHugePages is not supported by the operating system.");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int os::Linux::hugetlbfs_page_size_flag(size_t page_size) {
|
|
if (page_size != default_large_page_size()) {
|
|
return (exact_log2(page_size) << MAP_HUGE_SHIFT);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
|
|
// Include the page size flag to ensure we sanity check the correct page size.
|
|
int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_HUGETLB | hugetlbfs_page_size_flag(page_size);
|
|
void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE, flags, -1, 0);
|
|
|
|
if (p != MAP_FAILED) {
|
|
// Mapping succeeded, sanity check passed.
|
|
munmap(p, page_size);
|
|
return true;
|
|
} else {
|
|
log_info(pagesize)("Large page size (" SIZE_FORMAT "%s) failed sanity check, "
|
|
"checking if smaller large page sizes are usable",
|
|
byte_size_in_exact_unit(page_size),
|
|
exact_unit_for_byte_size(page_size));
|
|
for (size_t page_size_ = _page_sizes.next_smaller(page_size);
|
|
page_size_ != (size_t)os::vm_page_size();
|
|
page_size_ = _page_sizes.next_smaller(page_size_)) {
|
|
flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_HUGETLB | hugetlbfs_page_size_flag(page_size_);
|
|
p = mmap(NULL, page_size_, PROT_READ|PROT_WRITE, flags, -1, 0);
|
|
if (p != MAP_FAILED) {
|
|
// Mapping succeeded, sanity check passed.
|
|
munmap(p, page_size_);
|
|
log_info(pagesize)("Large page size (" SIZE_FORMAT "%s) passed sanity check",
|
|
byte_size_in_exact_unit(page_size_),
|
|
exact_unit_for_byte_size(page_size_));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (warn) {
|
|
warning("HugeTLBFS is not configured or not supported by the operating system.");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool os::Linux::shm_hugetlbfs_sanity_check(bool warn, size_t page_size) {
|
|
// Try to create a large shared memory segment.
|
|
int shmid = shmget(IPC_PRIVATE, page_size, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
|
|
if (shmid == -1) {
|
|
// Possible reasons for shmget failure:
|
|
// 1. shmmax is too small for the request.
|
|
// > check shmmax value: cat /proc/sys/kernel/shmmax
|
|
// > increase shmmax value: echo "new_value" > /proc/sys/kernel/shmmax
|
|
// 2. not enough large page memory.
|
|
// > check available large pages: cat /proc/meminfo
|
|
// > increase amount of large pages:
|
|
// sysctl -w vm.nr_hugepages=new_value
|
|
// > For more information regarding large pages please refer to:
|
|
// https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
|
|
if (warn) {
|
|
warning("Large pages using UseSHM are not configured on this system.");
|
|
}
|
|
return false;
|
|
}
|
|
// Managed to create a segment, now delete it.
|
|
shmctl(shmid, IPC_RMID, NULL);
|
|
return true;
|
|
}
|
|
|
|
// From the coredump_filter documentation:
|
|
//
|
|
// - (bit 0) anonymous private memory
|
|
// - (bit 1) anonymous shared memory
|
|
// - (bit 2) file-backed private memory
|
|
// - (bit 3) file-backed shared memory
|
|
// - (bit 4) ELF header pages in file-backed private memory areas (it is
|
|
// effective only if the bit 2 is cleared)
|
|
// - (bit 5) hugetlb private memory
|
|
// - (bit 6) hugetlb shared memory
|
|
// - (bit 7) dax private memory
|
|
// - (bit 8) dax shared memory
|
|
//
|
|
static void set_coredump_filter(CoredumpFilterBit bit) {
|
|
FILE *f;
|
|
long cdm;
|
|
|
|
if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (fscanf(f, "%lx", &cdm) != 1) {
|
|
fclose(f);
|
|
return;
|
|
}
|
|
|
|
long saved_cdm = cdm;
|
|
rewind(f);
|
|
cdm |= bit;
|
|
|
|
if (cdm != saved_cdm) {
|
|
fprintf(f, "%#lx", cdm);
|
|
}
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
// Large page support
|
|
|
|
static size_t _large_page_size = 0;
|
|
|
|
static size_t scan_default_large_page_size() {
|
|
size_t default_large_page_size = 0;
|
|
|
|
// large_page_size on Linux is used to round up heap size. x86 uses either
|
|
// 2M or 4M page, depending on whether PAE (Physical Address Extensions)
|
|
// mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
|
|
// page as large as 1G.
|
|
//
|
|
// Here we try to figure out page size by parsing /proc/meminfo and looking
|
|
// for a line with the following format:
|
|
// Hugepagesize: 2048 kB
|
|
//
|
|
// If we can't determine the value (e.g. /proc is not mounted, or the text
|
|
// format has been changed), we'll set largest page size to 0
|
|
|
|
FILE *fp = fopen("/proc/meminfo", "r");
|
|
if (fp) {
|
|
while (!feof(fp)) {
|
|
int x = 0;
|
|
char buf[16];
|
|
if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
|
|
if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
|
|
default_large_page_size = x * K;
|
|
break;
|
|
}
|
|
} else {
|
|
// skip to next line
|
|
for (;;) {
|
|
int ch = fgetc(fp);
|
|
if (ch == EOF || ch == (int)'\n') break;
|
|
}
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
|
|
return default_large_page_size;
|
|
}
|
|
|
|
static os::PageSizes scan_multiple_page_support() {
|
|
// Scan /sys/kernel/mm/hugepages
|
|
// to discover the available page sizes
|
|
const char* sys_hugepages = "/sys/kernel/mm/hugepages";
|
|
os::PageSizes page_sizes;
|
|
|
|
DIR *dir = opendir(sys_hugepages);
|
|
|
|
struct dirent *entry;
|
|
size_t page_size;
|
|
while ((entry = readdir(dir)) != NULL) {
|
|
if (entry->d_type == DT_DIR &&
|
|
sscanf(entry->d_name, "hugepages-%zukB", &page_size) == 1) {
|
|
// The kernel is using kB, hotspot uses bytes
|
|
// Add each found Large Page Size to page_sizes
|
|
page_sizes.add(page_size * K);
|
|
}
|
|
}
|
|
closedir(dir);
|
|
|
|
LogTarget(Debug, pagesize) lt;
|
|
if (lt.is_enabled()) {
|
|
LogStream ls(lt);
|
|
ls.print("Large Page sizes: ");
|
|
page_sizes.print_on(&ls);
|
|
}
|
|
|
|
return page_sizes;
|
|
}
|
|
|
|
size_t os::Linux::default_large_page_size() {
|
|
return _default_large_page_size;
|
|
}
|
|
|
|
void warn_no_large_pages_configured() {
|
|
if (!FLAG_IS_DEFAULT(UseLargePages)) {
|
|
log_warning(pagesize)("UseLargePages disabled, no large pages configured and available on the system.");
|
|
}
|
|
}
|
|
|
|
bool os::Linux::setup_large_page_type(size_t page_size) {
|
|
if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
|
|
FLAG_IS_DEFAULT(UseSHM) &&
|
|
FLAG_IS_DEFAULT(UseTransparentHugePages)) {
|
|
|
|
// The type of large pages has not been specified by the user.
|
|
|
|
// Try UseHugeTLBFS and then UseSHM.
|
|
UseHugeTLBFS = UseSHM = true;
|
|
|
|
// Don't try UseTransparentHugePages since there are known
|
|
// performance issues with it turned on. This might change in the future.
|
|
UseTransparentHugePages = false;
|
|
}
|
|
|
|
if (UseTransparentHugePages) {
|
|
bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
|
|
if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
|
|
UseHugeTLBFS = false;
|
|
UseSHM = false;
|
|
return true;
|
|
}
|
|
UseTransparentHugePages = false;
|
|
}
|
|
|
|
if (UseHugeTLBFS) {
|
|
bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
|
|
if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
|
|
UseSHM = false;
|
|
return true;
|
|
}
|
|
UseHugeTLBFS = false;
|
|
}
|
|
|
|
if (UseSHM) {
|
|
bool warn_on_failure = !FLAG_IS_DEFAULT(UseSHM);
|
|
if (shm_hugetlbfs_sanity_check(warn_on_failure, page_size)) {
|
|
return true;
|
|
}
|
|
UseSHM = false;
|
|
}
|
|
|
|
warn_no_large_pages_configured();
|
|
return false;
|
|
}
|
|
|
|
void os::large_page_init() {
|
|
// 1) Handle the case where we do not want to use huge pages and hence
|
|
// there is no need to scan the OS for related info
|
|
if (!UseLargePages &&
|
|
!UseTransparentHugePages &&
|
|
!UseHugeTLBFS &&
|
|
!UseSHM) {
|
|
// Not using large pages.
|
|
return;
|
|
}
|
|
|
|
if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
|
|
// The user explicitly turned off large pages.
|
|
// Ignore the rest of the large pages flags.
|
|
UseTransparentHugePages = false;
|
|
UseHugeTLBFS = false;
|
|
UseSHM = false;
|
|
return;
|
|
}
|
|
|
|
// 2) Scan OS info
|
|
size_t default_large_page_size = scan_default_large_page_size();
|
|
os::Linux::_default_large_page_size = default_large_page_size;
|
|
if (default_large_page_size == 0) {
|
|
// No large pages configured, return.
|
|
warn_no_large_pages_configured();
|
|
UseLargePages = false;
|
|
UseTransparentHugePages = false;
|
|
UseHugeTLBFS = false;
|
|
UseSHM = false;
|
|
return;
|
|
}
|
|
os::PageSizes all_large_pages = scan_multiple_page_support();
|
|
|
|
// 3) Consistency check and post-processing
|
|
|
|
// It is unclear if /sys/kernel/mm/hugepages/ and /proc/meminfo could disagree. Manually
|
|
// re-add the default page size to the list of page sizes to be sure.
|
|
all_large_pages.add(default_large_page_size);
|
|
|
|
// Check LargePageSizeInBytes matches an available page size and if so set _large_page_size
|
|
// using LargePageSizeInBytes as the maximum allowed large page size. If LargePageSizeInBytes
|
|
// doesn't match an available page size set _large_page_size to default_large_page_size
|
|
// and use it as the maximum.
|
|
if (FLAG_IS_DEFAULT(LargePageSizeInBytes) ||
|
|
LargePageSizeInBytes == 0 ||
|
|
LargePageSizeInBytes == default_large_page_size) {
|
|
_large_page_size = default_large_page_size;
|
|
log_info(pagesize)("Using the default large page size: " SIZE_FORMAT "%s",
|
|
byte_size_in_exact_unit(_large_page_size),
|
|
exact_unit_for_byte_size(_large_page_size));
|
|
} else {
|
|
if (all_large_pages.contains(LargePageSizeInBytes)) {
|
|
_large_page_size = LargePageSizeInBytes;
|
|
log_info(pagesize)("Overriding default large page size (" SIZE_FORMAT "%s) "
|
|
"using LargePageSizeInBytes: " SIZE_FORMAT "%s",
|
|
byte_size_in_exact_unit(default_large_page_size),
|
|
exact_unit_for_byte_size(default_large_page_size),
|
|
byte_size_in_exact_unit(_large_page_size),
|
|
exact_unit_for_byte_size(_large_page_size));
|
|
} else {
|
|
_large_page_size = default_large_page_size;
|
|
log_info(pagesize)("LargePageSizeInBytes is not a valid large page size (" SIZE_FORMAT "%s) "
|
|
"using the default large page size: " SIZE_FORMAT "%s",
|
|
byte_size_in_exact_unit(LargePageSizeInBytes),
|
|
exact_unit_for_byte_size(LargePageSizeInBytes),
|
|
byte_size_in_exact_unit(_large_page_size),
|
|
exact_unit_for_byte_size(_large_page_size));
|
|
}
|
|
}
|
|
|
|
// Populate _page_sizes with large page sizes less than or equal to
|
|
// _large_page_size.
|
|
for (size_t page_size = _large_page_size; page_size != 0;
|
|
page_size = all_large_pages.next_smaller(page_size)) {
|
|
_page_sizes.add(page_size);
|
|
}
|
|
|
|
LogTarget(Info, pagesize) lt;
|
|
if (lt.is_enabled()) {
|
|
LogStream ls(lt);
|
|
ls.print("Usable page sizes: ");
|
|
_page_sizes.print_on(&ls);
|
|
}
|
|
|
|
// Now determine the type of large pages to use:
|
|
UseLargePages = os::Linux::setup_large_page_type(_large_page_size);
|
|
|
|
set_coredump_filter(LARGEPAGES_BIT);
|
|
}
|
|
|
|
#ifndef SHM_HUGETLB
|
|
#define SHM_HUGETLB 04000
|
|
#endif
|
|
|
|
#define shm_warning_format(format, ...) \
|
|
do { \
|
|
if (UseLargePages && \
|
|
(!FLAG_IS_DEFAULT(UseLargePages) || \
|
|
!FLAG_IS_DEFAULT(UseSHM) || \
|
|
!FLAG_IS_DEFAULT(LargePageSizeInBytes))) { \
|
|
warning(format, __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define shm_warning(str) shm_warning_format("%s", str)
|
|
|
|
#define shm_warning_with_errno(str) \
|
|
do { \
|
|
int err = errno; \
|
|
shm_warning_format(str " (error = %d)", err); \
|
|
} while (0)
|
|
|
|
static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
|
|
assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
|
|
|
|
if (!is_aligned(alignment, SHMLBA)) {
|
|
assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
|
|
return NULL;
|
|
}
|
|
|
|
// To ensure that we get 'alignment' aligned memory from shmat,
|
|
// we pre-reserve aligned virtual memory and then attach to that.
|
|
|
|
char* pre_reserved_addr = anon_mmap_aligned(NULL /* req_addr */, bytes, alignment);
|
|
if (pre_reserved_addr == NULL) {
|
|
// Couldn't pre-reserve aligned memory.
|
|
shm_warning("Failed to pre-reserve aligned memory for shmat.");
|
|
return NULL;
|
|
}
|
|
|
|
// SHM_REMAP is needed to allow shmat to map over an existing mapping.
|
|
char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
|
|
|
|
if ((intptr_t)addr == -1) {
|
|
int err = errno;
|
|
shm_warning_with_errno("Failed to attach shared memory.");
|
|
|
|
assert(err != EACCES, "Unexpected error");
|
|
assert(err != EIDRM, "Unexpected error");
|
|
assert(err != EINVAL, "Unexpected error");
|
|
|
|
// Since we don't know if the kernel unmapped the pre-reserved memory area
|
|
// we can't unmap it, since that would potentially unmap memory that was
|
|
// mapped from other threads.
|
|
return NULL;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
static char* shmat_at_address(int shmid, char* req_addr) {
|
|
if (!is_aligned(req_addr, SHMLBA)) {
|
|
assert(false, "Requested address needs to be SHMLBA aligned");
|
|
return NULL;
|
|
}
|
|
|
|
char* addr = (char*)shmat(shmid, req_addr, 0);
|
|
|
|
if ((intptr_t)addr == -1) {
|
|
shm_warning_with_errno("Failed to attach shared memory.");
|
|
return NULL;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
|
|
// If a req_addr has been provided, we assume that the caller has already aligned the address.
|
|
if (req_addr != NULL) {
|
|
assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
|
|
assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
|
|
return shmat_at_address(shmid, req_addr);
|
|
}
|
|
|
|
// Since shmid has been setup with SHM_HUGETLB, shmat will automatically
|
|
// return large page size aligned memory addresses when req_addr == NULL.
|
|
// However, if the alignment is larger than the large page size, we have
|
|
// to manually ensure that the memory returned is 'alignment' aligned.
|
|
if (alignment > os::large_page_size()) {
|
|
assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
|
|
return shmat_with_alignment(shmid, bytes, alignment);
|
|
} else {
|
|
return shmat_at_address(shmid, NULL);
|
|
}
|
|
}
|
|
|
|
char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
|
|
char* req_addr, bool exec) {
|
|
// "exec" is passed in but not used. Creating the shared image for
|
|
// the code cache doesn't have an SHM_X executable permission to check.
|
|
assert(UseLargePages && UseSHM, "only for SHM large pages");
|
|
assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
|
|
assert(is_aligned(req_addr, alignment), "Unaligned address");
|
|
|
|
if (!is_aligned(bytes, os::large_page_size())) {
|
|
return NULL; // Fallback to small pages.
|
|
}
|
|
|
|
// Create a large shared memory region to attach to based on size.
|
|
// Currently, size is the total size of the heap.
|
|
int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
|
|
if (shmid == -1) {
|
|
// Possible reasons for shmget failure:
|
|
// 1. shmmax is too small for the request.
|
|
// > check shmmax value: cat /proc/sys/kernel/shmmax
|
|
// > increase shmmax value: echo "new_value" > /proc/sys/kernel/shmmax
|
|
// 2. not enough large page memory.
|
|
// > check available large pages: cat /proc/meminfo
|
|
// > increase amount of large pages:
|
|
// sysctl -w vm.nr_hugepages=new_value
|
|
// > For more information regarding large pages please refer to:
|
|
// https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
|
|
// Note 1: different Linux may use different name for this property,
|
|
// e.g. on Redhat AS-3 it is "hugetlb_pool".
|
|
// Note 2: it's possible there's enough physical memory available but
|
|
// they are so fragmented after a long run that they can't
|
|
// coalesce into large pages. Try to reserve large pages when
|
|
// the system is still "fresh".
|
|
shm_warning_with_errno("Failed to reserve shared memory.");
|
|
return NULL;
|
|
}
|
|
|
|
// Attach to the region.
|
|
char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
|
|
|
|
// Remove shmid. If shmat() is successful, the actual shared memory segment
|
|
// will be deleted when it's detached by shmdt() or when the process
|
|
// terminates. If shmat() is not successful this will remove the shared
|
|
// segment immediately.
|
|
shmctl(shmid, IPC_RMID, NULL);
|
|
|
|
return addr;
|
|
}
|
|
|
|
static void warn_on_commit_special_failure(char* req_addr, size_t bytes,
|
|
size_t page_size, int error) {
|
|
assert(error == ENOMEM, "Only expect to fail if no memory is available");
|
|
|
|
bool warn_on_failure = UseLargePages &&
|
|
(!FLAG_IS_DEFAULT(UseLargePages) ||
|
|
!FLAG_IS_DEFAULT(UseHugeTLBFS) ||
|
|
!FLAG_IS_DEFAULT(LargePageSizeInBytes));
|
|
|
|
if (warn_on_failure) {
|
|
char msg[128];
|
|
jio_snprintf(msg, sizeof(msg), "Failed to reserve and commit memory. req_addr: "
|
|
PTR_FORMAT " bytes: " SIZE_FORMAT " page size: "
|
|
SIZE_FORMAT " (errno = %d).",
|
|
req_addr, bytes, page_size, error);
|
|
warning("%s", msg);
|
|
}
|
|
}
|
|
|
|
bool os::Linux::commit_memory_special(size_t bytes,
|
|
size_t page_size,
|
|
char* req_addr,
|
|
bool exec) {
|
|
assert(UseLargePages && UseHugeTLBFS, "Should only get here when HugeTLBFS large pages are used");
|
|
assert(is_aligned(bytes, page_size), "Unaligned size");
|
|
assert(is_aligned(req_addr, page_size), "Unaligned address");
|
|
assert(req_addr != NULL, "Must have a requested address for special mappings");
|
|
|
|
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
|
|
int flags = MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED;
|
|
|
|
// For large pages additional flags are required.
|
|
if (page_size > (size_t) os::vm_page_size()) {
|
|
flags |= MAP_HUGETLB | hugetlbfs_page_size_flag(page_size);
|
|
}
|
|
char* addr = (char*)::mmap(req_addr, bytes, prot, flags, -1, 0);
|
|
|
|
if (addr == MAP_FAILED) {
|
|
warn_on_commit_special_failure(req_addr, bytes, page_size, errno);
|
|
return false;
|
|
}
|
|
|
|
log_debug(pagesize)("Commit special mapping: " PTR_FORMAT ", size=" SIZE_FORMAT "%s, page size="
|
|
SIZE_FORMAT "%s",
|
|
p2i(addr), byte_size_in_exact_unit(bytes),
|
|
exact_unit_for_byte_size(bytes),
|
|
byte_size_in_exact_unit(page_size),
|
|
exact_unit_for_byte_size(page_size));
|
|
assert(is_aligned(addr, page_size), "Must be");
|
|
return true;
|
|
}
|
|
|
|
char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
|
|
size_t alignment,
|
|
size_t page_size,
|
|
char* req_addr,
|
|
bool exec) {
|
|
assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
|
|
assert(is_aligned(req_addr, alignment), "Must be");
|
|
assert(is_aligned(req_addr, page_size), "Must be");
|
|
assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
|
|
assert(_page_sizes.contains(page_size), "Must be a valid page size");
|
|
assert(page_size > (size_t)os::vm_page_size(), "Must be a large page size");
|
|
assert(bytes >= page_size, "Shouldn't allocate large pages for small sizes");
|
|
|
|
// We only end up here when at least 1 large page can be used.
|
|
// If the size is not a multiple of the large page size, we
|
|
// will mix the type of pages used, but in a decending order.
|
|
// Start off by reserving a range of the given size that is
|
|
// properly aligned. At this point no pages are committed. If
|
|
// a requested address is given it will be used and it must be
|
|
// aligned to both the large page size and the given alignment.
|
|
// The larger of the two will be used.
|
|
size_t required_alignment = MAX(page_size, alignment);
|
|
char* const aligned_start = anon_mmap_aligned(req_addr, bytes, required_alignment);
|
|
if (aligned_start == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// First commit using large pages.
|
|
size_t large_bytes = align_down(bytes, page_size);
|
|
bool large_committed = commit_memory_special(large_bytes, page_size, aligned_start, exec);
|
|
|
|
if (large_committed && bytes == large_bytes) {
|
|
// The size was large page aligned so no additional work is
|
|
// needed even if the commit failed.
|
|
return aligned_start;
|
|
}
|
|
|
|
// The requested size requires some small pages as well.
|
|
char* small_start = aligned_start + large_bytes;
|
|
size_t small_size = bytes - large_bytes;
|
|
if (!large_committed) {
|
|
// Failed to commit large pages, so we need to unmap the
|
|
// reminder of the orinal reservation.
|
|
::munmap(small_start, small_size);
|
|
return NULL;
|
|
}
|
|
|
|
// Commit the remaining bytes using small pages.
|
|
bool small_committed = commit_memory_special(small_size, os::vm_page_size(), small_start, exec);
|
|
if (!small_committed) {
|
|
// Failed to commit the remaining size, need to unmap
|
|
// the large pages part of the reservation.
|
|
::munmap(aligned_start, large_bytes);
|
|
return NULL;
|
|
}
|
|
return aligned_start;
|
|
}
|
|
|
|
char* os::pd_reserve_memory_special(size_t bytes, size_t alignment, size_t page_size,
|
|
char* req_addr, bool exec) {
|
|
assert(UseLargePages, "only for large pages");
|
|
|
|
char* addr;
|
|
if (UseSHM) {
|
|
// No support for using specific page sizes with SHM.
|
|
addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
|
|
} else {
|
|
assert(UseHugeTLBFS, "must be");
|
|
addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, page_size, req_addr, exec);
|
|
}
|
|
|
|
if (addr != NULL) {
|
|
if (UseNUMAInterleaving) {
|
|
numa_make_global(addr, bytes);
|
|
}
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
|
|
// detaching the SHM segment will also delete it, see reserve_memory_special_shm()
|
|
return shmdt(base) == 0;
|
|
}
|
|
|
|
bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
|
|
return pd_release_memory(base, bytes);
|
|
}
|
|
|
|
bool os::pd_release_memory_special(char* base, size_t bytes) {
|
|
assert(UseLargePages, "only for large pages");
|
|
bool res;
|
|
|
|
if (UseSHM) {
|
|
res = os::Linux::release_memory_special_shm(base, bytes);
|
|
} else {
|
|
assert(UseHugeTLBFS, "must be");
|
|
res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
size_t os::large_page_size() {
|
|
return _large_page_size;
|
|
}
|
|
|
|
// With SysV SHM the entire memory region must be allocated as shared
|
|
// memory.
|
|
// HugeTLBFS allows application to commit large page memory on demand.
|
|
// However, when committing memory with HugeTLBFS fails, the region
|
|
// that was supposed to be committed will lose the old reservation
|
|
// and allow other threads to steal that memory region. Because of this
|
|
// behavior we can't commit HugeTLBFS memory.
|
|
bool os::can_commit_large_page_memory() {
|
|
return UseTransparentHugePages;
|
|
}
|
|
|
|
bool os::can_execute_large_page_memory() {
|
|
return UseTransparentHugePages || UseHugeTLBFS;
|
|
}
|
|
|
|
char* os::pd_attempt_map_memory_to_file_at(char* requested_addr, size_t bytes, int file_desc) {
|
|
assert(file_desc >= 0, "file_desc is not valid");
|
|
char* result = pd_attempt_reserve_memory_at(requested_addr, bytes, !ExecMem);
|
|
if (result != NULL) {
|
|
if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
|
|
vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Reserve memory at an arbitrary address, only if that area is
|
|
// available (and not reserved for something else).
|
|
|
|
char* os::pd_attempt_reserve_memory_at(char* requested_addr, size_t bytes, bool exec) {
|
|
// Assert only that the size is a multiple of the page size, since
|
|
// that's all that mmap requires, and since that's all we really know
|
|
// about at this low abstraction level. If we need higher alignment,
|
|
// we can either pass an alignment to this method or verify alignment
|
|
// in one of the methods further up the call chain. See bug 5044738.
|
|
assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
|
|
|
|
// Repeatedly allocate blocks until the block is allocated at the
|
|
// right spot.
|
|
|
|
// Linux mmap allows caller to pass an address as hint; give it a try first,
|
|
// if kernel honors the hint then we can return immediately.
|
|
char * addr = anon_mmap(requested_addr, bytes);
|
|
if (addr == requested_addr) {
|
|
return requested_addr;
|
|
}
|
|
|
|
if (addr != NULL) {
|
|
// mmap() is successful but it fails to reserve at the requested address
|
|
anon_munmap(addr, bytes);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// Sleep forever; naked call to OS-specific sleep; use with CAUTION
|
|
void os::infinite_sleep() {
|
|
while (true) { // sleep forever ...
|
|
::sleep(100); // ... 100 seconds at a time
|
|
}
|
|
}
|
|
|
|
// Used to convert frequent JVM_Yield() to nops
|
|
bool os::dont_yield() {
|
|
return DontYieldALot;
|
|
}
|
|
|
|
// Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
|
|
// actually give up the CPU. Since skip buddy (v2.6.28):
|
|
//
|
|
// * Sets the yielding task as skip buddy for current CPU's run queue.
|
|
// * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
|
|
// * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
|
|
//
|
|
// An alternative is calling os::naked_short_nanosleep with a small number to avoid
|
|
// getting re-scheduled immediately.
|
|
//
|
|
void os::naked_yield() {
|
|
sched_yield();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// thread priority support
|
|
|
|
// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
|
|
// only supports dynamic priority, static priority must be zero. For real-time
|
|
// applications, Linux supports SCHED_RR which allows static priority (1-99).
|
|
// However, for large multi-threaded applications, SCHED_RR is not only slower
|
|
// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
|
|
// of 5 runs - Sep 2005).
|
|
//
|
|
// The following code actually changes the niceness of kernel-thread/LWP. It
|
|
// has an assumption that setpriority() only modifies one kernel-thread/LWP,
|
|
// not the entire user process, and user level threads are 1:1 mapped to kernel
|
|
// threads. It has always been the case, but could change in the future. For
|
|
// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
|
|
// It is only used when ThreadPriorityPolicy=1 and may require system level permission
|
|
// (e.g., root privilege or CAP_SYS_NICE capability).
|
|
|
|
int os::java_to_os_priority[CriticalPriority + 1] = {
|
|
19, // 0 Entry should never be used
|
|
|
|
4, // 1 MinPriority
|
|
3, // 2
|
|
2, // 3
|
|
|
|
1, // 4
|
|
0, // 5 NormPriority
|
|
-1, // 6
|
|
|
|
-2, // 7
|
|
-3, // 8
|
|
-4, // 9 NearMaxPriority
|
|
|
|
-5, // 10 MaxPriority
|
|
|
|
-5 // 11 CriticalPriority
|
|
};
|
|
|
|
static int prio_init() {
|
|
if (ThreadPriorityPolicy == 1) {
|
|
if (geteuid() != 0) {
|
|
if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy) && !FLAG_IS_JIMAGE_RESOURCE(ThreadPriorityPolicy)) {
|
|
warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
|
|
"e.g., being the root user. If the necessary permission is not " \
|
|
"possessed, changes to priority will be silently ignored.");
|
|
}
|
|
}
|
|
}
|
|
if (UseCriticalJavaThreadPriority) {
|
|
os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
OSReturn os::set_native_priority(Thread* thread, int newpri) {
|
|
if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
|
|
|
|
int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
|
|
return (ret == 0) ? OS_OK : OS_ERR;
|
|
}
|
|
|
|
OSReturn os::get_native_priority(const Thread* const thread,
|
|
int *priority_ptr) {
|
|
if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
|
|
*priority_ptr = java_to_os_priority[NormPriority];
|
|
return OS_OK;
|
|
}
|
|
|
|
errno = 0;
|
|
*priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
|
|
return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
|
|
}
|
|
|
|
// This is the fastest way to get thread cpu time on Linux.
|
|
// Returns cpu time (user+sys) for any thread, not only for current.
|
|
// POSIX compliant clocks are implemented in the kernels 2.6.16+.
|
|
// It might work on 2.6.10+ with a special kernel/glibc patch.
|
|
// For reference, please, see IEEE Std 1003.1-2004:
|
|
// http://www.unix.org/single_unix_specification
|
|
|
|
jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
|
|
struct timespec tp;
|
|
int status = clock_gettime(clockid, &tp);
|
|
assert(status == 0, "clock_gettime error: %s", os::strerror(errno));
|
|
return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
|
|
}
|
|
|
|
// Determine if the vmid is the parent pid for a child in a PID namespace.
|
|
// Return the namespace pid if so, otherwise -1.
|
|
int os::Linux::get_namespace_pid(int vmid) {
|
|
char fname[24];
|
|
int retpid = -1;
|
|
|
|
snprintf(fname, sizeof(fname), "/proc/%d/status", vmid);
|
|
FILE *fp = fopen(fname, "r");
|
|
|
|
if (fp) {
|
|
int pid, nspid;
|
|
int ret;
|
|
while (!feof(fp) && !ferror(fp)) {
|
|
ret = fscanf(fp, "NSpid: %d %d", &pid, &nspid);
|
|
if (ret == 1) {
|
|
break;
|
|
}
|
|
if (ret == 2) {
|
|
retpid = nspid;
|
|
break;
|
|
}
|
|
for (;;) {
|
|
int ch = fgetc(fp);
|
|
if (ch == EOF || ch == (int)'\n') break;
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
return retpid;
|
|
}
|
|
|
|
extern void report_error(char* file_name, int line_no, char* title,
|
|
char* format, ...);
|
|
|
|
// Some linux distributions (notably: Alpine Linux) include the
|
|
// grsecurity in the kernel. Of particular interest from a JVM perspective
|
|
// is PaX (https://pax.grsecurity.net/), which adds some security features
|
|
// related to page attributes. Specifically, the MPROTECT PaX functionality
|
|
// (https://pax.grsecurity.net/docs/mprotect.txt) prevents dynamic
|
|
// code generation by disallowing a (previously) writable page to be
|
|
// marked as executable. This is, of course, exactly what HotSpot does
|
|
// for both JIT compiled method, as well as for stubs, adapters, etc.
|
|
//
|
|
// Instead of crashing "lazily" when trying to make a page executable,
|
|
// this code probes for the presence of PaX and reports the failure
|
|
// eagerly.
|
|
static void check_pax(void) {
|
|
// Zero doesn't generate code dynamically, so no need to perform the PaX check
|
|
#ifndef ZERO
|
|
size_t size = os::Linux::page_size();
|
|
|
|
void* p = ::mmap(NULL, size, PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
if (p == MAP_FAILED) {
|
|
log_debug(os)("os_linux.cpp: check_pax: mmap failed (%s)" , os::strerror(errno));
|
|
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "failed to allocate memory for PaX check.");
|
|
}
|
|
|
|
int res = ::mprotect(p, size, PROT_WRITE|PROT_EXEC);
|
|
if (res == -1) {
|
|
log_debug(os)("os_linux.cpp: check_pax: mprotect failed (%s)" , os::strerror(errno));
|
|
vm_exit_during_initialization(
|
|
"Failed to mark memory page as executable - check if grsecurity/PaX is enabled");
|
|
}
|
|
|
|
::munmap(p, size);
|
|
#endif
|
|
}
|
|
|
|
// this is called _before_ most of the global arguments have been parsed
|
|
void os::init(void) {
|
|
char dummy; // used to get a guess on initial stack address
|
|
|
|
clock_tics_per_sec = sysconf(_SC_CLK_TCK);
|
|
|
|
Linux::set_page_size(sysconf(_SC_PAGESIZE));
|
|
if (Linux::page_size() == -1) {
|
|
fatal("os_linux.cpp: os::init: sysconf failed (%s)",
|
|
os::strerror(errno));
|
|
}
|
|
_page_sizes.add(Linux::page_size());
|
|
|
|
Linux::initialize_system_info();
|
|
|
|
#ifdef __GLIBC__
|
|
Linux::_mallinfo = CAST_TO_FN_PTR(Linux::mallinfo_func_t, dlsym(RTLD_DEFAULT, "mallinfo"));
|
|
Linux::_mallinfo2 = CAST_TO_FN_PTR(Linux::mallinfo2_func_t, dlsym(RTLD_DEFAULT, "mallinfo2"));
|
|
#endif // __GLIBC__
|
|
|
|
os::Linux::CPUPerfTicks pticks;
|
|
bool res = os::Linux::get_tick_information(&pticks, -1);
|
|
|
|
if (res && pticks.has_steal_ticks) {
|
|
has_initial_tick_info = true;
|
|
initial_total_ticks = pticks.total;
|
|
initial_steal_ticks = pticks.steal;
|
|
}
|
|
|
|
// _main_thread points to the thread that created/loaded the JVM.
|
|
Linux::_main_thread = pthread_self();
|
|
|
|
// retrieve entry point for pthread_setname_np
|
|
Linux::_pthread_setname_np =
|
|
(int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
|
|
|
|
check_pax();
|
|
|
|
os::Posix::init();
|
|
|
|
initial_time_count = javaTimeNanos();
|
|
}
|
|
|
|
// To install functions for atexit system call
|
|
extern "C" {
|
|
static void perfMemory_exit_helper() {
|
|
perfMemory_exit();
|
|
}
|
|
}
|
|
|
|
void os::pd_init_container_support() {
|
|
OSContainer::init();
|
|
}
|
|
|
|
void os::Linux::numa_init() {
|
|
|
|
// Java can be invoked as
|
|
// 1. Without numactl and heap will be allocated/configured on all nodes as
|
|
// per the system policy.
|
|
// 2. With numactl --interleave:
|
|
// Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
|
|
// API for membind case bitmask is reset.
|
|
// Interleave is only hint and Kernel can fallback to other nodes if
|
|
// no memory is available on the target nodes.
|
|
// 3. With numactl --membind:
|
|
// Use numa_get_membind(v2) API to get nodes bitmask. The same API for
|
|
// interleave case returns bitmask of all nodes.
|
|
// numa_all_nodes_ptr holds bitmask of all nodes.
|
|
// numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
|
|
// bitmask when externally configured to run on all or fewer nodes.
|
|
|
|
if (!Linux::libnuma_init()) {
|
|
FLAG_SET_ERGO(UseNUMA, false);
|
|
FLAG_SET_ERGO(UseNUMAInterleaving, false); // Also depends on libnuma.
|
|
} else {
|
|
if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
|
|
// If there's only one node (they start from 0) or if the process
|
|
// is bound explicitly to a single node using membind, disable NUMA
|
|
UseNUMA = false;
|
|
} else {
|
|
LogTarget(Info,os) log;
|
|
LogStream ls(log);
|
|
|
|
Linux::set_configured_numa_policy(Linux::identify_numa_policy());
|
|
|
|
struct bitmask* bmp = Linux::_numa_membind_bitmask;
|
|
const char* numa_mode = "membind";
|
|
|
|
if (Linux::is_running_in_interleave_mode()) {
|
|
bmp = Linux::_numa_interleave_bitmask;
|
|
numa_mode = "interleave";
|
|
}
|
|
|
|
ls.print("UseNUMA is enabled and invoked in '%s' mode."
|
|
" Heap will be configured using NUMA memory nodes:", numa_mode);
|
|
|
|
for (int node = 0; node <= Linux::numa_max_node(); node++) {
|
|
if (Linux::_numa_bitmask_isbitset(bmp, node)) {
|
|
ls.print(" %d", node);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// When NUMA requested, not-NUMA-aware allocations default to interleaving.
|
|
if (UseNUMA && !UseNUMAInterleaving) {
|
|
FLAG_SET_ERGO_IF_DEFAULT(UseNUMAInterleaving, true);
|
|
}
|
|
|
|
if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
|
|
// With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
|
|
// we can make the adaptive lgrp chunk resizing work. If the user specified both
|
|
// UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
|
|
// and disable adaptive resizing.
|
|
if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
|
|
warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
|
|
"disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
|
|
UseAdaptiveSizePolicy = false;
|
|
UseAdaptiveNUMAChunkSizing = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// this is called _after_ the global arguments have been parsed
|
|
jint os::init_2(void) {
|
|
|
|
// This could be set after os::Posix::init() but all platforms
|
|
// have to set it the same so we have to mirror Solaris.
|
|
DEBUG_ONLY(os::set_mutex_init_done();)
|
|
|
|
os::Posix::init_2();
|
|
|
|
Linux::fast_thread_clock_init();
|
|
|
|
if (PosixSignals::init() == JNI_ERR) {
|
|
return JNI_ERR;
|
|
}
|
|
|
|
if (AdjustStackSizeForTLS) {
|
|
get_minstack_init();
|
|
}
|
|
|
|
// Check and sets minimum stack sizes against command line options
|
|
if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
|
|
return JNI_ERR;
|
|
}
|
|
|
|
#if defined(IA32) && !defined(ZERO)
|
|
// Need to ensure we've determined the process's initial stack to
|
|
// perform the workaround
|
|
Linux::capture_initial_stack(JavaThread::stack_size_at_create());
|
|
workaround_expand_exec_shield_cs_limit();
|
|
#else
|
|
suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
|
|
if (!suppress_primordial_thread_resolution) {
|
|
Linux::capture_initial_stack(JavaThread::stack_size_at_create());
|
|
}
|
|
#endif
|
|
|
|
Linux::libpthread_init();
|
|
Linux::sched_getcpu_init();
|
|
log_info(os)("HotSpot is running with %s, %s",
|
|
Linux::libc_version(), Linux::libpthread_version());
|
|
|
|
if (UseNUMA || UseNUMAInterleaving) {
|
|
Linux::numa_init();
|
|
}
|
|
|
|
if (MaxFDLimit) {
|
|
// set the number of file descriptors to max. print out error
|
|
// if getrlimit/setrlimit fails but continue regardless.
|
|
struct rlimit nbr_files;
|
|
int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
|
|
if (status != 0) {
|
|
log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
|
|
} else {
|
|
nbr_files.rlim_cur = nbr_files.rlim_max;
|
|
status = setrlimit(RLIMIT_NOFILE, &nbr_files);
|
|
if (status != 0) {
|
|
log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
|
|
}
|
|
}
|
|
}
|
|
|
|
// at-exit methods are called in the reverse order of their registration.
|
|
// atexit functions are called on return from main or as a result of a
|
|
// call to exit(3C). There can be only 32 of these functions registered
|
|
// and atexit() does not set errno.
|
|
|
|
if (PerfAllowAtExitRegistration) {
|
|
// only register atexit functions if PerfAllowAtExitRegistration is set.
|
|
// atexit functions can be delayed until process exit time, which
|
|
// can be problematic for embedded VM situations. Embedded VMs should
|
|
// call DestroyJavaVM() to assure that VM resources are released.
|
|
|
|
// note: perfMemory_exit_helper atexit function may be removed in
|
|
// the future if the appropriate cleanup code can be added to the
|
|
// VM_Exit VMOperation's doit method.
|
|
if (atexit(perfMemory_exit_helper) != 0) {
|
|
warning("os::init_2 atexit(perfMemory_exit_helper) failed");
|
|
}
|
|
}
|
|
|
|
// initialize thread priority policy
|
|
prio_init();
|
|
|
|
if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
|
|
set_coredump_filter(DAX_SHARED_BIT);
|
|
}
|
|
|
|
if (DumpPrivateMappingsInCore) {
|
|
set_coredump_filter(FILE_BACKED_PVT_BIT);
|
|
}
|
|
|
|
if (DumpSharedMappingsInCore) {
|
|
set_coredump_filter(FILE_BACKED_SHARED_BIT);
|
|
}
|
|
|
|
if (DumpPerfMapAtExit && FLAG_IS_DEFAULT(UseCodeCacheFlushing)) {
|
|
// Disable code cache flushing to ensure the map file written at
|
|
// exit contains all nmethods generated during execution.
|
|
FLAG_SET_DEFAULT(UseCodeCacheFlushing, false);
|
|
}
|
|
|
|
return JNI_OK;
|
|
}
|
|
|
|
// older glibc versions don't have this macro (which expands to
|
|
// an optimized bit-counting function) so we have to roll our own
|
|
#ifndef CPU_COUNT
|
|
|
|
static int _cpu_count(const cpu_set_t* cpus) {
|
|
int count = 0;
|
|
// only look up to the number of configured processors
|
|
for (int i = 0; i < os::processor_count(); i++) {
|
|
if (CPU_ISSET(i, cpus)) {
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#define CPU_COUNT(cpus) _cpu_count(cpus)
|
|
|
|
#endif // CPU_COUNT
|
|
|
|
// Get the current number of available processors for this process.
|
|
// This value can change at any time during a process's lifetime.
|
|
// sched_getaffinity gives an accurate answer as it accounts for cpusets.
|
|
// If it appears there may be more than 1024 processors then we do a
|
|
// dynamic check - see 6515172 for details.
|
|
// If anything goes wrong we fallback to returning the number of online
|
|
// processors - which can be greater than the number available to the process.
|
|
int os::Linux::active_processor_count() {
|
|
cpu_set_t cpus; // can represent at most 1024 (CPU_SETSIZE) processors
|
|
cpu_set_t* cpus_p = &cpus;
|
|
int cpus_size = sizeof(cpu_set_t);
|
|
|
|
int configured_cpus = os::processor_count(); // upper bound on available cpus
|
|
int cpu_count = 0;
|
|
|
|
// old build platforms may not support dynamic cpu sets
|
|
#ifdef CPU_ALLOC
|
|
|
|
// To enable easy testing of the dynamic path on different platforms we
|
|
// introduce a diagnostic flag: UseCpuAllocPath
|
|
if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
|
|
// kernel may use a mask bigger than cpu_set_t
|
|
log_trace(os)("active_processor_count: using dynamic path %s"
|
|
"- configured processors: %d",
|
|
UseCpuAllocPath ? "(forced) " : "",
|
|
configured_cpus);
|
|
cpus_p = CPU_ALLOC(configured_cpus);
|
|
if (cpus_p != NULL) {
|
|
cpus_size = CPU_ALLOC_SIZE(configured_cpus);
|
|
// zero it just to be safe
|
|
CPU_ZERO_S(cpus_size, cpus_p);
|
|
}
|
|
else {
|
|
// failed to allocate so fallback to online cpus
|
|
int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
|
|
log_trace(os)("active_processor_count: "
|
|
"CPU_ALLOC failed (%s) - using "
|
|
"online processor count: %d",
|
|
os::strerror(errno), online_cpus);
|
|
return online_cpus;
|
|
}
|
|
}
|
|
else {
|
|
log_trace(os)("active_processor_count: using static path - configured processors: %d",
|
|
configured_cpus);
|
|
}
|
|
#else // CPU_ALLOC
|
|
// these stubs won't be executed
|
|
#define CPU_COUNT_S(size, cpus) -1
|
|
#define CPU_FREE(cpus)
|
|
|
|
log_trace(os)("active_processor_count: only static path available - configured processors: %d",
|
|
configured_cpus);
|
|
#endif // CPU_ALLOC
|
|
|
|
// pid 0 means the current thread - which we have to assume represents the process
|
|
if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
|
|
if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
|
|
cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
|
|
}
|
|
else {
|
|
cpu_count = CPU_COUNT(cpus_p);
|
|
}
|
|
log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
|
|
}
|
|
else {
|
|
cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
|
|
warning("sched_getaffinity failed (%s)- using online processor count (%d) "
|
|
"which may exceed available processors", os::strerror(errno), cpu_count);
|
|
}
|
|
|
|
if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
|
|
CPU_FREE(cpus_p);
|
|
}
|
|
|
|
assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
|
|
return cpu_count;
|
|
}
|
|
|
|
// Determine the active processor count from one of
|
|
// three different sources:
|
|
//
|
|
// 1. User option -XX:ActiveProcessorCount
|
|
// 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
|
|
// 3. extracted from cgroup cpu subsystem (shares and quotas)
|
|
//
|
|
// Option 1, if specified, will always override.
|
|
// If the cgroup subsystem is active and configured, we
|
|
// will return the min of the cgroup and option 2 results.
|
|
// This is required since tools, such as numactl, that
|
|
// alter cpu affinity do not update cgroup subsystem
|
|
// cpuset configuration files.
|
|
int os::active_processor_count() {
|
|
// User has overridden the number of active processors
|
|
if (ActiveProcessorCount > 0) {
|
|
log_trace(os)("active_processor_count: "
|
|
"active processor count set by user : %d",
|
|
ActiveProcessorCount);
|
|
return ActiveProcessorCount;
|
|
}
|
|
|
|
int active_cpus;
|
|
if (OSContainer::is_containerized()) {
|
|
active_cpus = OSContainer::active_processor_count();
|
|
log_trace(os)("active_processor_count: determined by OSContainer: %d",
|
|
active_cpus);
|
|
} else {
|
|
active_cpus = os::Linux::active_processor_count();
|
|
}
|
|
|
|
return active_cpus;
|
|
}
|
|
|
|
static bool should_warn_invalid_processor_id() {
|
|
if (os::processor_count() == 1) {
|
|
// Don't warn if we only have one processor
|
|
return false;
|
|
}
|
|
|
|
static volatile int warn_once = 1;
|
|
|
|
if (Atomic::load(&warn_once) == 0 ||
|
|
Atomic::xchg(&warn_once, 0) == 0) {
|
|
// Don't warn more than once
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
uint os::processor_id() {
|
|
const int id = Linux::sched_getcpu();
|
|
|
|
if (id < processor_count()) {
|
|
return (uint)id;
|
|
}
|
|
|
|
// Some environments (e.g. openvz containers and the rr debugger) incorrectly
|
|
// report a processor id that is higher than the number of processors available.
|
|
// This is problematic, for example, when implementing CPU-local data structures,
|
|
// where the processor id is used to index into an array of length processor_count().
|
|
// If this happens we return 0 here. This is is safe since we always have at least
|
|
// one processor, but it's not optimal for performance if we're actually executing
|
|
// in an environment with more than one processor.
|
|
if (should_warn_invalid_processor_id()) {
|
|
log_warning(os)("Invalid processor id reported by the operating system "
|
|
"(got processor id %d, valid processor id range is 0-%d)",
|
|
id, processor_count() - 1);
|
|
log_warning(os)("Falling back to assuming processor id is 0. "
|
|
"This could have a negative impact on performance.");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void os::set_native_thread_name(const char *name) {
|
|
if (Linux::_pthread_setname_np) {
|
|
char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
|
|
snprintf(buf, sizeof(buf), "%s", name);
|
|
buf[sizeof(buf) - 1] = '\0';
|
|
const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
|
|
// ERANGE should not happen; all other errors should just be ignored.
|
|
assert(rc != ERANGE, "pthread_setname_np failed");
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// debug support
|
|
|
|
bool os::find(address addr, outputStream* st) {
|
|
Dl_info dlinfo;
|
|
memset(&dlinfo, 0, sizeof(dlinfo));
|
|
if (dladdr(addr, &dlinfo) != 0) {
|
|
st->print(PTR_FORMAT ": ", p2i(addr));
|
|
if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
|
|
st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
|
|
p2i(addr) - p2i(dlinfo.dli_saddr));
|
|
} else if (dlinfo.dli_fbase != NULL) {
|
|
st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
|
|
} else {
|
|
st->print("<absolute address>");
|
|
}
|
|
if (dlinfo.dli_fname != NULL) {
|
|
st->print(" in %s", dlinfo.dli_fname);
|
|
}
|
|
if (dlinfo.dli_fbase != NULL) {
|
|
st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
|
|
}
|
|
st->cr();
|
|
|
|
if (Verbose) {
|
|
// decode some bytes around the PC
|
|
address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
|
|
address end = clamp_address_in_page(addr+40, addr, os::vm_page_size());
|
|
address lowest = (address) dlinfo.dli_sname;
|
|
if (!lowest) lowest = (address) dlinfo.dli_fbase;
|
|
if (begin < lowest) begin = lowest;
|
|
Dl_info dlinfo2;
|
|
if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
|
|
&& end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
|
|
end = (address) dlinfo2.dli_saddr;
|
|
}
|
|
Disassembler::decode(begin, end, st);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// misc
|
|
|
|
// This does not do anything on Linux. This is basically a hook for being
|
|
// able to use structured exception handling (thread-local exception filters)
|
|
// on, e.g., Win32.
|
|
void
|
|
os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
|
|
JavaCallArguments* args, JavaThread* thread) {
|
|
f(value, method, args, thread);
|
|
}
|
|
|
|
void os::print_statistics() {
|
|
}
|
|
|
|
bool os::message_box(const char* title, const char* message) {
|
|
int i;
|
|
fdStream err(defaultStream::error_fd());
|
|
for (i = 0; i < 78; i++) err.print_raw("=");
|
|
err.cr();
|
|
err.print_raw_cr(title);
|
|
for (i = 0; i < 78; i++) err.print_raw("-");
|
|
err.cr();
|
|
err.print_raw_cr(message);
|
|
for (i = 0; i < 78; i++) err.print_raw("=");
|
|
err.cr();
|
|
|
|
char buf[16];
|
|
// Prevent process from exiting upon "read error" without consuming all CPU
|
|
while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
|
|
|
|
return buf[0] == 'y' || buf[0] == 'Y';
|
|
}
|
|
|
|
// Is a (classpath) directory empty?
|
|
bool os::dir_is_empty(const char* path) {
|
|
DIR *dir = NULL;
|
|
struct dirent *ptr;
|
|
|
|
dir = opendir(path);
|
|
if (dir == NULL) return true;
|
|
|
|
// Scan the directory
|
|
bool result = true;
|
|
while (result && (ptr = readdir(dir)) != NULL) {
|
|
if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
|
|
result = false;
|
|
}
|
|
}
|
|
closedir(dir);
|
|
return result;
|
|
}
|
|
|
|
// This code originates from JDK's sysOpen and open64_w
|
|
// from src/solaris/hpi/src/system_md.c
|
|
|
|
int os::open(const char *path, int oflag, int mode) {
|
|
if (strlen(path) > MAX_PATH - 1) {
|
|
errno = ENAMETOOLONG;
|
|
return -1;
|
|
}
|
|
|
|
// All file descriptors that are opened in the Java process and not
|
|
// specifically destined for a subprocess should have the close-on-exec
|
|
// flag set. If we don't set it, then careless 3rd party native code
|
|
// might fork and exec without closing all appropriate file descriptors
|
|
// (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
|
|
// turn might:
|
|
//
|
|
// - cause end-of-file to fail to be detected on some file
|
|
// descriptors, resulting in mysterious hangs, or
|
|
//
|
|
// - might cause an fopen in the subprocess to fail on a system
|
|
// suffering from bug 1085341.
|
|
//
|
|
// (Yes, the default setting of the close-on-exec flag is a Unix
|
|
// design flaw)
|
|
//
|
|
// See:
|
|
// 1085341: 32-bit stdio routines should support file descriptors >255
|
|
// 4843136: (process) pipe file descriptor from Runtime.exec not being closed
|
|
// 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
|
|
//
|
|
// Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
|
|
// O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
|
|
// because it saves a system call and removes a small window where the flag
|
|
// is unset. On ancient Linux kernels the O_CLOEXEC flag will be ignored
|
|
// and we fall back to using FD_CLOEXEC (see below).
|
|
#ifdef O_CLOEXEC
|
|
oflag |= O_CLOEXEC;
|
|
#endif
|
|
|
|
int fd = ::open64(path, oflag, mode);
|
|
if (fd == -1) return -1;
|
|
|
|
//If the open succeeded, the file might still be a directory
|
|
{
|
|
struct stat64 buf64;
|
|
int ret = ::fstat64(fd, &buf64);
|
|
int st_mode = buf64.st_mode;
|
|
|
|
if (ret != -1) {
|
|
if ((st_mode & S_IFMT) == S_IFDIR) {
|
|
errno = EISDIR;
|
|
::close(fd);
|
|
return -1;
|
|
}
|
|
} else {
|
|
::close(fd);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
#ifdef FD_CLOEXEC
|
|
// Validate that the use of the O_CLOEXEC flag on open above worked.
|
|
// With recent kernels, we will perform this check exactly once.
|
|
static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
|
|
if (!O_CLOEXEC_is_known_to_work) {
|
|
int flags = ::fcntl(fd, F_GETFD);
|
|
if (flags != -1) {
|
|
if ((flags & FD_CLOEXEC) != 0)
|
|
O_CLOEXEC_is_known_to_work = 1;
|
|
else
|
|
::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return fd;
|
|
}
|
|
|
|
|
|
// create binary file, rewriting existing file if required
|
|
int os::create_binary_file(const char* path, bool rewrite_existing) {
|
|
int oflags = O_WRONLY | O_CREAT;
|
|
oflags |= rewrite_existing ? O_TRUNC : O_EXCL;
|
|
return ::open64(path, oflags, S_IREAD | S_IWRITE);
|
|
}
|
|
|
|
// return current position of file pointer
|
|
jlong os::current_file_offset(int fd) {
|
|
return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
|
|
}
|
|
|
|
// move file pointer to the specified offset
|
|
jlong os::seek_to_file_offset(int fd, jlong offset) {
|
|
return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
|
|
}
|
|
|
|
// This code originates from JDK's sysAvailable
|
|
// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
|
|
|
|
int os::available(int fd, jlong *bytes) {
|
|
jlong cur, end;
|
|
int mode;
|
|
struct stat64 buf64;
|
|
|
|
if (::fstat64(fd, &buf64) >= 0) {
|
|
mode = buf64.st_mode;
|
|
if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
|
|
int n;
|
|
if (::ioctl(fd, FIONREAD, &n) >= 0) {
|
|
*bytes = n;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
|
|
return 0;
|
|
} else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
|
|
return 0;
|
|
} else if (::lseek64(fd, cur, SEEK_SET) == -1) {
|
|
return 0;
|
|
}
|
|
*bytes = end - cur;
|
|
return 1;
|
|
}
|
|
|
|
// Map a block of memory.
|
|
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
int prot;
|
|
int flags = MAP_PRIVATE;
|
|
|
|
if (read_only) {
|
|
prot = PROT_READ;
|
|
} else {
|
|
prot = PROT_READ | PROT_WRITE;
|
|
}
|
|
|
|
if (allow_exec) {
|
|
prot |= PROT_EXEC;
|
|
}
|
|
|
|
if (addr != NULL) {
|
|
flags |= MAP_FIXED;
|
|
}
|
|
|
|
char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
|
|
fd, file_offset);
|
|
if (mapped_address == MAP_FAILED) {
|
|
return NULL;
|
|
}
|
|
return mapped_address;
|
|
}
|
|
|
|
|
|
// Remap a block of memory.
|
|
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
// same as map_memory() on this OS
|
|
return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
|
|
allow_exec);
|
|
}
|
|
|
|
|
|
// Unmap a block of memory.
|
|
bool os::pd_unmap_memory(char* addr, size_t bytes) {
|
|
return munmap(addr, bytes) == 0;
|
|
}
|
|
|
|
static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
|
|
|
|
static jlong fast_cpu_time(Thread *thread) {
|
|
clockid_t clockid;
|
|
int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
|
|
&clockid);
|
|
if (rc == 0) {
|
|
return os::Linux::fast_thread_cpu_time(clockid);
|
|
} else {
|
|
// It's possible to encounter a terminated native thread that failed
|
|
// to detach itself from the VM - which should result in ESRCH.
|
|
assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
|
|
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
|
|
// of a thread.
|
|
//
|
|
// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
|
|
// the fast estimate available on the platform.
|
|
|
|
jlong os::current_thread_cpu_time() {
|
|
if (os::Linux::supports_fast_thread_cpu_time()) {
|
|
return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
|
|
} else {
|
|
// return user + sys since the cost is the same
|
|
return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
|
|
}
|
|
}
|
|
|
|
jlong os::thread_cpu_time(Thread* thread) {
|
|
// consistent with what current_thread_cpu_time() returns
|
|
if (os::Linux::supports_fast_thread_cpu_time()) {
|
|
return fast_cpu_time(thread);
|
|
} else {
|
|
return slow_thread_cpu_time(thread, true /* user + sys */);
|
|
}
|
|
}
|
|
|
|
jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
|
|
if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
|
|
return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
|
|
} else {
|
|
return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
|
|
}
|
|
}
|
|
|
|
jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
|
|
if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
|
|
return fast_cpu_time(thread);
|
|
} else {
|
|
return slow_thread_cpu_time(thread, user_sys_cpu_time);
|
|
}
|
|
}
|
|
|
|
// -1 on error.
|
|
static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
|
|
pid_t tid = thread->osthread()->thread_id();
|
|
char *s;
|
|
char stat[2048];
|
|
int statlen;
|
|
char proc_name[64];
|
|
int count;
|
|
long sys_time, user_time;
|
|
char cdummy;
|
|
int idummy;
|
|
long ldummy;
|
|
FILE *fp;
|
|
|
|
snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
|
|
fp = fopen(proc_name, "r");
|
|
if (fp == NULL) return -1;
|
|
statlen = fread(stat, 1, 2047, fp);
|
|
stat[statlen] = '\0';
|
|
fclose(fp);
|
|
|
|
// Skip pid and the command string. Note that we could be dealing with
|
|
// weird command names, e.g. user could decide to rename java launcher
|
|
// to "java 1.4.2 :)", then the stat file would look like
|
|
// 1234 (java 1.4.2 :)) R ... ...
|
|
// We don't really need to know the command string, just find the last
|
|
// occurrence of ")" and then start parsing from there. See bug 4726580.
|
|
s = strrchr(stat, ')');
|
|
if (s == NULL) return -1;
|
|
|
|
// Skip blank chars
|
|
do { s++; } while (s && isspace(*s));
|
|
|
|
count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
|
|
&cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
|
|
&ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
|
|
&user_time, &sys_time);
|
|
if (count != 13) return -1;
|
|
if (user_sys_cpu_time) {
|
|
return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
|
|
} else {
|
|
return (jlong)user_time * (1000000000 / clock_tics_per_sec);
|
|
}
|
|
}
|
|
|
|
void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
|
|
info_ptr->may_skip_backward = false; // elapsed time not wall time
|
|
info_ptr->may_skip_forward = false; // elapsed time not wall time
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
}
|
|
|
|
void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
|
|
info_ptr->may_skip_backward = false; // elapsed time not wall time
|
|
info_ptr->may_skip_forward = false; // elapsed time not wall time
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
}
|
|
|
|
bool os::is_thread_cpu_time_supported() {
|
|
return true;
|
|
}
|
|
|
|
// System loadavg support. Returns -1 if load average cannot be obtained.
|
|
// Linux doesn't yet have a (official) notion of processor sets,
|
|
// so just return the system wide load average.
|
|
int os::loadavg(double loadavg[], int nelem) {
|
|
return ::getloadavg(loadavg, nelem);
|
|
}
|
|
|
|
void os::pause() {
|
|
char filename[MAX_PATH];
|
|
if (PauseAtStartupFile && PauseAtStartupFile[0]) {
|
|
jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
|
|
} else {
|
|
jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
|
|
}
|
|
|
|
int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
|
|
if (fd != -1) {
|
|
struct stat buf;
|
|
::close(fd);
|
|
while (::stat(filename, &buf) == 0) {
|
|
(void)::poll(NULL, 0, 100);
|
|
}
|
|
} else {
|
|
jio_fprintf(stderr,
|
|
"Could not open pause file '%s', continuing immediately.\n", filename);
|
|
}
|
|
}
|
|
|
|
// Get the default path to the core file
|
|
// Returns the length of the string
|
|
int os::get_core_path(char* buffer, size_t bufferSize) {
|
|
/*
|
|
* Max length of /proc/sys/kernel/core_pattern is 128 characters.
|
|
* See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
|
|
*/
|
|
const int core_pattern_len = 129;
|
|
char core_pattern[core_pattern_len] = {0};
|
|
|
|
int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
|
|
if (core_pattern_file == -1) {
|
|
return -1;
|
|
}
|
|
|
|
ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
|
|
::close(core_pattern_file);
|
|
if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
|
|
return -1;
|
|
}
|
|
if (core_pattern[ret-1] == '\n') {
|
|
core_pattern[ret-1] = '\0';
|
|
} else {
|
|
core_pattern[ret] = '\0';
|
|
}
|
|
|
|
// Replace the %p in the core pattern with the process id. NOTE: we do this
|
|
// only if the pattern doesn't start with "|", and we support only one %p in
|
|
// the pattern.
|
|
char *pid_pos = strstr(core_pattern, "%p");
|
|
const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : ""; // skip over the "%p"
|
|
int written;
|
|
|
|
if (core_pattern[0] == '/') {
|
|
if (pid_pos != NULL) {
|
|
*pid_pos = '\0';
|
|
written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
|
|
current_process_id(), tail);
|
|
} else {
|
|
written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
|
|
}
|
|
} else {
|
|
char cwd[PATH_MAX];
|
|
|
|
const char* p = get_current_directory(cwd, PATH_MAX);
|
|
if (p == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
if (core_pattern[0] == '|') {
|
|
written = jio_snprintf(buffer, bufferSize,
|
|
"\"%s\" (or dumping to %s/core.%d)",
|
|
&core_pattern[1], p, current_process_id());
|
|
} else if (pid_pos != NULL) {
|
|
*pid_pos = '\0';
|
|
written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
|
|
current_process_id(), tail);
|
|
} else {
|
|
written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
|
|
}
|
|
}
|
|
|
|
if (written < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
|
|
int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
|
|
|
|
if (core_uses_pid_file != -1) {
|
|
char core_uses_pid = 0;
|
|
ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
|
|
::close(core_uses_pid_file);
|
|
|
|
if (core_uses_pid == '1') {
|
|
jio_snprintf(buffer + written, bufferSize - written,
|
|
".%d", current_process_id());
|
|
}
|
|
}
|
|
}
|
|
|
|
return strlen(buffer);
|
|
}
|
|
|
|
bool os::start_debugging(char *buf, int buflen) {
|
|
int len = (int)strlen(buf);
|
|
char *p = &buf[len];
|
|
|
|
jio_snprintf(p, buflen-len,
|
|
"\n\n"
|
|
"Do you want to debug the problem?\n\n"
|
|
"To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
|
|
"Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
|
|
"Otherwise, press RETURN to abort...",
|
|
os::current_process_id(), os::current_process_id(),
|
|
os::current_thread_id(), os::current_thread_id());
|
|
|
|
bool yes = os::message_box("Unexpected Error", buf);
|
|
|
|
if (yes) {
|
|
// yes, user asked VM to launch debugger
|
|
jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
|
|
os::current_process_id(), os::current_process_id());
|
|
|
|
os::fork_and_exec(buf);
|
|
yes = false;
|
|
}
|
|
return yes;
|
|
}
|
|
|
|
|
|
// Java/Compiler thread:
|
|
//
|
|
// Low memory addresses
|
|
// P0 +------------------------+
|
|
// | |\ Java thread created by VM does not have glibc
|
|
// | glibc guard page | - guard page, attached Java thread usually has
|
|
// | |/ 1 glibc guard page.
|
|
// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
|
|
// | |\
|
|
// | HotSpot Guard Pages | - red, yellow and reserved pages
|
|
// | |/
|
|
// +------------------------+ StackOverflow::stack_reserved_zone_base()
|
|
// | |\
|
|
// | Normal Stack | -
|
|
// | |/
|
|
// P2 +------------------------+ Thread::stack_base()
|
|
//
|
|
// Non-Java thread:
|
|
//
|
|
// Low memory addresses
|
|
// P0 +------------------------+
|
|
// | |\
|
|
// | glibc guard page | - usually 1 page
|
|
// | |/
|
|
// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
|
|
// | |\
|
|
// | Normal Stack | -
|
|
// | |/
|
|
// P2 +------------------------+ Thread::stack_base()
|
|
//
|
|
// ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
|
|
// returned from pthread_attr_getstack().
|
|
// ** Due to NPTL implementation error, linux takes the glibc guard page out
|
|
// of the stack size given in pthread_attr. We work around this for
|
|
// threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
|
|
//
|
|
#ifndef ZERO
|
|
static void current_stack_region(address * bottom, size_t * size) {
|
|
if (os::is_primordial_thread()) {
|
|
// primordial thread needs special handling because pthread_getattr_np()
|
|
// may return bogus value.
|
|
*bottom = os::Linux::initial_thread_stack_bottom();
|
|
*size = os::Linux::initial_thread_stack_size();
|
|
} else {
|
|
pthread_attr_t attr;
|
|
|
|
int rslt = pthread_getattr_np(pthread_self(), &attr);
|
|
|
|
// JVM needs to know exact stack location, abort if it fails
|
|
if (rslt != 0) {
|
|
if (rslt == ENOMEM) {
|
|
vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
|
|
} else {
|
|
fatal("pthread_getattr_np failed with error = %d", rslt);
|
|
}
|
|
}
|
|
|
|
if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
|
|
fatal("Cannot locate current stack attributes!");
|
|
}
|
|
|
|
// Work around NPTL stack guard error.
|
|
size_t guard_size = 0;
|
|
rslt = pthread_attr_getguardsize(&attr, &guard_size);
|
|
if (rslt != 0) {
|
|
fatal("pthread_attr_getguardsize failed with error = %d", rslt);
|
|
}
|
|
*bottom += guard_size;
|
|
*size -= guard_size;
|
|
|
|
pthread_attr_destroy(&attr);
|
|
|
|
}
|
|
assert(os::current_stack_pointer() >= *bottom &&
|
|
os::current_stack_pointer() < *bottom + *size, "just checking");
|
|
}
|
|
|
|
address os::current_stack_base() {
|
|
address bottom;
|
|
size_t size;
|
|
current_stack_region(&bottom, &size);
|
|
return (bottom + size);
|
|
}
|
|
|
|
size_t os::current_stack_size() {
|
|
// This stack size includes the usable stack and HotSpot guard pages
|
|
// (for the threads that have Hotspot guard pages).
|
|
address bottom;
|
|
size_t size;
|
|
current_stack_region(&bottom, &size);
|
|
return size;
|
|
}
|
|
#endif
|
|
|
|
static inline struct timespec get_mtime(const char* filename) {
|
|
struct stat st;
|
|
int ret = os::stat(filename, &st);
|
|
assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
|
|
return st.st_mtim;
|
|
}
|
|
|
|
int os::compare_file_modified_times(const char* file1, const char* file2) {
|
|
struct timespec filetime1 = get_mtime(file1);
|
|
struct timespec filetime2 = get_mtime(file2);
|
|
int diff = filetime1.tv_sec - filetime2.tv_sec;
|
|
if (diff == 0) {
|
|
return filetime1.tv_nsec - filetime2.tv_nsec;
|
|
}
|
|
return diff;
|
|
}
|
|
|
|
bool os::supports_map_sync() {
|
|
return true;
|
|
}
|
|
|
|
void os::print_memory_mappings(char* addr, size_t bytes, outputStream* st) {
|
|
unsigned long long start = (unsigned long long)addr;
|
|
unsigned long long end = start + bytes;
|
|
FILE* f = ::fopen("/proc/self/maps", "r");
|
|
int num_found = 0;
|
|
if (f != NULL) {
|
|
st->print("Range [%llx-%llx) contains: ", start, end);
|
|
char line[512];
|
|
while(fgets(line, sizeof(line), f) == line) {
|
|
unsigned long long a1 = 0;
|
|
unsigned long long a2 = 0;
|
|
if (::sscanf(line, "%llx-%llx", &a1, &a2) == 2) {
|
|
// Lets print out every range which touches ours.
|
|
if ((a1 >= start && a1 < end) || // left leg in
|
|
(a2 >= start && a2 < end) || // right leg in
|
|
(a1 < start && a2 >= end)) { // superimposition
|
|
num_found ++;
|
|
st->print("%s", line); // line includes \n
|
|
}
|
|
}
|
|
}
|
|
::fclose(f);
|
|
if (num_found == 0) {
|
|
st->print("nothing.");
|
|
}
|
|
st->cr();
|
|
}
|
|
}
|